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Abstract
The crux in designing the PID controller lies in determining its gain values, which play a major role in deciding its

performance. The gains are fed as inputs to the controller and are to be decided before its run. On the other hand, the

effectiveness of the biped walk purely depends on the performance of the PID controller. Initially, the upper and lower

body gaits of the two-legged robot are determined using the concept of inverse kinematics. Further, the dynamics of the

biped robot is derived by using Lagrange–Euler formulation. The main objective of the present research is to decide the

gains of the torque-based PID controller with the help of a neural network trained by using nature-inspired optimization

algorithms, namely MCIWO and PSO. The adaptiveness of the algorithm lies in modifying the gains of the controller based

on the magnitude of the error in the angular displacement received at the input to the NN. Once the controller is developed,

its effectiveness is tested in computer simulations. Finally, the optimum controlled gait angles obtained by the best

approach are tested on a real biped robot.

Keywords Adaptive control � Sloping surface � NN � Torque-based PID controller

1 Introduction

In recent years, researchers are paying more attention in the

areas of research related to bipedal robots due to its

usability and adaptiveness in accomplishing various tasks.

Controlling the locomotion of the biped robot is difficult to

achieve in unknown terrains. Several studies [1–6] focused

on the control of locomotion of the biped robot after uti-

lizing the concept of zero moment point (ZMP). Most of

the research work was focused on the analysis of walking

stability of the biped robots on flat and uneven terrains. To

maintain the stability, the trajectory-based methods are

suitable, as the robots perform their walk based on

predesigned trajectories. However, if the trajectories are

fixed and the terrain conditions are varying, the robot may

fail to move on those terrains. It is important to note that

the polynomial interpolation methods may become

incompetent, if the complexity of walking increases. Fur-

ther, the increase in the order of the polynomial leads to

enhanced computational time. To overcome this problem,

Shih [1] developed a strategy that uses a cubic spline

interpolation to estimate the foot trajectories. In [2], Huang

et al. formulated the constraints for the foot trajectories to

produce various types of trajectories on different terrain

conditions. Further, Park et al. [5] proposed a trajectory

generation method based on the combination of third-order

polynomial and sinusoidal functions to realize the free gait

for the biped walking. Human walking does not show the

characteristics of precise trajectory tracking. But, the bio-

logical researches show that the human beings walk is a

consequence and combination of inherent patterns and

reflexes. Later on, researchers worked on the bio-inspired

control methods based on the biomechanics of muscu-

loskeletal system and the motors of neural networks [7, 8].

Inspired by the concept of ZMP, many researchers had

developed stable walking for biped robots. Several studies
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were based on the equations of ZMP that express the

relationship between the ZMP and centre of gravity (COG).

In addition to the COG trajectory, the generation of ZMP

equation is useful for the biped robot to walk on flat

ground. The ZMP equation with constant COG height on

flat ground was very simple. Vukobratovic and Stepanenko

[9] proposed the concept of ZMP, which corresponds to the

centre of pressure of floor reaction force on the sole of a

biped robot. If the ZMP falls inside the foot support

polygon, the sole of the foot does not leave the ground and

the balanced walk is possible. The foot rotation indicator

(FRI) is the extension of the ZMP, and was proposed by

Goswami [10]. While the ZMP exists within the boundary

of the foot support polygon, the FRI can be used as an

indicator of the extent of balance of the robot. However,

many researchers had proposed trajectory-planning meth-

ods for the balanced walking of biped robots. Kajita et al.

[11] generated the walking pattern for the biped robot by

the preview control of the ZMP. Here, the COG trajectory

is generated by using the cart-table model. Further, Shi-

buya et al. [12] developed a linear pendulum model (LPM)

and applied this to control the COG trajectory generation in

the double-support phase. In addition to the above

approaches, Erbatur and Kurt [13] proposed a reference

generation algorithm based on the linear inverted pendu-

lum model (LIPM) and moved the ZMP references.

Later on, some of the researchers had dealt with the walking

of the biped mechanism on a slope surface to enhance the

utility of the biped robot. Ching-Long and Chien-Jung [14]

studied the motion control of statically stable biped robot with

seven degrees of freedom (DOF) on an uneven floor. To

maintain the statically stable walk, the COG of the biped had

to fall inside the foot support polygon during the single- and

double-support phases. Sung et al. [15] proposed a trajectory

generation method for a biped robot to walk on an inclined

surface. To generate the walking trajectory, three additional

assumptions were used. First, the centre of mass was moved

parallel to the slope surface. Second, the ZMP should be fixed

with the supporting foot during the single-support phase.

Third, when the slope of the surface is changed, the boundary

conditions of the robot while walking are also changed.

Cristiano et al. [16] proposed the concept of central pattern

generator (CPG) for efficient locomotion control of the biped

robots while ascending and descending the slope surface. The

feedback signals were generated by the robot, i.e. the data

from inertial and force sensors were directly fed to the CPG,

and allowed the robot to automatically change the locomotion

pattern over the flat and inclined terrains in real time. Further,

the researchers not only worked on the generation of the

dynamically balanced gaits of the biped robot using ZMP,

COG, LPM and LIPM but also solved the problems related to

the controlling of the generated gait of the biped robot using

PID controllers. Tae et al. [17] discussed a hybrid self-

organizing fuzzy (SOF) PID controller to tune the parameters

of the multi-input multi-output nonlinear biped robot. They

observed a better performance for hybrid SOF-PID controller

when compared to SOF-PID controller. Safa et al. [18]

developed a predictive PID controller for stable walking of the

biped robot. The predictive PID controller was used to imitate

the calculated time and reduce the complexity of the control.

Moreover, Ho Pham et al. [19] proposed a novel adaptive

neural PID (AN-PID) controller, which was suitable for the

real-time control of the biped robot. The proposed AN-PID

controller had a simpler and self-organising structure, fast

online-tuning speed and flexibility in updating the online data.

The above algorithm was capable of optimizing the gains and

weights of MLPNN model integrated with AN-PID controller.

The PID controller is an electrical element, whose pur-

pose is to reduce the error between a desired and actual

process variable. In order to do so, it requires tuning of

some of its essential parameters. But, tuning of the PID

controller is a time-consuming process. Recently, some

researchers are trying with different types of stochastic

methods, population-based algorithms, nature-inspired and

computational intelligence algorithms, such as artificial

neural network, fuzzy systems and artificial immune sys-

tems [20], to tune the PID controller and train the biped

robot [21]. In [22], the authors had constructed a modified

triangular fuzzy PID controller and used a genetic algo-

rithm (GA) to fine-tune the membership function parame-

ters of fuzzy system, and to improve the quality of the

system in terms of rise time, overshoot and steady-state

error. Hang et al. [23] developed an intelligent tuning

algorithm, i.e. bacterial forging optimization (BFO) tech-

nique, to tune the PID controller. The BFO algorithm uses

natural selection to eliminate the entities with poor forging

strategies for locating, capturing and ingesting the food.

Further, Huseyin and Zafer [24] proposed a new nature-

inspired optimization (i.e. ant algorithm) algorithm to tune

the parameters of the PID controller. The results of the

tuning process were compared with Ziegler–Nichols (ZN),

iterative feedback tuning (IFT) and internal model control

(IMC) methods. Dusan et al. [25] tuned the parameters of

the PID controller using various optimization algorithms

such as, differential evolution algorithm, genetic algorithm,

bat algorithm, hybrid bat algorithm, particle swarm opti-

mization algorithm and cuckoo search algorithm. The

results were compared using statistical analysis and

observed that PSO had exhibited better performance when

compared with the other methods.

In the present research, the authors have implemented a

torque-based PID controller to control the joint motors in a

systematic manner. It is important to mention that ZMP-

based PID controller, which was used by many of the

researchers [26–29], is an indirect method of controlling

the motor, as the error signal between the obtained and
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reference ZMP trajectory is used to design the gaits for

various links of the biped robot. In this process, the con-

troller may suggest some dynamically balanced postures

which may not be kinematically feasible. Moreover, find-

ing the most appropriate gait of the biped robot that fulfils

the sequence-oriented criterion and repeatability conditions

is difficult to achieve, whereas torque-based PID controller

considers the error signal of each joint of the biped robot

and tries to design the gains of the controller by minimizing

the error between two consecutive gait angles of each joint

of the biped robot. The gains of the PID controller are

obtained by using the neural network (NN) (i.e. adaptive

based). Further, the structure of NN is tuned with the help

of a nature-inspired optimization algorithm, i.e. MCIWO

(which is a variant of standard IWO algorithm). To

improve the performance of the algorithm, in the present

research the authors have added two new variables, namely

cosine and chaotic variables. The cosine variable is used to

increase the search space, and the chaotic variable is used

to push the solution directly into global optimum position.

Finally, the performance of the developed algorithm has

been compared with another nature-inspired algorithm

such as PSO. Further, the gait angels generated by the best

algorithm are fed into the real robot for testing its

performance.

The rest of the paper is organised as follows. Section 2

describes the kinematics, dynamics and design of PID

controller of the biped robot. Section 3 discusses the

structure of neural network. Section 4 explains the nature-

inspired optimization algorithms which are used to tune the

weights of the NN controller. Section 5 deals with the

experiments and the results related to the MCIWO-NN-

and PSO-NN-based PID controller algorithms. Further, the

paper concludes with a summary of work and the sugges-

tions for further improvement.

2 Modelling and design of controller
of the biped robot

In this section, the model of the biped robot and the design

of the corresponding PID controller are discussed.

2.1 Modelling

Day by day, the usage of biped robots in both the industrial

and non-industrial applications is increasing enormously.

An overview of the biped robot used in this research is

shown in Fig. 1. All the joints of the robot are connected in

a serial manner, and each joint has only one motor mounted

on it. The robot is designed to have 6 DOF in each leg and

3 DOF in each hand.

To maintain the balanced walk, the foot of the biped

robot is assumed to follow a particular polynomial trajec-

tory. In this research, the authors had conducted a study on

different polynomial trajectories, such as quadratic, cubic

and fifth-order polynomials, and found that the cubic

polynomial trajectory has produced dynamically more

balanced gaits when compared with the other trajectories.

The maximum angle of slope on which the robot can

perform walk without slipping is decided by the value of

coefficient friction (l). To tackle the situation in an

appropriate manner, all the joints are allowed to move in a

coordinated manner. For moving the links in a systematic

way without violating the kinematic constraints, the con-

cept of inverse kinematics is applied. While walking, the

foot of the robot is always kept parallel to the ground and

the ZMP should fall within the foot support polygon. The

equation for calculating the ZMP in X- and Y-directions is

given by Eqs. (1) and (2), respectively.

xZMP ¼
Pn

i¼1 Ii _xi � mi€xizi � mixiðgþ €ziÞð Þ
Pn

i¼1 mið€zi þ gÞð Þ ð1Þ

yZMP ¼
Pn

i¼1 Ii _xi � mi€yizi � miyiðgþ €ziÞð Þ
Pn

i¼1 mið€zi þ gÞð Þ ð2Þ

where _xi, Ii, g and mi represent the angular acceleration

(rad/s2), mass moment of inertia (kg m2) of the ith link,

acceleration due to gravity (m/s2) and mass (kg) of the link

i, respectively. Further, (xi, yi, zi) signify the coordinates of

Fig. 1 Schematic diagram showing structure of the Robot
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the ith lumped mass and €zi and €xi indicate the acceleration

of the ith link moving in z- and x-directions (m/s2),

respectively.

Once the ZMP is calculated, the dynamic balance mar-

gin of the biped robot in X- and Y-directions has been

determined by using the mathematical Eqs. (3) and (4),

respectively.

xDBM ¼ fs

2
� cos a� xZMPj j

� �

ð3Þ

yDBM ¼ fw

2
� cos a� yZMPj j

� �

ð4Þ

where fw and fs represent the width and length of the foot,

respectively.

The gait generation methodology for the biped while

descending the slope is very much similar to the ascending

case with only one difference, that is, the acceleration due

to gravity ‘‘g’’ is acting in the direction opposite to that of

the movement of the root.

2.2 Controller

Once the model of the robot is generated after generating

the balanced gaits on ascending and descending the sloping

surfaces, the torque-based PID controllers are designed to

control each joint of the biped robot in a coordinated

manner. The torque required to move each joint of the

biped robot is derived based on the Lagrange–Euler for-

mulation (ref. Eq. 5).

si;the ¼
Xn

j¼1

Mij qð Þ€qj þ
Xn

j¼1

Xn

k¼1

Cijk _qj _qk þ Gi

i; j; k ¼ 1; 2. . .. . .. . .n

ð5Þ

Further, the acceleration of the links plays an important

role to control each joint of the biped robot. The expression

that represents the acceleration of the link is obtained by

rearranging the terms of the above equation and is given as

follows.

€qj ¼
Xn

j¼1

Mij qð Þ�1 �
Xn

j¼1

Xn

k¼1

Cijk _qj _qk � Gi

" #

þ
Xn

j¼1

Mij qð Þ�1�si;the

 !

i; j; k ¼ 1; 2. . .. . .. . .n

ð6Þ

The term ŝ ¼
Xn

j¼1

Mij qð Þ�1�si;the ð7Þ

After substituting Eq. (7) in Eq. (6), it can be written as

€qj ¼
Xn

j¼1

Mij qð Þ�1 �
Xn

j¼1

Xn

k¼1

Cijk _qj _qk � Gi

" #

þ ŝ

i; j; k ¼ 1; 2. . .. . .. . .n

ð8Þ

where the term si;the represents the theoretical torque

required at each joint (N m) and qj, _qj and €qj indicate the

displacement in (rad), velocity in (rad/s) and acceleration

in (rad/s2) of the joint, respectively. The actual torque

required at various joints of the biped robot is calculated

using the following expression.

sact ¼ KpeðhiÞ þ Kdeð _hiÞ þ Ki

Z

eðhiÞdt ð9Þ

e hið Þ ¼ hif � his ð10Þ

where sact represents the actual torque required for each

joint, Kp, Kd and Ki denote the proportional, derivative and

integral gains of the controllers, respectively. Further, his
and hif are the initial and final angular positions. Further,

the integral term in Eq. (9) needs to be substituted by its

state variables, namely _xi and its meaning is given as

follows.

xi ¼
Z

e hisð Þdt ) _xi ¼ hif � his i ¼ 1; 2; . . .. . .. . .n

ð11Þ

Now, substituting Eqs. (10 and 11) in Eq. (9), it can be

written as

si;act ¼ Kpi hif � his
� �

� Kdi
_his þ Kii _xi i ¼ 1; 2; . . .. . .. . .n

ð12Þ

The above equation represents the torque-based PID

controller equation used to reduce the error between the

initial and final angular positions of each joint. The equa-

tion that represents the acceleration of the link, i.e. after

substituting the actual torque expression, is given as

follows.

€qj ¼
Xn

j¼1

Mij qð Þ�1 �
Xn

j¼1

Xn

k¼1

Cijk _qj _qk � Gi

" #

þ Kpi hif � his
� �

� Kdi
_his þ Kii _xi ð13Þ

3 Neural network-based PID controller

The working principle of neural network is similar to that

of the human brain in the following two ways: firstly, the

network attains the knowledge through learning, and sec-

ondly, the data are stored within the synaptic weights. The

network consists of junctions which are connected with

simple processing units to process the data. The structure of

the network (that is, shown in Fig. 2) consists of three
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layers, that is, input, hidden and output layers, and each

layer consists of number of neurons. The weighted sum of

the inputs and the bias values are added to each neuron, and

the values are passed through transfer functions [30]. The

transfer functions, namely linear, log-sigmoid and tan-

sigmoid functions, are assigned to the input, hidden and

output layers, respectively.

In the present research work, the structure of the net-

work consists of 12 neurons in the input layer that indicates

the angular error at various joints of the biped robot at

various instances of time. The output layer consists of 36

neurons that represent the proportional, integral and

derivative gains of the PID controller for the 12 joints of

the lower links of the biped robot. These gains are useful to

control each joint of the biped robot. Further, the number of

neurons in the hidden layer is decided with the help of a

parametric study. It is important to note that the perfor-

mance of neural network depends on the connecting

weights between the input–hidden and hidden–output lay-

ers. During this study, the connecting weights, bias value of

the network and the coefficients of transfer function values

of individual layers are optimized with the help of the two

nature-inspired metaheuristic algorithms MCIWO and PSO

(that is, shown in Fig. 3). Moreover, the performance of the

network highly depends on the number of neurons in its

hidden layer. The NN-parameters, such as weights between

input to hidden [v], hidden to output [w] and bias values

[b], are generated as one string of the MCIWO and PSO

algorithms. The length of the MCIWO/PSO string always

depends on the topology of the NN. The MCIWO/PSO

string can be represented as follows:

0. . .. . .1|fflfflfflffl{zfflfflfflffl}
v11

1. . .. . .1|fflfflfflffl{zfflfflfflffl}
v12

1. . .. . .0|fflfflfflffl{zfflfflfflffl}
v13

0. . .. . .1|fflfflfflffl{zfflfflfflffl}
v21

1. . .. . .0|fflfflfflffl{zfflfflfflffl}
v22

0. . .. . .0|fflfflfflffl{zfflfflfflffl}
v23

. . .. . .. . .. . . 0. . .. . .1|fflfflfflffl{zfflfflfflffl}
w11

1. . .. . .1|fflfflfflffl{zfflfflfflffl}
w12

0. . .. . .1|fflfflfflffl{zfflfflfflffl}
b1

0. . .. . .1|fflfflfflffl{zfflfflfflffl}
b2

The number of candidate NNs are considered as popu-

lation of MCIWO/PSO strings, and the MCIWO/PSO will

try to find the best one through search. To train the neural

network, batch-mode training has been implemented. Ini-

tially, a set of data has been used for training the network

with the help of evolutionary algorithms. The difference

(Dhk = hj - hi) between the initial and final joint angles of

all the 12 joints, Dh1, Dh2, Dh3, Dh4, Dh5, Dh6, Dh7, Dh8,

Dh9, Dh10, Dh11, Dh12, is considered as inputs to the neural

network. The adaptive gains of the PID controllers are

predicted at the output of the network. It is called adaptive

because the gains are varied for every instant of time based

on the amount of error in angular displacement received at

the input nodes.

Once the gains of the PID controllers are obtained, they

are used to tune the PID controller. The variation in the

RMS deviation of the angular displacement at the end of

each interval (�ijkf) and the beginning of the interval (�ijki)

is considered as the fitness (f) of each population and is

given as follows.

f ¼ 1

d

Xd

i¼1

1

h

Xb

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Xp

k¼1

aijkf � aijks
� �2

s" #

Fig. 2 Structure of the neural network

Fig. 3 Flow chart related to the

MCIWO-NN and PSO-NN

approaches

Neural Computing and Applications (2020) 32:3407–3421 3411
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where d, h and p are the number of training scenarios,

number of intervals considered in one step and number of

joints, respectively, for which the controllers are designed.

4 Optimization algorithms used

In the present research work, the authors have used two

nature-inspired optimization algorithms, namely a newly

proposed MCIWO and a well-established PSO to train the

structure of the neural network. The block diagram show-

ing the proposed adaptive PID control algorithm is given in

Fig. 4. The explanation related to the optimization algo-

rithms is presented in the subsequent sub-sections.

4.1 MCIWO algorithm

The MCIWO algorithm is developed after making a

modification to the standard invasive weed optimization

(IWO) algorithm, which is a nature-inspired stochastic

optimization algorithm proposed by Mehrabain and Lucas

[31] in 2006.

The standard procedure used by the IWO algorithm is

explained as follows:

1. Initially, a number of seeds are distributed randomly

over the search space, Si = (x1, x2 ……….xn), where n

is the number of selected variables, over the search

space. Subsequently, each seed occupies random

values for each variable in N-dimensional space.

2. The fitness of each individual seed is calculated after

incorporating them into the optimization problem. The

fittest seeds grow to flowering weeds and are able to

produce new seeds.

3. Each individual weed is ranked based on its fitness

value with respect to the subsequent weeds. Conse-

quently, each weed produces new seeds based on its

rank in the colony. The weeds which have attained

more resources in the field have a better chance of

producing more seeds. The number of seeds to be

produced by each weed varies linearly from Nmin to

Nmax which can be calculated using the following

equation.

Number of seeds ¼ Fi � Fworst

Fbest � Fworst

Nmax � Nminð Þ
þ Nmin

where Fi denotes the fitness of the ith weed. Fbest and

Fworst represent the best and worst fitness in the weed

colony. This mechanism ensures that every weed

considered in the generation takes part in the repro-

duction process.

4. Once the seeds are generated, they are distributed

normally over the search space with mean equal to zero

and varying standard deviation riter, which is described

by

riter ¼
itermax � iter

itermax � 1

� �m

r0 � rf
� �

þ rf

where iter and itermax represent the number of itera-

tions and maximum number of iterations, respectively,

r0 and rf indicate the initial and final standard devia-

tions, respectively, and m denotes the nonlinear mod-

ulation index. The modulation index is a critical

parameter which can influence the convergence per-

formance of the IWO algorithm.

5. Further, the fitness of each seed is calculated along

with their parent weed and the whole population is

ranked. Those weeds with less fitness are eliminated

from the colony through competition to make the

Fig. 4 Block diagram showing

the proposed adaptive PID

controller architecture

Table 1 Parameters related to the biped robot

Link Mass (kg) Inertia (kg m2) Length (m)

Lower limb of the leg 0.1190 0.00007440 0.093

Upper limb of the leg 0.0700 0.00012600 0.093

Ankle to foot 0.2460 0.00003300 0.033

Upper arm 0.1930 0.00008569 0.060

Lower arm 0.0592 0.00012000 0.060

Trunk 0.0975 0.00017700 0.122

Pelvis 0.1940 0.00671000 0.037
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number of weeds equal to the maximum weeds allowed

in the field.

6. The above process is repeated from step 2 until the

maximum number of iterations allowed by the user is

reached.

To enhance certain capabilities of IWO, such as

improving the pre-mature convergence and exploring the

better solution quickly by preventing the spread of the new

solution in the search space, cosine and chaotic variables are

introduced during the dispersal stage. In the present study,

Chebyshev map is used to generate the random number used

in the chaotic term and is given as follows.

Xkþ1 ¼ cos k cos�1 Xkð Þ
� �

Further, the cosine term-added spatial dispersal

scheme of the present study is given as follows.

riter ¼
itermax � iter

itermax � 1

� �m

� cos iterð Þj j � r0 � rf
� �

þ rf

Algorithm 1: MCIWO algorithm

1: Set the maximum and minimum value for each variable
2: Generate the random populations in N-dimensional space 
3: For iter=1: maximum number of generations 
4: Update the standard deviation after adding the ‘cos’ term
5: Calculate the maximum and minimum fitness in the colony 
6: Generate the new pioneer seeds and disperse them using chaotic variable 
7: Calculate the fitness of new seeds 
8: Once the population is reached maximum (pmax) 
9: Sort the population in descending order with their fitness, 

lower fitness weeds are eliminated
10: Go to next iteration

4.2 PSO algorithm

PSO is a swarm-based optimization algorithm developed

by Kennedy and Eberhart [32]. In PSO, each particle rep-

resents a candidate solution to the problem and the

implementation of the algorithm is relatively easy. Initially,

the position of the particle i is represented by Xi = (xi1, xi2,

xi3………. xiD), which denotes a potential solution to the

Fig. 5 Graph showing the convergence of the fitness with different

optimization algorithms

Fig. 6 Graph showing the fitness value by varying the hidden neurons

with different adaptive algorithms

Table 2 Parametric settings of

the ascending and descending

the slope algorithm

MCIWO PSO

Parameter Setting value Parameter Setting value

Ascending Descending Ascending Descending

rinitial 4% 3% C1 1.5 1.5

rfinal 0.000001 0.000001 C2 2.0 2.0

n 3 4 w 1.0 1.0

Smin 1 1 popsize 50 70

Smax 6 8

npopinitial 5 5

npopfinal 8 10
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problem in D-dimensional space. Each particle is having a

memory to store its previous best position Pbest, and it is

calculated based on its velocity along each dimension,

denoted as Vi = (vi1, vi2, vi3………. viD).

Once the initial swarm is generated, the fitness value of

the problem is denoted in terms of the average error in

angular position for all the joints of the biped robot, and

will be calculated for all the swarms. The particle with best

fitness is designated as Pbest. Further, the Gbest is calculated

from the available local best swarm. After calculating the

two best positions, the velocity and the new position of the

particles in the swarm can be calculated by using the fol-

lowing two equations.

(a)                     (b)

(c)                     (d)

(e)                     (f)
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Fig. 7 Error at various joints of

the biped robot while ascending

the slope surface. a Joint 2,

b Joint 3, c Joint 4, d Joint 5,

e Joint 8, f Joint 9, g Joint 10

and h Joint 11
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Vtþ1
i;D ¼ W � Vt

i;D þ C1 � rand1 � Pt
i;D � Xt

i;D

� 	
þ C2

� rand2 � Gt
i;D � Xt

i;D

� 	

Xtþ1
i;D ¼ Xt

i;D þ Vtþ1
i;D i ¼ 1; 2; . . .. . .. . .n

where W is the inertia weight, C1 and C2 determine the rel-

ative influence of the social and cognition components

(learning factors), while rand1 and rand2 denote the two

random numbers uniformly distributed in the interval [0, 1].

Algorithm 2: PSO algorithm

1: Set the maximum and minimum value for each variable
2: Generate the swarm randomly in D-dimensional space 
3: For i=1:population size

Calculate the fitness value
If the fitness is better than the previous Pbest
Set current Pbest. 

    end 
4: Choose the best fitness among all the particles that is called Gbest. 
5: For i=1:population size 

Calculate the new velocity using the velocity equation 
    Update the new position of the particle using the position equation. 

End
6: Repeat the above process until it reaches the termination criterion.

5 Results and discussion

The purpose of the research work is twofold: firstly to

illustrate the good quality results attained by the adaptive

PID controller tuned by the nature-inspired optimization

algorithm to control the biped robot walking on a slope

surface, and secondly, to carry out analysis on various

performance measures of the controller and the behaviour

of the biped robot, such as

• An error study has been carried out for the selected

nature-inspired algorithms on their capability to tune

the gains of the PID controller.

• Analysis is carried out in terms of the position of ZMP

and torque required at various joints of the biped robot

for both the optimization algorithms.

• A comparative study has been carried out on the basis

of the dynamic balance margin values obtained for

ascending and descending the sloping surfaces using the

said algorithms.

• Finally, the gait angles obtained by the best nature-

inspired optimization algorithm are fed to the real biped

robot for testing.

The parameters related to the robot, that is, length, mass

and inertia of the link, are given in Table 1. The results of

convergence for the three approaches, namely MCIWO-NN,
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Fig. 8 Torque required at

various joints of the swing and
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ascending the sloping surface
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Fig. 10 Error at various joints of the biped robot while descending the slope surface a Joint 2, b Joint 3, c Joint 4, d Joint 5, e Joint 8, f Joint 9,

g Joint 10 and h Joint 11
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PSO-NN and BPNN, are given in Fig. 5. From this test, it

can be observed that the MCIWO has shown better perfor-

mance in terms of convergence of the solution when com-

pared with the PSO and steepest descent method. However,

both the MCIWO and PSO are seen to perform better than

the steepest descent algorithm. It may be due to the fact that

the solutions obtained from the back-propagation algorithm

are prone to be stuck in the local minimum.

In the present study, an attempt is made to tune the

architecture of the NNs that provide the adaptive gains for

the PID controller with the help of two nature-inspired

algorithms MCIWO and PSO. The graph showing the effect

of variation of neurons in the hidden layer on the perfor-

mance of the controllers is shown in Fig. 6. The study is

conducted by varying the number of hidden neurons between

14 and 22. From Fig. 6, it has been observed that the number

of hidden neurons that are responsible for the better perfor-

mance of MCIWO-NN and PSO-NN approach is seen to be

equal to 18 and 16, respectively. The number of input and

output neurons that correspond to the input and output layers

is observed to be equal to 12 and 36, respectively. Therefore,

the connecting weights for the MCIWO-NN and PSO-NN

are found to be equal to 864 (12 9 18 ? 18 9 36) and 768

(12 9 16 ? 16 9 36). Alongside, two bias values are

introduced at hidden and output layers of the network.

Therefore, the total number of variables required to optimize

the structure of NN with MCIWO and PSO is found to be

equal to 866 and 770, respectively.

The parameter setting of these algorithms that are used

to train the NN, which produce the gains of the controller

for the robot while walking on ascending and descending

the slope, is illustrated in Table 2. As nature-inspired

algorithms are used in this study, the program is run for a

minimum no. of generations (Gen) equal to 30, to set the

other parameters of the algorithm. Further to obtain the

final convergence, the two algorithms are terminated when

the maximum number of fitness function evaluations is

equal to 100. Further, each algorithm is run for ten times to

determine its stochastic nature.

All the algorithms are implemented in the MATLAB

2013, and the simulations are carried out on a Dell Preci-

sion T1700 computer, having the following specifications:

• Processor: Intel(R) Xeon(R) CPU E3-1226 v3 @

3.30 GHz,

• RAM: 8 GB,

• Operating System: Windows 7 Professional, 64-bit.

The aim of the present study is to illustrate the beha-

viour of two nature-inspired metaheuristic-based opti-

mization algorithms, i.e. MCIWO and PSO, on tuning the

weights of the neural network. Further, the neural network

controller is used to provide adaptive gains for the simple

PID controller based on the error signal received at the
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Fig. 11 Torque required at various joints of the swing and stand leg
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input of NN. The performance of the MCIWO-NN- and

PSO-NN-based controllers is compared in terms of error in

angular position, torque required at each joint of the biped

robot, variation of ZMP and DBM of the biped robot while

ascending and descending the sloping surface.

5.1 Ascending the slope surface

Figure 7 shows the variation of angular error at various

joints of the biped robot after using the MCIWO-NN and

PSO-NN adaptive PID controllers. From the error plots, it

can be observed that the error for all the joints of the biped

robot has shown a certain amount of overshoot initially for

both the said cases. Then the overshoot slowly decreases

and coincides with zero. Further, it has also been observed

that MCIWO-NN is seen to converge quickly when com-

pared with the PSO-NN-based PID controller.

Later on, a comparative study has been made on the

torque required by the two-legged robot to move each

motor from one position to the next and is shown in Fig. 8.

It can be observed that the motor mounted on joint 3 (that

is, hip joint of the swing leg) has consumed more torque

when compared with the other joint motors of the biped

robot. It may be due to the fact that while shifting the leg,

the hip joint carries other links and joint motors of the

biped robot. Moreover, it has also been observed that PSO-

NN-based PID controller is found to consume more torque

when compared with the MCIWO-NN PID controller. It

might have happened due to the large angular displacement

obtained at that particular joint. This was also concluded

from error plots in which the convergence took more time

when compared with the MCIWO-NN approach (ref.

Fig. 5(b)).

Further, a comparative study has also been carried out

on the position of ZMP (that is, both in X- and Y-directions)

obtained for the controlled gait determined by the

MCIWO-NN- and PSO-NN-adaptive torque-based PID

controllers (ref. Fig. 9). It can be observed that the ZMP is

found to lie inside the foot support polygon for both the

said controllers when the two-legged robot is ascending the

slope surface. But, when compared to PSO-NN-based PID

controller, the ZMP point of MCIWO-NN-based PID

controller is seen to lie close to the centre of the foot. It is

important to mention that when the ZMP is close to the

centre of the foot, the robot is found to be more dynami-

cally balanced. From this, it can be concluded that

MCIWO-NN-based PID controller is found to derive more

dynamically balanced gaits when compared with the PSO-

NN-based PID controller.

5.2 Descending the slope surface

Like ascending the slope surface, analysis is also carried

out on descending the slope surface. The variation of

angular error at various joints of the biped robot is shown

in Fig. 10. Similar to the ascending case, here also initially

the error is seen to overshoot and then slowly settles down

and coincides with zero. In descending case also the error

is found to settle down and coincides quickly with zero in

the MCIWO-NN-based PID controller when compared

with PSO-NN-based PID controller.

Figure 11 shows the torque required to move the motors

at various joints of the biped robot while descending the

slope. Similar observation as that of ascending the slope,

regarding the torque required hip joint, is conceived during

descending the slope. It is also observed that the torque

required for all the joints is less when the robot is

descending the slope when compared with ascending the

slope. This might have happened due to the smaller angular

displacements of the links when compared with the

ascending case.

The variation of ZMP for the biped robot while

descending the slope surface is given in Fig. 12. In this

case also MCIWO-NN torque-based PID controller is
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observed to produce dynamically more balanced gaits

when compared with the PSO-NN-based controller. The

reason for this is also same as the one explained for the

ascending case. Moreover, the DBM values obtained by the

MCIWO-NN adaptive PID controller are seen to be high

when compared with the PSO-NN adaptive PID controller

in both X- and Y-directions. This may be due to the global

optimal nature induced in the MCIWO by allowing all the

weeds to participate in the reproduction process. Based on

the above process, fitter plants will produce more seeds

than less-fit plants, which is the reason to improve the

convergence of the algorithm. Another important feature of

MCIWO is that the weeds reproduce new seeds indepen-

dently without mating and contribute towards the genera-

tion of fit plants. Further, additional experiments are

conducted to study the advantage of MCIWO-NN over

PSO-NN by varying the angle of slope from 0� to 5� (refer

to Fig. 13). It can be observed that the MCIWO-NN-based

PID controller has consistently outperformed PSO-NN-

based PID controller in terms of dynamic balance margin

of the biped robot while negotiating the slope surface.

Fig. 15 Biped robot walking on different surfaces a ascending of the slope surface; and b descending of the slope surface
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5.3 Comparative study

A comparative study has been conducted in terms of DBM

in X- and Y-directions while ascending and descending the

slope surfaces. From Fig. 14a, b, it can be observed that the

DBM is high when the robot is ascending the slope surface

when compared with descending the slope surface.

From the above analysis, it has been concluded that

MCIWO-NN-based PID controller is found to perform

better than the PSO-NN-based PID controller. The con-

trolled gait obtained using the best controller (that is,

MCIWO-NN-based PID controller) is fed to the real robot

to test the performance of the controller. From Fig. 15a, b,

it can be observed that the two-legged robot has success-

fully performed walk while ascending and descending the

slope, respectively. Further, a qualitative comparison has

been performed with other approaches provided in

[1, 2, 7, 33–36]. They considered a 7-DOF biped robot and

used analytical approach to generate the gaits of the robot.

In the present approach, the authors have not only con-

sidered the gait generation issues of the biped robot, but

also designed a PID controller to execute the generated gait

in a smooth manner. Moreover, in [18, 26–29], some

researchers had developed the ZMP-based PID controllers,

which are an indirect way of controlling the motors

mounted on the joints of the robot, whereas in the present

study a torque-based PID controller directly deals with the

error in angular displacements of the motors. Further, in

[20–25], the researchers had used evolutionary algorithms

that provide only one set of gain values for the PID con-

troller to tune the gains of the same. However, in the

present research, an evolutionary algorithm trained NN is

used to predict the gains of the PID controller in an

adaptive manner to suit the magnitude of error signals. The

said algorithm is tested on a real biped robot.

6 Conclusion

In general, tuning of the PID controller is a process of

determining the optimal values of its gains before the start

of the run. Compared to other controllers, the simplified

PID controllers are more popular and powerful control

systems used in industrial and non-industrial applications.

In the present research paper, an attempt is made to

develop an adaptive torque-based PID controller with the

help of MCIWO-NN and PSO-NN algorithms. The results

of these adaptive algorithms are analysed in terms of error,

torque required for each joint, variation of ZMP and DBM

of the biped robot in order to obtain the best suitable al-

gorithm for this purpose. In this analysis, the online

response of the MCIWO-NN-based control algorithm is

seen to be better when compared with the PSO-NN-based

control algorithm. This might have happened due to the

introduction of cosine and chaotic variables in the IWO

algorithm. Further, the gait angles obtained by the best

adaptive PID controller (i.e. MCIWO-NN) are fed to the

real robot. It has been observed that the real biped robot has

successfully performed walk on ascending and descending

the slope surface.
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