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Abstract
Single point incremental forming is a sheet metal forming technique with great potential for use in prototyping and custom

manufacture. Although this technology has undergone considerable development in recent years, it still suffers from low

geometrical accuracy in terms of its application in the industry. Therefore, solutions for errors reduction or compensation are

required to improve the process. In this paper, an optimization procedure of the geometric precision, based on genetic

algorithm, global optimum determination by linking and interchanging kindred evaluators solver and newly developed

algorithm called grasshopper optimization algorithm, is tested and doubly validated numerically and experimentally. The

denture plate part simultaneously simulated and manufactured shows how it is possible to obtain sound component with

reduced geometric errors such as springback, bending and pillow effect errors by properly chosen optimal process parameters.

The results indicated that the reduction in the shape defects between the obtained geometry and the target model generated by

computer-aided design can be achieved through coupling of numerical simulations and optimization techniques.
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Abbreviations
ISF Incremental sheet forming

SPIF Single point incremental forming

CAD/

CAM

Computer-aided design/computer-aided

manufacturing

DICOM Digital image and communications in

medicine

CT Computerized tomography

PCL Polycaprolactone

MARS Multivariate adaptive regression splines

MPC Model predictive control

RSM Response surface methodology

FE Finite element

DoE Design of the experiments

BBD Box–Behnken design of experiments

ANOVA Analysis of variance

GAs Genetic algorithms

MaxGen Maximum number of generations

GODLIKE Global optimum determination by linking

and interchanging kindred evaluators

POF Pareto optimal frontier

GA Genetic algorithm

DE Differential evolution

PSO Particle swarm optimization

ASA Adaptive simulated annealing

GOA Grasshopper optimization algorithm

SOOP Single-objective optimization problems

MOOP Multi-objective optimization problems

MOGA Multi-objective genetic algorithm

1 Introduction

Cost-effective technologies suitable for prototyping, cus-

tomized components and small batch production represent

a challenge for the actual market [1]. The answer to these
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requirements are the flexible, time and cost-saving manu-

facturing process as rapid prototyping and, in particular,

incremental sheet forming (ISF) seems to be the most

effective and reliable one when referring to prototypes,

small batch and customized mass productions [2–4].

Without using dedicated dies, parts are formed by the

motion of a small hemispherical end tool traveling along a

3D CAM toolpath on the surface of the sheet wherein a

localized deformation will be generated [5, 6].

This technology was primarily applied in the automobile

and aerospace industry [7, 8]. However, there are other

branches with an important potential for the technology,

such as the biomedical field [9]. When addressing its use in

medicine, it is possible to produce thin walled custom-

made metal components. When addressing its use in

medicine, it is possible to produce thin walled custom-

made metal components. Araújo et al. [10] demonstrated

the feasibility of single point incremental forming process

(SPIF) to produce titanium customized maxillofacial

implants. Castelan et al. [11] presented the manufacturing

by ISF of the custom-made cranial implants from a sheet of

pure grade 2 titanium from digital image and communi-

cations in medicine (DICOM) images using 3D printing,

CAD/CAM technology and incremental sheet forming.

From computerized tomography (CT) images of a fractured

skull, a CAD model of the skull BioModeling and a

restorative implant were constructed digitally. Duflou et al.

[12] used three different materials: AA1050, AISI 304 and

medical grade titanium for accurate manufacture of cran-

iofacial implant using SPIF process. Fiorentino et al. [13]

manufactured a plate prosthesis using a titanium alloy and

polycaprolactone (PCL). Although their results were

promising, the poor accuracy of the part needs an opti-

mization of the process parameters. While there has been

much discussion of SPIF as a useful custom manufacturing

process, only a small number of end user ready applications

have been documented. Nevertheless, the big advantages

connected with this technology, there are some critical

aspects related to the part feasibility and the part precision.

For any process to be widely adopted, one must be able to

clearly communicate to the end users the capabilities and

limitations. To achieve this, the main limit of the tech-

nology represented by the geometrical errors that can be

found on the final shape [14] should be overcome.

In order to improve the poor geometrical accuracy, some

attempts have been presented in the literature, including

experimental investigation of process parameters [15, 16],

hybrid ISF processes [17–19], the use of partially cutout

blanks [20] and a multistage strategy [21]. Moreover, since

the adopted toolpath greatly influences thinning and fea-

sibility, many studies concentrated on the toolpath cor-

rection/optimization. The ISF toolpath can be corrected by

using error compensation based on trial fabrications [5], a

feature-based toolpath generation strategy [22], a multi-

variate adaptive regression splines (MARS) correction

strategy [23], iterative algorithms [24–26], transfer func-

tion [27] and an artificial cognitive system [28]. Moreover,

some in-process toolpath correction approaches were per-

formed in SPIF based on a control strategy using spatial

impulse responses of the process [29] and a model pre-

dictive control (MPC) strategy [30, 31]. Some research has

been performed to reduce the main drawbacks of ISF

process with new approaches for optimization problems

based on numerical simulation, response surface methods

(RSM) and genetic algorithms [32, 33].

Within a so wide panorama of issues to be considered for

obtaining a sound part through ISF, the use of preliminary

finite element (FE) tools is of great help in reducing time and

cost for the design of the manufacturing process [34–36]. In

our previous work [37], the feasibility of manufacturing

customized titanium denture plate by using the ISF approach

has been studied within the frame of a preliminary opti-

mization procedure by evaluating multi-objective opti-

mization methods for SPIF process parameters.

Nevertheless, good adequacy has been proved between the

optimized process parameters, the SPIF finite element sim-

ulation and the obtained experimental part. Geometric

accuracy is still the critical aspect to be corrected especially

the sheet springback [38], the sheet bending [39] and the

‘‘pillow effect’’ (known as an unwanted curved surface,

typically occurs on the flat base of the part formed by SPIF)

[40]. The results showed that the incremental forming pro-

cess was a new process where there remains room for

improvement toward limited dimensional precision.

Besides that the computer science [41–44] is one of the

most developing and in demand trades of engineering. Its

fast growth and development [45–48] have a beneficial

impact on the manufacturing industry [49].

For this reason, this article proposes the use of a

parameterized FE model and optimization procedure to

reduce these process limitations: springback error, bending

error and pillow effect error. This technique will also lead

to reduce time and materials consuming compared to others

methods which are generally based on several experimental

tests combined with normalized techniques [50–52].

2 Numerical modeling and design
procedure of computer experiments

2.1 Framework of the proposed method

Based on the experimental results of incremental sheet

forming process shown in our previous work [37], obvious

geometric errors have been noted. This is the major well-

known limitation of SPIF process. Therefore, this study
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aims to reduce theses errors. The virtual process chain for

the simulation-based development of Pareto-optimized

SPIF process responses is presented in Fig. 1. The design

optimization starts with the design of the experiments

(DoE) that leads to perform the simulation study. For this, a

parameterized FE model of SPIF process is used. During

the post-processing of each single simulation, the consid-

ered target responses expressed in terms of the final

geometry of the parts are evaluated and recorded. The DoE

design and the calculated geometric errors are then used to

derive a metamodel to reduce the computational cost dur-

ing the design optimization. The last step of the design

optimization sub-process consists in finding the optimal

design variables for the optimization problem of incre-

mental forming by applying mono- and multi-objective

optimization methodologies with regard to one or more

target figures. Then, the attained optimal solution and the

optimal process parameters are used to make an experi-

mental validation test for the manufacture of the titanium

denture plate. Finally, the geometry of the part obtained

with experimental measurement has been compared to the

desired one in order to verify the efficacity of the used

procedure. Each process step depicted in Fig. 1 will be

described in the following sections in more detail.

2.2 Numerical simulation of SPIF process

Due to the cost materials and time for the experimental

study, it is necessary to build the FE model to conduct the

simulation analysis and realize the virtual that reflect the

actual situation exactly. Based on the scanned shape of an

existing custom-made denture base, the toolpath has been

generated to produce simultaneously two identical denture

base parts (Fig. 2). The shape of the titanium sheet has

been considered square with a size of 120 mm 9 120 mm.

The sheet was clamped into a fixed rectangular blank

holder, and a backing plate is placed underneath it to

support the part. In the FE model, A 4-node doubly curved

thin or thick shell (S4R) and seven Gaussian reduced

integration points through the thickness direction were

used to model the sheet blank with approximately 14.400

elements. The rig and the clamp are meshed with 4-node

3-D bilinear rigid quadrilateral elements (R3D4). The

punch is supposed to be analytical rigid surface. The sheet

material used in the numerical simulation is CP-Ti Gr.1. It

was modeled as an elasto-plastic material with isotropic

hardening. The material properties of CP-Ti Gr.1 pure

titanium are taken from [9]. As a result, the FE model of

the SPIF can be obtained as shown in Fig. 3 using

Planning of experiments: 
Design and analysis of 
computer experiments

Parametrized simulation 
study

Geometric errors detection

Design Optimization

Metamodeling technique 
based analysis: RSM 

construction

Optimization techniques

Single-objective Multi-objective 

MOGAGA GODLIKEGOA GODLIKE

Previously detected
geometric errors from

experiments

CAD  modeling Toolpath
generation

Pareto Optimized

Part production:
Use of the optimal 

solution for experimental 
validation

Fig. 1 Flowchart of the optimization procedure for geometric errors reduction in SPIF process
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ABAQUS–Explicit software package. As shown in Fig. 4,

the geometric errors between the theoretical profile pro-

vided by CAD modeling and the one obtained with

numerical simulation have been calculated in three critical

areas: the springback zone, the bending zone and the pillow

effect zone.

2.3 Design of experiments

For this study, a parameterized FE model has been devel-

oped. Therefore, the process parameters and their levels to

be used in the simulation study have been chosen based on

experimental design. Design of experiments (DoE) is a

cost-effective tool for controlling the influence of param-

eters in manufacturing processes. The selection of a suit-

able DoE with respect to a compromise between high

accuracy and limited time to carry out the experiment is

crucial at the beginning of a DoE process. In order to

reduce the factors combinations, and therefore the overall

time to carry out the simulation study, Box–Behnken

Designs (BBD) [53] was chosen. The target process

responses of interest in this contribution are the geometric

errors measured between obtained and desired cad part in

three areas: the springback zone, the bending zone and the

pillow effect zone. Therefore, a total number of 15

numerical simulation runs will be needed for the devel-

opment of an adequate geometric errors prediction models

by finding out the relationship between the response

functions and the variables (tool diameter, vertical incre-

ment size and friction coefficient). The considered

parameters and their levels are, respectively: tool diameter

(D: 5, 7.5, 10 mm), step down (Dz: 0.02, 0.11, 0.2 mm) and

friction coefficient (l: 0.05, 0.15, 0.25). The main objective

of this procedure is to define the most critical process

parameters and their effect on the considered responses for

denture plate manufacturing. Table 1 summarizes the

matrix of experiments which represents the process

parameters combinations and the SPIF studied responses

obtained by the previously described numerical simulation.

3 Response surface methodology

Response surface methodology (RSM) is a statistical

model, frequently used to analyze, evaluate, predict and/or

optimize a response variable that is influenced by some

Punch

Titanium sheet

Tool trajectory

Fig. 2 SPIF process principle

Fig. 3 Simulation principle of

SPIF process
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decision or independent variables [54, 55]. After identify-

ing some vital controllable factors, the RSM model can be

applied to find values of various process parameters that

optimize the response variable and can also be used to

predict the desired response according to those independent

factors. RSM analysis includes the formation of a regres-

sion equation using the relationship between the response

and independent variables which helps to determine a

mathematical correlation and the influence of interactions

of different independent variables on the corresponding

response [56]. In the presence of complicated relationships

between the input variables and output responses, the most

significant factors influencing a physical response of such

process can also be determined through the application of

variance analysis (ANOVA) [57]. Consider a response y

that is determined as a function of variable Xi, the second

order polynomial regression model (full quadratic model)

can be represented by Eq. (1):

y ¼ b0 þ
Xk

i¼1

biXi þ
Xk

i¼1

biiX
2
i þ

X
kj

X
bijXiXj þ e ð1Þ

where k is the number of design variables, Xi is the set of

design variables, bi are the polynomial coefficients, and e is

minor error.

In our case, the regression equations defining the SPIF

process responses in terms of bending error dbð Þ, pillow

effect error dp
� �

and springback error dsð Þ could be sum-

marized as follows:

db ¼ 1:050 � 0:290Dþ 2:56Dz� 2:13 lþ 0:0290D

� Dþ 8:36Dz� Dzþ 6:82 l� l� 0:474D

� Dzþ 0:060D� l� 1:36Dz� l

ð2Þ

dp ¼ �0:563 þ 0:308Dþ 4:71Dzþ 2:46 l� 0:02826D

� D� 2:929Dz� Dz� 5:75 l� lþ 0:582D

� Dz� 0:006D� l� 4:42Dz� l

ð3Þ
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Fig. 4 Comparison of

geometric errors predicted by

FE simulation with theoretical

geometrical model generated by

computer-aided design (CAD)

Table 1 Box–Behnken design

of experiments matrix with

three independent variables and

responses

Run no. D Dz l Bending error Pillow effect error Springback error

1 10 0.2 0.15 0.949068 0.691896 0.841086

2 10 0.11 0.25 0.837698 0.656196 0.675086

3 7.5 0.2 0.05 0.442568 0.808196 0.267386

4 7.5 0.11 0.15 0.375448 0.957396 0.700586

5 7.5 0.11 0.15 0.375448 0.957396 0.700586

6 7.5 0.02 0.25 0.604702 0.596596 0.2

7 5 0.02 0.15 0.086762 0.656896 0.267386

8 7.5 0.11 0.15 0.375448 0.957396 0.700586

9 10 0.02 0.15 0.887788 0.004896 0.536986

10 7.5 0.2 0.25 0.538678 0.797996 0.711886

11 10 0.11 0.05 0.841298 0.648096 0.660386

12 5 0.11 0.25 0.378458 0.801396 0.778786

13 7.5 0.02 0.05 0.459532 0.447696 0.322686

14 5 0.11 0.05 0.442388 0.787196 0.784386

15 5 0.2 0.15 0.574248 0.820396 1.210786
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ds ¼ 1:225 � 0:376Dþ 9:89Dzþ 3:25 lþ 0:0290D

� D� 2:072Dz� Dz� 15:72 l� l� 0710D

� Dzþ 0:020D� lþ 15:76Dz� l

ð4Þ

The analysis of variance (ANOVA) of the three geo-

metric errors was conducted, as an integral part of RSM

study, to determine the effects of punch diameter, step size

and friction coefficient as well as the effects of their inter-

actions on the responses. This statistical analysis technique

was carried out using the commercial software Minitab 17.

Additionally, for further illustration of accuracy of the

developed model, the scatter plots between the predicted

and actual values for bending error dbð Þ, pillow effect error

dp
� �

and springback error dsð Þ were drawn during this

study. As it can be observed from Fig. 5, residuals for the

studied responses are verified to follow a normal distribu-

tion assumption, considering an approximately straight-line

distribution. The obtained models in Eqs. (2), (3) and (4)

are thus served as a very good base in order to determine

the optimal forming parameters.

Figure 6 presents the main effect plots for three process

responses: bending error dbð Þ, pillow effect error dp
� �

and

springback error dsð Þ. Comparing the impacts of the pro-

cess factors: tool diameter (D), incremental step size (Dz)
and friction coefficient (l) on these above mentioned

responses, it can be noted that changes carried out between

the low and high levels of different parameters affect, more

or less, the variation of the response. According to Fig. 6,

the vertical increment (Dz) seems to be the most influ-

encing factor on the springback and pillow effect errors

while the punch diameter (D) has more influence on the

bending error. However, the friction coefficient (l) is the

factor with much less important effects on the responses.

As can be seen in Fig. 6c, a variation of Dz from 0.02 to

0.2 mm leads to an amplification of the springback error

from 0.33 to 0.76 mm. The graphs of the main effects

emphasize immediately the significant factors.

Based on the preceding results, the RSM can be used to

construct the global approximation of the responses at

various sampled points of design space. Figure 7 shows an

example of three-dimensional representation of the relative

variation of the predicted bending error dbð Þ, pillow effect

error dp
� �

and springback error dsð Þ given in the form of

surface and contour plots. Due to its low effect, the friction

coefficient (l) can be fixed to its medium value. The results
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Fig. 5 Normal probability plots of the residuals for the three responses, respectively, a bending error dbð Þ, b pillow effect error dp
� �

and c

springback error dsð Þ
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show that the process responses evolve in a nonlinear way

according to the considered parameters (D, Dz).
It can be evoked from Fig. 7ai, that the variations of the

last two responses pillow effect error dp
� �

and springback

error dsð Þ are more sensitive to the vertical step size than to

the punch diameter. These corresponding figures show that

the increase in the vertical increment step size represents

an amplification of these geometrical errors.

4 Optimization algorithms
for the minimization of geometric errors
in SPIF process

Once the response surface is constructed for the considered

process outputs, the optimization problems will be solved

using the following described algorithms for searching the

decisions variables leading to optimal solutions of contin-

uous nonlinear optimization problems.

4.1 Genetic algorithms

Genetic algorithms (GAs) are optimization techniques that

are inspired by the basic principles of selection, evolution

and inheritance in nature or by Darwin’s theory of survival

of the fittest [58]. The basic elements of natural genetics

such as the reproduction, the crossover and the mutation

are used in the genetic search procedure. GAs are a

heuristic techniques particularly well suited using

stochastic optimization that simulates natural evolution on

the solution space of the optimization problems. This type

of method is highly capable to find the global optimum

solution (minimum or maximum of a function) by

searching the space with a high probability. The data

processed by GA include a set of chromosomes with an

infinite length in which each bit is called a gene. A selected

number of strings are called a population, and each popu-

lation created during all processing time is also named a

generation. In the initialization step, an initial population of

strings is generated randomly. In our case, a binary

encoding scheme is traditionally adopted to represent the

chromosomes using either zeros or ones, since the binary

coding offers the maximum number of schemata per bit of

information. Thereafter, the fitness value of each member

will be evaluated. The population is then operated by the

three main operators, namely: selection, crossover, and

mutation to create a new population. The new population is

further computed and stopping criteria testing the conver-

gence of genetic algorithm toward an optimal solution is

used. One iteration after the application of these three

operators is known as a generation in the parlance of GA.

GAs have been successfully applied to large optimiza-

tion problems in various research areas such as engineering

design, process planning, assembly and transportation

problems, image processing, and scheduling. In this par-

ticular case, the GAs will be used as powerful tool for the

Fig. 6 Main effect plots of the three studied process parameters for: a bending error dbð Þ, b pillow effect error dp
� �

and c springback error dsð Þ
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optimization of the incremental forming process parame-

ters. The mono- and multi-objective genetic algorithm

developed in the frame of our research works follow the

steps outlined in the flowchart of Fig. 8.

4.2 Multi-objective genetic algorithm

The multi-objective genetic algorithm (MOGA) [59] is an

extension of the classical GA that explicitly used Pareto-

based ranking and niching techniques together to encour-

age the search toward the true Pareto front while main-

taining diversity in the population. The main difference

between a conventional GA and a MOGA resides in the

assignment of fitness to an individual [60]. The rest of the

algorithm is the same as that in a classical GA. MOGA is

very attractive due to its capability to explore a larger

extension of the design space and to compute multiple

independent objective functions simultaneously in one

optimization run. For these reasons, MOGA can be used for

higher nonlinear MOOPs such as sheet metal forming.

Let P(g) and O(g) be parents and offspring in current

generation g. The general structure of multi-objective

genetic algorithm (MOGA) [61] can be described as fol-

lows (Fig. 9):

4.3 Global optimum determination by linking
and interchanging kindred evaluators
algorithm

In this contribution the ‘‘Global optimum determination by

linking and interchanging kindred evaluators’’ (GODLIKE)

[37, 62, 63] was used to optimize the geometrical errors

Fig. 7 Global evolution of bending error dbð Þ, pillow effect error dp
� �

and springback error dsð Þ according to the punch diameter and the

incremental step size for a constant value of friction coefficient (l = 0.15): ai second order response surface and bi contour plots
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predicted in SPIF process and to present the results in form

of Pareto optimal frontier (POF). Figure 10 shows graph-

ically the basic operations of GODLIKE solver. Thus, this

algorithm solves optimization problems using relatively

basic implementations of genetic algorithm (GA), differ-

ential evolution (DE), particle swarm optimization (PSO)

and adaptive simulated annealing (ASA). GODLIKE is

primarily intended to improve the robustness of the opti-

mization method by exploiting the simultaneous running of

the involved algorithms to decrease the chance of prema-

ture convergence to a local solution and to diminish the

influence of the fine-tuning of each algorithm on the final

solution. By using several optimizers at the same time, this

amounts to performing four (or more) consecutive opti-

mizations all at once, which already improves the chances

of finding the global optimum. The weaknesses associated

with each of these cited algorithms are neglected by the

strengths and the performance of another, while the

robustness of all algorithms simply adds up simultane-

ously. GODLIKE does not aim to make either of the

algorithms more efficient in terms of function evaluations.

4.4 Grasshopper optimization algorithm

Grasshopper optimization algorithm (GOA) is one of the

recent algorithms for optimization proposed by Saremi

et al. [64]. This algorithm is swarm-based nature-inspired

algorithm which mimics and mathematically models the

swarming behavior of grasshoppers in nature. A mathe-

matical model was proposed to simulate repulsion and

attraction forces between the grasshoppers [64–66].

Repulsion forces allow grasshoppers to explore the search

space, whereas attraction forces encouraged them to exploit

promising regions. To balance between exploration and

exploitation, GOA was equipped with a coefficient that

adaptively decreases the comfort zone of the grasshoppers.

Finally, the best solution obtained so far by the swarm was

considered as a target to be chased and improved by the

grasshoppers. The proposed mathematical model for the

Start

Generate initial population

Calculate vector objective function

Calculate ranking

Reproduction

Genetic operation (selection,
crossover, mutation)

Select new population

Terminal condition

Stop

Yes

No

Fig. 8 Flowchart of the employed GA

Fig. 9 Pseudocodes of the

MOGA algorithm [61]
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simulation of the swarming behavior of grasshoppers is

presented as follows:

Xd
i ¼ c

XN

j¼1
j6¼i

c
ubd � lbd

2
s xdj � xdi

���
���

� � xj � xi

dij

0
BB@

1
CCAþ T̂d ð5Þ

where

• Xd
i defines the position of the ith grasshopper in the Dth

dimension,

• N is the number of grasshoppers,

• ubd and lbd are, respectively, the upper and the lower

bound in the Dth dimension,

• s defines the social forces: It represents how it impacts

on the social interaction (attraction and repulsion) of

grasshopper.

• T̂d is the value of the Dth dimension in the target (best

solution found so far),

• c is a decreasing coefficient to shrink the comfort zone,

repulsion zone and attraction zone.

Equation (5) shows that the next position of a

grasshopper is defined based on its current position, the

position of the target and the position of all other

grasshoppers.

For balancing exploration and exploitation, the param-

eter c is required to be decreased proportional to the

number of iterations. This mechanism promotes exploita-

tion as the iteration count increases. The coefficient c

reduces the comfort zone proportional to the number of

iterations and is calculated as follows:

c ¼ cmax � l
cmax � cmin

L
ð6Þ

where cmax is the maximum value, cmin is the minimum

value, l indicates the current iteration, and L is the maxi-

mum number of iterations. The pseudocode of the GOA

algorithm is shown in Fig. 11.

Initialize population of size popsize

Recombine all populations

Set i=i+1

Split population into N parts of 
random size, and set i=1

Perform A DE-iterations on the ith
subpopulation

Initialize method-dependent parameters 
and/or random numbers 

ItersLb<A+B+ C + D<ItersUb

Perform C SA-iterations on the ith
subpopulation

Perform D PSO-iterations on the ith
subpopulation

Output best individual &
fitness

Is i > N?

Perform B GA-iterations on the ith
subpopulation

Termination 
condition met?

YesNO

Yes

NO

Fig. 10 Flowchart of the used GODLIKE hybrid algorithm [36]
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The proposed algorithm can be used for solving the

engineering optimization problems [64, 65]. In the next

section, the possibility of application in real life of

grasshopper optimization algorithm performances will be

presented in our case of study.

4.5 Single-objective optimization problem

The fitness functions to minimize in this section are: the

bending error dbð Þ, the pillow effect error dp
� �

and the

springback error dsð Þ. Optimization is carried out in the

search range of punch diameter (D) and vertical step size

(Dz) in order to determine the optimal values of these

process parameters guaranteeing the minimization of the

considered process responses. So, the single-objective

optimization problems (SOOP) could be formulated in the

following form:

Minimize db ¼ F1 D;Dz; lð Þ ð7aÞ
Minimize dp ¼ F2 D;Dz; lð Þ ð7bÞ

Minimize ds ¼ F3 D;Dz; lð Þ ð7cÞ

subject to the following inequality and equality constraints:

Dmin �D�Dmax D 2 5 mm to 10 mm½ � ð8aÞ
Dzmin �Dz�Dzmax Dz 2 0:02 mm to 0:2 mm½ � ð8bÞ
l ¼ constant value l ¼ 0:15 ð8cÞ

In this section, the first tested method to solve the SOOP

is the optimization with GA. Figure 12 presents the evo-

lution of the cost function values versus the cumulated

generations number for the responses dbð Þ, dp
� �

and dsð Þ,
respectively. As reported in the representative curves, it

can be noticed that the objective functions decrease rapidly

during the first generations, and then the minimal values of

these studied responses begin to be stable after the first

twenty-five iterations until reaching the convergence

toward their optimal solutions. According to Fig. 12a–c,

the best solutions characterizing the minimum values of the

objective functions are: db-min = 0.207012, dp-min =

0.107249 and ds-min = 0.303145.

Fig. 11 Pseudocodes of the

GOA algorithm [48]

Fig. 12 Evaluation of fitness functions: a bending error dbð Þ, b pillow

effect error dp
� �

and c springback error dsð Þ with genetic algorithm

versus cumulated number of generations
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The same process responses have been optimized using

the previously described GODLIKE mono-objective opti-

mization evolutionary algorithm. As shown in Fig. 13a, b,

c, the global optimal solution for each objective function

has been extracted from the results of the optimized

responses. The obtained optimized responses with GOD-

LIKE solver for bending error, pillow effect error and

springback error are: db-min = 0.207000, dp-min =

0.107300 and ds-min = 0.303100, respectively.

Verification and validation of computer simulation

models are performed by comparing these optimal results

obtained through GODLIKE optimization algorithm with

the previous one resulting from the integration of GA.

Therefore, it can be clearly observed that the global min-

imums of different objective functions considered in this

work are in very close agreement, which will make it

possible the confirmation of the effectiveness and the

reliability of these GODLIKE and GA-based optimization

processes.

The main objective behind conducting this experiment

was to observe the GOA algorithm behavior qualitatively

[65]. Three diagrams have been drawn for each of the

desirability function (Fig. 14):

• Convergence curves this diagram shows the objective

value of the best solutions obtained so far (target) in

each iteration.

• Average fitness of grasshoppers this diagram indicates

the average objective value of all grasshoppers in each

iteration.

• Search history this diagram shows the location history

of the artificial grasshoppers during optimization.

The different curves presented in both Fig. 14ai, bi

clearly show descending behavior on all of the objective

functions. They have shown the advantageous of rapid

convergence properties of grasshopper optimization algo-

rithm toward the minimal value of all responses and for a

small number of iterations. This proves that GOA enhances

the initial random population on the cost functions and

desirably improves the accuracy of the approximated

optimum over the course of iterations.

It is worth noting from Fig. 14ci that the grasshoppers

tend to explore the different regions of the search space

around the global optima eventually. These results will

confirm that the GOA algorithm beneficially balances

exploration and exploitation to drive the grasshoppers

toward the global optimum.

In order to make a comparative study between all results

determined by different optimization techniques, we chose

to recapitulate in the same table all optimal solution

obtained and the corresponding design variables. The

optimal process responses of the three fitness functions

bending error, pillow effect error and springback error

obtained with GOA, GA and GODLIKE algorithms have

been summarized in Table 2. The deduced values of opti-

mal process parameters denoted by (D_opt) and (Dz_opt)

are also presented for comparison. According to these

results, it was found that the three tested algorithms lead

approximately to the same response value of for each

objective function. From Table 2, it can also be seen that

the global optimum computed by all methods is obtained

for almost identical design points characterized by same

values of incremental step depth and for slightly different

tool diameters. Consequently, these results can thus be

observed as satisfactory.

Another important remark concerns the presence of

antagonistic and non-comparable objective functions. In

fact, an overall optimal solution corresponding to the

best geometrical accuracy minimum with respect to

minimum bending and springback errors during the SPIF

operation and involving smaller size of punch diameter

but higher value is automatically attained when mini-

mizing pillow effect error. To resolve this problem of

conflicting relations, a multi-criteria optimization and

Fig. 13 Single optimization results: a bending error dbð Þ, b pillow

effect error dp
� �

and c springback error dsð Þ provided with GODLIKE

optimizer approach
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decision-making technique by the use of multi-objective

versions of these algorithms will be proposed and

developed in the next section. It is considered as effi-

ciency methodology and a better way to solve an engi-

neering optimization problem.

4.6 Tri-objective optimization problems

The multi-objective optimization technique [67] will be

used to search the optimal solutions for the three consid-

ered process outputs simultaneously. A generic formulation

of the multi-objective optimization problems (MOOP) can

be defined by the following equations:

Minimize y~¼ F~ðX~Þ ¼ f1ðX~Þ; f2ðX~Þ; . . .; fNðX~Þ
� �T

Subject to giðX~Þ� 0; i ¼ 1; 2; . . .;m

hjðX~Þ� 0; j ¼ 1; 2; . . .; l

Where X~ ¼ X1;X2; . . .;XpÞ
� �T 2 X

XL �X�XU

8
>>>>>>><

>>>>>>>:

ð9Þ

where y! is the objective vector, is a vector with the values

of scalar objective functions to be minimized, m and l

represent, respectively, the number of inequality, gi X~
� �

,

and equality, hj X~
� �

. X~ is a P-dimensional vector

Fig. 14 Single optimization results in SPIF process with GOA for

bending error dbð Þ, pillow effect error dp
� �

and springback error dsð Þ,
respectively: ai convergence curves, bi average fitness of all

grasshoppers and ci exploration of the search space and localization

of the global optimum

Table 2 Summary table of different optimization results corresponding to the minimization of bending error, pillow effect error and springback

error obtained by three optimization methods

Objective functions Bending error dbð Þ Pillow effect error dp
� �

Springback error dsð Þ

Optimization methods GA GODLIKE GOA GA GODLIKE GOA GA GODLIKE GOA

Global minimum 0.207012 0.207000 0.20701 0.107249 0.107300 0.10725 0.303145 0.303100 0.30315

(D_opt) 5.008 5.0082 5.0083 10 9.9999 10 6.676 6.6817 6.6759

(Dz_opt) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
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representing the decision variables within a parameter

space X. XL and XU are the lower and upper bound vectors

of the design parameters X.

The tri-objective optimization design of SPIF can offer

more choices for a designer. This will allow us to find

trade-off optimum design points allowing to minimize all

three objective functions of bending dbð Þ, pillow effect

dp
� �

and springback dsð Þ errors, simultaneously. The multi-

criteria optimization system in single point incremental

forming problem can be formulated in the following form:

Minimize

db ¼ F1 D;Dz; lð Þ
dp ¼ F2 D;Dz; lð Þ
ds ¼ F3 D;Dz; lð Þ

8
><

>:
ð10Þ

subject to the common conditions of inequality and

equality constraints, given below:

5 mm�D� 10 mm

0:02 mm�Dz� 0:2 mm

l ¼ 0:15

8
><

>:
ð11Þ

Figure 15 shows the final Pareto of the optimal responses

obtained with the multi-objective genetic algorithm

(MOGA) method and the GODLIKE solver. As it can be

noted from Fig. 15a, the obtained Pareto optimal design of

SPIF process using MOGA routine can offer several optimal

solutions. With GODLIKE solver, unique solution presented

by the green dot in the final Pareto plot (Fig. 15b) is corre-

sponding to the most efficient point of the MOOP.

Table 3 summarizes the optimal process parameters

combinations of the studied problem obtained with MOGA.

The optimization results given by GODLIKE in terms of the

most efficient solution are illustrated in Table 4. According

to these tables, it can be seen that the optimal solution:

D & 8 mm and Dz & 0.02 mm is a common solution

between both studied multi-objective algorithms. There-

fore, for the validation of these results described numeri-

cally, experimental tests will be done based on the obtained

value of optimum process parameters.

5 Experimental validation

Experiments were carried out using Amino DLNC-RB

machine to manufacture the denture base. The previously

chosen combination of optimal process parameters

obtained with multi-objective optimization approach was

employed for practical test. It corresponds to tool diameter

value of D = 8 mm and incremental step down Dz equal to

0.02 mm. In order to reduce the friction phenomenon and

obtain a better formability of material, chlorine-containing

forming oils were applied as a lubricant. Figure 16 illus-

trates the experimental test conducted in single point

incremental forming process to experimentally verify the

efficacity of the optimization strategy. The metal sheet

used for SPIF process was made of Commercially Pure

Grade 1 Titanium.

Moreover, the measured geometry of the formed denture

base made by SPIF technology is obtained from an 3D

optical measuring system GOM ATOS. As depicted in

Fig. 17, a cross-sectional comparison among deformed

profile and the target profile representing the desired

Fig. 15 Tri-objective optimization results with a MOGA and

b GODLIKE algorithms

Table 3 Optimal process

parameters calculated by

MOGA algorithm

D (mm) Dz (mm)

5.00976563 0.02000095

9.98118211 0.0200931

6.6629387 0.02001164

8.21687672 0.02078405

8.01577028 0.02007967

9.98118211 0.0200931

6.25703032 0.02465748

8.4338668 0.02169529

9.22629428 0.02019992

8.98496061 0.02085449

8.52908391 0.0204045

9.14430126 0.02266056

8.8242337 0.02210532

8.80944024 0.02506461

9.62526478 0.02074483

9.21680786 0.02106186

9.46697476 0.02429296

7.51057595 0.02382012
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original CAD model was conducted. In particular, Fig. 17b

reports the topographic map of the geometrical error and its

frequency distributions. The error distributions are com-

pared in terms of average value and uniformity. As it can

be observed from these two presented figures, the most

critical zones containing the maximum errors are located in

the upper boundaries (due to the bending effect) and in the

central region of the bottom of the part (due to the pillow

effect). In fact, the zones on boundary are the farthest from

the punch and the closest to the backing plate and, there-

fore, they are subjected to more severe bending stresses

during forming. In the studied case, the error map is gen-

erally symmetric and seems to be uniform. Therefore, the

error fluctuation varies in an interval which does not

exceed in any case 0.4 mm, judged to be satisfactory. In

conclusion, the optimization methods help to compensate

the previously described errors without losing time and

material on the experimental tests.

6 Conclusion

The presented work deals with one of the main drawbacks

of the SPIF process which is the low geometrical accuracy

achievable on the workpiece due to different phenomena

like springback, sheet bending and pillow effect. During

these research studies, we are concentrated on the assess-

ment of the geometrical quality for biomedical parts fab-

ricated by incremental forming technology, in order to

improve the process in terms of desired dimensional

accuracy achievement. For doing that an optimization

study has been consequently performed for geometrical

errors compensation. It consists of proving its capability for

a particular studied case for biomedical application, in

particular, for a denture plate. Based on the noted errors in

our previous research works, the precision of ISF product

has been controlled and enhanced within a parameterized

numerical model based on the finite element method

(FEM) and different optimization algorithms.

This experiment and relevant discussions support the

following conclusions:

• The results show that the different implemented

numerical optimization algorithms are able to provide

superior results.

• The results of the real applications also prove the merits

of the recent grasshopper optimization algorithm

(GOA) considered as a modern high-performance

algorithm for solving real problems compared with

other classical algorithms more known in the literature,

such as GA and GODLIKE.

• For multi-objective optimization results, it can be

deduced that MOGA and GODLIKE techniques lead

to one common optimal solution.

The obtained optimal parameters, applied in experi-

mental test of SPIF process, help to compensate the

Table 4 Efficient solution to a multiple objective optimization

problem computed by GODLIKE solver

Optimal solutions (db, dp, ds) Optimal factors (D, Dz)

(0.4684, 0.4858, 0.3549) (8.0106, 0.0200)

1. Target CAD 
geometry + toolpath 

generation in CAM 
software

2. Part Manufacturing

3. Shape 
measurement

4. Geometries 
comparison 

Punch Sheet lubrication

SPIF process - sequence 
of operation

1

3

2

Fig. 16 Experimental procedure and single point incremental forming setup at the institute of metal forming of RWTH Aachen University
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geometrical errors. By analyzing part geometry with 3D

optical measurement system, geometrical precision

achievement has been noted. This proves the capabilities of

the presented optimization strategy. Compared to majority

of last works for geometric accuracy enhancement in SPIF

which are based on several experimental tests, this study

has an economic aspect.
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