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Abstract
Considering the influence of carbon emissions trading, the fuzzy stochastic programming model was established to cut

back the total cost of carbon trading balance. Modeling this chain is carried out by accounting for carbon cap-and-trade

considerations and total cost optimization. In this paper, we analyze the low-carbon integrated forward/reverse logistics

network and made relevant simulation tests. The results show that the changes of the confidence level and carbon emission

limits have obvious influences on logistics costs. If the emission limit is large, carbon trading mechanism has little effect on

the total logistics cost in the same scenario. Therefore, the government needs to use the appropriate emission limits to guide

enterprises to reduce carbon emissions, and enterprises can make coping strategies according to the different limit at the

same time. Therefore, the fuzzy random programming model proposed in this paper is practical. Its decision making

applying the proposed algorithm is reasonable and applicable and could provide decision basis for enterprise managers.
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1 Introduction

In recent years, due to governmental legislation and pro-

tecting natural resources as well as the growing concern of

carbon emission, integrated forward/reverse logistics net-

work has come to the forefront of agendas by researchers

and business managers [1, 2]. Logistics industry is an

important bridge and link between production and con-

sumption. It integrates complex services into various

industries, such as transportation, packaging, handling and

handling, and forms an important support for other indus-

tries. Nowadays, the consumption of fossil energy such as

fuel oil and coal is more and more in all operation links of

logistics industry in our country, especially in transporta-

tion and distribution tools and logistics facilities. As a

result, more and more carbon dioxide is generated in all

links of logistics, and the carbon emissions of logistics

industry remain high. Its research mainly focuses on the

theoretical concept, implementation path, qualitative and

quantitative theoretical model calculation, application and

feedback effect of low-carbon logistics [3]. As far as the

low-carbon logistics transportation network is concerned,

the current academic research mainly focuses on the opti-

mization of logistics network, and there are few studies on

the combination of low-carbon and logistics transportation

network. Only a few studies are limited to the study of low-

carbon city logistics transport network planning through

the government and other macro-level, and do not pay

attention to the selection of transport routes by cargo

owners.

The essence of low-carbon logistics is to use a small

amount of greenhouse gas emissions as far as possible to

achieve efficient logistics services. To truly achieve low-

carbon logistics, we must solve three aspects: technology,

planning and policy. The logistics transportation network

under the low-carbon environment discussed here belongs
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to the second macro-planning level, focusing on the

improvement and upgrading of logistics transportation

network. Constructing low-carbon logistics transportation

network optimization is a necessary process for low-carbon

logistics industry to carry out scientific planning and

effective allocation of resources [4–6]. The first mechanism

is reducing carbon emissions by economic incentives for

companies. The government can set specific limits on

carbon emissions for a company that is known as a carbon

cap and form a market of carbon trading. If a company

wants to exceed the prescribed limit, it must be able to buy

from the company that produces less greenhouse gas or less

than the market value.

For the optimization of low-carbon logistics network, it

is caused by a series of complex behaviors of coordination

and game between different city governments and many

logistics companies. In order to get the lowest carbon

emission of local logistics distribution, local governments

need to plan and set up logistics transportation network

from the level of low-carbon development of the whole

region, and logistics companies will determine the relevant

logistics routes and distribution channels according to the

specific situation of the logistics network system and the

benefit and efficiency objectives set by enterprises, and at

the same time, the allocation of logistics volume in the

routes will be carried out at any time [7–9]. For manage-

ment units, in the process of optimizing the route structure

of regional low-carbon logistics transportation network,

more factors must be considered, including carbon emis-

sions, time and cost and so on. Therefore, in the process of

logistics transportation network optimization and planning,

it is necessary to create a top-level planning model aiming

at the lowest cost mentioned above. For logistics compa-

nies, they must make the best choice and determination of

their logistics routes at the micro-level and establish the

path selection mode with the lowest cost as the bottom

planning [10–12].

Since low-carbon logistics has just been proposed in

recent years, the research of ant colony algorithm for low-

carbon logistics optimization is mostly focused on fuel

consumption minimization. Most studies use pheromone

updating method of parallel ant colony algorithm to

improve ant colony algorithm, effectively simulate the

parallel strategy of ants in natural environment, and study

the parameter settings that affect the performance of basic

ant colony algorithm. Empirical results show that the

improved scheme achieves more effective results. Low-

carbon logistics should consider not only the objective of

optimizing logistics distribution system, reducing logistics

transportation cost, improving distribution efficiency and

improving cargo turnover, but also how to make rational

and effective use of resources and reduce carbon emissions

in logistics operations. Low-carbon logistics is realized

through advanced application technologies such as energy

renewable technology, energy efficiency technology, low-

carbon technology and green house gas emission reduction.

Low-carbon logistics needs not only liquid forklift truck,

green transport vehicle and other logistics equipment, but

also advanced and applicable software, operation process,

operation standards and operation methods. All of these

require continuous innovation, otherwise low-carbon

logistics will be difficult to achieve. This paper presents a

fuzzy stochastic design of low-carbon forward and back-

ward integrated logistics network (IFRLN). In the last part

of paper, numerical tests show the accuracy and efficiency

of the proposed algorithm and using a test to study the

model under the change of carbon emission limit and

confidence level.

The rest of this article is as follows. In Sect. 2, we made

the literature review of relative research and the problem

description for the IFRLN is given in Sect. 3. Then, Sect. 4

gives the mathematical description for an integrated for-

ward/reverse logistics network model. In Sect. 5, a GA-pw

with frs is designed to solve the model. In Sect. 6, the

results show the local search proposed in this paper is

useful for improving the accuracy of the objective value.

From the above analyses, the GA-pw with frs proposed in

this paper has certain accuracy. In Sect. 7, we made the

conclusion.

2 Literature review

2.1 Logistics network and carbon cap-and-trade

Logistics industry is an important link between production

and consumption. However, logistics development mode is

relatively extensive. Economic growth and expansion of

logistics scale are always accompanied by serious energy

consumption and environmental pollution. In order to

realize emission reduction, the logistics industry must

change its development mode and implement low-carbon

transportation. Penkuhn et al. [13] argued that low-carbon

logistics reduces CO2 emissions in logistics industry

through various modern new low-carbon technologies or

business management modes. With the goal of lower

energy consumption, lower environmental pollution and

lower carbon dioxide emissions, various renewable emis-

sion reduction technologies are used to reduce carbon

dioxide emissions in logistics operations, thereby reducing

the impact of logistics on the ecological environment [14].

According to the characteristics of low-carbon logistics,

some scholars analyzed the influencing factors and put

forward corresponding countermeasures and suggestions

[15]. Wong et al. [16] expounded the main driving factors

of carbon footprint management in logistics industry from
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three aspects: CO2 emission control, carbon dioxide

emission reduction requirements of logistics industry and

supply chain services.

Chen [17] explored the relationship between transport

cost and carbon dioxide in the multimodal transport port-

folio. The mode and route choice of intermodal transport of

goods changed with the change of trading conditions. It was

clear that the main factors affecting carbon dioxide emis-

sions were the demand and capacity of the transport system.

Zhang et al. [18] used the network equilibrium theory, a

three-tier logistics network including producers, distributors

and retailers is constructed, and a simulation carbon emis-

sion network with the intensity of CO2 emission as the

network flow was constructed for the non-tiered decision

makers. Low-carbon logistics is different from general

logistics, which only aims at pursuing its own economic

interests. Low-carbon logistics also takes into account the

interests of consumers, society and the ecological environ-

ment. These four objectives are mutually conflicting and

restrictive in the implementation process. To reduce the

carbon emissions of logistics activities, some logistics costs

will be brought in the initial stage. Low-carbon logistics

should achieve a certain balance among these objectives,

take into account the coordinated development of economy

and ecology, and organically integrate economy, consumers,

society and ecological environment [19–21]. The bi-direc-

tionality of low-carbon logistics refers to the realization of

both low-carbon forward logistics and low-carbon reverse

logistics in logistics activities [22, 23]. The low carboniza-

tion of forward logistics refers to the low carbonization of all

activities in the process of realizing ‘production–circulation–

consumption’ of commodities. Reverse logistics is a variety

of derivatives generated in the process of forward logistics.

Reasonable treatment of these derivatives can achieve low

carbonization, such as recovery, sorting, purification, pack-

aging and reprocessing.

There are many methods to calculate carbon emissions,

among which measurement, material measurement, model

analysis and carbon emission coefficient method are the

main methods. Among the existing methods used to study

carbon emission measurement in logistics industry, carbon

emission coefficient method is the most common one.

Based on the carbon emission calculation method provided

by IPCC in the ‘2006 Carbon Emission Computing

Guidelines,’ the carbon emission coefficients of various

energy sources are calculated, and the carbon content and

carbon emission coefficients of various fuels are listed. The

carbon emission coefficients of various energies can be

found directly in the IPCC work report, so the carbon

emission coefficient method is widely used [24].

Under the trend of low-carbon logistics development,

there are inevitable and various problems in low-carbon

transformation of logistics enterprises. By reviewing the

literature, we can see that the research direction can be

divided into external and internal problems of logistics

enterprises, such as imperfect low-carbon policies and

regulations, immature public awareness, low-carbon

awareness of business managers and advanced low-carbon

management methods. [25]. Logistics enterprises can only

integrate internal and external resources for low-carbon

development capacity, turn the problems encountered into

power, and comprehensively promote the low-carbon

transformation of enterprises. Low-carbon logistics

requires ‘low-carbon’ operation in the whole logistics

system [26].

Only by paying attention to the interconnection, inter-

connection, interdependence and mutual restriction of all

links within the logistics system and implementing global

coordination planning, can the effect of low-carbon logis-

tics be really brought into play. Low-carbon logistics is

different from general logistics, which only aims at pur-

suing its own economic interests. Low-carbon logistics also

takes into account the interests of consumers, society and

the ecological environment. The four objectives are

mutually conflicting and restrictive in the implementation

process. To reduce the carbon emissions of logistics

activities, some logistics costs will be brought in the initial

stage. Low-carbon logistics should achieve a certain bal-

ance among these objectives, take into account the coor-

dinated development of economy and ecology, and

organically integrate economy, consumers, society and

ecological environment [27–29]. Chang et al. [28] mea-

sured the total factor energy efficiency of China’s logistics

industry using DEA model and examined the impact of

four factors, namely institutional factors, human capital

factors, infrastructure level and regional economic devel-

opment level, on the total factor energy efficiency of

logistics industry.

Benjaafar et al. [30] analyzed structural factor decom-

position method based on input–output model is used to

analyze the intensity of carbon emissions, and the effi-

ciency indicators for minimizing carbon emissions pollu-

tion under given input factors and output levels in the

production process are solved. When evaluating the

development level of low-carbon logistics in the existing

literature, the starting point of selecting the influencing

factors is often different. The selection of indicators lacks

sufficient theoretical support and does not form a complete

and comprehensive influencing factor system. The con-

struction of the index system is often lack of systematic-

ness and depth. The research object of carbon emissions in

China’s logistics industry will be more transferred to

micro-subjects, the data of logistics industry will be more

accurate, the research methods need using quantitative

analysis of modeling, and the low-carbon practice of Chi-

na’s logistics industry will also be greatly improved.
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2.2 Uncertainty in logistics network

The uncertainties of logistics network mostly arise in the

process of collecting goods, transporting between nodes

and remanufacturing. Logistics process includes storage,

transportation, remanufacturing and other activities, which

are generally not completed by a single enterprise, and

need the cooperation of enterprises and third-party enter-

prises to complete [31]. But because different companies

have great differences in management level, informatiza-

tion level and employee quality, many problems often

arise, such as deterioration of product storage, accidental

damage in transportation process, change of transportation

time, inconsistency of circulation process and adjustment

of production plan, which will seriously damage the

accuracy of time and quantity of product operation process

[32–34].

Random phenomena, fuzzy phenomena and rough phe-

nomena are the three most basic uncertain phenomena in

the study of uncertainty theory. Stochastic phenomenon is

also called contingency, which means although there are

many uncertain variables in the optimization problem, its

probability distribution can be obtained from a large

number of historical data. Fuzzy phenomenon, also known

as non-clarity, is aimed at those who cannot obtain detailed

historical data, and can only be analyzed by giving the

fuzzy membership function of uncertain factors based on

some available data or expert opinions. Rough phe-

nomenon, also known as indiscernibility, can neither get its

probability distribution through a large number of histori-

cal data, nor give the fuzzy membership function [35–37].

Aiming at these uncertain phenomena, we often need the

assistance of relevant mathematical theories. Random

phenomena can be described by probability distribution

function of value in [0,1] interval using probability and

statistics theory as an auxiliary tool. However, the appli-

cation of probability theory needs a lot of historical data.

Rough phenomena can be analyzed by rough set theory as

an assistant tool [38]. Because there are many optimization

problems to be solved in many research fields such as

decision science, system science, computer science and

industrial engineering, it is unrealistic to use deterministic

models to describe uncertain optimization problems, or

there will be large errors. Uncertain programming method

can deal with the optimization of reverse logistics in

uncertain environment. The model can transform uncertain

optimization problems into deterministic optimization

problems by using the transformation method of expected

values instead of directly using uncertain parameters.

Chance-constrained programming is mainly a method to

obtain optimal values under certain probabilistic condi-

tions. The main object of this theory is to solve the

uncertain parameters in the constraints. At the same time, it

may not fully satisfy the constraints, but it should be

established at a certain level of confidence. For practical

application scenarios, the theory can transform some

uncertainties into equivalent deterministic mathematical

programming problems, but if the problems are more

complex, the simulation-based genetic algorithm is used to

calculate them.

2.3 Solving the problem of the logistics network

Genetic algorithm is an intelligent algorithm, which is

generally used to solve the main method of VRP [39].

Genetic algorithm simulates Darwin’s theory of natural

evolution and genetic variation. It has wide application

value [40]. The scientific layout of logistics nodes is an

important prerequisite for the operation of reverse logistics

network. The number and location of nodes to be selected

will affect the operation efficiency of the whole logistics

network. The company cannot increase the node density

indefinitely, which will inevitably increase the operation

cost, and cannot excessively reduce the number of nodes,

which will easily lead to the operation efficiency of reverse

logistics network: slow down, slow response and even

information distortion [41–43].

At the same time, the regional location of nodes can not

only consider the distribution of consumer markets and

recycling areas, but also the degree of transportation con-

venience and land availability in the region. Logistics path

planning in network is closely related to the scientific

layout of nodes and the rational allocation of node size.

Node layout and size allocation have a very important

impact on the volume, type and distance of transportation

between network nodes, thus causing changes in product

transportation routes [44]. Because the transportation cost

of logistics network can be greatly reduced by planning

transportation routes scientifically, and the transportation

cost between nodes occupies a high proportion in the total

logistics cost, and thus, the total cost can be optimized

[45, 46]. Similarly considering fuzzy random variables,

Chakraborty et al. [47] transformed models into deter-

ministic nonlinear programming models using chance

constraint operator in supply chain design problem. But the

method of dealing with fuzzy random variables in [46, 47]

is not completely appropriate to show the essence of fuzzy

random theory, the fuzzy random simulation [48] method is

more consistent with fuzzy random theory.

This paper introduces carbon emissions into the design

and planning stage of reverse supply chain network, and

changes the environmental benefits of supply chain net-

work from traditional qualitative evaluation to quantitative

measurement. Aiming at uncertain environment, the mixed

integer programming with minimization of cost as
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objective function is established. Meanwhile, the chance-

constrained method is used to deform the model. Secondly,

the hybrid genetic algorithm is mainly used to solve the

model. As shown in Tables 1 and 2, total carbon emissions

and stochastic fuzzy stochastic are the focus of current

research. Some scholars focus on the optimization of

reverse logistics network design by combining some waste

products and specific environment. The main modeling

method is mixed integer linear programming, and the

hybrid intelligent algorithm is chosen in the solution stage.

However, most scholars do not take into account the

uncertainty factors of reverse logistics network when they

build the model, which may lead to discrepancies between

the model and the actual situation, and it is difficult to

ensure the robustness of the network.

3 Proposed method for improved model

3.1 Fuzzy random variables

In reality, it is impossible for every goal to reach the expec-

tation level of the decision maker. The decision closest to the

expectation level is often regarded as the best decision

making. The uncertainty of market demand for product J

increases the difficulty of decision making. The emergence of

fuzzy theory can solve this kind of problem. The model

shows that under the condition of fuzzy and stochastic

demand, the fuzzy profit of all parties in the supply chain can

be maximized to the maximum extent possible.

At the optimal level of expectations of all decision

makers, the total profit in the supply chain can be maxi-

mized. In practical decision making, the satisfaction of

each objective function depends on the satisfaction of the

decision maker. For simplicity, the minimum expected

profit deviation for each product is 0, and the probability

space is X;A; Prf g where

~�dðxÞ ¼
ð85; 95; 105Þ with probability x ¼ 0:3

ð145; 155; 165Þ with probability x ¼ 0:5

ð185; 195; 205Þ with probability x ¼ 0:2

8
><

>:

~�dðxÞ is clearly a fuzzy random variable. Random phe-

nomena, fuzzy phenomena and rough phenomena are the

three most basic uncertain phenomena in the study of

uncertainty theory. Stochastic phenomenon is also called

contingency, which means that although there are many

uncertain variables in the optimization problem, its prob-

ability distribution can be obtained from a large number of

historical data.

3.2 Carbon cap-and-trade

Low-carbon policies aimed at reducing carbon emissions

can not only solve the problems of market failure existing

in pure market mechanism to a certain extent, but also

further promote the development and structural

Table 1 Summary of the literature review

Paper Fuzzy variable Random variable Robust optimization Carbon consideration

Jabbarzadeh et al. [7] No No Yes No

Liao et al. [8] No No No No

Amin and Ramezanian [10] No No No No

Mahdi and Marjan [11] No No No No

Xiao et al. [24] No No No Yes

Fahimnia et al. [27] No No Yes Yes

Abbassi et al. [31] No No Yes No

Asim et al. [32] Yes Yes No No

Noh and Kim [35] Yes No No Yes

Khanduzi and Sangaiah [40] No No No No

Cui et al. [42] No Yes No No

Woo and Kim [43] No No No No

Mitsuo et al. [44] No No No No

Dai et al. [45] Yes No No Yes

Afrouzy et al. [46] No No No No

Chakraborty et al. [47] Yes Yes No No

Ma et al. [49] Yes Yes No No

This research Yes Yes No Yes
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optimization of logistics industry to get win–win economic

and environmental benefits. Countries and regions aim to

adapt to the trend of low-carbon economy, improve the

ecological environment, formulate a series of national

macro-control low-carbon policies, and create a low-car-

bon development environment for the whole society. Most

developing countries are in the mid-stage of industrializa-

tion. Many negative environmental impacts brought about

by social development have destroyed the ecological

environment. The logistics industry, one of the pillar

industries in the national economy, has formed an inverted

mechanism. Facing the environment of low-carbon devel-

opment, logistics industry inevitably faces challenges

brought by new requirements, but new requirements also

bring new opportunities.

In order to simplify the mathematical model, the amount

of CO2 is regarded as index for amount of greenhouse gas.

Major sources of CO2 emissions from the network are as

follows: (1) the discharge of the energy consumed during

the operation of each center, namely the carbon emission

from the operation process of the facility. These carbon

emissions are mainly generated by electricity consumption,

fuel consumption and heat consumption. This paper only

considers the carbon emissions generated by electricity

consumption. (2) The amount of energy consumed by each

center during the transportation process, namely the carbon

emission of the transport process. Because of the difference

of weight [18], transport distance [24], road slope and road

congestion and other factors, the carbon emissions pro-

duced from consumption of fuel are different, and this

paper only considers the weight of cargo load and the

distance of transportation.

3.3 Forward/reverse logistics network

The network is connected by points and lines. Points rep-

resent all kinds of operation functions. Lines connect the

supply and demand sides of each other. The number of

network links, the number of node enterprises and the

material flow among various nodes not only affect the

operation cost of the network, but also produce different

carbon emissions. The significance or value of network

optimization design lies in optimizing all kinds of alter-

native points and job flows according to the constraints of

construction. Different network concentration and hierar-

chy will result in different input of fixed facilities, various

derivative consumption, and the number and types of

operations, which will eventually lead to complex and

diverse network layout. The carbon emission of reverse

logistics network is mainly generated in the process of

transportation and node treatment. Reasonable network

layout structure can ensure the optimal path planning,

which can reduce the waste of transportation resources,

maximize the allocation of resources, and ensure that the

carbon emissions in the transportation process can be

reduced as much as possible to achieve the purpose of

environmental protection.

Recycling is not only the beginning of reverse network,

but also the link most affected by uncertainties in reverse

operation. Compared with other operation links, the tech-

nical difficulty and operation type of recycling are

Table 2 Summary of the

literature review
Paper Reverse logistics Forward logistics Metaheuristic method

Jabbarzadeh et al. [7] Yes Yes Yes

Liao et al. [8] Yes No Yes

Amin and Ramezanian [10] No Yes Yes

Mahdi and Marjan [11] Yes No Yes

Xiao et al. [24] Yes No No

Fahimnia et al. [27] No Yes No

Abbassi et al. [31] No Yes Yes

Asim et al. [32] Yes Yes Yes

Noh and Kim [35] No Yes Yes

Khanduzi and Sangaiah [40] No Yes Yes

Cui et al. [42] Yes Yes Yes

Woo and Kim [43] No Yes Yes

Mitsuo et al. [44] No Yes Yes

Dai et al. [45] No Yes Yes

Afrouzy et al. [46] No Yes Yes

Chakraborty et al. [47] Yes Yes Yes

Ma et al. [49] No Yes Yes

This research Yes Yes Yes
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relatively simple. Its main cost and carbon emissions are

generated in the recycling and transportation of waste

products. Frequency, efficiency, distance, speed and fuel

consumption of transportation operations will affect carbon

emissions and operating costs in the process of collecting

goods. It is necessary to scientifically predict the quantity

of waste products in order to rationalize the allocation of

resources. The logistics network presented in this paper is

shown in Fig. 1.

Within a single economy, there is a significant inverse

relationship between economic benefits and environmental

benefits: The acquisition of environmental benefits will

reduce the economic benefits of enterprises and increase

additional costs. In order to reduce costs, enterprises will

invest expenditures for environmental benefits into the

production of products or services to increase production,

thereby improving their own benefits. In the absence of

carbon constraints, economies form network alliances with

the goal of maximizing returns. Benefits or costs are the

only indicators of partnership selection. Cost–benefit is no

longer the only planning index in planning and construct-

ing reverse logistics network with carbon emission con-

straints. Environmental performance of network operation

and emission reduction capability of enterprises will be

considered as new standards. The network will achieve a

win–win result between economy and environment. The

factors affecting carbon emissions in the treatment process

mainly include the reusability of incoming materials and

the differences in the ways of reprocessing. According to

the research of remanufacturing practice, the economic and

environmental performance of recycling operation is sig-

nificantly higher than that of recycling operation. There-

fore, under the premise of cost-paying economy, the

proportion of recycling should be increased as far as pos-

sible according to the current technology level.

4 Modeling

4.1 Symbol descriptions

Logistics network optimization is to realize the needs of

enterprise logistics development and reduce the logistics

cost of the system as the primary objective, to ensure the

scientific layout of logistics network nodes and the

rational planning of transportation routes. The scientific

layout of logistics nodes is an important prerequisite for

the operation of reverse logistics network. The number

and location of nodes to be selected will affect the

operation efficiency of the whole logistics network. The

company cannot increase the node density indefinitely,

which will inevitably increase the operation cost, and

cannot excessively reduce the number of nodes, which

will easily lead to the operation efficiency of reverse

logistics network: slow down, slow response and even

information distortion. At the same time, the regional

location of nodes can not only consider the distribution of

consumer markets and recycling areas, but also the degree

of transportation convenience and land availability in the

region.

4.2 Objective functions

Global warming is a serious environmental problem fac-

ing the international community today, and greenhouse

gas emissions is mainly caused by human activities.

Logistics industry is one of the main sources of carbon

emissions in China. Developing low-carbon logistics not

only helps to improve the efficiency of carbon emission

reduction in China as a whole, but also has important

significance for achieving the goal of sustainable devel-

opment. Logistics industry is an important link between

production and consumption. Economic growth and

expansion of logistics scale are always accompanied by

serious energy consumption and environmental pollution.

Fig. 1 An integrated forward/

reverse logistics network
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The logistics industry must change its development mode

and implement low carbon to realize emission reduction.

We mainly consider the two factors, which are the actual

loading capacity [18] and the transportation distance [24],

and think that the carbon emission is proportional to the

distance of transportation. If the vehicle needs to start, it

will generate fixed energy consumption. Therefore, it is

assumed that the carbon emission is proportional to the

number of vehicles. In general, when the amount of

transportation is less or equal to the vehicle capacity (vc),

a vehicle can complete the transportation. When the

transport is larger than a vehicle capacity (vc), it will need

more car. Former r � 1 car is loaded, the rth loading car

for transportation and loading capacity of the remainder

of the total. The carbon emissions from facility include

the facility’s fixed carbon emission and the emission for

treatment of products. Thus, the total carbon dioxide

emission is as follows:

EC ¼ c
X

i2I

X

j2J
t1ij

Xij

vc

� �

þ
X

j2J

X

k2K
t2jk

Ujk

vc
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þ
X

k2K

X

l2L
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Qkl

vc
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þ
X

l2L

X
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vc

� �

þ
X

l2L

X

i2I
t5li
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þ
X

i

hiWi þ
X

j

hjYj

þ
X

l

hlZl þ
X

m

hmVm

v1
X

i2I

X

j2J
Xij þ

X

l2L

X

i2I
Pli

 !

þ v2
X

j2J

X

k2K
Ujk

þ v3
X

k2K

X

l2L
Qkl þ v4

X

l2L

X

m2M
Tlm

ð1Þ

Logistics path planning in network is closely related to

the scientific layout of nodes and the rational allocation of

node size. Node layout and size allocation have a very

important impact on the transport volume, type and dis-

tance between network nodes, thus causing changes in

product transport routes, because the transportation cost of

logistics network can be greatly reduced by planning

transportation routes scientifically, and the transportation

cost between nodes occupies a high proportion in the total

logistics cost, and thus, the total cost can be optimized. The

objective function is as follows:

Min w ¼
X

i2I
fiWi þ

X

j2J
ojYj þ

X

l2L
hlZl þ

X

m2M
amVm

þ
X

i2I

X

j2J
b1i Xij þ

X

l2L

X

i2I
b1i Pli

þ
X

j2J

X

k2K
b2j Ujk þ

X

k2K

X

l2L
b3l Qkl

þ
X

l2L

X

m2M
b4mTlm þ

X

i2I

X

j2J
c~�xijt

1
ijXij

þ
X

j2J

X

k2K
c~�ujkt

2
jkUjk þ

X

k2K

X

l2L
c~�qklt

3
klQkl

þ
X

l2L

X

m2M
c~�tlmt

4
lmTlm

þ
X

l2L

X

i2I
c~�plit

5
liPli þ E � eþ � e�ð Þ

ð2Þ

4.3 Constraint

X

j2J
Ujk � ~�dk; 8k 2 K ð3Þ

X

l2L
Qkl � rk

X

j2J
Ujk; 8k 2 K ð4Þ

X

i2I
Xij �

X

k2K
Ujk; 8j 2 J ð5Þ

X

m2M
Tlm � s

X

k2K
Qkl; 8l 2 L ð6Þ

X

i2I
Pli � 1� sð Þ

X

k2K
Qkl; 8l 2 L ð7Þ

X

j2J
Xij �Wicawi; 8i 2 I ð8Þ

X

i2I
Xij � Yjcayj; 8j 2 J ð9Þ

X

k2K
Ujk � Yjcayj; 8j 2 J ð10Þ

X

k2K
Qkl � Zlcazl; 8l 2 L ð11Þ

X

l2L
Tlm �Vmcavm; 8m 2 M ð12Þ

X

l2L
Pli �Wicari; 8i 2 I ð13Þ

X

m2M
Tlm þ

X

i2I
Pli � Zlcazl; 8l 2 L ð14Þ

X

l2L
Pli �B

X

j2J
Xij; 8i 2 I ð15Þ

EC�Capco þ eþ � e� ð16Þ

2012 Neural Computing and Applications (2020) 32:2005–2025

123



Wi; Yj; Zl;Vm 2 0; 1f g; 8i 2 I; 8j 2 J; 8l 2 L; 8m 2 M

ð17Þ

Xij;Ujk;Qkl;Pli; Tlm; e
þ; e� � 0;

8i 2 I; j 2 J; k 2 K; l 2 L;m 2 M
ð18Þ

Carbon emission cost of logistics network is the mini-

mum goal. Carbon emission in logistics network is mainly

composed of carbon emissions generated during trans-

portation and operation. According to the different carbon

emission, cost, time and other factors of logistics distri-

bution channels, a scientific and effective regional low-

carbon logistics transportation network system with dif-

ferent modes and coordinated cooperation is established,

which focuses on the competition coordination and burden

of commodities in the turnover of relevant logistics trans-

portation channels in the region. The goal of creating the

top layer is to minimize carbon emissions, time and cost.

Because of the complexity of the solution, genetic algo-

rithm is mainly used to solve the problem. The advantage

of this method is that the best solution can be obtained

more quickly, so that the direction for the establishment of

low-carbon logistics transportation network and scientific

planning is clear.

5 GA based on priority and weight with frs

In this section, a genetic algorithm based on priority and

weight with a fuzzy random simulation (GA-pw with frs),

for the optimization of low-carbon logistics network, is

caused by a series of complex behaviors of coordination

and game between different city governments and many

logistics companies. For achieving the lowest carbon

emission of local logistics distribution, local governments

need to plan and set up logistics transportation network

from the level of low-carbon development of the whole

region, and logistics companies will determine the relevant

logistics routes and distribution channels according to the

specific situation of the logistics network system and the

benefit and efficiency objectives set by enterprises, and at

the same time, the allocation of logistics volume in the

routes will be carried out at any time. For management

units, in the process of optimizing the route structure of

regional low-carbon logistics transportation network, more

factors must be considered, including carbon emissions,

time, cost and so on. Therefore, in the process of logistics

transportation network optimization and planning, it is

necessary to create a top-level planning model aiming at

the lowest cost mentioned above. For logistics companies,

they must make the best choice and determination of their

logistics routes at the micro-level and establish the path

selection mode with the lowest cost as the bottom planning.

5.1 GA-based fuzzy random simulation

Genetic algorithm is essentially a direct search method

independent of specific problems. At present, the existing

research schemes for optimal control rules are basically

divided into two categories Within the scope of a certain

number of fuzzy rules, the more rules, the better the per-

formance, but if the number of rules is too large, the longer

the running time of the experiment, the more resources will

be spent. In this paper, we refer to the processing method of

Ref. [48] and construct a fuzzy stochastic constraint model.

The objective function with fuzzy variables can be used in

the logistics network model under uncertain environment.

By defuzzification, the uncertain fuzzy programming

model can be transformed into a definite fuzzy model, and

then, the model can be solved.

min �w

st :

Chf
X

i2I
fiWi þ

X

j2J
ojYj þ

X

l2L
hlZl þ

X

m2M
amVm þ

X

i2I

X

j2J
b1i Xij þ

X

l2L

X

i2I
b1i Pli

þ
X

j2J

X

k2K
b2j Ujk þ

X

k2K

X

l2L
b3l Qkl þ

X

l2L

X

m2M
b4mTlm þ

X

i2I

X

j2J
c~�xijt

1
ijXij

þ
X

j2J

X

k2K
c~�ujkt

2
jkUjk þ

X

k2K

X

l2L
c~�qklt

3
klQkl þ

X

l2L

X

m2M
c~�tlmt

4
lmTlm

þ
X

l2L

X

i2I
c~�plit

5
liPli þ E � eþ � e�ð Þ� �wgða1Þ� b1

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

The proposed pessimistic method is shown as below.

For the update of the shipping cost, this paper set up a

method, which is shown in Algorithm 2.

Reverse logistics network model under fuzzy environ-

ment is a typical NP problem, which cannot be solved

directly. Aiming at this kind of NP-hard problem, intelli-

gent methods are generally adopted. Because genetic

algorithm has the advantages of stable performance, high

computational efficiency and strong search ability, this

paper uses genetic algorithm as a model solving tool. The
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genetic algorithm can infer the set of advantages that the

expected performance of the next generation will improve

according to historical information. Generations of genetic

evolution will eventually converge to an individual that is

best suited to the environment, and then, the optimal

solution can be obtained. [48].

Ch
X

j2J
Ujk � ~�dk; 8k 2 K

( )

ða2Þ� b2 ð19Þ

Logistics path planning in network is closely related to

the scientific layout of nodes and the rational allocation of

node size. Node layout and size allocation have a very

important impact on the transport volume, type and dis-

tance between network nodes, thus causing changes in

product transport routes, because the transportation cost of

logistics network can be greatly reduced by planning

transportation routes scientifically, and the transportation

cost between nodes occupies a high proportion in the total

logistics cost, and thus, the total cost can be optimized. The

objective function with fuzzy variables can be used in the

logistics network model under uncertain environment. By

defuzzification, the uncertain fuzzy programming model

can be transformed into a definite fuzzy programming

model, and then, the model can be solved.

For the update of the demand, this paper set up a

method, which is shown in Algorithm 4.

5.2 GA-based initializing method

The decoding algorithm of the decoding based on priority

and weight is presented below.

(1) Algorithm 5: decoding based on priority and weight

Table 3 represents a priority and weight of transporta-

tion tree with 3 sources and 4 depots (weight are inside of

the parentheses, whose initial value and range of values are

1 and [0,1], respectively). Low-carbon policies aimed at

reducing carbon emissions can not only solve the problems

of market failure existing in pure market mechanism to a

certain extent, but also further promote the development

and structural optimization of logistics industry. Table 4

shows the logistics network model chromosome (Table 5).

(2) Algorithm 6: IFRLN decoding algorithm

Input:~�dk ,rk ,s,cawi,cayj,cazl,cavm,cari

Output: Xij,Ujk,Qkl,Tlm,Pli

Step 1: calculate Ujk using Algorithm 5

Step 2: calculate Xij using Algorithm 5

Step 3: calculate Qkl using Algorithm 5

Step 4: calculate Tlm using Algorithm 5

Step 5: calculate Pli using Algorithm 5

5.3 GA-based operators

Fitness: The fitness is the reciprocal of the objective

function value, that is, fitness = 1/individual objective
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function value. The optimal operation strategy and roulette

selection method are adopted in the selection operation.

Genetic algorithm is a computational method to simu-

late the evolutionary process of organisms. It is a new

computational method formed by the combination and

infiltration of natural genetics and computer science.

Heredity is a phenomenon in which organisms inherit

characteristics and shapes from their parents. Inheritance

information is carried by genes, and multiple genomes

form chromosomes. Locations of genes in chromosomes

are loci. All genes in the same locus are alleles. Alleles and

loci determine the characteristics of chromosomes and

individuals. In terms of chromosome expression, there are

two corresponding expression modes, genotype and phe-

notype. Phenotype refers to the shape of an individual,

while genotype refers to the composition of genes closely

related to expression. Individuals of the same genotype

have different phenotypes under different environmental

conditions.

The characteristic of genetic algorithm is that it can

search from the number set of problems, not just from a

single solution. These genetic algorithms are quite different

from the traditional ones. The traditional optimization

algorithm solves the optimal solution from the initial value

of a single solution, but it is easy to get into the local

misunderstanding. Starting from the number set, genetic

algorithm can ensure a wide range of searches and is

conducive to global optimization. Table 6 represents insert

mutation.

Genetic operation is a very important part of genetic

algorithm. It transfers genetic material to the next genera-

tion through selection, crossover and mutation operators

and generates new genes through mutation, so that the

population gradually approaches the optimal solution.

Selection operators usually use roulette to select chromo-

somes from new populations. The probability that each

chromosome can be selected and inherited to the next

generation is positively correlated with the fitness of the

chromosome. The mutation operation is to randomly

change one or more chromosome genes in a population.

5.4 Dynamic local search

The scientific layout of logistics nodes is an important

prerequisite for the operation of reverse logistics network.

The number and location of nodes to be selected will affect

the operation efficiency of the whole logistics network. The

company cannot increase the node density indefinitely,

which will inevitably increase the operation cost, and

cannot excessively reduce the number of nodes, which will

easily lead to the operation efficiency of reverse logistics

network. The performance of search algorithm depends

largely on the quality of initial solution. A good initial

solution can speed up the calculation and improve the

quality of the solution. In this paper, we choose 2 method

Table 3 Trace table for decoding procedure

Iteration a b k j xkj

0 (270, 300, 230) (260, 240, 170, 130) 2 1 260

1 (270, 40, 230) (0, 240, 170, 130) 1 3 170

2 (100, 40, 230) (0, 240, 0, 130) 1 2 100

3 (0, 40, 230) (0, 140, 0, 130) 2 2 40

4 (0, 0, 230) (0, , 100, 0, 130) 3 4 130

5 (0, 0, 100) (0, 100, 0, 0) 3 2 100

6 (0, 0, 0) (0, 0, 0, 0)

Table 4 Forward/reverse logistics network model

j

k 1 2 3 4

1 3 (1) 10 (1) 11 (1) 9 (1)

2 12 (1) 7 (1) 8 (1) 4 (1)

3 5 (1) 1 (1) 6 (1) 2 (1)

Table 5 Illustration of the

single point crossover
Step 1: select a cut point

Parent 1: Xij Ujk Qkl Tlm Pli

Parent 2: Xij Ujk Qkl Tlm Pli

Step 2: exchange substrings between parents

Parent 1: Xij Ujk Qkl Tlm Pli

Parent 2: Xij Ujk Qkl Tlm Pli

Table 6 Illustration of the Two-point exchange mutation

1 2 3 4

Step 1: select two positions

1 3 10 11 9

2 12 7 8 4

3 5 1 6 2

Step 2: exchange the positions between them

1 8 10 11 9

2 12 7 3 4

3 5 1 6 2
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as 3-opt (Table 7) and RPA (random probability assign-

ment method as Table 8). The detailed dynamic local

search program is shown in Algorithm 7 (Table 9).

6 Computational experiments

6.1 Algorithm evaluation

In logistics distribution, once there are many alternative

paths, the conflict between the attributes will lead to the

instability of the optimal path solution calculated according

to the attributes. For testing the performance of the pro-

posed algorithm, a test example is designed at first, and

then, for different experimental purposes, the solution is

tested separately. Starting from the number set, genetic

algorithm can ensure a wide range of searches and is

conducive to global optimization. In genetic algorithm,

chromosomes correspond to a series of symbolic sequen-

ces. In standard genetic algorithm (i.e., basic genetic

algorithm), the number of 0,1 is usually used to represent

the number of loci corresponding to each location, and the

value of each location corresponds to alleles. Genetic

algorithms deal with chromosomes, which are called gene

individuals. A certain number of gene individuals consti-

tute a gene population. The number of individuals in a

population is the size of the population, and the degree of

adaptation of individuals to the environment is called

fitness.

The size of test problems is shown in Table 10 and

parameter range of test problems is shown in Table 11,

running 30 times for each problem. The results were

compared with CMGA proposed by Chakraborty et al. [47]

and a simple GA without a local search (SGA). In these

Table 7 An illustration of 3-opt

local search
1 2 3 4

Step 1: select three positions

1 3 10 11 9

2 12 7 8 4

3 5 1 6 2

Step 2: exchange the positions among them

1 3 12 11 9

2 6 7 8 4

3 5 1 10 2

For each priority matrix:

1 3 10 11 9

2 12 7 8 4

3 5 1 6 2

There is a corresponding probability: (initial value is 1)

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

Random change a probability in [0, 1]:

1 1 1 1 1

2 1 0.53 1 1

3 1 1 1 1

Table 8 An illustration of 3-opt

local search
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experiments, there is no local search in the SGA and

Pc = 0.7, Pm = 0.15, and Capco is 50,000,000. These

experiments using MATLAB 7.0 were all done by a laptop

with Intel (R) Core (TM) i5 processor 2.53 GHz, 4.0G

RAM.

In Table 11, we can see that although the running time

of GA-pw with frs is longer than the time of CMGA and

the time of SGA for the 4 test problem, the objective

function value of GA-pw with frs to obtain is smaller than

the other two algorithms. In contrast to SGA and GA-pw

with frs, the running time of simple without a local search

is less than that of GA-pw with frs, indicating that local

search takes a lot of time to search for. But for the 4 test

problem, the objective function value of SGA is bigger

than that of CMGA and GA-pw with frs, which shows that

in the absence of local search, CMGA is more effective

than GA-pw with frs. In other words, it can be seen from

the side that the local search proposed in this paper con-

tribute greatly to helping the algorithm to search the opti-

mization value. In summary, although the running time of

GA-pw with frs is long, the result is good, so the GA-pw

with frs proposed in this paper is effective.

Compared to GA-pw with frs with CMGA and SGA in

Table 11, the error rate of CMGA and SGA with the size of

the test problem is larger and larger, indicating that the

GA-pw with frs is more accurate and more suitable for

solving large-scale problems. Compared CMGA with

SGA, the error rate of CMGA is smaller than that of SGA.

It indicates that CMGA is more accurate than GA-pw with

frs in the absence of local search. It also can be seen from

the side that the local search proposed in this paper is

useful for improving the accuracy of the objective value.

From the above analyses, the GA-pw with frs proposed in

this paper has certain accuracy.

Figure 2 represents the iterative process of GA-pw with

frs, and Fig. 3 represents the iterative process of GA-pw

with frs, CMGA and SGA. Starting from the number set,

genetic algorithm can ensure a wide range of searches and

is conducive to global optimization. In the real word, the

logistics enterprises often need to solve the problem of

large-scale transportation route arrangement, and hope to

get a better transportation plan as far as possible in order to

decreasing the logistics cost. In this paper, the GA-pw with

frs can get a better solution in a reasonable time, which

means that the algorithm has some practical significance.

Therefore, from this analysis and comparison, it can be

seen that the performance of GA-pw with frs is better than

both CMGA and the SGA.

By using the simulation test, it is proved that the per-

formance of the GA-pw with frs is better than CMGA and

SGA, and the algorithm is effective. It shows that the level

of confidence will affect the trend and magnitude of

logistics cost’s change. From the above analysis, it can be

seen that the change of the external uncertainty has an

impact on the logistics cost. Therefore, the enterprise

decision makers should grasp the confidence level, i.e., to

grasp the reality of the environment and changes in the

market, to reduce logistics costs.

6.2 Result analysis

We use the test 1 to study the model under the change of

confidence level and carbon emission quota. Specific data

are as follows:

(1) Consumer areas: The coordinates are K2(34, 93),

K4(98, 159), K6(125, 224), K8(109, 62), K10(203,

179), K11(289, 156), K13(335, 122), K15(393, 214),

K17(450, 106), K19(499, 113). Recovery rates were

0.75, 0.86, 0.83, 0.76, 0.79, 0.87, 0.75, 0.8, 0.75,

0.83.

(2) Distribution centers: The coordinates are J2(55, 168),

J5(190, 132), J6(301, 76), J9(428, 194), J10(497, 83).

The fixed costs are 200000, 250,000, 300,000,

200000, 250000. Unit product processing cost is

30. The capacities are 900, 1000, 1100, 900, 1000.

The fixed carbon emissions are 82000, 85000, 88000,

82000, 85000.

(3) Recycling/inspection centers: The coordinates are

L1(54, 128), L8(443, 183), L9(146, 151), L10(375,

125). The fixed costs are 250,000, 300,000, 350,000,

400,000. Unit product processing cost is 100. The

capacities are 800, 900, 1000, 1100. The fixed carbon

emissions are 820,000, 830,000, 840,000, 850,000.

(4) Production/recovery centers: The coordinates are

I1(73, 151), I3(420, 138), I5(259, 157). The fixed

costs are 450,000, 550,000, 650,000. Unit product

processing cost is 250. For forward logistics, the

Table 9 The size of test problems

Test problems production/recovery centers DCs customers collection/inspection center disposal center

1 3 5 10 4 3

2 6 10 20 8 6

3 12 20 40 16 12

4 24 40 80 32 24
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capacities are 1000, 1300, 1600. For reverse logis-

tics, the capacities are 300, 600, 900. The fixed

carbon emissions are 2,300,000, 2,500,000,

2,700,000.

(5) Disposal centers: The coordinates are M1(102, 190),

M3(283, 135),M4(486, 137). Average processing rate

is 0.2. The fixed costs are 250,000, 350,000, 400,000.

Unit product processing cost is 20, and the capacities

are 500, 600, 700. The amount of fixed carbon

emission is 820,000, 850,000, 880,000.

Vehicle capacity is 5, CO2 emission coefficient for

processing unit product in production/recovery center and

distribution center, collection/inspection center and dis-

posal center is, respectively, 975, 350, 760 and 530 g/unit

product, and some data are shown in Tables 12, 13, 14, 15,

16, 17.

There are four scenes, namely scene 1 (a1 ¼ a2 ¼ 0:98,

b1 ¼ b2 ¼ 0:8), scene 2 (a1 ¼ a2 ¼ 0:78,b1 ¼ b2 ¼ 0:6),

scene 3 (a1 ¼ a2 ¼ 0:68,b1 ¼ b2 ¼ 0:5) and scene 4

(a1 ¼ a2 ¼ 0:48,b1 ¼ b2 ¼ 0:3), respectively. The value of

Capco is 45,000,000, 46,000,000, 47,000,000, 48,000,000,

49,000,000, 50,000,000, 51,000,000, 52,000,000,

53,000,000, 54,000,000 and 55,000,000. Table 18 is

obtained by using GA-pw with frs, and according to

Table 18, Fig. 4 is drawn.

As is shown in Fig. 4, logistics costs of the scene 1–4

decrease gradually in the same amount of carbon emis-

sions; this is because the decline with the confidence level

a1, a2, b1 and b2, the demand and unit transportation cost is

reduced, thereby reducing logistics costs, indicating that

the level of confidence affects the change of logistics cost.

For each carbon emissions quota, logistics costs change

trend of scene 1 and scene 2 is not significant, similarly,

logistics costs change trend of scene3 and scene 4 is not

significant, but after the amount of carbon emission exceed

49,000,000, logistics costs change trend of scene 1 and

scene 2 is quite different, and the magnitude of the

Table 10 The parameter range of test problems

Parameter Range

~�dk Uniform (85, 300)

rk Uniform (0.75, 0.9)

s Uniform (0.15, 0.25)

fi Uniform (2,300,000, 2,400,000)

oj Uniform (200,000, 300,000)

hl Uniform (250,000, 400,000)

am Uniform (250,000, 400,000)

b1i ,b
2
j ,b

3
l ,b

4
m

Uniform (20, 250)

c~�xij,c~�ujk,c~�qkl,c~�tlm,c~�pli Uniform (0.05, 1.5)

cawi Uniform (1000, 1600)

cayj Uniform (900, 1200)

cazl Uniform (800, 1100)

cavm Uniform (500, 700)

cari Uniform (300, 900)

t1ij,t
2
jk,t

3
kl,t

4
lm,t

5
li

Uniform (20, 450)

c 550

vc Uniform (5, 10)

hi Uniform (2,300,000, 2,700,000)

hj Uniform (82,000, 88,000)

hl Uniform (820,000, 850,000)

hm Uniform (820,000, 880,000)

v1,v2,v3,v4 Uniform (350, 1000)

Capco Uniform (45,000,000, 55,000,000)

E 80

Table 11 Comparisons of CMGA, SGA and GA-pw with frs

Problem CMGA SGA GA-pw with frs

Min_cost

(Ave)

[error rate]

Ave_time (s) Min_cost

(Ave)

[error rate]

Ave_time (s) Min_cost (Ave)

[error rate]

Ave_time

(s)

Test1

(pop_size = 50)

(max_gen = 100)

173,579,531

(209,791,762.2)

[2.23%]

45.7939 213,762,563

(305,373,363.5)

[25.897%]

39.5832 169,791,762

(178,891,563.2)

[0%]

569.5312

Test2

(pop_size = 100)

(max_gen = 200)

362,872,563

(419,583,524.5)

[10.435%]

106.8575 417,572,635

(479,685,512.7)

[27.083%]

95.7349 328,583,524

(339,583,524.8)

[0%]

1158.7914

Test3

(pop_size = 200)

(max_gen = 400)

705,236,183

(78,257,127.3)

[12.09%]

226.1836 809,052,337

(858,056,038.7)

[28.591%]

215.1863 629,167,048

(679,167,049.6)

[0%]

2017.5828

Test4

(pop_size = 400)

(max_gen = 800)

1395,243,173

(2,165,234,128.5)

[19.422%]

607.8381 1632,974,386

(2,256,353,057.2)

[39.769%]

563.9215 1168,334,096(1,358,334,099.3)

[0%]

3935.1656
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difference in logistics cost’s change becomes larger. It

shows that the level of confidence will affect the trend and

magnitude of logistics cost’s change. From the above

analysis, it can be seen that the change of the external

uncertainty has an impact on the logistics cost. Therefore,

the enterprise decision makers should grasp the confidence

level, i.e., to grasp the reality of the environment and

changes in the market, to reduce logistics costs.

By looking at Fig. 4, in scene 1 and 2, the logistics

costs decease with the increase in the carbon emission

amount gradually when the amount of carbon emission is

from 44,000,000 to 48,000,000. However, there is a

turning point when the amount of carbon emission is

between 48,000,000 and 50,000,000. After that point, the

costs stay stable. Similarly, in scene 3 and 4, the logistics

costs decease with the increase in the carbon emission

amount gradually when the amount of carbon emission is

from 44,000,000 to 49,000,000. However, there is a

turning point when the amount of carbon emission is

between 49,000,000 and 51,000,000. After that point, the

costs stay stable. These show that in the same scenario, if

emission limit is large enough, carbon trading mechanism

has a little effect on the total logistics cost, so the

appropriate emission limits are used to guide enterprises

to reduce carbon emissions, and enterprises can make

coping strategies according to the different limit at the

same time.

In conclusion, the changes of the confidence level and

carbon emission limits have obvious influences on logis-

tics costs. Managers need to consider the future devel-

opment of the enterprise, to analyze correctly changes of

the environment and market as well as carbon emission

Fig. 2 Iterative process of GA-

pw with frs

Fig. 3 Iterative process of GA-

pw with frs, CMGA and SGA
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limits, in order to get a reasonable and practical strategy.

Therefore, the fuzzy random programming model pro-

posed in this paper is practical. Its decision making

applying the proposed algorithm is reasonable and

applicable and provides decision basis for enterprise

managers.

7 Conclusions

In this article, IFRLN was studied as an ever important

problem in the contemporary world. Considering the

influence of carbon emissions trading, the fuzzy stochastic

programming model was established for some parameters

Table 16 The fuzzy random

unit shipping costs between

L and M

1 2 3

1 ð0:4; 0:5; 0:6Þ p ¼ 0:2

ð0:3; 0:4; 0:5Þ p ¼ 0:8

(
ð0:43; 0:51; 0:62Þ p ¼ 0:29

ð0:35; 0:46; 0:59Þ p ¼ 0:71

(
ð0:53; 0:61; 0:72Þ p ¼ 0:39

ð0:35; 0:46; 0:59Þ p ¼ 0:61

(

2 ð0:55; 0:62; 0:74Þ p ¼ 0:32

ð0:36; 0:49; 0:62Þ p ¼ 0:68

(
ð0:36; 0:49; 0:62Þ p ¼ 0:33

ð0:43; 0:55; 0:62Þ p ¼ 0:67

(
ð0:36; 0:49; 0:62Þ p ¼ 0:63

ð0:45; 0:56; 0:63Þ p ¼ 0:37

(

3 ð0:45; 0:56; 0:63Þ p ¼ 0:63

ð0:35; 0:48; 0:66Þ p ¼ 0:37

(
ð0:46; 0:53; 0:65Þ p ¼ 0:53

ð0:35; 0:48; 0:66Þ p ¼ 0:47

(
ð0:46; 0:53; 0:65Þ p ¼ 0:83

ð0:55; 0:68; 0:76Þ p ¼ 0:17

(

4 ð0:55; 0:68; 0:76Þ p ¼ 0:83

ð0:46; 0:53; 0:65Þ p ¼ 0:17

(
ð0:53; 0:67; 0:78Þ p ¼ 0:81

ð0:46; 0:53; 0:65Þ p ¼ 0:19

(
ð0:53; 0:67; 0:78Þ p ¼ 0:31

ð0:41; 0:52; 0:66Þ p ¼ 0:69

(

5 ð0:56; 0:63; 0:75Þ p ¼ 0:61

ð0:41; 0:52; 0:66Þ p ¼ 0:39

(
ð0:56; 0:63; 0:75Þ p ¼ 0:39

ð0:41; 0:53; 0:67Þ p ¼ 0:61

(
ð0:53; 0:63; 0:78Þ p ¼ 0:33

ð0:41; 0:52; 0:67Þ p ¼ 0:67

(

Table 17 The fuzzy random

unit shipping costs between

L and I

1 2 3

1 ð0:8; 0:9; 1Þ p ¼ 0:8

ð0:7; 0:8; 0:9Þ p ¼ 0:2

(
ð0:82; 0:91; 1:2Þ p ¼ 0:71

ð0:72; 0:83; 0:9Þ p ¼ 0:29

(
ð0:82; 0:91; 1:3Þ p ¼ 0:29

ð0:71; 0:82; 0:9Þ p ¼ 0:71

(

2 ð0:92; 1:01; 1:4Þ p ¼ 0:22

ð0:71; 0:82; 0:9Þ p ¼ 0:78

(
ð0:82; 0:91; 1:3Þ p ¼ 0:49

ð0:73; 0:79; 0:86Þ p ¼ 0:51

(
ð0:82; 0:91; 1:3Þ p ¼ 0:42

ð0:73; 0:82; 0:89Þ p ¼ 0:58

(

3 ð0:78; 0:9; 1:2Þ p ¼ 0:62

ð0:63; 0:72; 0:89Þ p ¼ 0:38

(
ð0:82; 0:91; 1:3Þ p ¼ 0:29

ð0:71; 0:82; 0:9Þ p ¼ 0:71

(
ð0:82; 0:91; 1:2Þ p ¼ 0:71

ð0:72; 0:83; 0:9Þ p ¼ 0:29

(

4 ð0:83; 0:93; 1:5Þ p ¼ 0:71

ð0:72; 0:81; 0:89Þ p ¼ 0:29

(
ð0:78; 0:9; 1:2Þ p ¼ 0:62

ð0:63; 0:72; 0:89Þ p ¼ 0:38

(
ð0:78; 0:9; 1:2Þ p ¼ 0:32

ð0:63; 0:71; 0:88Þ p ¼ 0:68

(

5 ð0:82; 0:91; 1:3Þ p ¼ 0:49

ð0:73; 0:79; 0:86Þ p ¼ 0:51

(
ð0:92; 1:01; 1:4Þ p ¼ 0:22

ð0:71; 0:82; 0:9Þ p ¼ 0:78

(
ð0:82; 0:91; 1:3Þ p ¼ 0:42

ð0:73; 0:82; 0:89Þ p ¼ 0:58

(

Table 18 Logistics cost
Carbon emission limit Scene 1 Scene 2 Scene 3 Scene 4

45,000,000 3,087,624,015 2,787,623,953 2,587,623,891 2,497,623,829

46,000,000 2,494,057,589 2,194,057,527 1,994,057,465 1,904,057,403

47,000,000 2,010,491,164 1,710,491,102 1,510,491,040 1,420,490,978

48,000,000 1,556,924,738 1,256,924,676 1,056,924,614 966,924,552.4

49,000,000 1,059,358,313 759,358,251 559,358,189 469,358,127

50,000,000 1,049,167,332 749,347,852 169,791,762 79,791,700

51,000,000 1,038,256,315 739,356,253 159,671,835 69,483,563

52,000,000 1,029,460,313 729,338,252 149,781,573 59,382,645

53,000,000 1,018,257,983 719,458,288 139,451,757 49,671,931

54,000,000 1,008,359,015 699,356,245 129,331,340 39,866,052

55,000,000 999,358,317 689,358,553 119,251,261 29,582,283
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which are fuzzy random variables. Most developing

countries are in the mid-stage of industrialization. Many

negative environmental impacts brought about by social

development have destroyed the ecological environment.

Countries and regions aim to adapt to the trend of low-

carbon economy, improve the ecological environment,

formulate a series of national macro-control low-carbon

policies. We first proposed GA structure to solve the NP-

hard problem. Then, an initialization method (a decoding

based on priority and weight) and two fuzzy random sim-

ulation was employed. Finally, in order to improve the

effectiveness of GA, the dynamic local search mechanism

is used to help to search for the objective value.

By using the simulation test, it is proved that the

performance of the GA-pw with frs is better than CMGA

and SGA, and the algorithm is effective. It shows that the

level of confidence will affect the trend and magnitude of

logistics cost’s change. From the above analysis, it can be

seen that the change of the external uncertainty has an

impact on the logistics cost. Therefore, the enterprise

decision makers should grasp the confidence level, i.e., to

grasp the reality of the environment and changes in the

market, to reduce logistics costs. The model is studied by

test problems under the change of the confidence levels

and carbon emissions limits, which has proved the

rationality and applicability of the network. Model’s

decision making applying the proposed algorithm pro-

vides a reference for enterprise decision makers and it is

of great significance. These properties and characteristics

of genetic algorithm have been analyzed and discussed by

relevant researchers in various countries and have been

widely used. Great achievements have been made in

combinatorial optimization, learning, signal reception and

processing, artificial intelligence, artificial life and adap-

tive control.
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