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Abstract
Determining thresholds by measuring class variance is highly effective for image segmentation. Otsu’s method and its

derivatives are common approaches that are both simple and adaptable. In spite of these methods’ excellent segmentation

performance, images with particular gray distributions cause a thresholding bias that limits their usefulness. We explore the

limitations of Otsu’s method and apply other evaluation criteria. In particular, we determine the relative homogeneity

between the object and the background and then use it as a classification criterion along with a new binary thresholding

method. Our method employs a histogram-smoothing method to improve valley-point selection, establishes a uniformity

measure to identify the region with the best homogeneity, and identifies an optimization function for obtaining the best

values for the adjustable parameters and threshold value. We also introduce a multilevel thresholding criterion based on a

binary thresholding approach. Experiments using real and ground truth test images confirm the validity of our proposed

method. Our method also offers a denoising ability when configured to use neighborhood information.

Keywords Thresholding segmentation � Relative homogeneity � Optimization strategy � Multilevel thresholding

1 Introduction

Image segmentation is a fundamental and crucial process-

ing step in image analysis and computer vision [1]. Seg-

mentation consists of partitioning a digital image into

meaningful parts [2] or several connected regions based on

a similarity criterion such as probabilistic features [3],

color features [4], or shape features [5]. Medical image

segmentation techniques play an essential role in clinical

diagnosis, surgical planning, and treatment evaluation [6],

as well as in tissue labeling according to organ intensity

and shape [7]. Among image segmentation methods,

thresholding is one of the most widely used techniques due

to its simplicity [8]. Furthermore, Otsu’s thresholding

discriminant [9] is a popular criterion because of its

excellent segmentation performance on real images [10].

Otsu’s work spawned additional research as well. Xue

et al. [11, 12] researched the close relationships between

Otsu’s method and other popular approaches. Vala and

Baxi [13] studied various algorithms related to Otsu’s

method. Zou et al. [14] analyzed the relationship between

Otsu’s method and the Pearson correlation coefficient and

provided a novel interpretation of Otsu’s method from the

perspective of maximizing image similarity. For images

with a large variance between the object and background,

Fan [15] proposed a modified valley-emphasis method

using a weight term to adjust threshold bias. Yuan [16]

applied a parameter weighted on the object variance to

force the threshold value to reside at the valley points

between peaks or the left bottom rim of a single peak

histogram. Harb et al. [17] presented an improved algo-

rithm to preserve high-frequency components of an image.

By combining a grid-based model with the estimated

background map, Moghaddam and Cheriet [18] proposed

an adaptive and parameterless generalized method. By

combining Otsu’s circular feature and other color and
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texture features, Lai and Rosin [19] developed an efficient

algorithm to solve the two-class thresholding problem. Cai

et al. [20] searched an iterative three-class method,

achieving better performance when identifying weak

objects and revealing the structures of complex objects. In

addition, using the 3D Otsu and multiscale image repre-

sentations, Feng et al. [21] advanced a novel thresholding

algorithm for medical image segmentation. He and Scho-

maker [22] presented an iterative deep learning framework,

using iterative learning of enhanced images and Otsu’s

global thresholding techniques to obtain binary images

efficiently. For multilevel image segmentation, the authors

[23–25] also researched some methods to search for opti-

mal thresholds efficiently and accurately.

All of these methods improved the segmentation per-

formance of Otsu’s algorithm by adding multidimensional

information, parameter-optimization strategies, weight

terms, and intelligent learning. However, none of these

have changed Otsu’s principle and structure. Therefore, for

images with a large distribution-variance difference

between objects and the background, the Otsu’s and related

methods provide a biased threshold value, making it dif-

ficult to extract objects integrally. To solve the problem,

Chen [26] analyzed the limitations of Otsu’s algorithm and

applied homogeneity information from the foreground and

background to develop a new binary method. Differing

from those improved methods, Chen’s method focuses on

measuring the homogeneity of objects, reducing the neg-

ative effects from unequal distribution variances. Experi-

mental results validate its success. Based on Chen’s

method, we have researched further, introducing gray

probability-distribution information and presenting a new

criterion function. Furthermore, considering the unifor-

mity-distribution information of both the foreground and

background, we have explored a relative homogeneity

thresholding criterion between classes [27].

In this paper, we propose a new relative homogeneity

criterion using region-probability features. We use a new

probability-weighted item to adjust the proportion of rela-

tive homogeneity and apply a smoothing method to filter

valley points. We then apply a uniformity measure to

determine the threshold value region having better homo-

geneity. We design the characteristic function to select

parameters for improving accuracy and adaptability.

Thresholding results with real images show that our new

method achieves better segmentation accuracy for images

with very unequal distribution variances between classes,

including skewed and heavy-tailed distributions. We also

deduce a multilevel thresholding criterion based on the

binary discriminant.

2 The criterion of focusing on objects

In Otsu’s criterion for binary thresholding, object and

background pixels are viewed as having a uniform or

homogeneous gray distribution. However, it is considered

only partially. For some images, one class may have

greater distribution uniformity or homogeneity than other

classes, which means that a biased threshold estimation

may result using Otsu’s method.

As a remedy, Chen [26] defined an alternative dis-

criminant criterion, which assumes an object has a homo-

geneous gray distribution and focuses primarily on

information from the segmented object. This method then

selects an optimal gray level t� 2 f0; 1; 2; . . .L� 1g of an

image to minimize the criterion JLCðtÞ:

JLCðtÞ ¼
P1ðtÞ
P2ðtÞ

� �a

P
ðx;yÞ2O kðgðx; yÞ � mÞ2 þ ð1 � kÞð�gðx; yÞ � mÞ2

h i
P

ðx;yÞ62O kðgðx; yÞ � mÞ2 þ ð1 � kÞð�gðx; yÞ � mÞ2
h i ;

ð1Þ

where t 2 f0; 1; 2; . . .; L� 1g is the gray level of image, O

denotes the pixel set belonging to the object, P1ðtÞ ¼ 1
Oj j,

P2ðtÞ ¼ 1
N� Oj j, N is the total number of pixels in an image,

and m ¼ 1
Oj j
P

ðx;yÞ2O gðx; yÞ. gðx; yÞ is the gray level of

pixel point (x, y), with �gðx; yÞ ¼ 1
W

P
ðr;lÞ2W gðr; lÞ as the

neighboring average gray of (x, y). |W| is the size of win-

dow centered at (x, y) and usually taken as 3 9 3 or 5 9 5

pixels. Additionally, k and a are adjustable parameters,

with kð0� k� 1Þ being the proportion between gray and its

neighborhood average and aða� 0Þ being used to adjust

ðP1ðtÞ=P2ðtÞÞa.
In Eq. (1), the variance of the background to an object is

counted, with the numerator term measuring the similarity

within an object class. The more similar pixels in an object

class, the smaller the numerator value is. The denominator

measures the dissimilarity of the background class to the

object class, with larger values indicating that the two

classes are more scattered. This criterion emphasizes the

similarity of the object classes themselves and, more

importantly, the dissimilarity of the background to the

object. The threshold value is selected based on the

homogeneity of the object and the heterogeneity of the

background, to reduce the effect of a large variance dif-

ference between the classes.

By introducing the probability distributions of a pixel

and its neighborhood average gray in the calculation of

Eq. (1), we obtain a more detailed description. Thus, we

determine a new thresholding criterion using the gray

distribution information:
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JOðtÞ ¼
P1ðtÞ
P2ðtÞ

� �a

P
i2O k � pðiÞ i� lðtÞð Þ2þ 1 � kð Þ � pðiÞ i� �lðtÞð Þ2
h i

P
i 62O k � pðiÞ i� lðtÞð Þ2þ 1 � kð Þ � pðiÞ � i� �lðtÞð Þ2
h i :

ð2Þ

In this discriminant, O is the pixel set belonging to the

object, with P1ðtÞ ¼ 1=
P

i2O pðiÞ and

P2ðtÞ ¼ 1=
P

i 62O pðiÞ, where pðiÞ is the probability of gray

level i. lðtÞ ¼
P

i2O ipðiÞ
P

i2O pðiÞ
�

denotes the mean

value of the object area in the original image, and �lðtÞ
denotes the object area mean value. We use a size of the

neighboring window as 3 9 3 pixels.

3 Relative homogeneity measure criterion
between classes

In Sect. 2, we described the thresholding criterion JOðtÞ to

focus on the object’s gray distribution information. How-

ever, there are two limitations in JOðtÞ.
The first is that JOðtÞ only includes the consistency

degree of the object (background) with respect to the other

pixels. It is very likely that fewer pixels have better internal

uniformity. That is, a larger number of pixels decrease the

uniformity. Similarly, JOðtÞ is a monotonic function with t.

The quantity ðP1ðtÞ=P2ðtÞÞa provides a trade off, but it is

difficult to obtain an effective adjustment. Thus, we cannot

obtain an optimal thresholding value by using JOðtÞ.
Figure 1 shows a sample image of red blood cells with

k ¼ 1 and a ¼ 0:5. Figure 1a is an original image. Fig-

ure 1b is the plot of JOðtÞ, with the abscissa (x-axis) rep-

resenting the gray level and the ordinate (y-axis)

representing the value of JOðtÞ. Figure 1b shows that JOðtÞ

increases monotonically with t. Removing the 0 values, the

threshold value is 49 according to criterion JOðtÞ. The

segmentation result is shown in Fig. 1c, which shows some

object pixels segmented to the background.

The second is that the image homogeneity region may

be located in a region of low or high gray-level values. In

this case, prior to applying criterion JOðtÞ, we must deter-

mine the region with better homogeneity (i.e., the object

region). This makes it inconvenient for determining

thresholds.

In view of the above, combining the gray level and

probability information of the object and background, we

modify the discriminant JOðtÞ to construct new criterion

functions. For binary segmentation, there are two position

cases with better homogeneity. If the region with better

homogeneity is located at a low gray level, we build the

criterion as

JOL1ðtÞ ¼ PFðtÞð Þa�Pt�1
i¼0 k � pðiÞ � i� l1ðtÞð Þ2þ 1 � kð Þ � pðiÞ � i� �l1ðtÞð Þ2
h i

PL�1
j¼t k � pðjÞ � j� l1ðtÞð Þ2þ 1 � kð Þ � pðjÞ � j� �l1ðtÞð Þ2
h i

ð3Þ

and

JOL2ðtÞ ¼ 1 � PFðtÞð Það Þ�PL�1
i¼t k � pðiÞ � i� l2ðtÞð Þ2þ 1 � kð Þ � pðiÞ � i� �l2ðtÞð Þ2
h i

Pt
j¼0 k � pðjÞ � j� l2ðtÞð Þ2þ 1 � kð Þ � pðjÞ � j� �l2ðtÞð Þ2
h i :

ð4Þ

Here, JOL1ðtÞ describes the relative information when

the homogeneity foreground is in a low gray region. In

addition, the homogeneity between the foreground and

background should also be considered, described as
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Fig. 1 Red blood cells image
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JOL2ðtÞ. pðiÞ and pðjÞ are the corresponding gray proba-

bilities, PFðtÞ ¼
Pt�1

i¼0 pðiÞ, l1ðtÞ¼
Pt�1

i¼0 ipðiÞ
.Pt�1

i¼0 pðiÞ,

l2ðtÞ ¼
PL�1

i¼t ipðiÞ
.PL�1

i¼t pðiÞ, and �l1ðtÞ and �l2ðtÞ are the

mean values of the local average images in the object and

background areas.

JOL1ðtÞ and JOL2ðtÞ differ from JOðtÞ in that we apply

PFðtÞð Þa to measure the relativity ratio from the homoge-

neous foreground to the total image and use 1 � ðPFðtÞÞa to

measure the other part to make the relativity measurement

more consistent with the real distribution.

Similarly, when the region with better homogeneity has

a high gray range, the criteria should be

JOH1ðtÞ ¼ 1 � PBðtÞð Þa�Pt�1
i¼0 k � pðiÞ � i� l1ðtÞð Þ2þ 1 � kð Þ � pðiÞ � i� �l1ðtÞð Þ2
h i

PL�1
j¼t k � pðjÞ � j� l1ðtÞð Þ2þ 1 � kð Þ � pðjÞ � j� �l1ðtÞð Þ2
h i

ð5Þ

and

JOH2ðtÞ ¼ PBðtÞð Þa�PL�1
i¼t k � pðiÞ � i� l2ðtÞð Þ2þ 1 � kð Þ � pðiÞ � i� �l2ðtÞð Þ2
h i

Pt
j¼0 k � pðjÞ � j� l2ðtÞð Þ2þ 1 � kð Þ � pðjÞ � j� �l2ðtÞð Þ2
h i :

ð6Þ

Here, PBðtÞ ¼
PL�1

i¼t pðiÞ is the probability sum of high

gray-level region.

In image thresholding, the homogeneity of foreground

or background relative to the other should be considered

simultaneously. Therefore, when the low gray-level region

has better homogeneity, we combine Eqs. (3) and (4) to

construct the thresholding-criterion function JOBLðtÞ. In the

same way, when region with better homogeneity is in the

high gray-level range, we build JOBHðtÞ. The two methods

are:

JOBLðtÞ ¼ JOL1ðtÞ þ JOL2ðtÞ ð7Þ

and

JOBHðtÞ ¼ JOH1ðtÞ þ JOH2ðtÞ: ð8Þ

The above criteria include the relative homogeneity

information of both the foreground and the background,

which is more reasonable for image-distribution descrip-

tions than the JOðtÞ method. The relative measurements of

the object and background also enable us to determine the

bias caused by the class distribution difference.

4 Optimization of threshold point
and criterion

4.1 Smoothing of 1d gray histogram

In some thresholding algorithms, the threshold point is

selected by traversing all gray levels. In fact, the optimal

threshold value is found among valley points in histogram-

based methods. Therefore, instead of calculating all gray

points, it is more efficient to select the optimal threshold

point from among the valley points of the histogram. In

real images, there are many valley points, as with the rice

grains image histogram shown in Fig. 2. However, some of

them are only local valley points and not globally optimal

threshold points. Hence, to improve the search process, we

apply a regression function to smooth the one-dimensional

gray histogram (1d_histogram) curve. We choose a locally

weighted scatter plot smoothing (LOESS) function to

eliminate scattered or isolated points that interfere with the

overall distribution. From this, we obtain a smoothed his-

togram that is good for finding the optimal threshold points

as shown in Fig. 3. From our experiment, we set the width

of the LOESS bandwidth to 10.

Figures 2 and 3 show the original 1d_histogram and its

smoothed histogram curve. The abscissa (x-axis) is the gray

level, and the vertical axis (y-axis) is the gray probability.

The valley points of the 1d_histogram are marked with *.

Comparing Fig. 2 with Fig. 3, the LOESS function

smoothed the curve’s burrs, producing fewer valley points

and removing false valleys and stochastic noise. The

reduced number of valley points speeds and simplifies in

finding the optimal threshold value.

4.2 Application of uniformity measure

In Sect. 3, we proposed two thresholding functions JOBLðtÞ
and JOBHðtÞ selected according to the homogeneity region.
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Fig. 2 Original 1d_histogram
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To determine the homogeneity position automatically, we

offer a method based on the uniformity measurement, U. In

view of its performance-evaluation ability, the uniformity

measure is a popular metric [21, 23]. The uniformity

measure is computed as

U ¼ 1 � 2 � ðK � 1Þ �
PK�1

j¼0

P
i2Rj

ðfi � ljÞ2

M � N � ðfmax � fminÞ2
; ð9Þ

where K is the classification number, Rj is the region seg-

mented by the threshold value t(K - 1), fi is the gray level of

pixel i, lj is the mean gray level in j the region, fmin and

fmax are the minimum and maximum gray levels, and

M * N is the total number of image pixels. In formula (9),

larger U indicates better uniformity.

The above metric usually measures the uniformity of

segmented images, but it is also useful to determine the

initial threshold value. For most images, the threshold

value is on the side with better homogeneity.

Figures 4 and 5 show synthetic aperture radar (SAR)

and lymph images illustrating this behavior. Figures 4a and

5a are original images, and Figs. 4b and 5b are the 1d-gray

histogram curves of the two images. Although there are

threshold deviations caused by large differences in

between-class variance, the threshold position indicates the

region with better homogeneity. In Figs. 4b and 5b, we use

a solid line to denote the optimal uniformity threshold

value and a dashed line to denote the middle of the gray-

level range.

If the optimal uniformity threshold value U is in a low

gray-level range, as in Fig. 4, we choose JOBL(t) as the

criterion function. If the threshold value is in a high gray-

level range, as in Fig. 5, we use JOBHðtÞ. In this way, we

choose the criterion function on the basis of the gray dis-

tribution automatically. We also highlight that we reduce

the number of calculations by considering only the valley

points of the smoothed curve.

5 Relative homogeneity criterion
with optimized parameters

There are two adjustable parameters k and a in the criteria

functions JOBLðtÞ and JOBHðtÞ. k is the weighted coefficient

of gray and neighboring average gray. If k ¼ 1, neigh-

boring average information is not considered. When k ¼ 0,

the neighboring values are considered to obtain better

denoising performance.

The parameter a adjusts the relative homogeneity pro-

portion of the object and background and ranges between 0

and 1. When a ¼ 1, the weight coefficients are the accu-

mulated probabilities of the foreground and the back-

ground. Thus, PFðtÞð Þa¼ PFðtÞ and 1 � PFðtÞð Þa¼ PBðtÞ in

JOBLðtÞ, and a ¼ 0 and PBðtÞð Þa¼ PBðtÞ and

1 � PBðtÞð Þa¼ PFðtÞ in JOBHðtÞ. When a ¼ 0, only one part

of the relative homogeneity is considered, similar to using

only JOðtÞ. Thus, PFðtÞð Þ0¼ 1, 1 � PFðtÞð Þ0¼ 0 and

PBðtÞð Þ0¼ 1; 1 � PBðtÞð Þ0¼ 0. Therefore, a is an impor-

tant parameter in JOBLðtÞ or JOBHðtÞ and is chosen to

combine the image distributions.
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Fig. 3 LOESS smoothed histogram (bandwidth = 10)
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5.1 Parameter-optimization criterion

During thresholding segmentation, the optimal threshold

value should be located at the valley point of the gray

histogram. In order to emphasize the characteristics of

valley points and eliminate some non-threshold special

points, we also consider information from points in the

neighborhood of the valley points.

Assuming the original image histogram in t is denoted as

f(t), the valley-emphasis [15] function �f ðtÞ is constructed as

�f ðtÞ ¼ f ðt � mÞ þ f ðt � mþ 1Þ þ � � � f ðtÞ þ � � � þ f ðt þ m
� 1Þ þ f ðt þ mÞ:

ð10Þ

Since the optimal threshold value will be located at the

valley point of the histogram, its gray and neighborhood

gray probability are both minimum values, and �f ðtÞ is also

a minimum. We simplify Eq. (10) as

�f ðtÞ ¼
Xm
i¼�m

f ðt þ iÞ; ð11Þ

where m is a positive integer. Greater m values lengthen the

filter.

In the case of some gray distribution histograms, we

found that �f ðtÞ is only a condition for ideal threshold point,

and the gray-level variation is smaller near the optimal

threshold point. In view of this, we propose another con-

straint function f
D
ðtÞ to represent the sum of gray absolute

differences near the threshold t:

f
D
ðtÞ ¼ jf ðtÞ � f ðt � mÞj þ jf ðtÞ � f ðt � mþ 1Þj þ � � �

þ jf ðtÞ � f ðt þ m� 1Þj þ jf ðtÞ � f ðt þ mÞj:
ð12Þ

We simplify this as:

f
D
ðtÞ¼

Xm
i¼�m

f ðtÞ � f ðt þ iÞj j; ð13Þ

where m is a positive integer.

In sum, we introduce a new compound function F(t) to

take the minimum valley point and gray-level deviation

into account:

FðtÞ ¼ �f ðtÞ � f
D
ðtÞ: ð14Þ

In our use of F(t), we set m = 3. At the optimal threshold

point, the value of F(t) should be a minimum. We choose

parameter a so that it minimizes F(t):

a� ¼ Arg min
0\t\L�1;0� a� 1

fF½tðaÞ�g: ð15Þ

After determining parameter a�, we obtain the optimal

threshold value t* according to Eq. (7) or (8), i.e.,

t� ¼ Arg min
0\t\L�1

fJOBL½tða�Þ�g ð16Þ

or

t� ¼ Arg min
0\t\L�1

fJOBH ½tða�Þ�g: ð17Þ

5.2 Implementation of relative homogeneity
method

Incorporating all of the preceding, we perform the fol-

lowing steps in our algorithm.

Step 1 Smooth the image 1d gray histogram by applying

the LOESS function to eliminate local valley points

using a bandwidth of 10.

Step 2 Identify the valley points of the smoothed

histogram.

Step 3 Determine threshold value region having better

homogeneity using the uniformity measure function.

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Low gray region  High gray region

Th
e 

pr
ob

ab
ili

ty
 if

 g
ra

y

Half position of
gray level range
Optimal uniformity
threshold value

(a) Original (b) 1d_histogram

Fig. 5 Lymph image

8436 Neural Computing and Applications (2020) 32:8431–8449

123



Step 4 According to the label, select the appropriate

relative homogeneity thresholding criterion JOBL or

JOBH.

Step 5 Use the synthetic valley-emphasis function F(t) to

select the optimal exponent parameter a�.
Step 6 Search all valley points to find the optimal

threshold value t* using criterion function JOBL or JOBH.

5.3 Multilevel thresholding

When there are multiple classifications in an image, the

uniformity measure U has classification number K[ 2. We

can construct a multilevel thresholding criterion using our

proposed binary algorithm. Using Eq. (9), we identify the

class with the lowest homogeneity. We disregard denoising

effects by setting k ¼ 1 and obtain the criterion function of

the lowest homogeneity region as

JOlðt�1; t�2; � � � ; t�K�1Þ ¼ 1 �
X
q¼1

K

q 6¼l

Pqðtq�1Þ
� �a

0
BB@

1
CCA�

P
i¼t

tl

l�1

pðiÞ � i� llðtl�1Þð Þ2
h i

P
q¼1

K

q 6¼l

Ptq
j¼tq�1

pðjÞ � j� llðtl�1Þð Þ2
h ih i

¼ 1 �
X

q¼1

K

q 6¼l

Pqðtq�1Þ
� �a

0
@

1
A � Plðtl�1Þ � r2

l tl�1ð Þ
P

q¼1

K

q6¼l

Pqðtl�1Þ � r2
ql tl�1ð Þ

h i ;

ð18Þ

where t�1; t
�
2; . . .; t

�
K�1 are the K - 1 thresholding values, l is

the region with lowest homogeneity, q indicates the num-

ber of other regions, and Pqðtq�1Þ is the probability sum

excluding the lth region. For the q regions, the criterion is:

JOqðt�1; t�2; . . .; t�K�1Þ ¼ Pqðtq�1Þ
� �a�

P
i¼t

tq

l�q

pðiÞ � i� lqðtq�1Þ
� �2

h i

P
r¼1

K

r 6¼q

P
j¼t

tr

r�1

pðjÞ � j� lqðtq�1Þ
� �2

h i" #

¼ Pqðtq�1Þ
� �a� Pqðtq�1Þ � r2

q tq�1

� �
P

r¼1

K

r 6¼q

Prðtr�1Þ � r2
rq tq�1

� �h i ;

ð19Þ

where llðtl�1Þ, and lqðtq�1Þ, r2
l ðtl�1Þ, and r2

qðtq�1Þ are the

mean values and variances of lth and qth regions,

respectively.

Considering the homogeneity information from all

regions, we construct the thresholding criterion as

JOB t�1; t
�
2; . . .; t

�
K�1

� �
¼ JOl t

�
1; t

�
2; . . .; t

�
K�1

� �
þ
X
q¼1

K

q6¼l

JOq t�1; t
�
2; . . .; t

�
K�1

� �
: ð20Þ

Then, the optimal threshold values are

t�1; t
�
2; . . .; t

�
K�1

� �
¼ Arg min

0\t�
1
;t�

2
;...;t�K�1

\L�1
JOB t�1; t

�
2; . . .; t

�
K�1

� �� �
;

ð21Þ

where l; q; r 2 ½1;K�. The parameter a can be selected as

with the binary thresholding method.

6 Experimental results and analysis

6.1 Thresholding results

To verify the performance of our proposed method, we

designed an experiment to compare results from the fol-

lowing eight methods, including our own method: the 1-

dimensional Otsu’s method (denoted as Otsu) [7], the

modified valley-emphasis method (denoted as MOtsu)

[15], the parameter-weight method on the object variance

(denoted as WOtsu) [16], the iterative three-class method

for sub-regions (denoted as IOtsu) [20], the focusing-on-

objects method (denoted as FO) [26], our relative homo-

geneity method without optimization (denoted as ROB,

a ¼ 0:5) [27], our relative homogeneity criterion with a
parameter optimization (denoted as ROBP), and our rela-

tive homogeneity method with optimized valley points and

a (denoted as ROBVP). Here, we set parameter k\1.

We validated all methods through simulations in

MATLAB. We used a computer with an Intel Core i7-

4720HQ CPU at 2.60 GHz and 8 GB of memory running

Microsoft Windows 8.

Figure 6a–j shows the 10 representative images from

several fields: color, material structure, SAR, red blood

cells, rice grains, numbers, lymph, cells under an optical

microscope, an MRI slice, and a barcode. Their sizes are

158 9 159, 340 9 304, 256 9 256, 272 9 265, 256 9

256, 730 9 203, 130 9 130, 213 9 166, 256 9 256 and

256 9 256 pixels, respectively. Figure 7a–j shows their

corresponding 1d_histograms. Among them, the color,

material structure, and SAR images have large between-

class variance. The number, lymph, cells, MRI slice, and

barcode images have skewed or heavy-tailed histograms.

The red blood cells and rice grain images have small

between-class variance. Figures 8, 9, 10, 11, 12, 13, 14, 15,

16, and 17 show the segmentation results of the 10 images

with (a)–(j) showing the results of Otsu, MOtsu, WOtsu,

IOtsu, FO, ROB, ROBP, and ROBVP, respectively, for

each source image.
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The results from Figs. 8a, 9a, and 10a show that the

simple Otsu’s method did not segment the object properly

in the color, material structure, and SAR images. From

Figs. 11, 12, 13, 14, 15, 16, and 17a, the integrity of seg-

mented object was insufficient. The MOtsu method yielded

an excellent result for the SAR image in Fig. 10b, with

middling results for the red blood cells, rice grains, num-

bers, and MRI slice. MOtsu did not correctly extract the

objects in the color, material structure, lymph, cells, and

barcode images in Figs. 8, 9b, 14, 15b, and 17b. The

WOtsu obtained perfect segmentation results in Figs. 11c,

14c, and 17c. Similarly, the IOtsu method had fine results

in Figs. 11d and 15 and 16d, but both IOtsu and WOtsu

showed limited adaptability to the overall mix of images.

The FO, ROB, ROBP, and ROBVP methods each had a

different construction principle in the corresponding dis-

criminant function. The FO method focused its information

statistic on the object itself, segmenting the color image

perfectly, but failing to do so for the other nine images with

scattered objects or backgrounds. The ROB method,

applying the relative homogeneity measurement, achieved

preferable results in the red blood cells, lymph, and MRI

(a) Color (b) Material structure (c) SAR (d) MRI slice (e) Rice grains

(f) Numbers (g) Lymph (h) Cells under an (i) Red blood cells (j) Barcode
optical microscope

Fig. 6 Original images
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(f) Number (g) Lymph (h) Cells under an (i) MRI slice (j) Barcode
optical microscope

(a) Color          (b) Material structure (c) SAR (d) Red blood cells (e) Rice grains

Fig. 7 1d_histogram
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slice images shown in Figs. 11f, 14f, and 16f. However, the

invariant a value limited ROB’s adaptability to the other

images. Our proposed ROBP and ROBVP methods

achieved optimal results by extracting the most complete

objects. This was especially true of the ROBVP method as

shown in (h) of Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, and

17.

Table 1 shows the optimal threshold value t* and opti-

mized parameter a of the eight methods for the 10 images.

The FO method’s threshold value tended to the lower gray

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 8 Results from the color image

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 9 Results from the material structure image
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level, which was smaller than that of the other methods as a

result of the monotonic criterion JOðtÞ. The ROBP and

ROBVP methods had same threshold values in the material

structure and number images, but ROBVP’s threshold

value achieved more complete extraction results on the

SAR, cells, and barcode images.

Moreover, the ROBVP method was faster as a result of

its valley-points optimization strategy, as shown in

Table 2. For the 10 images, our proposed ROBVP had the

best times, taking between 45.9 and 75% of the time

required by the ROBP method. It is remarkable that

ROBVP’s running time was even shorter than that of the

Otsu’s method on the color, rice, lymph, and MRI slice

images.

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 10 Results from the SAR image

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 11 Results from the red blood cells image
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6.2 Segmentation results of noisy image

The discriminant criteria in Eqs. (2)–(8) include neigh-

borhood average information. If k\1, some denoising

performance results. In this experiment, we compared the

ROBVP method with k ¼ 1 and k ¼ 0:5: Figures 18a, 19,

and 20a are 3 representative images: color, SAR, and red

blood cells with Gaussian noise of 0 mean value and 0.003

variance. Figures 18, 19, and 20b show the 1d_histograms

of the 3 noisy images. Figures 18, 19, and 20i, j are the

results of ROBVP with k set to 1 and 0.5, respectively.

Figures 18, 19, and 20c–h show the results from the Otsu,

MOtsu, WOtsu, IOtsu, ROB, and 2d_Otsu methods for

comparison. We do not include FO because of its non-ideal

results.

When k ¼ 0:5, the denoising performance was better

than with k ¼ 1. For the color image, only ROBVP ðk ¼
0:5Þ obtained the correct threshold value. For the SAR and

red blood cells images, the denoising results of the ROBVP

methods were superior. Table 3 shows the threshold values

of the eight methods. When k ¼ 0:5, the threshold values

from ROBVP were more accurate than ROBVP with k ¼ 1

as well as the 2d_Otsu method.

6.3 Performance evaluation

To analyze the segmentation results quantitatively, we

assessed the performance of the methods according to the

misclassification error (ME). ME can reflect the percentage

of background pixels wrongly assigned to foreground and,

conversely, foreground pixels wrongly assigned to back-

ground. For the two-class segmentation, ME can be

expressed as [28]:

ME ¼ 1 � BO \ BTj j þ FO \ FTj j
BOj j þ FOj j ; ð22Þ

where BO and BT denote the object of the ground truth and

test images, FO and FT are the background of the two

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 12 Results from the rice grains image

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 13 Results from the numbers image
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images, and | • | is the operator to obtain the cardinality of a

set. The range of ME is from 0 to 1, 0 denotes totally

correct segmentation, and 1 means totally erroneous case;

their scores vary from 0 for a totally correct segmentation

to 1 for a totally erroneous case.

We selected four test images from a database of non-

destructive testing (NDT) images for quantitative evalua-

tion of the thresholding methods [28]. The ground truth

images for the NDT images were chosen interactively by

experts [29], and we downloaded them from the Web site

of Sezgin [30]. The size of the Test1 image is 232 9 131

pixels, and the sizes of Test2, Test3, and Test4 are all

256 9 256 pixels. Figures 21, 22, 23, and 24 show the

results. Figures 21, 22, 23, and 24a are the original images,

while Figs. 21, 22, 23, and 24b are the ground truth images.

Figures 21, 22, 23, and 24c–j show the results of the Otsu,

MOtsu, WOtsu, IOtsu, FO, ROB, ROBP, and ROBVP

methods, respectively. Table 4 shows the segmentation

threshold values and MEs of the 8 methods. The ROBVP

method with k set to 0.5 had an ME lower than the other 7

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 14 Results from the lymph image

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 15 Results from the cells under an optical microscope image
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methods. The ME of the Test4 image was only 0.0054. We

have marked the lowest ME values in bold in Table 4.

For evaluating the denoising performance of the meth-

ods, we used the common peak signal-to-noise ratio

(PSNR) [31] measure. PSNR gives the similarity of a

thresholded image against a reference image based on the

root mean square error (RMSE) [31] of each pixel. The

larger the PSNR, the better the similarity. It is given by

Eq. (23):

PSNRðx; yÞ ¼ 20 log10

255ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSEðx; yÞ

p
 !

ð23Þ

The segmentation results of two test images with

Gaussian noise of 0 mean value and 0.003 variance are

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 16 Results from the MRI slice image

(a) Otsu (b) MOtsu (c) WOtsu (d) IOtsu

(e) FO (f) ROB (g) ROBP (h) ROBVP

Fig. 17 Results from the barcode image
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Table 1 Optimal threshold value t* and optimized parameter a

Image Otsu MOtsu WOtsu IOtsu FO 1d_OB ROBP ROBVP

t* a t* a t* a t* a t* a t* a t* a t* a

Color 120 – 131 – 151 – 103 – 18 – 86 0.5 52 0.01 57 0.01

Material structure 126 – 150 – 127 – 106 – 29 – 89 0.5 63 0.01 63 0.01

SAR 107 – 49 – 121 – 107 – 14 – 102 0.5 88 0.08 47 0.01

Red blood cells 107 – 116 – 142 – 119 – 49 – 49 0.5 119 0.47 128 0.72

Rice grains 126 – 115 – 132 – 116 – 42 – 128 0.5 108 0.79 109 0.03

Number 171 – 205 – 195 – 158 – 4 – 173 0.5 222 0.03 222 0.03

Lymph 151 – 84 – 185 – 157 – 10 – 177 0.5 180 0.28 186 0.01

Cells under an optical

microscope

197 – 156 – 224 – 213 – 65 – 190 0.5 189 0.03 214 0.74

MRI slice 55 – 51 – 56 – 44 – 2 – 23 0.5 29 0.87 33 0.01

Barcode 139 – 130 – 233 – 147 – 4 – 136 0.5 89 0.01 235 0.24

Table 2 Processing time for the 10 images

Image Otsu (s) ROBP (s) ROBVP (s) Time ratio of ROBVP–ROBP (%)

Color 1.5 1.9 1.2 63.2

Material structure 1.5 2.7 1.6 59.3

SAR 1.6 3.1 1.6 51.6

Red blood cells 1.6 2.8 1.7 60.7

Rice grains 1.7 2.8 1.5 53.6

Number 1.7 3.7 1.7 45.9

Lymph 1.4 1.6 1.2 75.0

Cells under an optical microscope 1.5 2.2 1.6 72.7

MRI slice 1.7 2.5 1.4 56.0

Barcode 1.8 2.6 1.8 69.2

(a) Noise image (b) 1d_histogram (c) Otsu (d) MOtsu (e) WOtsu

(f) IOtsu (g) ROB (h) 2d_Otsu (i) ROBVP ( )=1λ (j) ROBVP ( )=0.5λ
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Fig. 18 Denoising results of the color image
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shown in Figs. 25 and 26, and the PSNR of eight methods

is displayed in Table 5. We can see that the ROBVP ðk ¼
0:5Þ method obtained maximum PSNR values in the eight

methods, which implies that our proposed method has

prominent performance for noisy images segmentation.

The sizes of Test5 and Test6 image are 105 9 104 and

166 9 60 pixels, respectively.

7 Conclusion

In this paper, we have responded to the limitations of the

Otsu’s method by focusing on other objects criteria and

exploring image thresholding methods. We first developed

the relative homogeneity measurement for images with

larger distribution between-class variance. We then applied

optimization strategies based on the gray distribution and

region homogeneity characteristic information to propose a

(a) Noise image (b) 1d_histogram (c) Otsu (d) MOtsu (e) WOtsu

(f) IOtsu (g) ROB (h) 2d_Otsu (i) ROBVP ( )=1λ (j) ROBVP ( )=0.5λ

Fig. 19 Denoising results of the SAR image

(a) Noise image (b) 1d_histogram (c) Otsu (d) MOtsu (e) WOtsu

(f) IOtsu (g) ROB (h) 2d_Otsu (i) ROBVP ( )=1λ (j) ROBVP ( )=0.5λ

Fig. 20 Denoising results of the red blood cells image
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new thresholding segmentation method, relative homo-

geneity method with optimized valley points and parameter

a (ROBVP). Furthermore, we have explored a multilevel

segmentation discriminant using a single thresholding

criterion.

Our work makes four main contributions. First, our

method examines the relative homogeneity between the

object and the background to offset the negative effects

from the between-class distribution difference and to

enable a more detailed and accurate image description.

Table 3 Denoising threshold results of eight methods

Image Otsu MOtsu WOtsu IOtsu ROB 2d_ Otsu ROBVP ðk ¼ 1Þ ROBVP ðk ¼ 0:5Þ

Color 125 135 138 116 129 119 112 41

SAR 106 54 120 107 107 122 36 43

Red blood cells 112 109 141 125 111 118 111 105

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 21 Results of the Test1 image

(a) Original image (b) Ground truth (c) Otsu (d) MOtsu (e) WOtsu

(f) IOtsu (g) FO (h) ROB (i) ROBP (j) ROBVP

Fig. 22 Results of the Test2 image
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Second, our method uses the uniformity measure to

determine the region with better homogeneity and to guide

the selection of thresholding criteria. Third, our method

improves the valley-points selection strategy by removing

false threshold points and improving selection efficiency.

Fourth, we have constructed an optimization function to

find the best value for parameter a as part of obtaining the

optimal threshold value.

Our experimental results with real images having large

between-class variances or skewed or tail-heavy gray his-

tograms show that our proposed ROBVP method obtained

the most accurate threshold value and yielded a lower

misclassification error than existing methods. In addition,

(f) IOtsu (g) FO (h) ROB (i) ROBP (j) ROBVP

(a) Original image (b) Ground truth (c) Otsu (d) MOtsu (e) WOtsu

Fig. 23 Results of the Test3 image

(a) Original image (b) Ground truth (c) Otsu (d) MOtsu (e) WOtsu

(f) IOtsu (g) FO (h) ROB (i) ROBP (j) ROBVP

Fig. 24 Results of the Test4 image
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Table 4 The misclassification

error (ME) of eight methods
Image Otsu MOtsu WOtsu IOtsu FO ROB ROBP ROBVP ðk ¼ 0:5Þ

Test1

Threshold 142 160 143 132 17 117 96 162

ME 0.0633 0.0183 0.0548 0.1173 0.8918 0.2927 0.6596 0.0161

Test2

Threshold 167 254 184 171 38 163 171 184

ME 0.1501 0.4861 0.0176 0.1180 0.5155 0.1745 0.1102 0.0176

Test3

Threshold 80 61 112 69 2 81 45 57

ME 0.0699 0.0183 0.3266 0.1190 0.2868 0.0789 0.0124 0.0109

Test4

Threshold 182 172 221 222 70 219 216 215

ME 0.0294 0.0400 0.0153 0.0194 0.1259 0.0100 0.0066 0.0054

(a) Noisy image (b) Ground truth                (c) tsu (d)O MOtsu (e) WOtsu

(f) IOtsu (g) ROB                  (h) 2d_ Otsu (i) ROBP ( )=1λ (j) ROBVP ( )=0.5λ

Fig. 25 Results of the noisy Test5 image

(a) Noisy image (b) Ground truth                (c) Otsu (d) MOtsu (e) WOtsu

(f) IOtsu (g) ROB      (h) 2d_ Otsu (i) ROBP ( )=1λ (j) ROBVP ( )=0.5λ

Fig. 26 Results of the noisy Test6 image

Table 5 The PSNR value of eight methods

Image Otsu MOtsu WOtsu IOtsu ROB 2d_ Otsu ROBVP ðk ¼ 1Þ ROBVP ðk ¼ 0:5Þ

Test5 3.1153 25.4432 4.4748 3.1153 3.4803 3.0812 27.0304 27.1600

Test6 3.4650 22.2011 5.1854 3.6854 22.2741 3.6854 20.9517 23.1702
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our valley-points filter strategy shortened the time required

to find a thresholding value, improving segmentation effi-

ciency. Finally, when neighborhood image information was

included, our proposed method offered superior denoising

performance and higher PSNR values.
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