
BRAIN INSPIRED COMPUTING & MACHINE LEARNING APPLIED
RESEARCH-BISMLARE

A deep learning classifier for sentence classification in biomedical
and computer science abstracts

Sérgio Gonçalves1 • Paulo Cortez1 • Sérgio Moro2

Received: 27 December 2018 / Accepted: 28 June 2019 / Published online: 10 July 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
The automatic classification of abstract sentences into its main elements (background, objectives, methods, results, con-

clusions) is a key tool to support scientific database querying, to summarize relevant literature works and to assist in the

writing of new abstracts. In this paper, we propose a novel deep learning approach based on a convolutional layer and a

bidirectional gated recurrent unit to classify sentences of abstracts. First, the proposed neural network was tested on a

publicly available repository containing 20 thousand abstracts from the biomedical domain. Competitive results were

achieved, with weight-averaged Precision, Recall and F1-score values around 91%, and an area under the ROC curve

(AUC) of 99%, which are higher when compared to a state-of-the-art neural network. Then, a crowdsourcing approach

using gamification was adopted to create a new comprehensive set of 4111 classified sentences from the computer science

domain, focused on social media abstracts. The results of applying the same deep learning modeling technique trained with

3287 (80%) of the available sentences were below the ones obtained for the larger biomedical dataset, with weight-

averaged Precision, Recall and F1-score values between 73 and 76%, and an AUC of 91%. Considering the dataset

dimension as a likely important factor for such performance decrease, a data augmentation approach was further applied.

This involved the use of text mining to translate sentences of the computer science abstract corpus while retaining the same

meaning. Such approach resulted in slight improvements (around 2 percentage points) for the weight-averaged Recall and

F1-score values.
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1 Introduction

The number of scholarly works has increased during in the

last decades [1]. For example, around 114 million of

English scholarly documents were accessible on the Web

in 2014 [2]. Such volume makes it difficult to quickly

select relevant scientific documents. Scientific abstracts

summarize the most important elements of a paper, and

thus, those are valuable sources for filtering the most rel-

evant papers during a literature review process [3].

The classification of scientific abstracts is a particular

instance of the sequential classification task, considering

there is a typical order in the classes (e.g., the ‘‘Objective’’

label tends to appear after the ‘‘Background’’) [4]. This

classification transforms unstructured text into a more

information manageable structure [5]. This is acknowl-

edged by the Emerald publisher, which requires all sub-

missions to include a structured abstract [6]. In effect, the

automatic classification of abstract sentences presents

several advantages. It is a valuable tool for general scien-

tific database querying (e.g., using Web of Science, Sco-

pus). Also, it can assist in manual [7] or text mining [8]
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systematic literature review processes, as well as other

bibliometric analyses. Moreover, it can help in the writing

of new paper abstracts [9].

In this study, we present a novel deep learning neural

network architecture for the sequential classification of

abstract sentences. The architecture uses a word embedding

layer, a convolutional layer, a bidirectional gated recurrent

unit (GNU) and a final concatenation layer. The proposed

deep learning model is compared with a recently proposed

bidirectional long short-term memory (LSTM)-based

model [5], showing an interesting performance on classi-

fying sentences under five classes: ‘‘Background,’’ ‘‘Ob-

jectives,’’ ‘‘Methods,’’ ‘‘Results’’ and ‘‘Conclusions’’ in

abstracts corpus from two distinct domains. First, the

approach is evaluated using a large publicly available 20K

biomedical abstract corpus [10], which was also previously

studied using a different approach [5], thus enabling a

direct comparison. As a secondary contribution, we build a

purely new abstract corpus from the computer science

domain, with a particular focus on the social media topic.

The new corpus was created by adopting a crowdsourcing

approach with gamification features to attract researchers

to manually classify the sentences. By building on collec-

tive intelligence, more than 4k sentences were categorized.

To further improve the classification results, we employed

data augmentation based on text mining, thus doubling the

training set size. The computer science abstract corpus was

also made publicly available; thus, it can be used in future

research comparison studies. We consider two distinct

abstract sentence corpus, from different domains

(biomedical and computer science), in order to provide a

more robust validation. The good classification results that

were obtained for both domains (Sect. 4) suggest that our

approach is potentially valuable for sentence classification

of abstracts from any scientific domain.

This paper is organized as follows: Sect. 2 presents the

related work; Sect. 3 describes the two abstract corpus, the

deep learning architecture and evaluation metrics; the

obtained results are analyzed in Sect. 4; finally, conclu-

sions are drawn in Sect. 5.

2 Related work

2.1 Deep learning for abstract sentence
classification

As pointed out by Dernoncourt et al. [5], most sequential

sentence classification methods are based on ‘‘shallow’’

methods (e.g., naive Bayes, support vector machines

(SVM)) that require a manual feature engineering based on

lexical (e.g., bag of words, n-grams), semantic (e.g., syn-

onyms), structural (e.g., part-of-speech tags) or sequential

(e.g., sentence position) information. The advantage of

using deep learning is that the neural networks do not

require such manual design of features. Also, deep learning

often achieves competitive results in text classification

[11].

Regarding abstract sentence classification, this topic has

been scarcely researched when compared to other text

classification tasks (e.g., sentiment analysis). The main

reason for this reduced attention is the restricted avail-

ability of public datasets. In 2010 [12], the manual engi-

neering approach was used to set nine features (e.g., bi-

grams) and train five classifiers (e.g., SVM) that were

combined to classify four main elements of medical

abstracts. In 2013 [9], a private corpus with 4550 abstracts

from different scientific fields was collected from Scien-

ceDirect. The abstract sentences were manually labeled

into four categories: ‘‘Background,’’ ‘‘Goal,’’ ‘‘Methods’’

and ‘‘Results.’’ The authors also used the conventional

manual feature design approach (e.g., n-grams) and a

transductive SVM. More recently, in 2017 [10], a large

abstract corpus was made publicly available. Using this

dataset, a deep learning model, based on one bidirectional

LSTM, was proposed for a five class sentence prediction,

outperforming four other approaches (e.g., n-gram logistic

regression, multilayer perceptron) [5]. In this paper, we

propose a different deep learning architecture, mainly

composed by a convolutional layer and a bidirectional

GRU layer to classify the sentences from abstracts, which

uses word embeddings instead of character embeddings.

By taking into consideration the position of the sentences,

as well as encoding contextual information on the vector of

each sentence, we expect that the proposed architecture can

potentially achieve better results when compared to the

study by Dernoncourt et al. [5].

2.2 Crowdsourcing and collective intelligence
to classify data

The difficulties of gathering already classified datasets

highlighted in the previous subsection raises the challenge

of testing our approach in several domains. Yet, it is

essential for a broader validation of the accuracy of our

proposal. Furthermore, by building a new dataset and

making it publicly available, it can constitute a baseline for

future comparisons with distinct approaches of ours,

helping to pave avenues for future research. Thus, this

study sets the additional challenge of gathering a newly

classified dataset from another domain to complement the

biomedical dataset made publicly available by Dernoncourt

and Lee [10].

Collective intelligence consists in benefiting from many

individuals by combining their intelligence in cognitive

tasks [13, 14]. Currently, the Internet has leveraged
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collective intelligence by bringing communities together

online in discussion forums and groups in social networks.

Thus, the technology currently available at the reach of a

click instantaneously connects people who may be spread

across the globe. As a result, the concept of crowdsourcing

has emerged to take advantage from collective intelligence

by using the Internet to gather people together toward a

common goal of solving cognitive tasks [15], from data

classification to solving complex mathematics problems.

Specifically, Welinder and Perona [16] have shown that

data annotation can be effectively done using a web plat-

form available online offering a crowdsourcing service.

One of the main challenges of crowdsourcing is to keep

participants motivated during the whole process. Thus, a

crowdsourcing platform must include an incentive system

to prompt for participation through positive encouragement

[17]. Incentives and motivation are interconnected, since

the former helps in building the latter [18]. Therefore,

adopting strategies that keep individuals motivated is at the

core of crowdsourcing [19]. The motivation may be

extrinsic, through external incentives such as money or

discount coupons, or intrinsic, when the individual is

pleased just by participating on crowdsourcing [18]. While

both extrinsic and intrinsic motives are shown to influence

participation, some authors such as Zheng et al. [20] argue

that the latter motives can be more effective than the for-

mer, although such difference may be also due to cultural

factors. A possible solution freely available of intrinsic

incentive is gamification. It offers users appealing awards

granted on desired accomplishments to incentivize partic-

ipation [21].

3 Materials and methods

3.1 Computer science abstract corpus retrieval
and classification

The first task to build the comprehensive set of classified

abstract sentences in computer science applied to social

media is to retrieve the raw set of abstracts. Although there

are several platforms which freely publish scientific

abstracts, most of them do not show a well-defined policy

about what can be publicly shown to third-parties and,

specifically, in the form of a dataset. As such, we choose

the arXiv, which allows using articles’ metadata, including

abstracts, and provides an API for both commercial and

non-commercial usage.1 To retrieve data, we adopted the

aRxiv R package, which uses the API to efficiently search

the archive. Within the ‘‘computer science’’ category, we

searched only for articles containing the terms ‘‘social

media,’’ ‘‘social network’’ or ‘‘social networks’’ in the title.

The different human languages pose serious challenges

in text mining and machine learning tasks and, as such,

many researchers choose to focus in one language (e.g.,

[22]). Since most of scientific literature is currently pub-

lished in the English language [23] and, additionally, the

large publishers and top journals require submissions to be

in this language, we filtered all the collected articles using

the textcat package [24] to match English abstracts. The

result is that from a total of 658, only 4 were written in

other than the English language.

We implemented our crowdsourcing solution using the

Amazon Elastic Compute Cloud, which is an Infrastruc-

ture-as-a-Service cloud platform. This is the platform with

the largest market share, with around 40% of the Infras-

tructure-as-a-Service market [25], and it is freely available

for academic purposes. The Ubuntu 16.04 operative system

and the MariaDB database system were installed in the

cloud, as well as the Nginx web server, which presents

better performance and less memory requirements when

compared to Apache, according to Suciu et al. [26]. We

adopted the PHP Laravel (PHP 7.2) framework for devel-

oping our solution.

We made available our web responsive platform

(adaptable depending on the type of device) in the fol-

lowing URL: http://classifyabstracts.info/. It was shared in

academic social networks such as ‘‘www.researchgate.

net,’’ as well as through our own research contacts. The

user needs to login to access an initial small tutorial that

introduces the aims and scope of this research. This

introductory tutorial consists in two steps. The first consists

in reading a few examples of sentences previously classi-

fied, such that the user takes contact with the possible

categories for the classification procedure (Fig. 1).

On the second and last step, the user needs to correctly

classify each sentence of an abstract already classified. To

simplify the annotation process, the categories for classi-

fication are selected through drop-down lists. If the user has

at least one wrong classification, a warning appears high-

lighting the mistake and the user needs to repeat this step

again. After successfully completing the tutorial, the user

may start classifying unclassified abstracts in the platform

(Fig. 2).

After the user classifies an abstract, a message is shown

displaying the number of already classified abstracts. As an

incentive, a simple gamification component consisting in

points (one point per classified abstract) and three levels

was introduced. Thus, a user with 10 points achieves the

bronze level, while a user reaching 50 points achieves the

silver level and, finally, a user with 100 or more points

achieves the gold level.
1 https://arxiv.org/help/oa/index.
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In total, 76 users classified abstracts, with very few of

them classifying more than 100 abstracts, and still few

reaching the silver level. Thus, most users devoted little

effort and classified few abstracts. This is a known

inequality phenomenon of crowdsourcing participants, in

which only a small fraction of users holds a large contri-

bution [27].

3.2 Scientific abstract corpora

Data understanding is a critical step in the knowledge

discovery process [28]. Thus, in this subsection we char-

acterize each of the two datasets used to test our approach.

One of them is the one gathered through crowdsourcing

(Sect. 3.1), while the other is the PubMed 20k dataset made

publicly available by Dernoncourt and Lee [10]. The latter,

from here forth referred to as ‘‘PubMed 20k,’’ sets the

baseline for comparison purposes [29]. The former, labeled

as ‘‘CS Abstracts,’’ enables to test our approach in a new

domain and additionally provides to future researchers

another corpus for sentence classification.

The corpus of the PubMed 20k includes open access

papers from the PubMed biomedical database and related

with randomized controlled trials (RCT). The sentences

were classified by the authors of the articles into the five

standardized labels. The full corpus has a total of 200K

abstracts. A smaller subset, with 20K most recent abstracts,

was also made available for a faster experimentation of

sequential sentence classification methods. Considering the

20K subset was used in the work of Dernoncourt et al. [5],

we also adopted the same dataset, to facilitate the experi-

mental comparison.

The size of both datasets is substantially different, with

the PubMed 20k containing a larger number of abstracts

and, subsequently, more classified sentences. Table 1

shows the total number of abstracts and sentences used for

training, validating the model, and testing it. The abstract

distribution through the three partitions in the ‘‘CS

Abstracts,’’ training, validation and testing, was done to

evenly maintain distribution of each class. According to Ng

[30], a uniform distribution between the three partitions in

the datasets is used to prevent unexpected performance

issues in productive environments. A model is trained

using the training dataset, it is tuned according to the

obtained results in the validation dataset, and its general-

ization capability is measured on the test dataset. As for the

Fig. 1 First step of the

introductory tutorial
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PubMed 20k dataset, it is made publicly available with the

data already partitioned as shown in Table 1. Figure 3

highlights the different distributions of the two datasets.

Such result can be justified by the different data collection

approaches and subsequent writing styles of both sciences,

biomedical and computer science. Myers et al. [31] cor-

roborate our claim by highlighting that the writing style is

interconnected to the research method. This result supports

the importance of our crowdsourcing approach in gathering

a new dataset from another domain to validate our classi-

fier, which is emphasized by the lack of publicly available

classified datasets. Figure 3 also confirms that the different

train, validation and test partitions have similar class dis-

tributions, which is a desired trait for classification tasks

[30].

3.3 Neural networks models

In the last years, there have been remarkable developments

in deep learning [11, 32]. Architectures such as convolu-

tional neural network (CNN), LSTM and GRU have

obtained competitive results in several competitions (e.g.,

computer vision, signal and natural language processing).

The CNN is a network mainly composed by convolu-

tional layers. The purpose of the convolutional layers is to

extract features that preserve relevant information from the

inputs [33]. To obtain the features, a convolutional layer

receives a matrix as input, to which a matrix with a set of

weights, known as a filter, is applied using a sliding win-

dow approach and, at each of the sliding window steps, a

convolution is calculated, resulting in a feature. The size of

the filter is a relevant hyperparameter.

Fig. 2 Second step of the

introductory tutorial

Table 1 Number of abstracts and sentences for each dataset by usage

(i.e., training, validating and testing)

Dataset Training Validation Testing

PubMed 20k Nr. abstracts 15,000 2500 2500

Nr. sentences 180,000 30,000 30,000

CS Abstracts Nr. abstracts 500 77 77

Nr. sentences 3287 824 619
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Although CNNs have been widely used in computer

vision, they can also be used in sentence classification [34].

The use of convolutional layers enables the extraction of

features from a window of words, which is useful because

word embeddings alone are not able to detect specific

nuances, such as double negation, which is important for

sentiment classification. The width of the filter, represented

by h, determines the length of the n-grams. The number of

filters is also a hyperparameter, making it possible to use

multiple filters with varying lengths [34]. The filters are

initialized with random weights, and, during network

training, weights are learned for the specific task of the

network, through backpropagation. Since each filter pro-

duces its own feature map, there is a need to reduce the

dimensionality caused by using multiple filters. A sentence

can be encoded as a single vector by applying a max

pooling layer after the convolutional layer, which takes the

maximum value for each position, from all the feature

maps, keeping only the most important features.

Recurrent neural networks (RNN) are relevant for

sequential data, such as the words that appear in a sentence.

Consider the words ðx1; . . .; xtÞ from a given sentence

(sequence of words). The hidden state st of the word xt
depends on the hidden state st�1, which in turn is the

hidden state of the word xt�1, and, for this reason, the order
in which words appear over the sequence also influences

the various hidden states of the RNN.

The LSTM network is a particular RNN that uses an

internal memory to keep information between distant time

steps to model long-term dependencies of the sequence. It

uses three gating mechanisms, input gate, forget gate and

output gate, which control (at each hidden state), what new

information should be updated into the memory, and what

information should be erased from the memory. The GRU

[35] was recently introduced, and it can be used as an

alternative to the LSTM model. The GRU uses a reset and

update gates, which are able to control how much infor-

mation should be kept from previous time steps. Both GRU

and LSTM are solutions that help mitigate the vanishing

gradient problem of conventional RNNs.

A deep learning model was used by Dernoncourt et al.

[5] for abstract sentence classification. The model uses
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character embeddings that are then concatenated with word

embeddings and used as input for a bidirectional LSTM

layer, which outputs a sentence vector based on those

hybrid embeddings. The sentence vector is used to predict

the probabilities of the labels for that sentence. The authors

also use a sequence optimization layer, which has the

objective of optimizing the classification of a sequence of

sentences, exploiting existing dependencies between labels.

3.4 Proposed architecture

The proposed word embedding, convolutional and bidi-

rectional GRU (Word-BiGRU) architecture is shown in

Fig. 4. We assume that each abstract has i sentences

ðS1; . . .; SiÞ and each individual sentence has n words

ðx11; . . .; xinÞ, where xin is the nth word from the ith sentence.

The various words from the sentences are mapped to their

respective word embeddings, and those embedding are

used to create a sentence matrix E 2 Rm�d, where d equals

to the dimensionality of the embeddings. We use word

embeddings pre-trained on English Wikipedia, provided by

Glove (with d ¼ 200) [36].

Then, a convolutional layer is used with a sliding win-

dow approach that extracts the most important features

from the sentences. Let E 2 Rm�d denote the sentence

matrix, w 2 Rh�d a filter, and E[i : j] the sub-matrix from

row i to j. The single feature oi is obtained using:

oi ¼ w � E½i : iþ h� 1�: ð1Þ

In this study, we use a filter with a size of h ¼ 5. To add

nonlinearity to the output, an activation function applied to

every single feature. For the feature oi, it is obtained by:

ci ¼ f ðoi þ bÞ; ð2Þ

where f is the activation function and b is the bias. We use

ReLU as the activation function in our model because it

tends to present a faster convergence [37].

Next, we take the various features maps obtained from

the convolutional layer and feed them into a max pooling

layer to encode the most important features extracted by

the convolutional layer into a single vector representation

that can be used by the next layers. Let g1; . . .; gi denote

several vectors, each one encoding a particular sentence of

the abstract. The vectors are then fed to bidirectional GRU

layer, where the hidden states for each time step are cal-

culated. We will use � to denote the Hadamard Product,

while usingW and U to denote weight matrices of the GRU

layer. Let hi�1 be the hidden state of the previous sentence

from the same abstract, the candidate hidden state ~hi for the

current sentence is given by:

...

...

...

Convolution
Max

Pooling
Word

Embedding

... ...

Bidirectional GRU
Sentence
Position Concatenate

...

Output

...
...

Fig. 4 Schematic of the

proposed Word-BiGRU deep

learning architecture
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~hi ¼ tanhðWhgi þ Uhðri � hi�1Þ þ bhÞ: ð3Þ

The reset gate ri 2 ½0; 1� has the purpose of controlling how
much information of the past hidden state, ht�1 will be

kept. Let r be the activation function, the reset gate ri is

calculated by:

ri ¼ rðWrgi þ Urhi�1 þ brÞ: ð4Þ

To control how much new information will be stored in the

hidden state, an update gate zi 2 ½0; 1� is used, given by:

zi ¼ rðWzgi þ Uzhi�1 þ bzÞ: ð5Þ

The hidden state hi, which is the hidden state of the sen-

tence i, is obtained by:

hi ¼ zi � ~hi þ ð1� ziÞ � hi�1: ð6Þ

Since we use a bidirectional GRU layer, there is a forward

pass and a backward pass. The hidden states resulting from

the forward pass are:

ðh1
!
; . . .; hi

!Þ: ð7Þ

where hi is the hidden state of the ith sentence of the

abstract. Similarly, the hidden states resulting from the

backward pass are:

ðh1
 
; . . .; hi

 Þ: ð8Þ

By using a bidirectional GRU, we want to capture con-

textual information about each sentence of the abstract, by

taking into consideration the sentences that appear before

and after it. For the ith sentence of the abstract, the indi-

vidual vector ki, which encodes the sentence with contex-

tual information captured using the bidirectional GRU

layer, is obtained by concatenating the forward and back-

ward hidden states:

ki ¼ ½hi
!� hi

 �; ð9Þ

where � is the concatenation operator. Each encoded

sentence ki is then concatenated with an integer value

indicating the position of that sentence in the abstract,

resulting in zi:

zi ¼ ½ki � i�: ð10Þ

Finally, a softmax layer is used, such that the outputs can

be interpreted as class probabilities.

3.5 Evaluation

In multiclass tasks, a classifier often outputs a class prob-

ability and the highest probability class is assigned as the

predicted class label. Using these predicted labels, classi-

fication accuracy is often measured by building a confusion

matrix, which maps predicted versus desired labels. From

this matrix, several metrics can be computed, such as [38]:

Precision, Recall, F1-score. For a class c, these metrics are

obtained using:

Precisionc ¼
TPc

TPc þ FPc

Recallc ¼
TPc

TPc þ FNc

F1-scorec ¼ 2� Precisionc � Recallc

Precisionc þ Recallc
:

ð11Þ

where TPc, FPc, FNc denote the number of true positives,

false positives and false negatives for class c.

Another possibility to analyze multiclass probabilities is

to consider one class probability pc and a decision

threshold K 2 ½0; 1�. The class is considered positive if

pk [K. The receiver operating characteristic (ROC) curve

shows the performance of the classifier across all K values

for class c, plotting one minus the specificity (x-axis)

versus the sensitivity (y-axis) [39]. The overall discrimi-

natory performance is given by the area under the curve

(AUC ¼
R 1

0
ROCdK). It is common to interpret the quality

of the AUC values as: 0.5—equal to a random classifier;

0.6—reasonable; 0.7—good; 0.8—very good; 0.9—excel-

lent; and 1—perfect.

To combine all five class confusion matrices results into

a single measure, we adopt two aggregation methods:

macro-averaging and weight-averaging. The macro-aver-

aging computes first the metric (e.g., Precision using

Eq. 11) for each class and then averages the overall result.

The weight-averaging is computed in a similar way except

that each class metric is weighted proportionally to its

prevalence in the data. Dernoncourt et al. [5] used only the

weight-averaging method. As for the ROC analysis, the

five AUC class values are aggregated by using a macro-

average aggregation method [40].

For comparison purposes, we adopt the same train,

validation and test sets used by Dernoncourt et al. [5] for

the PubMed 20k corpus. The respective set partition

numbers are shown in Table 1. This table also includes the

new CS abstract corpus training, validation and test divi-

sion adopted numbers that can be used in future compar-

ison works.

4 Results

4.1 Hyperparameter tuning

A predictive model needs to be tuned through an array of

possible hyperparameters which may have a positive or

negative impact in the model’s predictive performance
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[41]. However, finding the best combination of hyperpa-

rameters which optimizes a model’s performance is a

complex task, given the possible combinations to be tested

and the required time to train a model. Also, some hyper-

parameters are encompassed within a numeric interval,

which makes it impossible to test all values. In this section,

we report the effort made in tuning the Word-BiGRU

model using the PubMed 20k dataset, which is a larger

dataset for which there are previous baseline results pro-

vided by Dernoncourt et al. [5].

The Word-BiGRU model shares some components with

the CNN, such as the convolutional layer structure. Nev-

ertheless, the Word-BiGRU model training takes signifi-

cantly more time when compared to the CNN. Thus, the

hyperparameters optimization for the convolutional layer

was done using the CNN model to speed up the process.

Therefore, the goal is to find the best values for the

hyperparameters of the CNN model and then use those

values in the convolutional layer of the Word-BiGRU

model.

The filter size, number of filters and dropout are the

main hyperparameters of the CNN model. The filter size is

accountable for finding how many words within a sentence

are encompassed by the filter in the sliding window process

for the convolution operation. The number of filters rep-

resents how many filters are used in the convolutional

layer, with each filter being capable of extracting different

features. The dropout is used to reduce overfitting to

training data [42]. Thus, the following configuration was

considered as a baseline for the CNN model: filter size—

32; number of filters—3; dropout—0.1. Also, to limit the

space of possible solutions, the hyperparameter values

were searched within the following intervals: filter size

2 f3; 5; 8g; number of filters 2 f32; 64; 128; 256g; dropout
2 f0:1; 0:35; 0:5g.

Using such baseline, we explored the combinations of

possible values. First, we changed the values of filter size,

followed by the number of filters and, finally, by the

dropout hyperparameter. Thus, this means that by explor-

ing the number of filters, the best filter size value is already

applied, since it was the first to be explored. According to

Ng [30], hyperparameter selection should be done using

one selected metric measured on the validation set. We

follow such approach, in which we selected the weight-

averaging method to aggregate the individual class metrics.

The selected hyperparameter values are shown in Table 2.

Thus, the best results for CNN within the defined intervals

were obtained with 128 filters, each with size equals to 5,

using a dropout of 0.35 after the convolutional layer.

For the specific GRU bidirectional layer of Word-

BiGRU, we assumed the previously selected CNN hyper-

parameters and ranged the number of GRU units within

{25, 50, 75, 100}, as shown in Table 3. Thus, the selected

number of GRU units was 50. The final adopted configu-

ration of the Word-BiGRU model, used for both PubMed

20k and CS Abstracts corpora, includes: number of fil-

ters—128; filter size—5; dropout—0.35; and number of

GRU units—50.

4.2 Biomedical abstracts

The performance in the PubMed 20k dataset can be com-

pared with the results achieved by Dernoncourt et al. [5]

(Char-BiLSTM). The latter uses word characters as inputs

of a bidirectional LSTM layer, which provides vectorial

representations of those words. Each vector is then used as

input of another bidirectional LSTM layer which, in turn,

provides a vectorial representation of a sentence. Addi-

tionally, Dernoncourt et al. [5] defined a transition matrix

which contains the probabilities of transition between

classes. The values of this matrix are computed through the

model which, given a sentence being classified to a class

(e.g., ‘‘Objective’’), can then compute the probability of the

next sentence belonging to another class (e.g., ‘‘Methods’’).

The results of our approach (Word-BiGRU) are also

compared to the standard CNN model (described in

Sect. 3.3) in Table 4. The best results for each metric are

shown in bold. Our approach (Word-BiGRU) outperforms

the alternatives for all computed metrics.

Table 2 CNN model hyperparameters (in %, validation set results,

best values in bold)

Hyperparameter Valor Precision Sensitivity F1-score

Number of filters 32 82.0 81.9 81.9

64 82.6 82.3 82.4

128 83.3 83.4 83.3

256 83.2 83.2 83.2

Filter size 3 83.3 83.4 83.3

5 83.5 83.5 83.5

8 82.9 82.2 82.5

Dropout 0.1 83.5 83.5 83.5

0.35 83.6 83.6 83.6

0.5 81.5 80.6 81.0

Table 3 Word-BiGRU model hyperparameters (in %, validation set

results, best results in bold)

Hyperparameter Value Precision Sensitivity F1-score

Number of units 25 89.4 89.3 89.3

50 91.5 91.5 91.5

75 89.8 89.7 89.7

100 90.0 90.0 90.0
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The obtained results provide evidence that including

contextual information improves performance for the

PubMed 20k dataset. This is the main difference between

the CNN and the Word-BiGRU, with the latter including

contextual information through the GRU bidirectional

layer. Such difference had a significant impact in all

metrics.

The Word-BiGRU systematically outperforms the Char-

BiLSTM model in all metrics, with improvements ranging

from 0.3 (Precision macro-averaged) to 1.7 (F1-score

macro-averaged) percentage points. Figure 5 shows the

ROC curves, and respective AUC values (area), for each

class. The average value computed through macro-average

is 0.99. This is very close to 1, suggesting the model has an

excellent discriminatory capability.

4.3 Computer science abstracts

Table 5 shows the classification performance test metrics

for our Word-BiGRU approach in comparison with the

CNN model for the CS Abstracts corpus. The World-

BiGRU results are clearly better when compared with the

CNN model, meaning that including contextual informa-

tion through the bidirectional GRU layer had a significant

impact on the model, confirming the results also obtained

for the PubMed 20k dataset. When comparing the Word-

BiGru results for both datasets, lower metric values were

achieved for CS Abstracts (around 75%) when compared

with PubMed 20k (around 91%). The classification per-

formance differences can be due to several factors. For

instance, PubMed 20k sentences were classified by the own

authors, while the CS Abstracts were labeled using

anonymous volunteers, via crowdsourcing. Furthermore,

the PubMed 20k is around five times larger in size when

compared to the CS Abstracts dataset and often deep

learning models improve results with big data. This last

issue is further explored in Sect. 4.4.

The ROC curves shown in Fig. 6 highlight a different

picture of Word-BiGRU results when compared to the

same model applied to the PubMeds 20k dataset (Fig. 5).

The ‘‘Conclusions’’ class is the one with the lowest AUC

Table 4 Averaged test results

for PubMed 20k (in %, best

values in bold)

Metric Averaged Char-BiLSTM [5] CNN Word-BiGRU

Precision Macro-averaged 86.4 80.7 86.7

Weight-averaged 90.1 83.6 90.9

Recall Macro-averaged 83.7 77.6 86.7

Weight-averaged 89.9 83.5 90.8

F1-score Macro-averaged 85.0 78.5 86.7

Weight-averaged 90.0 83.5 90.8

Fig. 5 ROC curves and AUCs for the Word-BiGRU model in the

PubMed 20k dataset

Table 5 Averaged test results for CS Abstracts (in %, best values in

bold)

Metric Method CNN Word-BiGRU

Precision Macro-average 61.3 75.4

Weight-averaged 66.3 76.3

Recall Macro-averaged 57.0 64.7

Weight-averaged 67.7 73.0

F1-score Macro-averaged 59.1 69.6

Weight-averaged 67.0 74.6

Fig. 6 ROC curves and AUCs for the Word-BiGRU model in the CS

Abstracts dataset
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(although still very good value of 88%), whereas in the

PubMed 20k was the one with the highest AUC. Such

result may derive from the different class distribution of

both datasets (as shown in Fig. 3).

4.4 Data augmentation of CS abstracts

The CS Abstracts corpus has led to worse classification

results when compared to the PubMed 20k data. Deep

learning usually relies on large datasets for better training a

model [43]. Thus, we argue that the CS Abstracts reduced

size of 3287 sentences for training the model poses a

limitation that we intend to overcome. A possibility that

has recently been explored is data augmentation, which

aims to artificially increase the size of the training dataset

[44]. In domains such as computational visualization,

simple transformations such as translation or scale changes

can be directly applied to the training images to create

different images that hold the same information (i.e.,

classified under the same category) [45].

However, in text mining, simple transformations are not

a viable solution to data augmentation since textual data

has a specific nature in which changing the form of a word

may render a sentence to have a completely different

meaning. A possible solution to overcome this issue is to

replace words within sentences by synonyms. For example,

a list of synonyms implemented in some NLP tools may be

used, as demonstrated by Zhang et al. [46]. An alternative

is to adopt translation to compute sentences with the same

meaning, as shown by Pavel Ostyakov on GitHub.2 The

procedure starts by translating a sentence to other language

and then back to the original language. This approach has

the advantage of changing several word combinations at

the same time and word order within a sentence, while

keeping the same meaning, helping to build a more diverse

training corpus. As such, we adopted this latter approach

using the Textblob Python package. Also, we chose

Spanish as the in-between translation language since the

adopted NLP package was validated with success using the

same language [47]. Table 6 shows three CS Abstracts

sentences in both the original and the transformed formats.

It shows that the sentences are slightly changed while

retaining the same meaning.

This data augmentation process was only applied to the

training set, which doubled in size from 3287 to 6574

sentences (i.e., for each sentence an equivalent one with the

same meaning was added to the dataset). Table 7 shows the

results of training the Word-BiGRU model with both the

original and the data augmented datasets.

Using an augmented training set, when compared with

the original dataset, leads to a decrease in Precision but an

improvement in both Recall and F1-score measures. As for

the ROC curves (Fig. 7), the obtained results are quite

similar, with the augmented trained model presenting slight

AUC improvements for the Methods and Results classes,

with percentage point differences of: 1—‘‘Methods’’ and

2—‘‘Results.’’

4.5 Sensitivity analysis

All the models evaluated are based on deep learning, which

are considered black-box models. One way to open these

black-box models is to use a sensitivity analysis [49],

which monitors the output responses when varying the

input features through their range of possible values.

Specifically for textual contents, Ribeiro et al. [50] have

developed the Lime package in Python, which changes

model’s input by adding and removing words to assess the

impact on the model’s output. We have adopted this

package to obtain the words in sentences that influence the

most each category. The aim is to understand the differ-

ences in the decision making process of our approach

(Word-BiGRU) in comparison with CNN.

For demonstration purposes, in this section we compare

the sensitivity analysis of CNN and Word-BiGRU models

when trained with the augmented CS Abstracts dataset.

Figure 8 shows the obtained output, when using the Lime

package, for one selected abstract. Words shaded in red are

the ones that contributed the most to classifying the sen-

tence as ‘‘Background,’’ with particular emphasis for

‘‘media’’ and ‘‘development.’’ The words shaded in green

are those that provided additional hints that the sentence

may belong to other class than ‘‘Background.’’ The words

shaded that belong to other sentences emerge because the

Lime package affects the whole abstract.

Figure 9 shows the Lime results for the Word-BiGRU

model on the same selected abstract. The model has a

stronger confidence that the first sentence is related with

‘‘Background.’’ And some of the highlighted words for

reaching to such conclusion are different (e.g., ‘‘latent

attributes’’ instead of ‘‘development’’). Another interesting

feature of Word-BiGRU is that it uses several words from

other sentences, as shown by looking at the shaded words

in red in the sentences following the first. This is an evi-

dence of the contextual information used for feeding the

model.

The results of applying the Lime package to the CNN

model for the second sentence of the abstract are shown in

Fig. 10. Again, the sentence is accurately classified as

‘‘Background.’’ The words ‘‘however’’ and ‘‘current’’ were

the ones influencing the most such classification.2 https://github.com/PavelOstyakov/toxic/blob/master/tools/extend_

dataset.py.

Neural Computing and Applications (2020) 32:6793–6807 6803

123

https://github.com/PavelOstyakov/toxic/blob/master/tools/extend_dataset.py
https://github.com/PavelOstyakov/toxic/blob/master/tools/extend_dataset.py


For the Word-BiGRU model, the probability of the

second sentence being classified as ‘‘Background’’ is

higher, again proving the value of the contextual infor-

mation included in the model (Fig. 11). This can be shown

in the highlighted words in sentences other than the second.

5 Conclusions

This paper presents a novel deep learning architecture for the

classification of scientific abstract sentences (background,

objectives, methods, results, conclusions), which is valuable

to assist in scientific database querying, performing literature

reviews and to support the writing of new abstracts. The

proposed Word-BiGRU architecture assumes word embed-

dings, a convolutional layer and a bidirectional gated recur-

rent unit (GRU). Using a large sentence corpus, related with

20k abstracts from the biomedical domain, we have obtained

high quality classification performances, with weight-aver-

aged Precision, Recall and F1-score values around 91%.

These results compare favorably against a state-of-the-art

bidirectional long short-term memory (LSTM) model.

We also collected a new dataset of Computer Science

scientific abstracts using a crowdsourcing approach to

assess the performance of our architecture in a new

domain. The results in this 4k classified sentences dataset

were below the ones achieved for the 20k biomedical

dataset when using the same Word-BiGRU architecture.

However, a very good classification level was achieved by

Table 6 Comparison of original versus transformed sentences as a result of data augmentation

Original sentence Transformed sentence

Early detection of such compromised accounts is very important in

order to control the damage [48]

The early detection of such compromised accounts is very important to

control the damage

In this work, we propose a novel general framework for discovering

compromised accounts by utilizing statistical text analysis [48]

In this paper, we propose a new general framework for discovering

compromised accounts through the use of statistical text analysis

These are the anomalies caused by a user because of his/her variable

behavior toward different sources [48]

These are the anomalies caused by a user due to their variable behavior

toward different sources

Table 7 Comparative results between original and data augmented

datasets for the Word-BiGRU model (best values in bold)

Metric Method Original Data augmented

Precision Macro-averaged 75.4 69.7

Weight-averaged 76.3 75.4

Recall Macro-averaged 64.7 70.0

Weight-averaged 73.0 74.9

F1-score Macro-averaged 69.6 69.8

Weight-averaged 74.6 75.1

Fig. 7 ROC curves and AUCs for the Word-BiGRU model in the

original and data augmented CS Abstracts datasets

Fig. 8 Most relevant words in classifying the first sentence for CNN model
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Word-BiGRU, which compared favorably with a convo-

lutional neural network (CNN) model, obtaining weight-

averaged Precision, Recall and F1-score values around

75%. Furthermore, we confirmed the decision process of

Word-BiGRU and CNN through a sensitivity analysis

procedure, and we found evidences of the former using the

contextual information included through the GRU. To

address the reduced size of the collected Computer Science

abstracts dataset, we adopted a data augmentation approach

based on sentence translation to Spanish and back to

English, which resulted in a training corpus with twice the

original size. The classification metrics on test set data

have shown a slight improvement of the augmented trained

Word-BiGru model in terms of sensitivity and F1-scores.

In future research, we intend to check if we can improve

the Computer Science corpus results by further increasing

the Computer Science corpus size, either by collecting

more human labels or by combining our data augmentation

translation technique with other synthetic data creation

methods (e.g., usage of synonyms). We also wish to

enlarge the experimentation of the proposed Word-BiGRU

deep learning architecture to other sequential tasks.
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13. Dellermann D, Ebel P, Söllner M, Leimeister JM (2019) Hybrid

intelligence. Bus Inf Syst Eng. https://doi.org/10.1007/s12599-

019-00595-2

14. Tsapatsoulis N, Djouvas C (2019) Opinion mining from social

media short texts: does collective intelligence beat deep learning?

Front Robot AI. https://doi.org/10.3389/frobt.2018.00138

15. Brabham DC (2008) Crowdsourcing as a model for problem

solving: an introduction and cases. Convergence 14(1):75–90

16. Welinder P, Perona P (2010) Online crowdsourcing: rating

annotators and obtaining cost-effective labels. In: 2010 IEEE

computer society conference on computer vision and pattern

recognition workshops (CVPRW). IEEE, pp 25–32

17. Morschheuser B, Hamari J, Koivisto J (2016) Gamification in

crowdsourcing: a review. In: 2016 49th Hawaii international

conference on system sciences (HICSS). IEEE, pp 4375–4384

18. Hossain M (2012) Users’ motivation to participate in online

crowdsourcing platforms. In: 2012 international conference on

innovation management and technology research (ICIMTR).

IEEE, pp 310–315

19. Massung E, Coyle D, Cater KF, Jay M, Preist C (2013) Using

crowdsourcing to support pro-environmental community acti-

vism. In: Proceedings of the SIGCHI conference on human fac-

tors in computing systems, ACM, pp 371–380

20. Zheng H, Li D, Hou W (2011) Task design, motivation, and

participation in crowdsourcing contests. Int J Electron Commer

15(4):57–88

21. Moro S, Ramos P, Esmerado J, Jalali SMJ (2019) Can we trace

back hotel online reviews characteristics using gamification fea-

tures? Int J Inf Manag 44:88–95

22. Canito J, Ramos P, Moro S, Rita P (2018) Unfolding the relations

between companies and technologies under the big data umbrella.

Comput Ind 99:1–8

23. Di Bitetti MS, Ferreras JA (2017) Publish (in English) or perish:

the effect on citation rate of using languages other than English in

scientific publications. Ambio 46(1):121–127

24. Feinerer I, Buchta C, Geiger W, Rauch J, Mair P, Hornik K

(2013) The textcat package for n-gram based text categorization

in R. J Stat Softw 52(6):1–17

25. Panettieri J (2017) Cloud market share 2017: Amazon aws,

microsoft azure, ibm, google. ChannelE2E

26. Suciu G, Scheianu A, Vochin M (2017) Disaster early warning

using time-critical iot on elastic cloud workbench. In: 2017 IEEE

International Black Sea conference on communications and net-

working (BlackSeaCom). IEEE, pp 1–5

27. Stewart O, Lubensky D, Huerta JM (2010) Crowdsourcing par-

ticipation inequality: a scout model for the enterprise domain. In:

Proceedings of the ACM SIGKDD workshop on human compu-

tation. ACM, pp 30–33

28. Moro S, Laureano R, Cortez P (2011) Using data mining for bank

direct marketing: an application of the crisp-dm methodology. In:

Proceedings of European simulation and modelling conference-

ESM’2011, EUROSIS-ETI, pp 117–121

29. Yuan X, Liao X, Li S, Shi Q, Wu J, Li K (2019) Extracting PICO

elements from RCT abstracts using 1-2gram analysis and multi-

task classification. CoRR abs/1901.08351, arxiv:1901.08351

30. Ng A (2017) Machine learning yearning. Stanford Press

31. Myers MD et al (1997) Qualitative research in information sys-

tems. Manag Inf Syst Q 21(2):241–242

32. Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep

learning for big data. Inf Fusion 42:146–157

33. LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional net-

works and applications in vision. In: Proceedings of 2010 IEEE

international symposium on circuits and systems, pp 253–256

34. Kim Y (2014) Convolutional neural networks for sentence clas-

sification. In: Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pp 1746–1751

35. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares

F, Schwenk H, Bengio Y (2014) Learning phrase representations

using rnn encoder–decoder for statistical machine translation. In:

Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP). Association for Compu-

tational Linguistics, Doha, Qatar, pp 1724–1734

36. Pennington J, Socher R, Manning C (2014) GloVe: global vectors

for word representation. In: Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP),

pp 1532–1543

37. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural

networks. In: Proceedings of the fourteenth international con-

ference on artificial intelligence and statistics, pp 315–323

38. Witten I, Frank E, Hall M, Pal C (2017) Data mining: practical

machine learning tools and techniques, 4th edn. Morgan Kauf-
mann, San Franscico

39. Moro S, Cortez P, Rita P (2017) A framework for increasing the

value of predictive data-driven models by enriching problem

domain characterization with novel features. Neural Comput

Appl 28(6):1515–1523

40. Fawcett T (2006) An introduction to ROC analysis. Pattern

Recognit Lett 27:861–874

41. Stoean R (2018) Analysis on the potential of an EA-surrogate

modelling tandem for deep learning parametrization: an example

for cancer classification from medical images. Neural Comput

Appl. https://doi.org/10.1007/s00521-018-3709-5

42. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

43. Rebai I, BenAyed Y, Mahdi W (2016) Deep multilayer multiple

kernel learning. Neural Comput Appl 27(8):2305–2314

6806 Neural Computing and Applications (2020) 32:6793–6807

123

https://doi.org/10.1016/j.ipm.2017.11.009
https://doi.org/10.1016/j.ipm.2017.11.009
https://doi.org/10.1007/s12599-019-00595-2
https://doi.org/10.1007/s12599-019-00595-2
https://doi.org/10.3389/frobt.2018.00138
http://arxiv.org/abs/1901.08351
https://doi.org/10.1007/s00521-018-3709-5


44. Bawa VS, Kumar V (2018) Emotional sentiment analysis for a

group of people based on transfer learning with a multi-modal

system. Neural Comput Appl. https://doi.org/10.1007/s00521-

018-3867-5

45. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only

look once: unified, real-time object detection. In: Proceedings of

the IEEE conference on computer vision and pattern recognition,

pp 779–788

46. Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional

networks for text classification. In: Advances in neural informa-

tion processing systems. MIT Press, Cambridge, pp 649–657
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