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Abstract
There are many challenges in the task of predicting ore deposits from big data repositories. The data are inherently complex

and of great significance to the intervenient spatial relevance of deposits. The characteristics of the data make it difficult to

use machine learning algorithms for the quantitative prediction of mineral resources. There are considerable interest and

value in extracting spatial distribution characteristics from two-dimensional (2-d) ore-controlling factor layers under

different metallogenic conditions. In this paper we undertake such analysis using a deep convolutional neural network

algorithm named AlexNet. Training on the 2-d mineral prediction and classification model is performed using data from

the Songtao–Huayuan sedimentary manganese deposit. It mines the coupling correlation between the spatial distribution of

chemical elements, sedimentary facies, the outcrop of Datangpo Formation, faults, water system, and the areas where

manganese ore bodies are present, as well as the correlation among different ore-controlling factors by employing the

AlexNet networks. By comparing the training loss, training accuracy, verification accuracy, and recall of models trained by

different scales of grids and different combinations of ore-controlling factor layers, we further discuss the most appropriate

scale division and the optimal combination of ore-controlling factors to make the model achieve its strongest robustness. It

is found that the prediction performance of AlexNet networks reaches its peak when selecting a grid division of

200 pixels 9 200 pixels (the actual distance is 10 km 9 10 km) and inputting the distribution layers of 21 chemical

elements maps, lithofacies–paleogeographic map, formation and tectonic map, outcrop map of Datangpo Formation, and

water system map. The training loss, training accuracy, verification accuracy, and recall of the optimal model are

0.0000001, 100.00%, 86.21%, and 91.67%, respectively. The proposed method is successfully applied to the 2-d metal-

logenic prediction in Songtao–Huayuan study area. And five metallogenic prospective areas from A to E are delineated

with large probability for potential ore bodies.
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1 Introduction

Big data has been the fourth scientific paradigm in recent

years, and numerous promising progresses in the quanti-

tative prediction of mineral resources with the help of big

data have been achieved. The academician Zhao Pengda

once proposed to introduce big data concepts into geo-

sciences and anticipated the idea that digital mineral

prospecting can realize a leap from mathematical geology

to digital geology and fill the gaps of traditional qualitative

prospecting. Additionally, Zhao [1] summarized four geo-

logical big data-based theories of prospecting systems and

carried out scientific quantitative evaluation and analysis
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on mineral prediction. With the help of prediction methods

during the age of big data and the detailed works about the

potential evaluation of important mineral resources, Xiao

et al. [2] explored the basic theoretical principles for the

prediction and evaluation of mineral resources and sum-

marized the major working processes in the digital and

information age. Chen et al. [3] emphatically introduced

the idea and methodology for constructing ‘‘geology

cloud’’ under the big data setting and discussed applica-

tions of big data in geosciences. Moreover, Yu et al. [4]

proposed new methods driven by geological big data-based

models to quantitatively predict and evaluate mineral

resources, while Zheng et al. [5] advocated the idea that the

national geological information service system could boost

the share of geological information under the big data

setting, balance the data service and information knowl-

edge service, and serve the national construction and

socioeconomic development.

In the last few decades, numerous algorithmic models

for the quantitative prediction and evaluation of mineral

resources have emerged. Machine learning and the pre-

diction of mineral resources are increasingly intercon-

nected in the geological big data age. As an important

branch of artificial intelligence (AI), machine learning

provides not only effective means for processing abundant

evidence feature layers related to mineral prediction, ana-

lyzing big data [6], and identifying and predicting models,

but also supplies technical support to construct big data-

based intelligent prospecting models [7]. It also possesses

the potential for identifying nonlinear relationship between

known deposits and evidence layers; thus, it can endow

researchers with strong prediction ability. The most

extensively applied algorithms during the evaluation of

mineral prediction include artificial neural networks

(ANNs), regression trees (RTs), support vector machines

(SVMs), and random forest (RF). In 2017, by applying

deep self-encoded network to the 39 geochemical variable

data obtained from the stream sediments survey in certain

area of southwestern Fujian, Zuo and Xiong [8] success-

fully identified the geochemical anomalies related to Fe-

polymetallic mineralization. Other scholars also success-

fully applied the big data-based machine learning to the

extraction of anomaly information to further conduct

quantitative prediction of mineral resources [9–16]. Obvi-

ously, under the setting of polyphyletic, volume, and het-

eroid geological big data, AI-based quantitative prediction

of minerals that satisfies the two main lines of demand and

‘‘data link’’ [17] is the inexorable development trend.

However, the data pattern becomes gradually complex,

and the relationship among the data gradually expands

along with the growth of data volume, contributing to a

greater challenge to classification and prediction, and

resulting in poor performance of traditional superficial

machine learning algorithms. Deep learning methods were

proposed to address these challenges owing to their neural

network structures that resemble more the model of human

brain. Along the basic principles of traditional superficial

structures, deep learning can improve the analysis perfor-

mance by increasing the number of hidden layers. Neural

network methods have been repeatedly applied domesti-

cally to geochemical processing. Chen [18] had success-

fully achieved metallogenic predictions in ore fields and

their peripheries by applying evidence weight methods and

resilient BP neural networks. Using neural network models

to identify nonlinearities, Chen et al. [19] centralized the

geological and geophysical information into a neural net-

work model from other levels to carry out a comprehensive

prediction of oil–gas reservoirs. In 2016, Yang [20] ana-

lyzed and processed data from the soil geochemical survey

in certain property of Panzhihua city by integrating deep

learning and principal component analysis and successfully

constructed the volume model, thereby proving that

improved deep learning methods can increase the accuracy

and intelligentization level of geochemical analysis. In

2001, Albora et al. [21] applied cellular neural networks

(CNNs) of deep learning to separate gravity anomalies

from magnetic anomalies and drew the conclusion that,

with the help of model trial and data analysis, neural net-

work methods can highlight shallow anomalies. Currently,

this algorithm has been successfully applied to separate

gravity anomalies of ore bodies from wall rocks in chro-

mite properties [22, 23] and provides more reasonable basis

for mineral prediction. Hinton and Salakhutdinov [24]

achieved classification of data using deep learning models.

And when compared to existing methods, the obtained

deep neural network structure accomplishes more abstract

characteristics and possesses stronger classification ability

and better generalization capability. In 2018, Liu et al. [25]

used Zhaojikou Pb–Zn deposit of Anhui Province as a case

study, constantly excavated the coupling correlation

between the distribution characteristics of Pb and the

underground occurrence space of ore bodies with the help

of convolutional neural network (CNN) algorithms, and

successfully delineated the metallogenic prospects of an

unknown area. This demonstrated that convolutional neural

networks (CNN) have certain advantages in the extraction

of spatial features of chemical elements and prospecting

prediction.

Hinton and Alex Krizhevsky et al. announced that

AlexNet achieved a breakthrough in deep learning in terms

of image recognition on the premise of its TOP-5 error rate

of 15.3% largely lower than that of other algorithms [26].

Because the data volume of geological big data is massive,

a method capable of extracting spatial distribution char-

acteristics and simultaneously excavating the correlation

among various ore-controlling factor layers under different
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metallogenic conditions is still missing. On the basis of

previous researches, this paper adopts the AlexNet of deep

convolutional neural networks (D-CNN) model; trains the

relationships between the distribution of known Mn

deposits in Songtao–Huayuan and the content of 21 ele-

ments, sedimentary facies, outcrop of Datangpo Formation,

faults, and water system; and finally obtains the classifi-

cation model based on the D-CNN. Application of this

model to the 2-d prediction in unknown areas of Songtao–

Huayuan fills the gaps of previous predicting methods

which merely emphasize the quantitative extraction of

anomalies and neglect the spatial distribution characteris-

tics and the correlation of different metallogenic

conditions.

2 Geological background

This paper uses Songtao–Huayuan Mn deposit as a case

study and carries out mineral prediction based on D-CNN.

The area of study is located in the adjacent area of Hunan

and Guizhou (Fig. 1), the most important accumulation

area of Mn resources in China, where a great progress in

Mn prospecting has been achieved recently [27]. Songtao–

Huayuan belongs to the northeastern edge of the south

passive marginal fold-thrust belt in Upper Yangtze paleo-

landmass and crosses the two fourth-level tectonic units,

namely Tongren thrust belt and Fenggang detachment fold

belt. The tectonic lines in the area are mainly NNE-

trending and NE-trending, and a few are S–N-trending. The

morphology of folds is mainly gentle and open, while the

faults belong mainly to normal fault or reverse fault in

conformity with the strike of strata. The outcrop consists

mainly of strata from Jixian Fanjingshan Group to Lower

Silurian, while the Middle and Upper Silurian, Upper

Paleozoic, as well as the Mesozoic Triassic, Jurassic,

Lower Cretaceous, and Cenozoic are all absent. As the

main mineralization type in the area, the Late Neopro-

terozoic sedimentary Mn mineralization occurs essentially

at the bottom of the black shale within the first Member of

Nanhua System Datangpo Formation in the form of

rhodochrosite.

There are many researches on the paleogeographic

environment of the area and its ore-controlling role during

early Datangpo period of Nanhua Period. On the one hand,

some researchers studied the sedimentary facies for ana-

lyzing the lithofacies association and lateral change rule, so

that they could recover the sedimentary environment and

paleogeographic pattern of early Datangpo period accord-

ing to the geochemical characteristics [28–34]. On the

other hand, with the help of lithogeochemical methods,

some scholars analyzed the oceanic paleoenvironment

conditions of early Datangpo period, including the paleo-

climate, paleotemperature, paleosalinity, redox conditions,

bioorganic action, and submarine hydrothermal activity

[35–37]. Recently, Zhou and Du et al. [38–40] held the

opinion that ‘‘Datangpo-type’’ Mn deposits are relevant to

the formation and evolution of the Nanhua rift basin

derived from the breakup of Rodinia Supercontinent, as

well as a series of ‘‘graben-horst’’-type paleogeographic

patterns formed in the adjacent area of Hunan, Guizhou,

and Chongqing, and are also controlled by a series of

syndepositional faults. Consequently, Mn deposits are

products derived from the leakage, sedimentation, and

mineralization of ancient natural gas in the series of sec-

ondary graben basins. Moreover, they pointed out that Mn

Fig. 1 Lithofacies paleogeographic map of Songtao–Huayuan during the Datangpo period of Nanhua Period
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deposits are also influenced by the glacial–interglacial

climate of Nanhua Period. And the syndepositional faults

are not only the channels for the ascent of deep-seated

manganese and ancient natural gas, but also the link con-

necting the internal system with the superficial system of

ancient natural gas leakage-sedimentation-type Mn metal-

logenic system.

According to the results of previous research, we can

infer the following viewpoints: (1) The migration and

concentration of manganese are controlled by the paleo-

geographic pattern of early Datangpo period; (2) the

hydrothermal activities caused by seafloor syndepositional

faults and seafloor volcanic eruption may provide plentiful

metallogenic materials; (3) bioorganic matter plays a sig-

nificant role in speeding up the precipitation and mineral-

ization of manganese; (4) the various physical and

chemical conditions of oceanic paleoenvironment, espe-

cially the redox conditions, are important factors influ-

encing the precipitation and precipitation forms of

manganese. In this paper, we construct the basic prediction

maps for the mineral prediction by collecting the lithofa-

cies paleogeographic maps, formation and tectonic maps,

distribution maps of Mn deposits, geochemical distribution

maps of Mn, and other maps of Datangpo period.

3 Research methods

The whole framework of our proposed 2-d metallogenic

prediction model based on the AlexNet is shown in Fig. 2,

and it is mainly composed of three major parts.

The first part is data acquisition and preprocessing. The

acquisition of big data is the necessary technical means to

achieve informatization from digitization, as well as the

premise to realize prospecting from the mining of big data.

Since the geological big data are characterized by their

massive data volume, wide varieties, and quick update rate,

demand analysis is required to build logic structure tree and

URL structure tree, and to carry out the collection of data

accordingly. The collected data include text data and 2-d

data, but the collection of 2-d data should consider the

construction of prospecting conceptual model based on the

mining of text as its premise, and the acquisition of 2-d

data should be conducted under the guidance of prospect-

ing conceptual model. Due to format disparities and

coordinates inconsistencies in the collected 2-d data, pre-

processing should be carried out on the original data ini-

tially. Subsequently, we impose the inverse distance

weighted (IDW) interpolation on the content of the geo-

chemical elements and generate TIFF images. Additional

procedures on the data consist of georeferencing the data,

unifying the coordinates, converting the format, and then

segmenting the data. Finally, we take the known positive

and negative samples as the training set, and the unknown,

unpredicted areas as the testing set.

The second part is prospecting prediction based on

AlexNet. Currently, AlexNet network structure has been

successfully applied to image processing, but hardly to the

processing of geological images. In this work we select

80% of the preprocessed positive and negative samples as

the training set, and 20% as the validation set. Different

layers are resampled to 224 9 224 pixels, which are

inputted in the form of different bands into the network.

Then we apply the spatial distribution characteristics of

different factor layers to train the prediction model by

using the excellent ability of the network structure to

extract spatial characteristics. Therefore, the model

simultaneously contains the potential relevance among

different factors. Moreover, accuracy and recall are applied

to check the classification quality of AlexNet model. After

going through the AlexNet network, each test sample

eventually get two scores, namely the ore-bearing score

and non-ore score.

The third part is output of prediction results and ore-

bearing probability. After normalizing the outputted scores

of full-connection layer by softmax layer, they are con-

verted into scores ranging from 0 to 1, namely the ore-

bearing probability and non-ore probability. The output is

then saved as a list in CSV format. Different areas in the

divided grid are represented by different colors of the serial

number list of known positive and negative samples and

that of the prediction results, which are then outputted in

the form of JPG format.

With the help of the above technical flow, the poly-

phyletic and volume 2-d factor layer data can be more

intelligently processed, and the inherent spatial distribution

characteristics and potential relevance can be used to train

the classification model to achieve the purpose of

prospecting prediction. This way we can accomplish the

2-d prediction process with t localization and probability

determinations, as well as providing a new approach for

prospecting prediction based on geological big data.

3.1 Data acquisition and preprocessing

The acquisition of data can be realized by acquiring the

corpus from both LAN and public area networks, and it

mainly consists of the collection of text data and layer data.

The searching and sieving of LAN data discovered by

text data are realized by the secondary development of

Everything software on the basis of C# platform, as well as

the method of MySQL relational database. The data are

acquired through P2P online transmission and FTP off-line

transmission. In the face of the polyphyletic, volume, and

heteroid public area network data, we propose a double

iterative scheme based on keywords searching and URL.
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We construct logic structure tree based on expanded

structure nets of associated words in geological dictionaries

and generate initial URL seeds by searching keywords with

Baidu, Google, and other popular search engines; then we

analyze the data content of URL seeds and extract infor-

mation to give birth to new keywords for supplementing

the structure tree; finally, we generate new URL by

searching keywords again, namely continuously discover

new URL and keywords through the URL seeds and use the

machine learning to generate URL structure tree, and then

repeat the mutual iteration of both processes again and

again to form a comprehensive searching encirclement in

both the positive and negative directions. The text data

related to Songtao–Huayuan and collected through this

research altogether include 543 news, 17,527 pieces of

related literature, and 18 regional reports. Eventually, the

prospecting conceptual model for Songtao–Huayuan Mn

deposit can be obtained by matching the keywords exca-

vated from text data with existing deposit model knowl-

edge based on naive Bayes method. The prospecting model

Fig. 2 Technical framework
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for the Mn deposit can then be constructed according to the

prospecting conceptual model and the discoveries of actual

2-d layer data of the area under study (Table 1).

The total collected data of prospecting factors contain

the content statistics table of 39 geochemical elements,

distribution map of water system, lithofacies paleogeo-

graphic map, formation and tectonic map, outcrop map of

Datangpo Formation, distribution map of known Mn

deposits, distribution map of known Pb–Zn deposits, dis-

tribution map of borehole data, and so on. This experiment

employs the IDW interpolation to the 39 geochemical

elements, then unifies and matches the coordinates for the

distribution maps of 21 geochemical elements of relative

importance with the distribution map of water system,

lithofacies paleogeographic map of Datangpo period, dis-

tribution map of faults, and outcrop map of Datangpo

Formation, and then converts these maps into TIFF format

(Fig. 3a). Subsequently, it inputs the different factor layers

serving as different channels for the regional image of each

sample, and divides the data of Songtao–Huayuan into

three groups of grid for contrast experiment. The grid sizes

from west to east and from north to south successively are

20 9 20 km2 (228 (19 9 12) grids), 10 9 10 km2 (912

(38 9 24) grids), and 5 9 5 km2 (3648 (76 9 48) grids).

Figure 3b is an example showing the grid with the grid size

of 200 pixels 9 200 pixels (10 9 10 km2), the label is

0-911, and the number of inputted layers is 25 (Fig. 3b).

3.2 AlexNet network structure

The AlexNet adopted in this paper was designed by the

ImageNet competition champion Hinton and his student

Alex Krizhevsky in 2012. The first five layers of this net-

work model are convolutional layers, and the last three

layers are full-connection layers. The advantages of

AlexNet network over traditional ones are as follows:

3.2.1 Nonlinear rectified linear unit (ReLU) activation
function

The AlexNet model adopts the ReLU activation function

instead of the previously widely used sigmoid nonlinear

activation function. The adoption of ReLU activation

function can greatly reduce the computational burden of

the whole process and render the training time several folds

faster. In a traditional deep network, the gradient would

easily disappear during the back-propagation of the sig-

moid function (when the sigmoid approaches the saturation

area, the derivative would be close to 0 due to the too slow

transformation and the information would then be lost), and

as a result, the training of deep network cannot be com-

pleted. In contrast, ReLU would assign a part of the neural

cells output to 0, resulting in the sparsity of the network,

interdependence reduction of parameters, and alleviation of

overfitting occurrence. The ReLU activation function is

given as follows:

Table 1 Prospecting model for the sedimentary Mn deposits in Songtao–Huayuan

Predicting factors Content

Metallogenic epoch Datangpo period of Nanhua Period

Geotectonic

location

Zhangjiajie–Huayuan fold-thrust belt

Paleogeography Extensional rift basin

Sedimentary facies Mn-bearing shale subfacies of semi-restricted bay

Sedimentary

sequence

Mainly occurs in two third-level sequences, namely the third sequence (NHS3) and the fourth sequence (NHS4) of Nanhua

Period, and belongs to the transgressive systems tract (TST) and condensed section (CS)

Paleoclimate Semi-restricted bay environment; the climate got warm and belonged to the interglacial warm-wet climate;

correspondingly, ablative transgression emerged

Sedimentary

formation

Black shale formation

Tectonics The intersection of tectonics, deep faults, and contemporaneous faults of basement

Mn-bearing rock

series

Composed of black silt-containing carbonaceous shale and banded rhodochrosite layer. When the thickness of Mn-bearing

rock series is larger than 35 m, the thickness of Mn ore body can reach up to 5–7 m and the Mn grade can exceed 24%

(Minle), while the thickness of Mn-bearing rock series is less than 10 m and Mn ore body with a certain scale can be

hardly formed (Shanmuzhai)

Indicator of strata Thick moraine conglomerate

Geochemistry The anomaly area with the value of Mn larger than 1200 ppm has good register relationship with mineralization

characteristics
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f xð Þ ¼ 0; x� 0

x; x[ 0:

�

3.2.2 Overfitting prevention of dropout layer

AlexNet can control overfitting by introducing the dropout

method with various combinations of weights. During the

training process, the activation state of hidden layer neu-

rons can be controlled by threshold values with specific

norm and the neurons exceeding the threshold values

would be restrained during the forward propagation and

back-propagation. During training, a probability of 0.5 is

used to randomly inactivate the neurons. As a result,

dropout layer reduces the occurrence of overfitting.

Before entering the AlexNet network, the sample sets

have been resampled to 224 9 224, which is suitable for

the self-defined AlexNet network. The hyper-parameter

settings of the AlexNet model adopted in this paper are

shown in Fig. 4b:

Fig. 3 Preprocessing of 2-d data. a Format conversion of the data; the

layers include the distribution maps of 21 interpolated geochemical

elements, lithofacies paleogeographic map of Datangpo period,

outcrop map of Datangpo Formation, distribution map of water

system, and distribution map of faults. In the display map of positive

and negative samples, the 63 grids of the positive samples correspond

to the grid areas (gray ones) where the known Mn deposits are

located, the 89 grids of the negative samples are the grid areas (white

ones) where other minerals or negative boreholes are located, and the

black grids represent the unknown, unpredicted areas. b Segmentation

of image (the image is 7600 9 4800 pixels, and the horizontal

resolution and vertical resolution are both 96 dpi. The image is

divided into 912 grids by the grid size of 200 9 200 pixels; therein,

80% of the grids are training samples. Randomly select 16 grids as the

training sample data each time and circulate the process for 200

times)
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(1) The first layer (convolution layer): convolution

kernel = [11, 11], stride = 4, output channel = 64,

padding = valid (not extending edge).

(2) The second layer (pooling layer): pool_size = [3, 3],

stride = 2, output channel = 64(default),

padding = valid.

(3) The third layer (convolution layer): convolution

kernel = [5, 5], stride = 1, output channel = 192,

padding = same (expand the edge to make the input

and output the same size).

(4) The fourth layer (pooling layer): pool_size = [3, 3],

stride = 2, output channel = 192, padding = valid.

(5) The fifth layer (convolutional layer): pool_size = [3,

3], stride = 1, output channel = 384,

padding = same.

(6) The sixth layer (convolution layer): convolution

kernel = [3, 3], stride = 1, output channel = 384,

padding = same.

(7) The seventh layer (convolution layer): convolution

kernel = [3, 3], stride = 1, output channel = 256,

padding = same.

(8) The eighth layer (pooling layer): pool_size = [3, 3],

stride = 2, output channel = 256, padding = valid.

Each convolution layer contains the ReLU activation

function and, subsequently, the max pooling. As to the

activation function of CNN, the effect of ReLU exceeds the

sigmoid in deeper networks, and it successfully solves the

gradient dispersion problem of sigmoid encountered in

deeper networks. Similarly, dropout layers have been

imposed on the three fully connected layers (FC) (except

the FC8) to prevent overfitting. This research selects three

convolution layers to replace FC layers, so as to increase

the computational efficiency of GPU. Finally, it outputs the

ore-bearing probability and non-ore probability of each

sample area through softmax layer (Fig. 4a).

3.3 Localization and probability determination

In this work we endow the predicted ore-bearing areas and

the areas of known deposits with different colors after

obtaining the coordinates from the prediction results and

then output and save them in JPG format; meanwhile, we

determine the ore-bearing probability through the softmax

activation function given by

Pk ¼
exp SKð ÞPK
k¼0 exp SKð Þ

;

where SK refers to the input of softmax; we commonly

consider SK as the model score (also known as the non-

normalized score) of the kth class; Pk refers to the

probability.

The softmax activation function is only used for the

neurons with more than one output so as to guarantee that

the sum of all the outputted neurons equals 1.0. Thus, all

the outputted probabilities are less than or equal to 1. And

it is highly intuitive to compare the output values. If we

consider Pk as the ‘‘probability’’ of containing ore or not

containing ore, for example, then with an ‘‘ore-bearing’’

output of type ‘‘A’’ with probability equal to 0.8, we can

access that the ore-bearing probability of the area delin-

eated by the prediction model is 80%.

Fig. 4 a Network structure of prediction model (input layer —

[AlexNet network —[ softmax layer) and b hyper-parameter

setting of AlexNet model (where Conv refers to the convolution

layer, Max pool refers to the pooling layer, S is the stride, and ReLU

is the activation function)
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4 Experiments

4.1 Determination of optimal parameters

By comparing the grid division at different scales, as well

as the training loss, training accuracy, verification accu-

racy, and recall (Table 2) of models trained by different

factor layer combinations, we analyze the optimal sample

division scale and the optimum input number of ore-con-

trolling factor layers to make the model achieve its stron-

gest robustness by controlling the scale and factor

combination. The contrast experiments are divided into five

groups, in which the first three belong to the contrast

experiments with different grid sizes on the premise of,

respectively, inputting five ore-controlling layers (Mn layer

and other four ore-controlling factor layers).

By comparing the accuracy and loss curves for each

group of the trained classification model (Fig. 5) we found

that the metallogenic prediction performance with a grid

size of 200 9 200 pixels (namely the actual distance of

10 km 9 10 km) is optimal. Moreover, after the contrast

experiment of different grid sizes with replacing the Mn

layer with the distribution layers of 21 chemical elements,

we found that the smaller the grid size, the more the

number of selected prospecting factor layers, and the

higher the verification accuracy of the prediction model.

Moreover, the smaller the grid size, the larger the com-

putational burden, and the lower the computational effi-

ciency. In other words, we found that when we employ a

grid size of 200 9 200 pixels, as well as the interpolated

layers of 21 chemical elements, lithofacies paleogeo-

graphic map, formation and tectonic map, outcrop map of

Datangpo Formation, and distribution map of water system

in our experiments, the trained AlexNet convolutional

network model reaches its best performance for the training

loss, training accuracy, verification accuracy, and recall of

0.0000001, 100.00%, 86.21%, and 91.67%, respectively.

We applied this model to predict Songtao–Huayuan, and

the predicted areas with the highest ore-bearing probability

according to the model possess high probability of con-

taining undiscovered ore bodies.

4.2 Experimental results and discussion

In this paper we took the Songtao–Huayuan sedimentary

Mn deposit as a case study and mine the coupling corre-

lation between the spatial distribution of Mn, sedimentary

facies, the outcrop of Datangpo Formation, faults, water

system, and the occurrence space of Mn deposits, as well as

the correlation among different ore-controlling factors by

employing the AlexNet network of D-CNN model. We

then segment (200 9 200 pixels) different factor layer data

and label them from 0 to 911; subsequently, we train the

2-d mineral prediction and classification model with known

positive and negative samples (Fig. 6). The training accu-

racy, verification accuracy, training loss, and recall of the

trained model are 100.00%, 86.21%, 0.0000001, and

91.67%, respectively, indicating the reliability of the

model. By applying this model to the 2-d metallogenic

prediction in unknown areas, the ore-bearing areas even-

tually determined by the model score Sk and the ore-bear-

ing probability computed by the softmax function can be

obtained, as shown in Table 3.

The ore-bearing grid areas of Songtao–Huayuan pre-

dicted by AlexNet model in Experiments 1 to 5 are shown

in Fig. 7. It can be seen from the overall distribution of the

prediction results that if the grid size is too large, the

prediction results would be insufficiently accurate, and if

the grid size is too small, the prediction results would be

too sparse and loose to achieve the purpose of delineating

metallogenic prospects. That means, the more the layers

participating in training, the more the predicted ore-bearing

areas. Although the model contains the potential relevance

Table 2 Comparison on model indexes of multiple groups of experiments

Serial

number

Number of

layers

Size of

grid/pixel

Positive

sample/piece

Negative

sample/piece

Step/time Training

loss

Training

accuracy (%)

Verification

accuracy (%)

Recall

(%)

Experiment

1

5 400*400 32 62 990 0.000002 100.00 61.11 66.67

Experiment

2

5 200*200 63 89 1590 0.000000 100.00 75.86 58.33

Experiment

3

5 100*100 81 120 2190 0.000003 100.00 82.05 81.25

Experiment

4

25 400*400 32 62 990 0.000002 100.00 66.67 33.33

Experiment

5

25 200*200 63 89 1590 0.0000001 100.00 86.21 91.67
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Fig. 5 Accuracy and loss curves

of prediction model trained by

samples with different grid sizes

from Experiments 1 to 5; herein,

figures a–f show the curves with

5 ore-controlling layers and

figures g–j show the curves with

25 ore-controlling layers. The

grid size of figures a, b, g, and
h is 400 9 400 pixels; the grid

size of figures c, d, i, and j is
200 9 200 pixels; and that of

figures e and f is
100 9 100 pixels
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which can improve the reliability to some extent, it still

faces uncertainty and interference from factors that have no

or negative impact. Therefore, the prediction results should

be further analyzed in combination with the geological

background of the study area.

As to sedimentary minerals, sedimentary environment is

the most direct ore-controlling factor; therefore, a certain

sedimentary mineral of a certain geological period must

occur in the specific horizon of a certain sedimentary

system; moreover, the morphology, scale, and quality of

some ore bodies are even related to sedimentary system. As

a result, this research considers sedimentary facies as one

of the ore-controlling factor layers to participate in train-

ing, and the finally superimposed results show that the

predicted ore-bearing areas are mainly located in exten-

sional rift basins or their surrounding regions. In particular,

when the grid size is sufficiently small, both known and

predicted deposits are mostly restrained in basins, while in

paleouplift and Yangtze paleo-landmass, predicted deposit

is absent. Moreover, the smaller the grid size, the higher

the registration degree of prediction area and outcrop

location of Datangpo Formation, and the more obvious the

spatial distribution characteristics. This illustrates that the

D-CNN model applied in this research has inherently

embraced the sedimentary facies, spatial morphology, and

distribution characteristics of strata outcrop, as well as their

influence on Mn mineralization; in turn, these factors can

serve as important basis for prospecting prediction. Con-

sequently, the reliability of the model has been further

verified. It can be inferred from the comparison on model

evaluation indexes of multiple groups of experiments

shown in Table 2 that the prediction effect of the model is

best when the grid size is 200 9 200 pixels (Experiment 5)

and the input number of factors is 25. Therefore, the

analysis of prediction results is accomplished by mainly

combining with the results of Experiment 5 and superim-

posing with various ore-controlling factor layers.

Since localization, quantification, and probability

determination are the three problems that should be solved

during the quantitative prediction of mineral resource, we

decide to impose normalization on the model scores for

softmax function and output the ore-bearing and non-ore

probabilities of all coded areas (Fig. 8). The grid areas are

then divided into five levels according the magnitude of the

predicted ore-bearing probability (0–0.2, 0.2–0.4, 0.4–0.6,

0.6–0.8, and 0.8–1.0), and the red ones represent the grid

areas with a predicted ore-bearing probability in the range

0.8–1.0. Excluding the areas containing known ore bodies,

the remaining ones are the predicted ore-bearing areas and

possess a great probability of containing undiscovered

deposits. Most of the areas predicted by the model are

located near the known Mn deposits, which are in the

known rift basins or their vicinity. Therefore, as the fig-

ure shows, the red areas with high probability cover all the

known Mn deposits. During the verification process of the

model, 20% of known samples served as validation set; as a

result, the verification accuracy and recall of the model can

reach up to 86.21% and 91.67%, respectively. The orange

grid areas with probabilities in the range 0.6–0.8 represent

potential ore-bearing areas. The figure shows that the

metallogenic prediction areas with probabilities in the

range 0.8–1.0 are distributed along the strike of faults

characterized by NE45� distribution, and the predicted ore-

bearing areas are not only located in rift basins, but also in

Fig. 6 Regional code and distribution of positive and negative samples
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Table 3 Statistical table for the predicted ore-bearing probability of Songtao–Huayuan (in which the ore-bearing probability is more than zero)

No. Ore Non No. Ore Non No. Ore Non No. Ore Non

28 0.01 0.99 366 1.00 0.00 480 0.07 0.93 586 0.01 0.99

30 1.00 0.00 367 1.00 0.00 481 1.00 0.00 588 1.00 0.00

31 0.01 0.99 368 1.00 0.00 482 0.99 0.01 596 0.02 0.98

32 1.00 0.00 369 1.00 0.00 484 1.00 0.00 597 1.00 0.00

66 1.00 0.00 370 1.00 0.00 485 0.72 0.28 598 0.12 0.88

67 1.00 0.00 371 1.00 0.00 499 0.17 0.83 602 0.99 0.01

68 1.00 0.00 372 1.00 0.00 501 0.92 0.08 603 0.99 0.01

101 0.19 0.81 373 1.00 0.00 502 1.00 0.00 610 1.00 0.00

104 1.00 0.00 374 1.00 0.00 506 1.00 0.00 611 1.00 0.00

105 0.01 0.99 383 1.00 0.00 508 1.00 0.00 612 0.96 0.04

138 0.04 0.96 384 1.00 0.00 509 1.00 0.00 613 1.00 0.00

141 1.00 0.00 385 1.00 0.00 510 1.00 0.00 614 0.62 0.38

142 1.00 0.00 386 1.00 0.00 512 1.00 0.00 615 1.00 0.00

218 1.00 0.00 393 0.99 0.01 516 0.01 0.99 617 0.04 0.96

251 0.44 0.56 397 1.00 0.00 517 1.00 0.00 623 0.98 0.02

255 0.34 0.66 398 1.00 0.00 518 0.02 0.98 634 0.03 0.97

256 1.00 0.00 406 1.00 0.00 519 1.00 0.00 635 0.01 0.99

257 1.00 0.00 408 1.00 0.00 520 0.03 0.97 641 1.00 0.00

292 1.00 0.00 409 1.00 0.00 521 0.31 0.69 642 1.00 0.00

293 1.00 0.00 410 1.00 0.00 522 0.99 0.01 649 1.00 0.00

294 1.00 0.00 411 0.99 0.01 524 0.39 0.61 650 1.00 0.00

302 1.00 0.00 425 1.00 0.00 537 1.00 0.00 651 1.00 0.00

304 0.87 0.13 437 0.56 0.44 538 1.00 0.00 652 1.00 0.00

305 1.00 0.00 439 1.00 0.00 539 1.00 0.00 653 1.00 0.00

308 1.00 0.00 440 1.00 0.00 540 1.00 0.00 654 1.00 0.00

310 0.27 0.73 441 0.02 0.98 545 0.99 0.01 661 1.00 0.00

311 1.00 0.00 442 0.36 0.64 546 1.00 0.00 662 1.00 0.00

326 1.00 0.00 443 1.00 0.00 547 1.00 0.00 663 1.00 0.00

328 0.28 0.72 444 0.97 0.03 549 1.00 0.00 664 1.00 0.00

330 1.00 0.00 446 1.00 0.00 550 1.00 0.00 666 0.92 0.08

331 1.00 0.00 447 1.00 0.00 551 1.00 0.00 667 1.00 0.00

332 1.00 0.00 451 0.01 0.99 556 0.01 0.99 668 1.00 0.00

334 1.00 0.00 456 0.03 0.97 559 1.00 0.00 673 0.04 0.96

335 1.00 0.00 457 1.00 0.00 560 0.03 0.97 674 0.97 0.03

342 1.00 0.00 458 0.04 0.96 572 0.08 0.92 675 1.00 0.00

345 1.00 0.00 460 0.26 0.74 573 0.36 0.64 677 0.13 0.87

346 1.00 0.00 462 1.00 0.00 575 1.00 0.00 679 1.00 0.00

347 1.00 0.00 471 1.00 0.00 576 1.00 0.00 680 1.00 0.00

350 0.02 0.98 472 1.00 0.00 577 1.00 0.00 684 1.00 0.00

356 1.00 0.00 477 0.01 0.99 582 0.38 0.62 685 1.00 0.00

No. Ore Non No. Ore Non No. Ore Non No. Ore Non

686 1.00 0.00 722 1.00 0.00 774 1.00 0.00 843 1.00 0.00

687 0.78 0.22 723 1.00 0.00 775 1.00 0.00 846 1.00 0.00

688 1.00 0.00 724 1.00 0.00 777 0.99 0.01 847 1.00 0.00

689 1.00 0.00 725 1.00 0.00 780 1.00 0.00 852 1.00 0.00

690 1.00 0.00 726 1.00 0.00 782 1.00 0.00 853 1.00 0.00

697 1.00 0.00 727 1.00 0.00 783 1.00 0.00 855 0.99 0.01

700 1.00 0.00 728 1.00 0.00 784 1.00 0.00 856 1.00 0.00
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the outcrop of Datangpo Formation, and this is in agree-

ment with the metallogenic type of Songtao–Huayuan

Datangpo-type sedimentary Mn deposit.

It can be seen from the overlap between the prediction

results of AlexNet network model and the distribution of

the 21 elements that the Mn, P, and Y anomalies corre-

spond well with deposits (Fig. 9); the P deposits in the

study area are characterized by their bedded occurrence

and phosphorous host rocks of Doushantuo Formation;

thus, they belong to sedimentary phosphorite deposits and

possess close relationship with the occurrence horizon

position of Mn deposits; additionally, the Y anomalies

could reflect the spatial position of occurrence horizon

(Nh1d) for Mn deposits. Therefore, the comprehensive

anomalies of Mn–P–Y are of great significance to the

prospecting in the study area. It can be observed from

Fig. 9 that, to some extent, the predicted ore-bearing areas

are influenced by high content of Mn. Nevertheless, the Mn

content in several parts of the predicted areas is relatively

low. It indicates that the Mn is not the only principal

determinant factor and the final prediction results are co-

determined by the spatial distribution characteristics of

various factor layers and the relevance among these factors.

Additionally, the spatial distribution of Y, Ba, and Hg is

also related to the occurrence horizon (Datangpo Forma-

tion) of predicted metallogenic areas, and the anomalies of

Table 3 (continued)

No. Ore Non No. Ore Non No. Ore Non No. Ore Non

701 1.00 0.00 729 1.00 0.00 785 0.98 0.02 857 1.00 0.00

702 1.00 0.00 730 1.00 0.00 787 1.00 0.00 859 1.00 0.00

704 1.00 0.00 732 0.99 0.01 788 1.00 0.00 860 1.00 0.00

705 1.00 0.00 734 1.00 0.00 791 0.43 0.57 861 1.00 0.00

706 0.73 0.27 736 0.99 0.01 792 0.99 0.01 862 1.00 0.00

707 0.03 0.97 737 1.00 0.00 793 0.95 0.05 864 0.02 0.98

708 0.80 0.20 738 0.03 0.97 794 1.00 0.00 865 0.16 0.84

710 1.00 0.00 741 1.00 0.00 799 1.00 0.00 866 1.00 0.00

711 0.71 0.29 742 0.04 0.96 800 1.00 0.00 871 0.93 0.07

712 1.00 0.00 743 0.99 0.01 801 1.00 0.00 873 1.00 0.00

713 0.02 0.98 744 1.00 0.00 802 1.00 0.00 874 1.00 0.00

715 1.00 0.00 745 1.00 0.00 803 1.00 0.00 875 1.00 0.00

716 1.00 0.00 746 1.00 0.00 804 1.00 0.00 876 1.00 0.00

722 1.00 0.00 747 1.00 0.00 805 1.00 0.00 877 1.00 0.00

723 1.00 0.00 749 1.00 0.00 807 1.00 0.00 878 1.00 0.00

724 1.00 0.00 750 1.00 0.00 808 1.00 0.00 879 1.00 0.00

725 1.00 0.00 751 1.00 0.00 809 1.00 0.00 880 1.00 0.00

726 1.00 0.00 752 1.00 0.00 811 0.99 0.01 881 0.01 0.99

727 1.00 0.00 753 1.00 0.00 812 1.00 0.00 884 1.00 0.00

728 1.00 0.00 754 0.98 0.02 813 1.00 0.00 897 1.00 0.00

729 1.00 0.00 755 1.00 0.00 815 1.00 0.00 898 1.00 0.00

730 1.00 0.00 760 1.00 0.00 816 1.00 0.00 900 0.01 0.99

732 0.99 0.01 761 1.00 0.00 817 1.00 0.00 902 0.09 0.91

734 1.00 0.00 762 1.00 0.00 818 1.00 0.00 906 0.55 0.45

736 0.99 0.01 763 1.00 0.00 821 1.00 0.00 908 0.01 0.99

737 1.00 0.00 764 1.00 0.00 822 1.00 0.00

738 0.03 0.97 765 1.00 0.00 823 1.00 0.00

741 1.00 0.00 766 1.00 0.00 836 0.62 0.38

742 0.04 0.96 767 1.00 0.00 838 1.00 0.00

743 0.99 0.01 769 1.00 0.00 839 1.00 0.00

744 1.00 0.00 770 1.00 0.00 840 1.00 0.00

745 1.00 0.00 771 1.00 0.00 841 1.00 0.00

746 1.00 0.00 772 1.00 0.00 842 1.00 0.00
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Mn–Fe2O3–Ti have better register relationship with Mn-

bearing areas. Thus, the spatial distribution rule of side-

rophile elements is closely related to Mn deposits. More-

over, F, B, Ba, U, and Y are all concentrated in the

surrounding of Neoproterozoic group complex and con-

trolled by Cambrian, Sinian, and Nanhua strata, respec-

tively. Thereinto, the enrichment of B is related to its high

content in sedimentary rocks, especially in argillaceous

sedimentary rocks, and the content of B in metamorphic

rocks is generally much less than that in sedimentary rocks.

The contents of Ba and U are closely related to black shale,

and that of Hg in carbonaceous–argillaceous shale is fre-

quently slightly higher, while Y can clearly reflect the

spatial position of occurrence horizon. Therefore, the suc-

cessive enrichment of F–B–Ba (U)–Hg–Y may be able to

provide a basis for the prediction of regional Mn deposits

or deep prediction of the property.

In combination with the geological background of

Songtao–Huayuan, five metallogenic prospects numbered

from A to E as shown in Fig. 8 can be eventually delin-

eated. Prospects A, C, D, and E all are located near the

known rift basins, while prospects A, B, and E all develop

Fig. 7 Prediction results of Mn deposits in Songtao–Huayuan

Fig. 8 Distribution of predicted ore-bearing probability and delineation of metallogenic prospects in Songtao–Huayuan
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the outcrop of Datangpo Formation. Additionally, pro-

spects C and D are located in and near the predicted

manganese-forming basin, respectively. It can be con-

cluded from our comprehensive analysis that these five

areas have the highest probability of containing undiscov-

ered sedimentary Mn deposits.

5 Conclusions

Previous mineral prediction research focused only on the

quantitative extraction of anomalies and commonly

neglected the importance of spatial distribution character-

istics (e.g., coupling correlation between the distribution

characteristics of geochemical elements, sedimentary

facies, tectonics, and strata outcrop and the spatial distri-

bution of deposits). Moreover, the relevance among dif-

ferent metallogenic conditions is rarely taken into

consideration when carrying out traditional evidence

weight methods. It is not rigorous to merely analyze what

are deemed as important ore-controlling factors and neglect

the ones deemed irrelevant, for potential metallogenic

conditions exhibiting ‘‘butterfly effects’’ are likely to be

neglected. Therefore, we need a set of quantitative pre-

diction methods to simultaneously make geological back-

ground and big data ‘‘speak.’’ Accordingly, with the help of

the prediction approach of mining big data, and the

AlexNet algorithm of D-CNN for depicting complicated

and nonlinear geoscience spatial modes, this paper pro-

poses a kind of 2-d prospecting prediction method not only

capable of extracting spatial distribution characteristics,

but also capable of mining out the relevance of various ore-

controlling factor layers under different ore-controlling

factors. Using Songtao–Huayuan as the study area, several

conclusions can be drawn:

1. With the help of the AlexNet networks, a classification

model based on D-CNN is obtained by training the

relationship between the distribution of known Mn

deposits in Songtao–Huayuan and 21 chemical ele-

ments including Mn, as well as sedimentary facies,

outcrop of Datangpo Formation, faults, and water

system. The model can effectively mine the relation-

ship between the surficial distribution characteristics of

ore-controlling factors and distribution of deposits.

Fig. 9 Superposed map of prediction results of CNN model and the content distribution of 21 elements
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2. Through multiple groups of contrast experiments, this

paper discusses the optimal sample division scale and

the optimum input number of ore-controlling factor

layers. The performance of the trained model for the

whole study area is best when the grid size is

10 9 10 km2 and the layer number of ore-controlling

factors is 25. With these optimal parameters, the

verification accuracy, recall, and training loss of the

AlexNet model are 86.21%, 91.67%, and 0.0000001,

respectively. Thus, the accuracy of the model could be

considered as reliable.

3. By applying this model to the 2-d metallogenic

prediction in unknown areas, the predicted ore-bearing

probability is divided into five levels, namely 0–0.2,

0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0. In combination

with the geological background of Songtao–Huayuan,

a total of five metallogenic prospects numbered from A

to E are delineated. Our analysis shows that these

prospects have great probability of containing undis-

covered ore bodies; thus, boreholes are recommended

to be implemented in selected sites for verification.

However, the method still faces a few problems to be

implemented in actual applications of prospecting

prediction:

1. The scale and grid size determination need to be

further studied. If the study area is too large, the

samples would not be accurate enough; reversely, if the

study area is too small, the data scope of samples

would be circumscribed, and the requirement for the

prediction accuracy would be extremely high. Whether

the surficial characteristics are capable of reflecting the

underground metallogenic position is still unknown.

Additionally, grid size can indirectly influence the

effect of metallogenic predictions. If the grid size is too

small, although the limited samples can be maximally

utilized, the computational burden would greatly

increase. If the grid size is too large, effective use of

the existing sample points becomes challenging and

thus the prediction accuracy would decrease. There-

fore, an appropriate scale should be selected to

guarantee the sample capacity and the increase in the

prediction accuracy as high as possible.

2. As to the problem of selecting samples, this research

has maximally collected all the known manganiferous

or non-manganiferous samples. The known Mn

deposits served as positive samples, while negative

boreholes and other kinds of deposits served as

negative samples, but the sample capacity is far from

sufficient for deep learning. Currently, the commonly

used methods of expanding original images by geo-

metric transformation of the images [41] or by radial

transformation in polar coordinates space [42] are not

suitable for geological samples. Therefore, an appro-

priate method is greatly needed to solve the problem of

sample capacity so as to improve the effect of the

trained models.

3. Under the era of big data, we should have a model that

is broadly applicable to a large number of factor layers.

If the sample capacity is large enough, all the layers

corresponding to the ore-controlling factors produced

after their match with prospecting concept model

library can be used to train the AlexNet model.

Consequently, more potential ore-controlling factors

can be mined to really make big data ‘‘speak’’ and to

gradually realize ‘‘intelligent’’ prospecting

accordingly.
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