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Abstract
This study aimed to develop a new methodology for evaluating and benchmarking a multi-agent learning neural network

and Bayesian model for real-time skin detectors based on Internet of things (IoT) by using multi-criteria decision-making

(MCDM). The novelty of this work is in the use of an evaluation matrix for the performance evaluation of real-time skin

detectors that are based on IoT. Nevertheless, an issue with the performance evaluation of real-time skin detector

approaches is the determination of sensible criteria for performance metrics and the trade-off amongst them on the basis of

different colour spaces. An experiment was conducted on the basis of three phases. In the first phase, a real-time camera

based on cloud IoT was used to gather different caption images. The second phase could be divided into two stages. In the

first stage, a skin detection approach was developed by applying multi-agent learning based on different colour spaces. This

stage aimed to create a decision matrix of various colour spaces and three groups of criteria (i.e. reliability, time

complexity and error rate within a dataset) for testing and evaluating the developed skin detection approaches. In the

second stage, Pearson rules were utilised to calculate the correlation between the criteria in order to make sure, either needs

to use all of the criteria in decision matrix and the criteria facts that affect the behaviour of each criterion, in order to make

sure that use all the criteria in evaluation as multidimensional measurements or not. In the third phase, the MCDM method

was used by integrating between a technique in order of preference by similarity to the ideal solution and multi-layer

analytic hierarchy process to benchmark numerous real-time IoT skin detection approaches based on the performed

decision matrix from the second phase. Three groups of findings were obtained. Firstly, (1) statistically significant

differences were found between the criteria that emphasise the need to use all of the criteria in evaluation. (2) The

behaviour of the criteria in all scenarios was affected by the distribution of threshold values for each criterion based on the

different colour spaces used. Therefore, the differences in the behaviour of criteria that highlight the use of the criteria in

evaluation were included as multidimensional measurements. Secondly, an overall comparison of external and internal

aggregation values in selecting the best colour space, namely the normalised RGB at the sixth threshold, was discussed.

Thirdly, (1) the YIQ colour space had the lowest value and was the worst case, whereas the normalised RGB had the

highest value and was the most recommended of all spaces. (2) The lowest threshold was obtained at 0.5, whereas the best

value was 0.9.
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1 Introduction

The Internet of things (IoT) is a rapidly developing inno-

vation that substantially affects the way humans live [1].

IoT is ‘a global infrastructure for the information society,

enabling advanced services by interconnecting (physical

and virtual) things based on existing and evolving inter-

operable information and communication technologies’

[2–6]. IoT provides capabilities that authorise the com-

munication of devices with one another and the automatic

real-time exchange of information [7]. IoT is widely used

in several fields for different applications [8–11]. Image

processing is an IoT application that is reaching a distinct

level and becoming a major part of people’s lives. IoT

applications have created many trends in the image pro-

cessing field [12]. Consequently, IoT and image processing

have been independently used in different applications [5].

IoT provides the ease of monitoring and gaining image data

through the Internet [13]. The need for high-quality image

data is increasing to the extent that real-time skin detection

is required [9, 14]. Real-time skin detection within IoT is

implemented on the basis of artificial intelligence (AI)

algorithms, which can detect human skin by using cameras

in real time [15]. Thus, real-time skin detection within IoT

based on AI algorithms involves functional and efficient

mechanisms during segmentation, and many studies have

applied various adaptability strategies for soft computing

techniques [16, 17]. Real-time skin detection within IoT is

important in various applications, such as gesture analysis,

facial analysis, human–machine interface, image content

filter, video surveillance, annotation and colour-balancing

applications [16, 18]. With the rapid development of skin

detection approaches in different applications and their

recent integration with IoT, finding a reliable, effective and

comprehensive evaluation and benchmarking methodolo-

gies has become essential. Evaluating the performance of

an application based on IoT services is a challenge because

many considerations and factors are included. The acquired

data in IoT may not meet the requirements of systems

because of the following factors. Firstly, data in practice

are commonly noisy because of the environmental noise

and sensing devices’ deviation and limitation of sensing

accuracy. Deviation and sensing accuracy may differ from

device to device (D2D). Secondly, data may be corrupted

by malicious data. Thirdly, data can be incomplete; as

such, the numerical limit of sensor devices and constrained

sensing cost must be considered. Fourthly, even accurate

and complete data can be outdated for the demand [14, 19].

Many studies have dealt with different criteria commonly

used in IoT-based skin detection. For example, reliability

and time complexity have been utilised [19, 20], whereas

reliability criteria have been considered only to evaluate

results in a system-based IoT [21, 22]. According to [23],

the design of any skin detection approach should adapt to

the criteria (reliability/time complexity/dataset). Early

studies emphasised the problems of skin detection evalu-

ation and benchmarking and mentioned three general

requirements, namely (1) reliability (i.e. obtained skin

detection rate and false positives [FPs]), (2) time com-

plexity and (3) datasets (i.e. obtained equal error rate from

a histogram classifier). With the aid of contrast, the time-

consuming observation of histogram model performance

has been observed. In another study [24], the dataset cri-

terion is highlighted by comparing two algorithms despite

the significance of the remaining criteria. For skin seg-

mentation images of nonskin and skin pixels, the dataset is

presented by training and testing. However, the classifier

that creates output images is compared pixelwise with the

ground truth of skin segmentation. Consistent with [25],

our study reports a skin detection algorithm examined with

images from independent databases. In general, image size

must be considered for the evaluation of time complexity.

This research shows that increasing the image accuracy

results in the enhancement of training data, thereby

increasing the time complexity of the experiment. Relia-

bility is a prerequisite for the evaluation of skin detection

[26]. Studies have emphasised that the reliability criterion

primarily depends on accuracy, precision and recall of

image colour despite the significance of the remaining

criteria. Nonetheless, further high-quality assessment of

skin detection is needed. Two parameters, namely relia-

bility and dataset, have been reported [27]. A relationship

between reliability and dataset criteria has also been

described. In particular, the computation of reliability

depends on a large dataset with a manually described

ground truth by using an ROC curve based on the testing

methodology. By contrast, time complexity and reliability

have been studied, and their effects on each other have

been emphasised [28]. Some studies have argued that their

relationship depends on an adopted algorithm’s complex

background, whereas other studies have highlighted that

obtaining high accuracy and excellent quality throughout

the duration of skin detection is based on processor com-

putation features. A previous study [29] proposed three

individually evaluated criteria for skin detection and dis-

cussed their effects. In another study [24], the basic criteria

for reliability computation (i.e. reliability group) include

training, testing (i.e. dataset group) and time complexity

which are used to evaluate and benchmark skin detection

approaches. Consequently, the major challenge in creating

a skin detection approach is the conflict between skin

detection evaluation criteria. Therefore, these requirements

must be considered by evaluation and benchmarking. In

other studies [23–26], all the proposed criteria have been

adopted regardless of the trade-off amongst them. These
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studies have also evaluated the reliability criterion for a

given time complexity dependent on diverse datasets and

shown that the percentage of reliability varies in terms of

the adopted algorithm. Therefore, the reliability criterion

no longer has a constant level. The variety in time com-

plexity is stated amongst algorithms that are dependent on

the CPU time [30]. For any image within the scope of the

present research, processing time is an important factor in

evaluation process. Therefore, calculations must have the

highest percentage of reliability when it is compared with

the lowest time complexity of the output image. A dataset

can be classified into two, namely training and validation

data classes, to find a minimum detection error [31]. Thus,

these studies confirmed the evaluation process for each

criterion based on independent guidelines.

Previous studies also suggested the reliability criterion

but did not refer to a specific level during the comparison

between different criteria. Therefore, conflicting criteria or

trade-off problems amongst reliability, time complexity

and error rate within a dataset of a skin detector approach

are clearly reported in prior studies [27]. Notably, problems

on evaluation in skin detection are defined as multi-crite-

rion problems with conflicting criteria. However, the fol-

lowing must be ensured. (1) All the available criteria used

are in evaluation matters, and (2) all the criteria in evalu-

ation are used as multidimensional measurements or not.

Thus, the performance of criteria is highlighted by finding

the relationship between criteria, calculating the correlation

coefficient and identifying the behaviour of different cri-

teria based on different thresholds with various colour

spaces, and these processes are necessary to design a new

methodology for the testing, evaluating and benchmarking

of real-time IoT skin detection approaches. Moreover, the

new methodology should be flexible and capable of han-

dling the conflicting criterion problems after the current

criterion needs are maintained [32–34]. Therefore, using

structured and explicit approaches in decisions that involve

multiple attributes can improve the quality of decision-

making [35–37], and a set of techniques, which is classified

under the collective heading multiple criteria decision

analysis (MCDA), is useful for this purpose. MCDA is a

sub-discipline of operational research and explicitly con-

siders multiple criteria in decision-making conditions that

occur in various actual situations in different domains [2].

Several useful techniques can be utilised to address multi-

attribute decision-making or multi-criterion decision-mak-

ing (MADM/MCDM) problems in the real world [38–42].

These methods not only help decision-makers (DMs)

organise problems but also analyse, rank and score alter-

natives [2, 3, 43, 44]. Accordingly, the scoring of a suit-

able alternative should be performed. MADM/MCDM

methods can solve benchmarking problems for real-time

IoT skin detectors. In any MADM/MCDM benchmarking,

fundamental terms should be defined in a decision matrix

form that includes m alternatives and n criteria. A cross-

over between all criteria and alternatives is represented by

xij. Ultimately, we obtain the (xij)_(m*n) matrix, which is

expressed as follows:

where A1;A2; . . .;Am are the possible alternatives that

decision-makers must score (i.e. approaches of skin

detection); C1;C2; . . .;Cn are the criteria against which the

overall performance of all alternatives is measured (i.e.

reliability, time complexity and error rate within the data

set); W1;W2; . . .;Wn are the weight of the criteria; xij is the

alternative rating and Ai with respect to criterion Cj; andWj

is the weight of criterion Cj. Certain techniques, such as

normalisation, use of maximisation indicators and addition

of weights, need to be finished to rank each alternative

[45, 46].

In this study, we present a new methodology to aid the

decision-making process for evaluating and benchmarking

IoT real-time skin detectors based on a multi-agent learn-

ing neural network and a Bayesian model through multi-

criterion analysis. The novelty of this study is in the util-

isation of an evaluation matrix for the performance eval-

uation of real-time skin detectors that are based on IoT.

The remaining sections of this paper are organised as fol-

lows. In Sect. 2, we describe the methodology. In Sect. 3,

we present the results and discussion. In Sect. 4, we discuss

the validation of the results of the proposed methodology.

In Sect. 5, we draw our conclusions.

2 Methodology

The proposed methodology is conducted on the basis of

three phases (Fig. 1). In the first phase, data are collected

from a real-time camera within cloud IoT to gather different

images. In the second phase, the process adaptation of the

best previous case of the skin detector is identified using

multi-agent learning, depending on different colour spaces,

to create a dataset of different colour space samples for

benchmarking and to perform a crossover between the

adopted skin detector and the multi-evaluation group’s

criteria (i.e. reliability, time complexity and error rate

within dataset) of the groups gathered for decision-making.

The evaluation of the adopted skin detector and the testing

are dependent on three groups of criteria. This phase is also

conducted to analyse the performance between different
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criteria based on the data of the criteria. This phase mainly

aims to determine the importance of finding the relationship

between the different data of the criteria in this phase. This

operation is implemented to verify the existing statistical

differences between them; otherwise, only one is used. The

Pearson formula is adapted to calculate the correlation

coefficient between various criteria, to investigate the

relationship between the criteria and determine their degree

of correlation. A performance analysis is conducted to

evaluate and compare the criteria and identify the factors

that affect their behaviour. In the third phase, a new MCDM

approach is developed and subsequently used with the

integrated TOPSIS (technique in order of preference by

similarity to the ideal solution) and ML-AHP (multi-layer-

analytic hierarchy process) as a basis for benchmarking

several skin detection approaches by using the performed

decision matrix outcome from the second phase.

2.1 Data collection phase

This phase includes a range of devices and sensors used to

monitor and capture images within the IoT system. This

system monitors and captures images across a range of

cameras when motion is detected. Data are collected in the

form of images by cameras scattered in specific locations.

These cameras are connected to the Internet and send the

captured images to the main centre, which is represented

by a central server [47–49].

The server collects the data received from the surveil-

lance camera to be processed and configured and then

sends the data to terminals via access points deployed in

certain locations [50–52]. These routers transfer data

through Wi-Fi networks [2, 52, 53]. Computers receive the

data to be stored and then perform the required processing.

Subsequently, a computer vision module is applied to the

captured images to reveal the skin, and skin detector

approaches are evaluated and benchmarked in the suc-

ceeding phase.

2.2 Identification and performance phase

This phase includes two main stages, namely identification

of a decision matrix and performance of the decision

matrix. These stages are discussed in detail in the following

subsections.

2.2.1 Identification of the decision matrix

Ascertaining skin detector approaches is an important stage

in the creation of the decision matrix and comprises three

main steps: developing the skin detector by using different

colour spaces, conducting a crossover between different

criteria with developed skin detector engines and evaluat-

ing the developed skin detector and testing it against the

criteria of the three groups. This stage establishes the

decision matrix from a practical aspect, which is explored

in detail in the following subsections.

2.2.1.1 Development of skin detector by using multi-agent
learning dependent on different colour spaces This sec-

tion highlights a case study adopted in the current work.

The case study is developed on the basis of the selected

colour spaces. This step is important in completing the
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Fig. 1 Methodology of the experimental phases for evaluating and

benchmarking the real-time IoT skin detector
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identification and performance phase. The development of

multi-agent learning technique for the skin detector is

discussed in detail.

2.2.1.1.1 Multi-agent learning technique In a new

method adopted in a previous study [54], multi-agent

learning is used to resolve the three key issues in skin

detection. This study solves a skin-like problem by utilising

the most appropriate method in parametric skin modelling

(NN model) with a segment adjacent-nested (SAN) tech-

nique. By contrast, the present work involves the most

appropriate nonparametric method in skin modelling

(Bayesian model) with a grouping histogram (GH) tech-

nique to resolve lighting condition problems. Subsequently,

the group combines the two models to solve the reflection

problem with water and glass. The NN method resolves

skin problems. Conversely, the Bayesian model fails to

resolve the lighting condition entirely. Therefore, this

experiment is conducted using different colour spaces with

the Bayesian model to improve results in a particular

model.

2.2.1.1.2 Adapted colour space Fourteen samples of dif-

ferent colour spaces obtained from previous studies are used

in the present study [55]. The procedure applied to the colour

groups provides a solution to the lighting condition problem,

which depends on the removal of the illumination compo-

nent from these samples by using the Bayesian model of the

proposed multi-agent learning technique. Colour spaces are

widely used in studies on skin detection because they

address many problems in this field [32, 54, 56–64]. In our

study, each colour space is built depending on the separation

of the illumination element from the chroma element, and

this process is a key step in the development phase. There-

fore, the luminance element is ignored, whereas the chroma

element is retained because it is necessary to determine the

skin colour during skin detection. Hence, skin detection is

conducted because of the elimination of the luminance

component, which is an important aspect in the size reduc-

tion in skin clusters in a colour space [55, 65].

Different colour spaces are discussed in detail in the

following section.

• Normalised RGB

Different colour spaces can be altered to represent RGB

easily. The components of RGB can represent colour and

luminance and are subsequently used to represent skin

colour in their chromatic colour space. Luminance can be

isolated from the colour space through normalisation.

Chromatic colours, which are also known as ‘pure’ colours,

in the absence of luminance are defined as follows:

R ¼ R= Rþ Gþ Bð Þ; G ¼ G= Rþ Gþ Bð Þ:

The process removes B, which represents a component

of luminance [66–68].

• YCbCr

YCbCr is ‘an encoded nonlinear RGB signal generally

used by European television studios and utilised for image

compression patterns’. This colour space is a clear option

for skin detection because it efficiently separates luminance

and easily converts from RGB and vice versa.

Y ¼ 0:299Rþ 0:587Gþ 0:114B; Cb ¼ B� Y;
Cr ¼ R� Y

Y represents the excluded luminance component whilst

using consistency ratio (Cr) and Cb only [69, 70].

• YCgCr

YCgCr is ‘a colour space derived from YCgCr and has a

Y channel that provides the luminous component, that is,

light intensity; meanwhile, Cg and Cr channels represent

the green and red differences in chromaticity components,

respectively’. This colour space is used for digital video

encoding. Y is averted, and only the chrominance fraction

is adopted in the proposed integrated approach [71, 72].

The YCgCr colour space is generated through the

transformation of the RGB values by using the following

equations:

Y ¼ 16þ 65:481Rþ 128:553Gþ 24:966B;

Cg ¼ 128� 81:085Rþ 112G� 30:915B;

Cr ¼ 128þ 112R� 93:768G� 18:214B:

• YCgCb

YCgCb is ‘another colour space derived from YCbCr,

and the RGB image determines the fitting skin region for

each Y as the luminance component and the two chromi-

nances as Cg and Cb’. The luminescent factor is excluded,

whereas the chrominance element is retained. If the colour

components of a pixel are within the boundaries of a fitting

skin region, then this pixel is classified as a skin pixel. The

Cg–Cb colour space for skin tone detection is represented

by a circular model [73].

Therefore, the circular model for the skin tone in the

transformed Cg–Cb space is portrayed as follows:

x� Cgð Þ2þ y� Cbð Þ2

12:252
;

x ¼ 12:25 cosþ107

y ¼ 12:25 sin�110

� �
:

• YUV

In this colour space, Y is ‘the luminance component, and

UV is represented as the chrominance component’. In
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YUV, a colour space removes the luminance-related

component Y to enhance the performance of the skin

detection process. As such, the definition of the luminance

component in this colour space is a good step towards

obtaining invariance to luminance. Human vision is critical

to the luminance and chrominance factors in images. The

colour space confirms this sensitivity by increasing the

bandwidth of the luminance to be close to human percep-

tion. YUV is derived from the original RGB source. Thus,

this colour space can be converted to RGB through linear

transformations [72, 74].

The YUV colour space is generated by the transforma-

tion of the RGB values by using the following equations:

Y ¼ þ0:299Rþ 0:587Gþ 0:114B;

U ¼ �0:14713R� 0:28886Gþ 0:436B;

V ¼ þ0:615R� 0:51499G� 0:10001B:

• YIQ

YIQ is nearly identical to the YUV colour space and

composed of luminance Y and chrominance components I

and Q. These components are represented as the second

pair located on the axes of the diagram (Fig. 2). As such, I

and Q denote various coordinate systems on the self-same

plane. Thus, these components can be represented in the

RGB values, where I is matched to range B, and Q is

matched to range G. This colour space can also be con-

verted to the RGB format through linear transformations

and is represented by the following expressions [72, 75],

which are used to transform RGB to the YIQ model:

Y ¼ 0:299R þ 0:587G þ 0:114B;

I ¼ 0:595716R� 0:274453G� 0:321263B;

Q ¼ 0:211456R � 0:522591G þ 0:311134B:

• HSV, HSI and HSL

‘Perceptual colour spaces are popular samples in skin

detection’. In these colour spaces, I, V and L represent

luminance components, and H and S denote chrominance

components. Three colour spaces separate the components’

saturation S, hue H and luminance components I, V and L.

The colour spaces are distortions of the RGB colour cube

and can be mapped from the RGB space by nonlinear

transformation. Moreover, these colour spaces allow users

to identify the boundary of the skin colour class intuitively

in terms of hue and saturation, and this capability of colour

spaces is considered to be the most important feature of

these samples. ‘As I, V, or L provides the information of

brightness, these components are usually dropped to miti-

gate the illumination dependency of skin colour’ [75–77].

• IHLS

IHLS is ‘also known as improved hue, luminance and

saturation (IHLS) colour space’. It is enhanced with respect

to identical colour spaces, such as HLS, HSI and HSV,

through normalisation to remove the luminance compo-

nent. Therefore, this method overcomes all difficulties

limited by colour components, thereby providing a good

distribution of the features of the space [78, 79].

• CIEXYZ

CIEXYZ is ‘one of the perceptual uniformity systems

that show that a small perturbation to a component value is

approximately equally perceptible across the range of a

value’. The Commission International de l’Eclairage (CIE)

colour system has been dependent on the CIE primaries

since 1931. The CIEXYZ colour space forms a cone-

shaped space with Y as the luminance component and X

and Z as chrominance components. The luminance com-

ponent of each colour space is dropped to form a 2D col-

our. Therefore, the values of each component of the colour

spaces are adapted to the range of 0–255 and quantised in

256 levels [72, 80].

• CIELAB

CIELAB is ‘a reasonably perceptually uniform colour

space proposed by the CIE’. This colour space has two

Case study

Artificial neural network with
segment adjacent nested (RGB) 

Bayesian model with grouping 
histogram 

GH (NormRGB)

GH (YCbCr ) 

GH (YCgCr) 

GH (YCgCb)  

GH (YUV)  

GH (YIQ)  

GH (HSI, HSV, and HSL) 

GH (IHLS) 

GH (CIEXUZ)  

GH (CIELab) 

GH (CIELuv) 

GH (CIELch) 

Fig. 2 Proposed skin detectors based on ANN methods involving

SAN and a Bayesian model by using GH with different 12 colour

spaces classes
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components, which are presented as a and b values

according to the 1976 CIELAB colour space. Thus, a and b

are the chrominance components in the colour space, and L

is the luminance component. In general, CIELAB does not

use the luminance component of the colour because it

varies frequently across the human skin. Typically,

chrominance is used to separate the skin from surrounding

nonskin regions [81].

• CIELUV

CIELUV is ‘another colour space derived from a per-

ceptually uniform colour space proposed by the CIE’. V

and U are the chrominance components, and L is the

luminance component. In general, the nonlinear transfor-

mation of CIELUV and CIELAB is applied to correct the

problem that the RGB colour space is not perceptually

uniform. Thus, the CIELUV colour space is a suit-

able sample when the luminance component is disregarded

[69, 82].

• CIELCH

CIELCH is ‘a colour space that is also derived from

perceptual uniformity systems created by CIE in which L

represents luminance, and c and h denote the chrominance

components’. Conducting Utans for the first time usually

causes the illumination components to drop, resulting in

multiple errors in the light cluster. Thus, lighting pixels

depend on illumination components, and dark clusters

(absence of light) perform well even when illumination

components are omitted. The needed minimal components

cannot be achieved by utilising Utans, possibly mitigating

the features, training and testing on the network [83].

Thereafter, different colour spaces developed using AI

models based on the literature are adopted in the present

work. The total number of colour spaces is 14, which is

divided into 12 classes, namely normalised RGB, YCbCr,

YCgCr, YCgCb, YUV, YIQ, (HSI, HSV, HSL), IHLS,

CIEXYZ, CIELAB, CIELUV and CIELCH. The reason is

that the colour space class of HSI, HSL and HSV, where

luminance element is deleted from each colour space (I, L

and V) and the chroma element (HS), is retained, which is

common between colour space groups. Thus, the

processing is applied only once. This process aims to

acquire different alternatives (Fig. 2).

2.2.1.1.3 Training operation of a neural network model

In a previous study [54], the case study applies a neural

network model in the proposed multi-agent learning of the

skin detector that comprises three main layers, namely

input, hidden and output layers. The architecture of this

model comprises nine neurons in the input layer, four

neurons in the hidden layer and a single neuron in the

output layer. The model aims to conduct segmentation for

different samples and is implemented using the RGB col-

our space, which is considered an essential vector for an

image sample. The dataset is distributed into three parts,

namely 1200 samples for training, 300 samples for vali-

dation and 300 samples for testing. A validation process is

implemented in the set-up of the training process, which is

conducted to calculate the mean square error (MSE) and

represent the performance function of the ANN model.

The training operation for ANN adopts the back-prop-

agation pattern, which is a suitable way to train the feed-

forward neural network model. The training operation is

achieved by 331,282,971 pixels based on 1200 images

from the dataset of the skin and nonskin pixels. The default

training function adopted a Levenberg–Marquardt

approach in the back-propagation function (trainlm) [84].

The feed-forward network training aims to create a net-

work object. The feed-forward operation requires five steps

to generate a network object. In the first step, an array for

input vectors is created to implement a segment adjacent-

nested (SAN) technique. In the second step, the probability

elements are identified as skin and nonskin indexes by

creating an array that includes an output sample considered

to be a target vector. In the third step, the 114 creations of

an array identify the hidden layer size in the network. In the

fourth step, the cell array, including the names of transfer

functions used in two layers, is determined.

The default transfer function is used for hidden and

output layers to achieve three layers of the network only.

The hyperbolic tangent sigmoid (tansig) is utilised for the

hidden layer, whilst the linear transfer function (purelin) is

employed for the output layer. In the fifth step, the name of

Table 1 List of parameters that

were used for the three layers of

the ANN-based skin detector

Name of parameter Input layer Hidden layer Output layer

Number of nodes 9 4 1

Training function trainlm (Levenberg–Marquardt algorithm)

Number of epochs 1200

Performance function MSE (mean square error)

Transfer function Zero Tansig (hyperbolic tangent sigmoid) Purelin (pure linear)

Activation function Deactivated Nonlinear Linear

Training goal 0.0001
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the training function to be used is included [84]. By con-

trast, the activation function is used for three layers. The

input layer is deactivated, and the hidden and output layers

are nonlinear and linear, respectively. In the current study,

the back-propagation feed-forward neural network is uti-

lised on the basis of the reasonable results obtained by this

method from previous studies [26, 85–87]. The RGB col-

our space is used only during the training of the ANN

model. Table 1 describes the flow and characteristics of the

neural part of the skin detector.

The training stage often takes a long time because of the

very large amount of calculation that is required on the

data. The maximum training time is 8 h, whilst 01:13:58 h

is the minimum, based on trial and error.

In this process, the weight matrices between the input

and the hidden and output layers are initialized with ran-

dom values. After repeatedly presenting features of the

input samples and desired targets, it compare the output

with the desired outcome, followed by error measurement

and weight adjustment until the correct output for every

input is attained. Furthermore, the hidden layer neurons are

estimated using an activation function that features the

hyperbolic tangent sigmoid transfer function, whereas the

output layer neuron is estimated using the activation

function that features the linear transfer function. The

training algorithm used is Levenberg–Marquardt back-

propagation. To train the neural network for skin detection,

a segment is extracted and entered as training input data

into the ANN. The quality of the training sets that enters

into the network determines how well the detector per-

forms. The training phase of the skin detector is illustrated

in Fig. 3.

Experimentally, the ANNs with a single hidden layer

and with the parameters given in Table 1 have yielded

high-accuracy results. This conclusion about the design

was driven by the experiment results shown in Table 2,

which are graphically depicted in Fig. 4. This figure shows

the identification of the aligned trained data on the target,

where the imaginary diagonal represents the target of the

ideal data regression. The trained data regression is

0.96574, whilst the ideal state is 1. In other words, the

results show regression analysis for a reducible ANN

between two targets, namely 1 for skin and - 1 for non-

skin. The results show that the relationship between the

network outputs (Y) and the targets (T) is close and almost

perfect; the correlation coefficient R is equal to 0.96574,

which is almost an ideal fit. Moreover, from training these

pixels, it can be concluded that the training pixels for both

the skin and the nonskin using the segment adjacent-nested

technique applied to the back-propagation neural network

method do not have any overlap.

Figure 5 shows the error characteristic that progres-

sively decreases until it reaches a stable stage. The error

rate is calculated using the MSE function, and the error

decreases to 10-4, as shown in Table 1, over 1200

iterations

The final decision was to use the ANN as part of the

proposed multi-agent learning of the skin detection, as

mentioned in Table 1. Several separate training experi-

ments and the results of their empirical tuning are given in

Table 2. In the other words, Table 2 lists all of the trial

experiments and the equivalent design for each experiment.

These experiments were performed with different param-

eters, after which the best results were taken. This

table shows the performance error minimisation, the linear

regression of the targets relative to the outputs and other

arguments that highlight the most efficient combination.

Table 2 concludes the following:

• Increasing the number of iterations is not crucial. This

statement implies that sometimes we can increase the

number of iterations but fail to notice a distinct decrease

in the performance (error).

• It can be observed that there is significant improvement

in the three-layer architecture compared with the

equivalent two- and four-layer architectures, for the

same parameters. In other words, the results show that

the three-layer architecture is better than the other

layered architectures for the same criteria.

• The training function ‘trainlm’ gives the best results

compared to the ‘trainrp’ and ‘learngdm’ with the same

parameter selection.

2.2.1.1.4 Training operation of the Bayesian model The

Bayesian model is considered important in machine

learning algorithms and derived from the Bayesian rules

and normalisation of the lookup table function (LUT). The

procedure of the Bayesian model is based on clustering

histograms by using 1200 images to calculate the LUT to

identify skin and nonskin pixels. Histogram computation is

typically implemented in post-training followed by the

normalisation of LUT, thereby providing the distribution of

separate probabilities. The training process of the Bayesian

model is illustrated in Fig. 6.

The probability of different colour space pixels calcu-

lated as a pixel of colour space (AdaptColorSpace) for

identifying the skin pixel is observed. This probability is

denoted by Pskin (AdaptColorSpace) and represented by

Eq. 1.

Pskin AdaptColorSpaceð Þ ¼ Skin AdaptColorSpace½ �
Norm

; ð1Þ

where skin[AdaptColorSpace] refers to the histogram value

that matches the colour vector (AdaptColorSpace). The

calculation of grouping histogram values by using the

normalisation coefficient is represented in the parameter
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Norm, which is a summation of all grouping histogram

values. The normalisation value of LUT refers to the col-

our-matching probabilities of the skin. Thus, skin detection

can be calculated as P(skin|AdaptColorSpace) by following

the Bayesian rule, which is given in Eq. 2 [70, 88]:

P SkinnAdaptColorSpaceð Þ ¼
P SkinnAdaptColorSpaceð Þ:P Skinð Þ

P SkinnAdaptColorSpaceð Þ:P Skinð Þ þ P � SkinnAdaptColorSpaceð Þ:P � Skinð Þ ;

ð2Þ

The probability values of P SkinnAdaptColorSpaceð Þ and

P � SkinnAdaptColorSpaceð Þ are directly calculated for

skin and nonskin pixels by using grouping histogram

processes. Conversely, the previous probabilities, such as

P(skin) and P(* skin), can be easily computed by calcu-

lating the total number of pixels of the skin and nonskin at

the training step (Eqs. 3, 4, respectively) [70]:

P Skinð Þ ¼ Ts

Tsþ Tn
; ð3Þ

P � Skinð Þ ¼ Tn

Tnþ Ts
; ð4Þ

where Ts and Tn are the values of skin and nonskin pixels,

respectively.

Start

For each image 
in the training 

Concatena�on between (red, Green, Blue) for 
each pixel of an image  

End of 
an image 

Saving these window slides as vectors

End

Moving 3 X 3 sliding window, the transi�on between each slid is 
by one pixel into either x-axis or y-axis direc�ons of an image 

Inter these vectors to back-
propaga�on ANN for training 

Saving ANN training for usage in the 
pre-detec�ng process

YesNo

Fig. 3 Training phase of the

proposed skin detector in ANN

Neural Computing and Applications (2020) 32:8315–8366 8323

123



The results of the probability values should be saved

within two files after the training process of the dataset is

finished. These values can be represented as

Ps ¼ FUN GH Xð Þð Þ and

Pns ¼ FUN GH Yð Þð Þ:

Thus, a multi-agent learning technique has been imple-

mented on the basis of the desired goal based on specific

functions to achieve the best results.

2.2.1.1.5 Detection of the skin detector The detection

phase begins after the training phase is completed to gather

the required data from various image samples by using the

proposed technique [54].

This phase evaluates the performance of the multi-agent

learning technique adapted using different colour spaces.

Figure 7 illustrates the process of segmentation and skin

detection.

The detection process depends on the parameters

obtained from the training processes of ANN and Bayesian.

Therefore, these parameters are determined on the basis of

the final stage of the proposed system based on the output

of the original image. The system generates a new image

that represents the skin pixels only, whereas a white

background corresponds to the nonskin pixels. The original

image pixels correspond to the inputs or probabilities

represented in the two files (Ps and Pns), which represent a

pre-detection phase in the Bayesian model based on the

Table 2 List of all of the training experiments used in the ANN-based skin detector

Training experiments Number of epochs Performance Regression Gradient Number of layers Number of nodes Training

Run1 1500 0.002 0.95 0.001 3 [9,2,1] trainlm

Run2 1300 0 0.962 0 3 [9,4,1] trainlm

Run3 1200 0 0.965 0 3 [9,4,1] trainlm

Run4 1100 0 0.964 0 3 [9,4,1] trainlm

Run5 1000 0.004 0.943 0.002 3 [9,6,1] trainlm

Run6 800 0.006 0.941 0.005 3 [9,8,1] trainlm

Run7 1200 0.356 0.936 0.192 3 [9,4,1] trainrp

Run8 1200 0.738 0.926 0.203 3 [9,4,1] learngdm

Run9 1200 1.912 0.911 0.385 4 [9,8,6,1] trainlm

Run10 1200 3.21 0.905 0.507 2 [9,1] trainlm

Fig. 4 Regression analysis for reducible ANN-based skin detector

between two targets, i.e. - 1 for nonskin pixels and 1 for skin pixels
Fig. 5 Training error rates using the ANN-based skin detector
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aforementioned system. Thus, these pixels are saved in two

variables:

nn ¼ P AdaptColorSpacenskinð Þ ! skin pixels

ww ¼ P AdaptColorSpacen� skinð Þ ! nonskin pixels

If P (ww) and P(ColorSpace\ww) are represented as

(ww = {skin or nonskin}), then P(ww \ColorSpace), which

is already an accepted result that allows the application of

the rule of the Bayesian model, is determined:

IF
P AdaptColorSpacenskinð Þ

P AdaptColorSpacen� skinð Þ [
P � skinð Þ
P skinð Þ ; ð5Þ

where (AdaptColorSpace) is classified as a skin pixel.

Otherwise, it is a nonskin pixel.

Thus, the Bayesian rules can be computed at the mini-

mum cost given [70]:

P AdaptColorSpacenskinð Þ
P AdaptColorSpacen� skinð Þ [ h ! AdaptColorSpace

2 Skin; ð6Þ

P AdaptColorSpacenskinð Þ
P AdaptColorSpacen� skinð Þ\h ! AdaptColorSpace

2 � Skin:

ð7Þ

According to Eq. 7, the calculation is such that Bayesian

(pixx;y) = ww/nn; therefore, if nn is equal to 0, then nn

automatically resets to nn = 0.00000000001. If ww = 0,

then ww automatically resets to ww = 0.00000000001.

The threshold variable (h) is defined in Eq. 8 as follows:

h ¼ P � skinð Þ
P skinð Þ ð8Þ

The outcome of the multi-agent technique is distributed

on the image pixels of I with the threshold value based on

Eq. 9, which states that procedures are applied under the

same conditions for both models.

For the neural network:

N1 ðpixx;yÞ ¼ � skin if N1 pixx;y
� �

\0

skin elsewhere

�

Fig. 6 Training process of the

Bayesian model [57]
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For Bayesian:

Bayesian ðpixx;yÞ ¼
� skin if Bayesian pixx;y

� �
\h

skin elsewhere

�

8Pixx;y;N1 Pixx;y
� �

\0 OR Bayesian Pixx;y
� �

\h ! Pixx;y 2 � skin

ð9Þ

where N1(Pixx;y) is the second parameter for function FUN

(I, NI, Ps, Pns). Bayesian (Pixx;y) is collected from the

previous steps. The thresholds are considered on the basis

of two aspects. Firstly, (N1 (Pixx;y)\ 0) represents the

neural part, where 0 is selected based on Fig. 4. It was

shown that the range of training for nonskin pixels was

lower than zero, and the range of training for skin pixels

was greater than zero. From these points, the boundary

between the skin and nonskin pixels is considered 0. Sec-

ondly, the procedure of the Bayesian model is represented

in Bayesian (pixx;y)\ h. Nine threshold values (h), namely

0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95, are selected

based on the study by Zaidan et al. [54].

Accordingly, the nine experiments for each colour space

individually (as mentioned in Sect. 2.2.1.1.2) will be

implemented in order to present 108 algorithms. In sum-

mary, the conditions are applied to the pixels; if the con-

ditions are satisfied, then the pixels refer to the nonskin and

[255 255 255] is assigned to refer to the white pixel.

Otherwise, [R (y, x), G (y, x), B (y, x)] is returned from the

original image I. The collected pixels from the set

Fig. 7 Segmentation and

detection of skin pixels

8326 Neural Computing and Applications (2020) 32:8315–8366

123



condition are skin pixels. Thus, the algorithms collect skin

pixels in accordance with the conditions.

2.2.1.2 Crossing between the developed skin detector and
three main groups of criteria Table 3 shows the decision

matrix that established based on the crossover between 108

algorithms and three main groups of criteria are collected

from the literature. The procedure highlights the effect of

the different criteria on various colour spaces. Therefore,

the obtained multiple criteria include the basic elements in

the established decision matrix.

In summary, the crossover between multiple criteria and

adopted colour spaces creates the decision matrix, which is

used to generate the final results in the next phase.

Table 3 shows the three main groups of criteria with 108

algorithms used as alternatives in the proposed decision

matrix. The procedures for each criterion are discussed in

detail as follows.

2.2.1.2.1 Computation of reliability group elements The

reliability group involves three basic sections, namely

parameter matrix, relationship and behaviour. The rela-

tionship emphasises the importance of evaluating the skin

detectors in our study through these sections [32, 56].

The procedure for each sub-criterion within a reliability

group is explained in detail.

The parameter matrix comprises four key parameters,

namely TP, TN, FN and FP, which are the backbone for

computing the remaining criteria in the reliability group

[89–91].

These parameters introduce the results obtained by a

previously implemented multi-agent learning technique. A

certain procedure is performed to calculate the basic

parameters and their integral values based on the matching

process. Figure 8 presents additional details about the

matching process for a sample of the predicted parameters

and the actual parameters used to create the confusion

matrix.

The object locations of each image are matched to cal-

culate the image’s skin pixels and to compute the locations

of pairs of images according to their object location. For

example, the objects from 1 to 6 in Fig. 5 represent the

base of both images. Therefore, the number of pixels in the

first object is computed with the second object by a pointer,

which matches each pixel of the actual parameters with

every pixel of the predicted parameters. This pointer

computes the skin pixels of the actual parameters by only

using the predicted parameters, which present a standard

measure for the number of pixels of the predicted param-

eters (computed as TP). The differences between the

standard and calculated pixels are presented as FN. The

remaining pixels are computed for the other objects. For

example, the average value of the skin pixel is computed to

yield the final TP for the entire image and attain the

average FN as the definitive FN. Furthermore, the TN that

represents the background of the image can be computed as

nonskin pixels, whereas FP is considered a complement of

TN. Thus, the parameter values are computed to be TN

based on the values of the nonskin pixel objects from the

predicted parameters, whereas FP is computed on the basis

of the differences between the standard and calculated

values.

By contrast, these parameters are calculated on the basis

of different threshold values for each colour space to attain

the final result of the DM. As such, the values of 108

algorithms are separately calculated by conducting indi-

vidual experiments to generate the final parameter values

for the decision matrix.

2.2.1.2.2 Computation of time complexity criterion The

time complexity criterion is important in this study. The

procedure and methodology for calculating time depend on

the time consumption of the output and input sample

images. The flowchart (Fig. 9) shows the process of com-

puting time complexity [20, 92].

Table 3 Establishment of the

decision matrix
Algorithm Criteria

Reliability Time complexity Error rate for (training and validation)

Algorithm 1 RV (A1/TS) TcV (A1/TS) ERT (A1/TSt) ERV (A1/VS)

Algorithm 2 RV (A2/TS) TcV (A2/TS) ERT (A2/TSt) ERV (A2/VS)

Algorithm 3 RV (A3/TS) TcV (A3/TS) ERT (A3/TSt) ERV (A3/VS)

Algorithm 4 RV (A4/TS) TcV (A4/TS) ERT (A4/TSt) ERV (A4/VS)

Algorithm 5 RV (A5/TS) TcV (A5/TS) ERT (A5/TSt) ERV (A5/VS)

. . . . .

. . . . .

Algorithm 108 RV (An/TS) TcV (An/TS) ERT (An/TSt) ERV (An/VS)

RV reliability values, TcV time complexity values, ERT error rate for training, ERV error rate for validation,

A algorithm, TS test samples, n number of algorithms, TSt training samples, VS Validation samples
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Actual Parameters Predicted Parameters

Matching process

Object 1 Object 2

Object 3 Object 4

Object 5 Object 6

Fig. 8 Matching process for

different objects

Fig. 9 Procedure of time

complexity
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The image calculation processes rely on the number and

size of the image samples.

Tprocess ¼ To � Ti; ð10Þ

where To is the output time image process and Ti is the

input time image process.

Ttotal ¼
Tprocess
Taverage

; ð11Þ

where Tprocess represents the difference between the output

and input image samples and Taverage denotes the average

processing time for all samples. These equations cover the

computation time of different image sizes and various skin

objects in the self-same image size.

2.2.1.2.3 Error rate computation within dataset ele-

ments According to the evaluation of several studies, the

error rate within the dataset is the major property, which

relies on machine learning algorithms. Special mechanisms

in most AI models are used in these algorithms to produce

results through the training and testing stages. Training is a

key step in these algorithms. Therefore, the dataset is

trained several times to derive a minimum error rate by

selecting a particular dataset, including training and vali-

dation. However, reliability values in the testing data are

addressed to gain the final outcomes. The training process

is individually performed for 108 algorithms [90, 92].

2.2.1.3 Evaluation and testing of developed skin detector
according to three criteria groups The evaluated and

tested decision matrix depends on the calculation the cri-

teria procedure for 108 algorithms. This calculation is

performed from nine experiments according to the thresh-

old values for data collection, thereby providing the final

results of the decision matrix.

2.2.2 Performance of decision matrix

This step is considered as the second part of the identifi-

cation and performance phase. This part is conducted in

two trends: Firstly, the relationship between the criteria is

investigated to calculate the correlation between the crite-

ria in order to make sure, either needs to use all of the

criteria in decision matrix. Secondly, performance analysis

is conducted to evaluate and compare the criteria and

identify the factors that affect their behaviour in order to

made sure that use all the criteria in evaluation as multi-

dimensional measurements or not.

2.2.2.1 Correlation between criteria This step mainly

aims to investigate the relationship between the criteria and

determine their degree of correlation. The case study

includes three main groups of criteria that have

interconnected physical characteristics. Therefore, the

relationship between these criteria must be proven. Soft-

ware and techniques based on mathematical and statistical

methods exist to prove the relationships between variables.

A Pearson method is adopted to find a correlation between

the various criteria used in our study [59, 60, 65].

Thus, the method that represented Pearson’s r is shown

as follows:

r ¼
Pn

i¼1ðXi � �XÞ � ðYi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðXi � �XÞÞ2 � ð

Pn
i¼1ðYi � �yÞÞ2

q ; ð12Þ

�x ¼ 1

n

Xn
i¼1

xi; ð13Þ

�y ¼ 1

n

Xn
i¼1

yi; ð14Þ

where n is the number of input values, X and Y are two

criteria, x and y are their average values and r is the cor-

relation coefficient.

r ranges from -1 to 1. r near 0.00 indicates uncorrelated

criteria, whilst r near or equal to 1 indicates a high corre-

lation level [66, 67].

Therefore, Pearson’s formula is applied to compute the

correlation coefficient between different criteria. Multiple

criteria are evaluated and tested on the basis of their fea-

tures. In this study, various criteria that influence one

another are independently collected. Therefore, determin-

ing the relationship between criteria and verifying the

degree of correlation between them are imperative. Fig-

ure 10 shows the taxonomy of the criterion distribution in

the three main layers.

Figure 10 illustrates the taxonomy constructed from the

three layers, which comprises three major sets of criteria in

our study. The first layer includes reliability criterion (R),

time complexity criterion (Tc) and error rate within the

dataset criterion (ER) groups. The second layer consists of

three key sections, such as parameter matrix, relationship

and behaviour, which are derived from the reliability crite-

rion. The validation and training criteria are derived from the

error ratio criterion. The third layer comprises 10 criteria.

Amongst the 10 criteria, four are called confusion matrices,

namely true positive (TP), true negative (TN), false positive

(FP) and false negative (FN), which are derived from the

matrix of parameters. The four other criteria are accuracy

(ACC), precision (PR), recall (RE) and specificity (SP),

which are derived from the relationship of parameters. The

final two criteria are F-measure (F) and G-measure (G),

which are derived from the behaviour of the parameters.

2.2.2.2 Performance analysis of criteria In order to make

sure that utilise all the criteria in the evaluation process as
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multidimensional measurements or not, performance

analysis is conducted to compare the criteria and identify

the factors that affect their behaviour. Practically, a total of

criteria that resulted from Sect. 2.2.2.1 should be evaluated

to determine their behaviour on the basis of 108 algo-

rithms. To show the differences between the criteria

behaviour in different scenarios, the threshold values for

each criterion should be distributed to the different 12

colour spaces used. Thus, the performance analysis of the

criteria implemented for the three main groups of criteria

used in this study is reliability group, time complexity

group and error rate within the dataset group.

2.3 Development phase

The development phase involves the designing of a new

methodology based on MCDM techniques. Many MCDM

techniques or methods, which use different concepts, such

as simple additive weighting (SAW), weighted sum model

(WSM), weighted product method (WPM), multiplicative

exponential weighting (MEW), multi-objective optimisa-

tion methods, hierarchical adaptive weighting (HAW),

analytic hierarchy process (ANP), AHP and TOPSIS

[93–102], have been investigated. None of the aforemen-

tioned methods have been used to evaluate and benchmark

real-time IoT skin detection approaches. Figure 11

explains the techniques, drawbacks and recommendations

of popular MCDM techniques in accordance with previous

studies [32, 37, 56, 88, 95, 103–120].

Ultimately, a new research direction in the application

of MCDM techniques is created by combining two or more

techniques to avoid the deficiencies from relying on a

single technique [121–123]. Extensively, the integration of

TOPSIS and AHP has become acceptable within MCDM

techniques for the following reasons: calculation of the

relative distance by using weights and objective data;

presentation of results in full ranking; provision of appro-

priate random analysis and prevention of trade-off through

the use of nonlinear relations, which enable conversion to a

programmatic procedure [124–126]. Many studies have

provided rankings for alternatives and arranged the prob-

lems [21, 125, 127–129]. According to the literature, two

or more techniques are commonly integrated to address

various problems in many fields except skin detection

applications. Therefore, a methodological approach must

be identified to resolve this gap.

In summary, integrating the AHP to identify each

weight for all criteria based on experts’ preferences with

TOPSIS is recommended to present the total ranking of

alternatives for real-time IoT skin detection approaches.

Accordingly, the proposed methodology relies on the

integration between TOPSIS and AHP in ranking and

selecting the best alternatives. This method is based on the

values of the decision matrix created in the previous phase

[98]. The implementation of this phase is discussed in the

next paragraphs. Figure 12 describes the new methodology

for evaluating and benchmarking real-time IoT skin

detection approaches.

Fig. 10 Taxonomy of criteria distribution in the three layers

8330 Neural Computing and Applications (2020) 32:8315–8366

123



• Easily understood and used

• Attribute weights are assigned arbitrarily
• Adoption with numerous criteriais difficult
• Common numerical scaling is used in calculating the 

final score.

HAW & 
WSM 

WPM & 
MEW

• Capability of eliminating any element to be measured
• Use of proportional (rather than real or actual) values

• Incapability of providing any solution with equal DM 
weight 

SAW• Consideration of all criteria/attributes 
• Simple calculation 
• Intuitive decision making

• Need for positive and maximum values for all criteria
• Common incapability of discovering real situation

AHP

• Enablement of DMs to structure decision-making  
problems into hierarchy trees 

• Facilitation of understanding of problems
• Substantial restriction imposed by human capacity 

for information processing (7+/- 2 is regarded as 
comparison ceiling)

• Dependency of scoring and ranking on alternatives 
considered for evaluation

• Potential change in the final ranking caused by the 
removal or addition of alternatives (rank reversal 
problem)

• Time-consuming support caused by large number of 
pairwise comparisons and need for mathematical 
calculations, which increase with the number of 
attributes or alternatives

ANP

• Provision of full understanding of importance level 
that can be assumed by an attribute regarding its 
correlation with other attributes 

• Enablement of measurement of judgements' 
consistency, which cannot be evaluated when 
weights are specified by compromise

• Assistance in specifying weights by separation of 
problem into small parts such that experts can have 
manageable discussion because only two attributes 
are compared in specifying judgements

• Complexity of offering proper network structure 
amongst attributes even for experts (i.e. Different 
structures lead to various results).

• Need for the formation of super matrix to be a 
pairwise comparison of all attributes with all other 
attributes (complex and unnatural process)

• Significant approach to solve real-world problems
• Application in discretising alternative challenges 
• Capability of immediately recognising proper 

alternative 
• Decrease in number of required pairwise 

comparisons, with capacity limitation not necessarily 
controlling the process 

• Useful when alternatives and attributes are numerous 
and when quantitative or objective data are available

• Basis in aggregating function that represents the 
‘closeness to the ideal’, which originates from 
compromise programming method

TOPSIS 
• TOPSIS include the lack of provision to weigh 

elicitation and check the consistency of judgements 

Fig. 11 Advantages and limitations of MCDM methods
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2.3.1 Developing a decision-making solution for the skin
detection approach based on integrated ML-AHP
and TOPSIS

The integration of ML-AHP and TOPSIS is widely

accepted by many researchers for the following reasons.

Firstly, these methods can present the results of complete

ranking and calculate the relative distance based on

weights and objective data. Secondly, their results are

satisfactory for random analyses and show a harmonious

trade-off by using nonlinear relationships, thereby allowing

easy conversion into a programmable format. Thus, in our

study, ML-AHP and TOPSIS are integrated to rank

numerous colour space algorithms for real-time IoT skin

detection approaches.

A total of 13 weight settings that represent the three

key groups of criteria under different circumstances are

used in the first part. In this step, the weights are assigned

according to external evaluator preferences. Thus, the

weights can be measured through AHP in a pairwise

form, and the outcome of this technique is subsequently

used in the TOPSIS method. Different colour spaces are

developed as alternatives in the decision matrix. These

alternatives must be ranked to configure the selection of

the best alternative in the second part. The TOPSIS

method adopts the decision matrix to provide the final

results.

2.3.2 Adoption of ML-AHP to investigate the weights
of different evaluators

Skin detection approaches are being developed to achieve

certain objectives (e.g. skin and nonskin detection in ima-

ges. For each evaluation criterion, developers can assign

the weight according to these objectives. The definition of

weights depends on the priority preference in MCDM with

interval numerals [119, 123, 130]. On the issue of skin

detection evaluation and benchmarking, assigning weights

is difficult. By contrast and in normal life problems, experts

can help assign weights. Differences in expert opinions on

the importance of skin detection criteria can increase these

difficulties, thereby creating a conflict with the designer’s

objective. Weights can be assigned in multiple manners

and achieved by the ML-AHP algorithm to conduct

Fig. 12 New methodology for

evaluating and benchmarking

real-time IoT skin detector
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pairwise comparisons amongst the criteria and adopt

weights to settle these problems [131]. Moreover, the

solutions of the aforementioned problems depend on

experts, thereby creating a conflict between the preference

of experts and that of designers. A total of 13 different

weight settings are selected and assigned in the decision-

making process to solve this problem. Thus, our research

uses a pairwise technique (i.e. ML-AHP method). Fig-

ure 13 shows the AHP method based on multiple layers.

2.3.2.1 Pairwise comparisons for each criterion AHP has

been proposed as a technique to obtain ratio scales from

paired comparisons and is now a widely known MCDM

method [117, 132].

ML-AHP allows a few inconsistencies in judgement

because of human imprecision. The ratio scales are derived

from principal eigenvectors, and the consistency index is

derived from the principal eigenvalue. The following

equation represents the required number of pairwise

comparisons:

n � n� 1ð Þ=2; ð15Þ

where n represents the number of attributes utilised during

evaluation. In comparing a set of criteria, n in pairs is based

on the amount of relative weights. Criteria and weights can

be represented as (C1 …Cn) and (w1 …wn), respectively.

This comparison can be represented in the matrix as fol-

lows:

The matrix uses a pairwise ratio whose rows provide the

ratio of the weights for each element with respect to all

other ratios. This method focuses on extracting the weights

of various activities based on importance. Typically,

importance is a judgement based on different criteria.

Occasionally, these criteria correspond to objectives

selected by activities for investigation [132].

Table 4 presents a comparison matrix for priority rating,

which comprises three pairwise elements in the decision

matrix.

In this study, six experts who are from various univer-

sities in Malaysia and have sufficient background in image

processing involving AI methods are invited to participate

as evaluators. They are asked to compare different criteria

based on the priorities identified in accordance with their

perspectives. Their responses are gathered, adopted and

attached with the degree of consistency according to the

rules of hierarchy theory to calculate the weights. Fig-

ure 14 shows the formula of the questionnaire presented to

the evaluators.

Reference [133] proposed a new scale to calculate the

degree of importance amongst different criteria. The scale

uses the difference between successive scale values to

Weights of Skin Criteria 

Reliability Time complexity Error rate

Training

Validation

Behaviour of parameterRelationship of parameterMatrix of parameter

F-measure

G-measure

RecallAccuracy

SpecificityPrecision

FPTP

FNTN 

Goal

Layere-2

Layere-1

Layere-3

Fig. 13 Weights of criteria in a multi-layer structure

Table 4 Sample pairwise

comparison matrix
Criteria A B C

A 1 A/B A/C

B B/A 1 B/C

C C/A C/B 1
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compare the criteria within the scale values that range from

1 to 9. Table 5 shows an initial step towards the con-

struction of the intensity scale of importance for activities

[43].

2.3.2.2 Design of ML-AHP measurement structure In this

step, our work includes multiple layers to distribute the

criteria. The ML-AHP measurement matrix is implemented

to attain the weights based on the preferences of the

evaluator. ML-AHP measurements use mathematical cal-

culations that are based on pairwise comparisons to convert

the experts’ judgements into weights for each criterion.

A CR must also be calculated for judgements that represent

the internal consistency values entered. Thereafter, the

answers of the evaluators with pairwise comparisons are

collected, and the reciprocal matrix is created. The recip-

rocal matrix provides the sub-criteria values for each

level’s main criteria and identifies the importance of each

feature compared with its parent. Thus, the obtained fea-

tures of the main criteria represent the importance of each

feature in relation to the goal. Figure 15 shows the weights

computed through ML-AHP measurement based on dif-

ferent evaluators.

2.3.2.3 Calculating the weights of criteria and checking the
consistency value Various responses gathered from

different evaluators must be converted into numerical val-

ues in the decision matrix. For these values, the decision

matrix implements procedures, such as normalisation and

aggregation. In the next step, the weights of the criteria are

determined and ranked. By contrast, the ML-AHP mea-

surement considers an important vector to conduct a con-

sistency test, which is normally required after the criteria

weights are completely calculated. Inconsistency is often

observed in the answers obtained by the ML-AHP ques-

tionnaire from individual evaluators, thereby affecting the

overall consistency of the test. Hence, the CR must be tested

before all responses are collected from the evaluators [134].

Finally, CR can be measured to determine the consis-

tency of the pairwise comparison. This procedure is called

a consistency index. A CR larger than 0.10 indicates

inconsistency in the pairwise comparison, whereas a CR

equal to or less than 0.10 indicates a reasonable compar-

ison [98, 135].

The following formula calculates the CR:

CR ¼ CI=RI ð16Þ

CI represents the consistency index, which is derived

from the following:

CI ¼ max�nð Þ= n�1ð Þ ð17Þ

RI can be obtained from Table 6 as follows.

Extremely 
favours 

Very 
Strong favours Strong 

favours

Slightly 
favours Equal

Slightly 
favours Strong 

favours

Very 
Strong favours Extremely 

favours 

9             7              5             3            1            1/ 3        1/ 5        1/ 7        1/ 9

Time complexity
Error rate

Extremely 
favours

Very 
Strong favours 

Strong 
favours

Slightly 
favours Equal

Slightly 
favours Strong 

favours

Very 
Strong favours 

Extremely 
favours 

9             7             5              3            1           1/ 3        1/ 5         1/ 7         1/ 9

Reliability Error rate

Extremely 
favours

Very 
Strong favours Strong 

favours 

Slightly 
favours Equal

Slightly 
favours Strong 

favours 

Very 
Strong favours 

Extremely 
favours

9             7             5             3             1 1/ 3     1/ 5         1/ 7         1/ 9

Reliability
Time complexity

Fig. 14 Pairwise answer from evaluators

Table 5 Intensity scale of

criteria
Degree of importance Description

1 Equal importance

3 Weak importance of one over another

5 Essential or strong importance

7 Demonstrated importance

9 Absolute importance

2, 4, 6, 8 Intermediate values between the two adjacent judgements
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Fig. 15 Steps of ML-AHP used to account the matrix multiple layers

Table 6 Random index (RI)

[117]
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.58 1.59
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2.3.3 Utilisation of TOPSIS for evaluation
and benchmarking of real-time IoT skin detection
approaches

TOPSIS, which is favoured amongst MCDM techniques, is

utilised in this procedure, which involves several steps

[136, 137]. TOPSIS is applied to all alternatives based on

the geometric distance from the positive and negative ideal

solutions [138]. Thus, the most suitable alternative is ‘the

alternative with the longest geometric distance to the

negative ideal solution and the shortest geometric distance

to the positive ideal solution’ [97, 139].

According to [126], TOPSIS consists of six steps: (1)

constructing the normalised decision matrix, (2) con-

structing the weighted normalised decision matrix, (3)

identifying the ideal and negative ideal solutions, (4) sep-

arating measurement calculations based on the Euclidean

distance, (5) identifying closeness to the ideal solution

calculation and (6) ranking the alternatives based on the

closeness to the ideal solution. Each step is explained in

detail as follows.

Step 1

In this step, the different criterion dimensions are

transformed into a nondimensional criterion, and the

comparison of each attribute is permitted. xij
� �

m�n matrix is

then normalised from xij
� �

m�n to R ¼ rij
� �

m�n by the nor-

malisation method.

rij ¼ xij=

ffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

x2ij

s
ð18Þ

This step results in a new matrix R as follows:

R ¼

r11 r12
r21 r22

. . . r1n

. . . r2n

..

. ..
.

rm1 rm2

..

. ..
.

. . . rmn

2
6664

3
7775: ð19Þ

Step 2
w ¼ w1;w2;w3; . . .;wj; . . .;wn represents the group of

weights from the decision-maker, which provides the nor-

malised decision matrix. The new matrix is calculated by

multiplying every column from the normalised matrix (R)

with related weight wj. Notably, the summation of the

weights should be equal to 1, which is expressed as

follows:

Xm
j¼1

wj ¼ 1: ð20Þ

This step results in a new matrix V, which is expressed

as follows:

V ¼

v11 v12
v21 v22

. . . v1n

. . . v2n

..

. ..
.

vm1 vm2

..

. ..
.

. . . vmn

2
6664

3
7775

¼

w1r11 w2r12
w1r21 w2r22

. . . wnr1n

. . . wnr2n

..

. ..
.

w1rm1 w2rm2

..

. ..
.

. . . wnrmn

2
6664

3
7775: ð21Þ

Step 3

The definition of the two artificial alternatives, namely

A� and A�, is explained in detail. A� represents the ‘ideal

alternative’, and A� represents the ‘negative ideal

alternative’.

A� ¼ max
i

vijjj 2 J

� �
; min

i
vijjj 2 J�

� �
ji ¼ 1; 2; . . .;m

� �� �

ð22Þ

¼ v�1; v
�
2; . . .; v

�
j ; � � � v�n

n o
ð23Þ

A� ¼ min
i

vijjj 2 J

� �
; max

i
vijjj 2 J�

� �
ji ¼ 1; 2; . . .;m

� �� �

ð24Þ

¼ v�1 ; v
�
2 ; . . .; v

�
j ; . . .v

�
n

n o
ð25Þ

where J the benefit attribute and subset of

i ¼ 1; 2; . . .;mf g, whereas J� is the set of cost attribute and

complement set of J or Jcð Þ.
Step 4

In this step, the separation of measurements is calculated

by computing the distance between every alternative within

V and the ideal vector A� on the basis of the Euclidean

distance as follows:

Si� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

vij � v�j

	 
2

vuut ; i ¼ 1; 2; . . .mð Þ: ð26Þ

The separation for every alternative within V from A�,
which is a negative ideal, is computed as follows:

Si� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

vij � v�j

	 
2

vuut ; i ¼ 1; 2; . . .mð Þ: ð27Þ

This step counts the alternatives (Si� and Si�) that rep-

resent the distance between every alternative and between

the negative ideal and ideal alternatives.

Step 5

In this process, the closeness of Ai to the ideal solution

A� can be calculated as follows:
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Ci� ¼ Si�= Si� þ Si�ð Þ; 0�Ci� � 1; i ¼ 1; 2; . . .mð Þ:
ð28Þ

Ci� ¼ 1 if and only if (Ai ¼ A�). Similarly, Ci� ¼ 0 if and

only if (Ai ¼ A�).
Step 6

Finally, a group of alternative Ai can be prioritised on

the basis of Ci� , where the lowest value means the worst

performance and high values refer to a remarkable

performance.

2.3.3.1 Decision-making context Couple fundamental

decision-making contexts are emphasised on the basis of

the individual and group decision-makers (GDMs). This

situation is encountered by individuals when they collec-

tively select amongst given alternatives. Afterwards, the

decision can no longer be attributed to any individual

member of the group because all the individuals within

such social group processes as social influence contribute

to the outcome. GDM techniques systematically gather and

integrate the awareness for the judgement of experts from

various areas [112, 140–142]. Thus, the GDMs of experts

or evaluators subjectively provide their judgement and

weights for the criteria. Figure 16 shows the group deci-

sion-making process where Ex1, Ex2,…, Exn are the GDMs

of experts, which can provide their judgement and weights

for the criteria.

For example, with the problems of real-time IoT skin

detection evaluation and benchmarking considered in

the context of group decision-making, reliability (C1),

Ex1_w1, Ex1_w2, Ex1_w3 Ex2_w1, Ex2_w2, Ex2_w3 Ex3_w1, Ex3_w2, Ex3_w3 Exn_w1, Exn_w2, Exn_w3

Fig. 16 GDM process

A1

A2

A3

Ex1_w1   Ex1_w2     Ex1_w3       

C1           C2           C3         

Fig. 17 Individual decision-maker process
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time complexity (C2) and error rate within the dataset

(C3) are subjectively measured by the evaluators

(Fig. 17).

Two different settings in the original context of deci-

sion-making, which fundamentally depend on the problem

itself, are considered. Normal decision-making is a first

setting where an individual provides subjective judgements

and weights for all criteria. Another setting is group deci-

sion-making, where decision-makers provide their subjec-

tive judgements and their own weights for every criterion

as a group. In this study, the problems of evaluation and

benchmarking in real-time IoT skin detection approaches

for all the data are objectively obtained (numerical values).

Thus, the context of the decision-making process must be

considered.

3 Result

This section presents the result based on two stages,

namely analysis and comparison of multi-criteria and

benchmarking of real-time IoT skin detection approaches

(Fig. 18). In the first stage, the results of the proposed

decision matrix, correlation coefficient and performance

analysis of criteria are presented. In the second stage, the

results of multi-layer weight measurement, TOPSIS per-

formance based on different evaluator’s weights and group

TOPSIS with internal and external aggregations are

presented.

3.1 Multi-criteria analysis and comparison

In this section, the results of proposed decision matrix,

correlation and performance analysis between criteria have

been presented in the following subsections.

3.1.1 Results of the proposed decision matrix

In this section, the results obtained based on the develop-

ment of a case study were adapted. A total of 14 colour

spaces were developed on the basis of multi-agent tech-

nique using two artificial intelligence models. The outcome

of the development process generated parameters that

considered fundamental values to calculate the values of

the reliability group. In addition, the other basic criteria

values were calculated according to their methodology.

Thus, the multiple criteria values with skin detection

engine values produced the decision matrix that represents

the dataset in our study.

The decision matrix was constructed using the values of

the 13 criteria and 14 colour spaces. The values of each

colour space were calculated individually based on the nine

threshold values. Thus, the criteria values were calculated

according to the threshold values that generated nine

Fig. 18 Structure of the result
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Table 7 Implemented decision matrix

Colour

Spaces

TN TP FP FN Accuracy Recall Precision Specificity F-
measure

G-
measure

Tc (s) ERV ERT

Normalised

RGB

79.5 80.06 20.5 19.94 79.9003 0.8006 0.7961 0.7950 0.7984 0.7984 8.10 0.00003 0.00004

81.32 80.22 18.68 19.78 81.7211 0.8022 0.8111 0.8132 0.8066 0.8066 8.14 0.00003 0.00004

82.04 79.56 17.96 20.44 82.4378 0.7956 0.8158 0.8204 0.8056 0.8057 8.01 0.00003 0.00004

83.77 80.91 16.23 19.09 84.1746 0.8091 0.8329 0.8377 0.8208 0.8209 8.08 0.00003 0.00004

85.84 80.12 14.16 19.88 86.2406 0.8012 0.8498 0.8584 0.8248 0.8251 8.25 0.00003 0.00004

90.45 81.3 9.55 18.7 90.8565 0.813 0.8949 0.9045 0.852 0.853 8.31 0.00003 0.00004

91.84 79.99 8.16 20.01 92.24 0.7999 0.9074 0.9184 0.8503 0.852 8.32 0.00003 0.00004

93.72 78.62 6.28 21.38 94.1131 0.7862 0.926 0.9372 0.8504 0.8533 8.41 0.00003 0.00004

92.91 79.14 7.09 20.86 93.3057 0.7914 0.9178 0.9291 0.8499 0.8522 8.35 0.00003 0.00004

YCbCr 80.22 81.92 19.78 18.08 80.6296 0.8192 0.8055 0.8022 0.8123 0.8123 9.82 0.0001 0.00007

85.27 84.37 14.73 15.63 85.6919 0.8437 0.8514 0.8527 0.8475 0.8475 9.84 0.0001 0.00007

86.49 85.78 13.51 14.22 86.9189 0.8578 0.8639 0.8649 0.8609 0.8609 9.86 0.0001 0.00007

88.95 86.61 11.05 13.39 89.3831 0.8661 0.8869 0.8895 0.8764 0.8764 9.91 0.0001 0.00007

91.64 89.27 8.36 10.73 92.0864 0.8927 0.9144 0.9164 0.9034 0.9035 9.95 0.0001 0.00007

91.9 90.85 8.1 9.15 92.3543 0.9085 0.9181 0.919 0.9133 0.9133 9.85 0.0001 0.00007

96.55 94.53 3.45 5.47 97.0227 0.9453 0.9648 0.9655 0.9549 0.955 9.96 0.0001 0.00007

99.55 98.68 0.45 1.32 100.043 0.9868 0.9955 0.9955 0.9911 0.9911 9.9 0.0001 0.00007

95.3 93.94 4.7 6.06 95.7697 0.9394 0.9524 0.953 0.9458 0.9459 9.94 0.0001 0.00007

YCgCr 81.72 82.6 18.28 17.4 82.133 0.826 0.8188 0.8172 0.8224 0.8224 11.61 0.00015 0.0001

84.64 85.12 15.36 14.88 85.0656 0.8512 0.8471 0.8464 0.8492 0.8492 11.63 0.00015 0.0001

85.84 86.47 14.16 13.53 86.2724 0.8647 0.8593 0.8584 0.862 0.862 11.64 0.00015 0.0001

86.62 88.84 13.38 11.16 87.0642 0.8884 0.8691 0.8662 0.8786 0.8787 11.62 0.00015 0.0001

89.47 91.81 10.53 8.19 89.9291 0.9181 0.8971 0.8947 0.9075 0.9075 11.71 0.00015 0.0001

92.56 90.81 7.44 9.19 93.0141 0.9081 0.9243 0.9256 0.9161 0.9162 11.73 0.00015 0.0001

93.59 97.38 6.41 2.62 94.0769 0.9738 0.9382 0.9359 0.9557 0.9559 11.66 0.00015 0.0001

98.63 99.66 1.37 0.34 99.1283 0.9966 0.9864 0.9863 0.9915 0.9915 11.74 0.00015 0.0001

93.49 96.59 6.51 3.41 93.973 0.9659 0.9369 0.9349 0.9512 0.9513 11.71 0.00015 0.0001

YCgCb 82.59 81.87 17.41 18.13 82.9994 0.8187 0.8246 0.8259 0.8217 0.8217 11.94 0.00016 0.00015

85.08 84.73 14.92 15.27 85.5037 0.8473 0.8503 0.8508 0.8488 0.8488 11.92 0.00016 0.00015

86.41 85.89 13.59 14.11 86.8395 0.8589 0.8634 0.8641 0.8611 0.8611 11.91 0.00016 0.00015

88.74 86.68 11.26 13.32 89.1734 0.8668 0.885 0.8874 0.8758 0.8759 11.9 0.00016 0.00015

91.79 89.53 8.21 10.47 92.2377 0.8953 0.916 0.9179 0.9055 0.9056 11.94 0.00016 0.00015

90.84 92.64 9.16 7.36 91.3032 0.9264 0.91 0.9084 0.9181 0.9182 11.92 0.00016 0.00015

97.25 93.65 2.75 6.35 97.7183 0.9365 0.9715 0.9725 0.9537 0.9538 11.92 0.00016 0.00015

99.61 98.67 0.39 1.33 100.103 0.9867 0.9961 0.9961 0.9914 0.9914 11.94 0.00016 0.00015

96.52 93.52 3.48 6.48 96.9876 0.9352 0.9641 0.9652 0.9494 0.9496 11.93 0.00016 0.00015

YUV 82.84 81.46 17.16 18.54 83.2473 0.8146 0.826 0.8284 0.8203 0.8203 12.02 0.00018 0.00013

85.72 84.14 14.28 15.86 86.1407 0.8414 0.8549 0.8572 0.8481 0.8481 12.19 0.00018 0.00013

86.68 85.37 13.32 14.63 87.1069 0.8537 0.865 0.8668 0.8593 0.8593 12.09 0.00018 0.00013

87.58 87.73 12.42 12.27 88.0187 0.8773 0.876 0.8758 0.8766 0.8766 12.23 0.00018 0.00013

89.54 90.61 10.46 9.39 89.9931 0.9061 0.8965 0.8954 0.9013 0.9013 12.25 0.00018 0.00013

93.27 89.62 6.73 10.38 93.7181 0.8962 0.9302 0.9327 0.9129 0.913 12.35 0.00018 0.00013

93.62 96.8 6.38 3.2 94.104 0.968 0.9382 0.9362 0.9528 0.953 12.08 0.00018 0.00013

96.81 98.9 3.19 1.1 97.3045 0.989 0.9688 0.9681 0.9788 0.9788 12.31 0.00018 0.00013

94.04 95.42 5.96 4.58 94.5171 0.9542 0.9412 0.9404 0.9477 0.9477 12.42 0.00018 0.00013

YIQ 82.51 80.72 17.49 19.28 82.9136 0.8072 0.8219 0.8251 0.8145 0.8145 12.81 0.00019 0.00015

85.02 84.71 14.98 15.29 85.4436 0.8471 0.8497 0.8502 0.8484 0.8484 12.83 0.00019 0.00015

84.27 85.38 15.73 14.62 84.6969 0.8538 0.8444 0.8427 0.8491 0.8491 12.85 0.00019 0.00015
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Table 7 (continued)

Colour

Spaces

TN TP FP FN Accuracy Recall Precision Specificity F-
measure

G-
measure

Tc (s) ERV ERT

86.31 86.71 13.69 13.29 86.7436 0.8671 0.8636 0.8631 0.8654 0.8654 12.86 0.00019 0.00015

91.48 88.36 8.52 11.64 91.9218 0.8836 0.9121 0.9148 0.8976 0.8977 12.86 0.00019 0.00015

88.71 92.01 11.29 7.99 89.1701 0.9201 0.8907 0.8871 0.9052 0.9053 12.88 0.00019 0.00015

97.82 91.38 2.18 8.62 98.2769 0.9138 0.9767 0.9782 0.9442 0.9447 12.92 0.00019 0.00015

99.93 95.85 0.07 4.15 100.409 0.9585 0.9993 0.9993 0.9785 0.9787 12.95 0.00019 0.00015

96.37 92.26 3.63 7.74 96.8313 0.9226 0.9621 0.9637 0.942 0.9422 12.95 0.00019 0.00015

HSI, HSV,

HSL

80.55 81.11 19.45 18.89 80.9556 0.8111 0.8066 0.8055 0.8088 0.8088 8.51 0.00005 0.00006

82.37 81.27 17.63 18.73 82.7764 0.8127 0.8217 0.8237 0.8172 0.8172 8.6 0.00005 0.00006

83.09 80.61 16.91 19.39 83.4931 0.8061 0.8266 0.8309 0.8162 0.8163 8.53 0.00005 0.00006

84.82 81.96 15.18 18.04 85.2298 0.8196 0.8437 0.8482 0.8315 0.8316 8.73 0.00005 0.00006

86.89 81.17 13.11 18.83 87.2959 0.8117 0.8609 0.8689 0.8356 0.836 8.7 0.00005 0.00006

91.5 82.35 8.5 17.65 91.9118 0.8235 0.9064 0.915 0.863 0.864 8.77 0.00005 0.00006

92.8 79.63 7.2 20.37 93.1982 0.7963 0.9171 0.928 0.8524 0.8546 8.52 0.00005 0.00006

92.64 76.56 7.36 23.44 93.0228 0.7656 0.9123 0.9264 0.8325 0.8357 8.55 0.00005 0.00006

93.95 75.37 6.05 24.63 94.3269 0.7537 0.9257 0.9395 0.8309 0.8353 8.72 0.00005 0.00006

IHLS 81.61 82.37 18.39 17.63 82.0219 0.8237 0.8175 0.8161 0.8206 0.8206 9.12 0.00011 0.00009

83.75 83.43 16.25 16.57 84.1672 0.8343 0.837 0.8375 0.8356 0.8356 9.18 0.00011 0.00009

84.92 84.45 15.08 15.55 85.3423 0.8445 0.8485 0.8492 0.8465 0.8465 9.12 0.00011 0.00009

85.26 85.67 14.74 14.33 85.6884 0.8567 0.8532 0.8526 0.8549 0.8549 9.23 0.00011 0.00009

87.47 85.28 12.53 14.72 87.8964 0.8528 0.8719 0.8747 0.8622 0.8623 9.31 0.00011 0.00009

92.25 84.93 7.75 15.07 92.6747 0.8493 0.9164 0.9225 0.8816 0.8822 9.32 0.00011 0.00009

93.44 87.73 6.56 12.27 93.8787 0.8773 0.9304 0.9344 0.9031 0.9035 9.4 0.00011 0.00009

96.14 86.28 3.86 13.72 96.5714 0.8628 0.9572 0.9614 0.9075 0.9088 9.37 0.00011 0.00009

94.35 87.34 5.65 12.66 94.7867 0.8734 0.9392 0.9435 0.9051 0.9057 9.19 0.00011 0.00009

CIEXYZ 82.54 81.89 17.46 18.11 82.9495 0.8189 0.8243 0.8254 0.8216 0.8216 10.33 0.00016 0.00013

85.37 84.21 14.63 15.79 85.7911 0.8421 0.852 0.8537 0.847 0.847 10.38 0.00016 0.00013

86.55 85.82 13.45 14.18 86.9791 0.8582 0.8645 0.8655 0.8613 0.8613 10.39 0.00016 0.00013

88.97 86.58 11.03 13.42 89.4029 0.8658 0.887 0.8897 0.8763 0.8763 10.41 0.00016 0.00013

91.73 89.22 8.27 10.78 92.1761 0.8922 0.9152 0.9173 0.9035 0.9036 10.43 0.00016 0.00013

91.93 90.81 8.07 9.19 92.3841 0.9081 0.9184 0.9193 0.9132 0.9132 10.32 0.00016 0.00013

96.63 94.32 3.37 5.68 97.1016 0.9432 0.9655 0.9663 0.9542 0.9543 10.37 0.00016 0.00013

99.61 98.52 0.39 1.48 100.103 0.9852 0.9961 0.9961 0.9906 0.9906 10.44 0.00016 0.00013

95.25 93.98 4.75 6.02 95.7199 0.9398 0.9519 0.9525 0.9458 0.9458 10.44 0.00016 0.00013

CIELAB 82.6 81.79 17.4 18.21 83.009 0.8179 0.8246 0.826 0.8212 0.8212 10.52 0.00017 0.00014

85.25 84.41 14.75 15.59 85.6721 0.8441 0.8513 0.8525 0.8477 0.8477 10.55 0.00017 0.00014

86.08 85.98 13.92 14.02 86.5099 0.8598 0.8607 0.8608 0.8602 0.8602 10.57 0.00017 0.00014

88.91 86.37 11.09 13.63 89.3419 0.8637 0.8862 0.8891 0.8748 0.8749 10.54 0.00017 0.00014

91.81 89.16 8.19 10.84 92.2558 0.8916 0.9159 0.9181 0.9036 0.9037 10.62 0.00017 0.00014

90.9 92.49 9.1 7.51 91.3625 0.9249 0.9104 0.909 0.9176 0.9176 10.67 0.00017 0.00014

97.43 93.36 2.57 6.64 97.8968 0.9336 0.9732 0.9743 0.953 0.9532 10.68 0.00017 0.00014

99.57 98.57 0.43 1.43 100.063 0.9857 0.9957 0.9957 0.9907 0.9907 10.64 0.00017 0.00014

96.38 93.63 3.62 6.37 96.8482 0.9363 0.9628 0.9638 0.9494 0.9494 10.66 0.00017 0.00014

CIELUV 81.66 82.64 18.34 17.36 82.0732 0.8264 0.8184 0.8166 0.8224 0.8224 10.14 0.00014 0.00011

84.52 85.25 15.48 14.75 84.9463 0.8525 0.8463 0.8452 0.8494 0.8494 10.16 0.00014 0.00011

85.99 86.56 14.01 13.44 86.4228 0.8656 0.8607 0.8599 0.8631 0.8631 10.15 0.00014 0.00011

86.57 88.93 13.43 11.07 87.0147 0.8893 0.8688 0.8657 0.8789 0.879 10.13 0.00014 0.00011

89.34 91.87 10.66 8.13 89.7994 0.9187 0.896 0.8934 0.9072 0.9073 10.25 0.00014 0.00011

92.49 90.92 7.51 9.08 92.9446 0.9092 0.9237 0.9249 0.9164 0.9164 10.22 0.00014 0.00011
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different values for this colour space. In addition, new

values have been obtained for these criteria according to

the other colour spaces that will be implemented. Eventu-

ally, 108 algorithms were obtained on the basis of the 14

colour spaces that were adapted. However, the final num-

ber of the colour spaces that appeared in the decision

matrix is 12. The reason is that the colour space groups of

HSI, HSL and HSV, where luminance element is deleted

from each colour space (I, L and V) and the chroma ele-

ment (HS), is retained, which is common between colour

space groups. Thus, the processing is applied only once.

Table 7 illustrates the evaluation result for 108 colour

space samples tested 13 of the criteria.

The relationship between all criteria will be determined

according to statistical methods using the Pearson formula,

as well as conducting the performance analysis for each

criterion to determine their behaviour based on various

threshold values that will be discussed in detail in the next

sections.

3.1.2 Correlation between criteria results

The details of the correlation tests conducted amongst these

criteria are presented in the next subsections.

3.1.2.1 Correlation analysis in layer 1 This layer includes

three independent criteria, namely reliability criterion, time

complexity criterion and error rate criterion. The Pearson

method is implemented to determine the extent of the

relationship and correlation degree between the criteria.

After conducting the test and selecting the desired path to

determine the correlation between the criteria, we obtain

the following results, as shown in Table 8.

Table 7 (continued)

Colour

Spaces

TN TP FP FN Accuracy Recall Precision Specificity F-
measure

G-
measure

Tc (s) ERV ERT

93.41 97.42 6.59 2.58 93.8971 0.9742 0.9366 0.9341 0.9551 0.9552 10.28 0.00014 0.00011

98.59 99.71 1.41 0.29 99.0886 0.9971 0.9861 0.9859 0.9915 0.9916 10.25 0.00014 0.00011

93.46 96.62 6.54 3.38 93.9431 0.9662 0.9366 0.9346 0.9512 0.9513 10.29 0.00014 0.00011

CIELCH 80.02 81.72 19.98 18.28 80.4286 0.8172 0.8035 0.8002 0.8103 0.8103 9.54 0.00013 0.00012

86.56 84.48 13.44 15.52 86.9824 0.8448 0.8627 0.8656 0.8537 0.8537 9.57 0.00013 0.00012

87.5 85.62 12.5 14.38 87.9281 0.8562 0.8726 0.875 0.8643 0.8644 9.58 0.00013 0.00012

88.68 86.53 11.32 13.47 89.1127 0.8653 0.8843 0.8868 0.8747 0.8748 9.62 0.00013 0.00012

91.34 89.02 8.66 10.98 91.7851 0.8902 0.9113 0.9134 0.9006 0.9007 9.65 0.00013 0.00012

91.73 90.6 8.27 9.4 92.183 0.906 0.9164 0.9173 0.9111 0.9112 9.55 0.00013 0.00012

96.05 94.33 3.95 5.67 96.5217 0.9433 0.9598 0.9605 0.9515 0.9515 9.61 0.00013 0.00012

99.04 98.62 0.96 1.38 99.5331 0.9862 0.9904 0.9904 0.9883 0.9883 9.73 0.00013 0.00012

95.27 99.84 4.73 0.16 95.7692 0.9984 0.9548 0.9527 0.9761 0.9763 9.78 0.00013 0.00012

Table 8 Comparison of reliability, time complexity and error rate

criteria

Correlation coefficient

R Tc ER

R Pearson correlation 1 - .239* - .260**

Sig. (two-tailed) .013 .007

N 108 108 108

Tc Pearson correlation - .239* 1 .862**

Sig. (two-tailed) .013 .000

N 108 108 108

ER Pearson correlation - .260** .862** 1

Sig. (two-tailed) .007 .000

N 108 108 108

*Correlation is significant at the 0.05 level (two-tailed)

**Correlation is significant at the 0.01 level (two-tailed)

Table 9 Comparison amongst sub-criteria as parameter matrix, rela-

tionship and behaviour

Correlation coefficient

MP RP BP

MP Pearson correlation 1 - .973** - .953**

Sig. (two-tailed) .000 .000

N 108 108 108

RP Pearson correlation - .973** 1 .997**

Sig. (two-tailed) .000 .000

N 108 108 108

BP Pearson correlation - .953** .997** 1

Sig. (two-tailed) .000 .000

N 108 108 108

**Correlation is significant at the 0.01 level (two-tailed)
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Table 8 illustrates the relationship and degree of corre-

lation between the criteria based on the rules of the cor-

relation coefficient according to the Pearson test.

Therefore, the correlation coefficient between the reliabil-

ity and time complexity group was - 0.239, indicating that

a reverse correlation exists when (r\ 0) at a degree of

significance of 0.013 for 108 samples. In addition, a high

correlation exists in the negative aspect whilst the corre-

lation value in the error rate group was - 0.260, in which a

reverse correlation exists when (r\ 0) at a degree of sig-

nificance of 0.007 for 108 samples. Furthermore, the cor-

relation degree between the time complexity and error rate

groups was 0.892, indicating that a positive correlation

exists when (r[ 0) at a degree of significance of 0.000 for

108 samples. Thus, a high correlation exists in the positive

aspect. Overall, the existing correlation between each cri-

terion is proven on the basis of the rules of Pearson test

results.

3.1.2.2 Correlation analysis in layer 2 The second layer

includes two sub-criteria groups. The first group includes

three basic sub-criteria generated by the reliability group.

The second group includes two sub-criteria derived from

the error rate group. Pearson test will be used to calculate

the correlation coefficient between each group (Table 9).

Table 9 highlights the result of correlation between

three sub-criteria, namely the matrix, relationship and

behaviour of parameters, which are all derived from the

reliability group.

Table 10 highlights the correlation between validation

and training sub-criteria, which are derived from the error

rate within the dataset group. Overall, the existing corre-

lation between each criterion in Tables 9 and 10 is proven

on the basis of the Pearson test results.

3.1.2.3 Correlation analysis in layer 3 Layer 3 comprises

three groups of sub–sub-criteria. The first group includes

four parameters generated from the parameter matrix,

namely TP, FP, TN and FN. The second group includes

four parameters derived from the parameter relationship,

namely accuracy, precision, recall and specificity. The

third group includes two parameters, namely F-measure

and G-measure, which are generated from the parameter

behaviour. Table 11 shows that the Pearson test is imple-

mented to calculate the correlation coefficient for each

group.

Table 11 highlights the correlation between four sub–

sub-criteria, namely TN, FP, TN and FN, which are derived

from the parameter matrix.

Table 12 highlights the correlation between four sub–

sub-criteria, namely accuracy, recall, precision and speci-

ficity, which are derived from the relationship of

parameters.

Table 13 highlights the correlation between two sub–

sub-criteria, namely the F-measure and the G-measure,

Table 10 Comparison training and validation sub-criteria

Correlation coefficient

T V

T Pearson correlation 1 .942**

Sig. (two-tailed) .000

N 108 108

V Pearson correlation .942** 1

Sig. (two-tailed) .000

N 108 108

**Correlation is significant at the 0.01 level (two-tailed)

Table 11 Comparison amongst

TP, FP, TN and FN sub–sub-

criteria

Correlation coefficient

TP FP TN FN

TP Pearson correlation 1 - .744** .744** - 1.000**

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

FP Pearson correlation - .744** 1 - 1.000** .744**

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

TN Pearson correlation .744** - 1.000** 1 - .744**

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

FN Pearson correlation - 1.000** .744** - .744** 1

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

**Correlation is significant at the 0.01 level (two-tailed)
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which are derived from the behaviour of parameters.

Overall, the existing correlation between each sub–sub-

criterion in Tables 11, 12 and 13 is proven by the Pearson

test results.

Overall, the Pearson test shows a strong correlation

between the criteria based on the results. According to the

results in Tables 8, 9, 10, 11, 12 and 13, the results

demonstrate statistically significant differences between

the criteria within each layer, emphasising the need to use

all the criteria and sub-criteria in the proposed decision

matrix that supported the proposed methodology.

3.1.3 Performance analysis of criteria results

Details of the performance analysis are presented below:

3.1.3.1 Reliability group In this step, we highlight the

performance of reliability group based on nine threshold

values for each colour space used. Reliability group

includes three key sections: (1) the matrix of parameters

[true negative (TN), true positive (TP), false positive (FP)

and false negative (FN)], (2) the relationship of parameters

(accuracy, recall, precision and specificity) and (3) the

behaviour of parameters (F-measure and G-measure).

A. Matrix of parameters

The matrix of parameters, which is the first and most

important section in the reliability group, includes four key

parameters, namely TN, TP, FP and FN. The matrix of

parameters is also one of the evaluation techniques for skin

detection approaches [69].

A:1 True negative criterion

In this section, the behaviour of the first criterion within

the matrix of parameters is discussed and analysed. Fig-

ure 19 illustrates the behaviour of TN criterion based on

nine threshold values with different colour spaces.

Figure 19 illustrates the behaviour of the TN criterion at

different threshold values with various colour spaces used

as alternatives in the study. The graph shows the behaviour

of this criterion to appear similar at each threshold value.

However, the figure shows the lowest threshold value of

the criterion at 79.5%, whereas the highest value is at

99.04%. The path of each threshold is nearly similar

according to the colour spaces, except for thresholds 1 and

6. The behaviour of the criterion is shown at the value of

threshold 1, which starts to slightly increase from Norm-

RGB to YIQ. The value slightly drops at the HIS, HSV and

HSL, slightly increases until CIELUV and drops again in

CIELCH. By contrast, thresholds 2 and 3 exhibit the same

behaviour, which starts rising from Norm-RGB to YCbCr

and then stabilises their track to HIS, HSV and HSL. Such

behaviour begins to slightly decline, slightly increases until

CIEXYZ and gradually increases its track even CIELCH.

Thresholds 4, 5, 7 and 9 start to slightly increase from

Norm-RGB to YCbCr and begin to drop and increase as

well as CIELCH. Meanwhile, threshold 6 has a reverse

behaviour wherein the threshold starts to slightly increase

from Norm-RGB to YCgCr, starts to fall and then increases

to YIQ. The threshold slightly increases and then stabilises

its track until CIELUV and then falls until CIELCH.

Finally, threshold 8 starts to slightly increase from Norm-

RGB to YCbCr and then begins to increase, thereby dra-

matically falling and sharply dropping in HIS, HSV and

HSL, and starts to slightly increase in CIEXYZ where its

track settled down to the end.

A:2 True positive criterion

Figure 20 shows the behaviour of TP criterion according

to the changes in the threshold values and colour space.

Table 12 Comparison of accuracy, precision, recall and specificity

sub–sub-criteria

Correlations

ACC PR RE SP

ACC Pearson correlation 1 1.000** .741** 1.000**

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

PR Pearson correlation 1.000** 1 .744** 1.000**

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

RE Pearson correlation .741** .744** 1 .744**

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

SP Pearson correlation 1.000** 1.000** .744** 1

Sig. (two-tailed) .000 .000 .000

N 108 108 108 108

**Correlation is significant at the 0.01 level (two-tailed)

Table 13 Comparison between F-measure and G-measure sub–sub-

criteria

Correlation coefficient

F G

F Pearson correlation 1 .951**

Sig. (two-tailed) .000

N 108 108

G Pearson correlation .951** 1

Sig. (two-tailed) .000

N 108 108

**Correlation is significant at the 0.01 level (two-tailed)
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The behaviour is different from the previous standard as

shown below.

Figure 20 illustrates the behaviour of the TP criterion at

different threshold values with various colour spaces used

as alternatives in this research. The figure shows the lowest

threshold value of the criterion at 80.06%, whereas the

highest value is 99.84%. Nearly all threshold values start at

one point for Norm-RGB. Thus, the behaviour of this cri-

terion is affected according to the changes in the threshold

track. Threshold 1 starts to slightly increase until YCgCr,

and its track evenly stabilises to YIQ, slightly increases

until IHLS and stabilizes until the end. Thresholds 2 and 3

begin to slightly increase until YCbCr, stabilise their track

until YIQ, slightly drop at HIS, HSV and HSL and then

slightly increase until the end of its track. Thresholds 4, 5

and 7 have nearly similar tracks from start to end. These

thresholds start to increase to YCbCr, where tracks change

between high and low until YIQ and then drop to a mini-

mum value of HIS, HSV and HSL. The thresholds increase

again until CIEXYZ; thus, their track stabilises until

CIELAB, slightly increase and decrease to the end of their

tracks. Threshold 9 has a similar track with the previous

threshold but sharply drops at HIS, HSV and HSL; the

threshold sharply increases to CIEXYZ, settles in CIELAB

and then increases to its end. However, threshold 6 has a

different track, which evenly increases to YCbCr, settles in

YCgCr and changes its track between high and low until

YIQ. The track then drops to the lowest value at HIS, HSV

and HSL, increases to CIELAB and slightly decreases until

the end. Finally, threshold 8 represents the highest

threshold value, which begins to increase until YCbCr,

stabilises until it sharply drops to the lowest value at HIS,

HSV and HSL, and increases again until CIEXYZ; its track

stabilises until the end.

A:3 False positive criterion

Figure 21 shows the behaviour of FP criterion based on

different threshold values with various colour spaces as

shown in the graph below.

Initially, this criterion is complementary to the true

negative criterion within probabilistic parameters of the

reliability group. However, the figure shows that the lowest

threshold value of the criterion is 0.07%, whereas the

highest value is 20.5%. Thus, the track of each threshold is

nearly similar according to the colour spaces, except for

thresholds 1 and 6.

Threshold 1 has the highest value, which slightly

declines until YIQ and then slightly increases even in HIS,

HSV and HSL, gradually dropping until CIELAB and then

slightly increasing again to the end. Thresholds 2 and 3

have a similar track where they slightly decline even in

YCbCr and then continue to increase until YUV; the
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thresholds slightly increase even in HIS, HSV and HSL,

slightly drop again and then straighten their track until the

CIELUV where they drop to the end. In addition, thresh-

olds 4 and 5 have the same track, where they start to

slightly drop even in YCbCr and then fluctuate until YIQ.

These tracks slightly increase even in HIS, HSV and HSL

and slightly decline. Finally, their tracks settle down to

CIEXTZ and then slightly increase and decrease again until

the end. Threshold 6 has a different behaviour, in which its

track drops until YCgCr and gradually increases and

decreases, slightly increases in YIQ and slightly drops until

it stabilises to the end. By contrast, thresholds 7 and 9 have

tracks similar to that of threshold 5. Finally, threshold 8

records the lowest threshold value, where its track slightly

drops at YCbCr and then gradually increases and decreases

until YIQ. Its track sharply increases and then drops even

in CIEXYZ until its track remains stable to the end. The

general characteristic of this criterion is that its behaviour

is similar to the TN criterion behaviour but in the opposite

direction.

A:4 False negative criterion

Figure 22 illustrates the behaviour of the FN criterion

using nine thresholds with various colour spaces as shown

in the chart below.

Initially, this criterion is complementary to the TP cri-

terion within probabilistic parameters of the reliability

group. However, the lowest threshold value of the criterion

is 0.16%, whereas the highest value is 24.63%. Figure 22

shows that nearly all threshold values start at one point for

Norm-RGB. Thus, the behaviour of this criterion is affec-

ted according to the changes in the threshold track.

Threshold 1 slightly declines until YCgCr and slightly

increases to stabilise even at YIQ and drops to IHLS. The

threshold slightly rises and declines at CIELUV and rises

again to the end. Thresholds 2 and 3 nearly exhibit a

similar trend as threshold 1, but they sharply rise at HIS,

HSV and HSL, gradually drop until CIELUV and slightly

rise to the end afterwards. Thresholds 4 and 5 start simi-

larly as the previous thresholds, in which they sharply rise

even to HIS, HSV and HSL, gradually decline until CIE-

LUV and increase again to the end. Threshold 6 exhibits a

behaviour that is different from others when it starts from

the same point and gradually declines until YcbCr. This

threshold moderates its track at YcgCr, slightly drops to

YcgCb, rises and declines again. Finally, it sharply rises to

the top even at HIS, HSV and HSL afterwards, gradually

dropping to the end. Thresholds 7 and 9 exhibit similar

behaviour where they start to decline from the starting

point until YCgCr, change their track up and down and rise

to the top even at HIS, HSV and HSL. Threshold 7 grad-

ually drops to the end whilst threshold 9 continues to

decline. Finally, threshold 8 records the lowest threshold

value, where it starts at the same point and continues to

decline even at YCbCr and then stabilises its track to YUV.

This threshold sharply rises to the top until HIS, HSV and

HSL, sharply declines until CIEXYZ and gradually con-

tinues to the end. We conclude that the behaviour of this

criterion is similar to that of TP criterion but in the opposite

direction.

B. Relationship of parameters

In this step, the second group of sub-criteria within the

reliability group, namely relationship of parameters which

includes (accuracy, recall, precision and specificity), is

discussed and analysed.

B:1 Accuracy criterion

Accuracy refers to the exactness of the analytical

method in correctly identifying outliers and inliers from

total data [66].

Figure 23 shows that the criterion behaves similarly

with that of TP criterion due to the convergence of the

values between the two criteria. The accuracy criterion is

an important measure of the relationship of parameters of

the reliability group. However, the figure shows the lowest

threshold value of the criterion at 79.90%, whereas the

highest threshold value is 100.40%. Thus, the track of each

threshold is nearly similar according to the colour spaces,

except for thresholds 1 and 6.

0

5

10

15

20

25

Da
ta

 S
eq

ue
nc

e

Skin Detection Engines

False Positive Criterion Threshold 1
Threshold 2
Threshold 3
Threshold 4
Threshold 5
Threshold 6
Threshold 7
Threshold 8
Threshold 9

Fig. 21 Behaviour of the false

positive criterion with different

colour spaces

Neural Computing and Applications (2020) 32:8315–8366 8345

123



Threshold 1 records the lowest value, where it starts to

slightly rise from Norm-RGB to YIQ and slightly drops at

the HIS, HSV and HSL afterwards. It starts to slightly rise

until CIELUV and drops again in CIELCH. Thresholds 2

and 3 exhibit the same behaviour, where they start to rise

from Norm-RGB to YCbCr and then stabilise their track to

HIS, HSV and HSL. These thresholds begin to slightly

decline, gradually rise until CIEXYZ and gradually rise

their tracks even to CIELCH. Thresholds 4, 5, 7 and 9 start

slightly high from Norm-RGB to YCbCr and begin to drop

and rise even at CIELCH. Threshold 6 demonstrates a

reverse behaviour, where it starts to slightly rise from

Norm-RGB to YCgCr, gradually falls, rises to YIQ,

slightly rises and stabilises its track until CIELUV, thereby

falling until CIELCH afterwards. Finally, threshold 8 starts

at the highest value, slightly rises from Norm-RGB to

YCbCr, begins to rise and dramatically falls, thereby

sharply dropping at HIS, HSV and HSL. This threshold

starts to slightly rise to CIEXYZ, and its track settles down

to the end.

B:2 Recall criterion

The recall is an important criterion to measure the

wholeness or quantity values. This criterion refers to the TP

rate for the probability of complete retrieval of the

parameter values. [71]. Figure 24 shows all threshold

values starting at approximately the same point from

Norm-RGB. This criterion behaves fairly similar to that of

the TP criterion due to the matching in the track of

thresholds, as shown in the graph. The reason behind that

recall is the ratio of TP components to elements inherently

ranked as positive. Thus, recall represents the number of

correctly classified positive examples divided by the

number of positive examples in the data. Finally, the

contribution of the recall represents almost similar to the

TP.

Recall is a measure of completeness or quantity. It is the

average probability of a complete retrieval referred to as

the TPR. Recall is the ratio of TP components to elements

inherently ranked as positive. Thus, recall represents the

number of correctly classified positive examples divided by

the number of positive examples in the data. Finally, the

contribution of the recall also focuses only on the positive

examples and predictions.

Figure 24 shows that the lowest threshold value of the

recall criterion is 0.791%, whereas the highest threshold

value is 0.997%. This figure illustrates the behaviour of the

recall criterion at different threshold values with various

colour spaces used as an alternative in the study. The

chart demonstrates that nearly all threshold values start at

one point from Norm-RGB. Thus, the behaviour of this

criterion is affected according to the changes in the
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threshold track. Threshold 1 starts to slightly increase until

YCgCr; its track stabilises even in YIQ and then slightly

increases until IHLS; finally, its track stabilises to the end.

Meanwhile, thresholds 2 and 3 begin to slightly increase

until YCbCr and then stabilise their track until YIQ. These

thresholds slightly drop at HIS, HSV and HSL and then

slightly increase to the end. Thresholds 4, 5 and 7 nearly

have a similar track from start to end. These thresholds

start to increase to YCbCr. Their tracks change between up

and down until YIQ and then drop to a minimum value of

HIS, HSV and HSL. Finally, their tracks increase again

until CIEXYZ and stabilise until CIELAB, slightly

increase and decrease to the end. Threshold 9 has a track

similar to that of the previous threshold. However, its track

sharply drops at HIS, HSV and HSL and sharply increases

to the CIEXYZ. The track remains stable until CIELAB

and reaches its maximum height to the end. Threshold 6

has a different track, where it increases even in YCbCr and

settles up until YCgCr. Its track changes between up and

down until the YIQ and drops to the lowest value at HIS,

HSV and HSL. The track of this threshold increases to

CIELAB and then slightly decreases until the end. Finally,

threshold 8 records the highest threshold value, which

begins to increase until YCbCr and stabilises until it

sharply drops to the lowest value at HIS, HSV and HSL. Its

value increases again until CIEXYZ, and its track stabilises

until the end.

B:3 Precision criterion

Precision is also an important measure and refers to the

ratio of information relevant to all information gathered

through networks or different sensors and services [72].

Figure 25 depicts that precision has a behaviour similar

to accuracy due to the convergence of the respective val-

ues. The precision criterion is an important measure of the

relationship of parameters of the reliability group. How-

ever, the figure shows that the lowest threshold value of

precision is 0.796%, whereas the highest value of the

threshold is 0.996%. Thus, the track of each threshold is

nearly similar according to the colour spaces, except for

thresholds 1 and 6. Threshold 1 records the lowest value,

which slightly starts to increase from Norm-RGB to YIQ.

The value slightly drops at the HIS, HSV and HSL, slightly

increases until CIELUV and decreases again in CIELCH.

By contrast, thresholds 2 and 3 have the same behaviour, in

which their values start to increase from Norm-RGB to

YCbCr and then stabilise their track to HIS, HSV and HSL.

Their tracks begin to slightly decline, slightly increase until

CIEXYZ and gradually increase even in CIELCH.

Thresholds 4, 5, 7 and 9 start to slightly increase from

Norm-RGB to YCbCr and then begin to drop and increase

even in CIELCH. Threshold 6 has a reverse behaviour, in

which it starts to slightly increase from Norm-RGB to

YCgCr and starts to decrease and increase to YIQ. This

threshold slightly increases and stabilises its track until

CIELUV and decreases until CIELCH. Finally, threshold 8

starts at the highest value, which slightly increases from

Norm-RGB to YCbCr, increases and dramatically and

sharply drops at HIS, HSV and HSL. This threshold starts

to slightly increase to the CIEXYZ until its track settles

down to the end.

B:4 Specificity criterion

Specificity is an important measure of the relationship of

parameters that represents the capability of a classifier to

distinguish between classes of the negative value from 0 to

1 [70]. The specificity criterion behaviour is shown in

Fig. 26.

Figure 26 illustrates that the behaviour of specificity is

similar to that of precision at the threshold values accord-

ing to different colour spaces.

C. Behaviour of parameters

The last part of the reliability group represents the

behaviour of parameters and includes two key parameters,

namely F-measure and G-measure. This group measures

and tests the behaviour of the parameters that are closely

related to those of the precision and recall.
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C:1 F-measure criterion

F-measure is a simple method to represent the precision

and recall, which is considered as the most popular crite-

rion for evaluating classification quality [73].

Figure 27 shows the behaviour of F-measure criterion

based on nine threshold values with different colour spaces

as shown below. The figure shows that the lowest threshold

value of the criterion is at 0.798%, whereas the highest

threshold value is at 0.991%. Threshold 1 starts to slightly

increase at the lowest value from Norm-RGB until YCgCr

and then stabilizes its track until the figure shows the

lowest threshold value of the criterion at 0.796%.

Meanwhile, the highest threshold value is at 0.996%, which

slightly increases and stabilises until CIELUV and then

slightly drops until the end track. Thresholds 2 and 3 start

at the same point and slightly increase up to YCbCr. Their

track stabilises until YIQ and descends at HIS, HSV and

HSL, thereby slightly increasing up to CIEXYZ and then

stabilises their track again until the end. Thresholds 4 and 5

begin to slightly increase from YCbCr and then stabilize

their path until YIQ. These thresholds decline their tracks

at HIS, HSV and HSL and then increase until CIELUV,

slightly dropping to the end. Finally, thresholds 6, 7, 8 and

9 begin to increase from the same point where threshold 6
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starts to increase until YCbCr and then settles down to

YIQ. The thresholds sharply fall at HIS, HSV and HSL,

increase to CIEXYZ and settle down their track until the

end. Thresholds 7 and 9 have the same track as that of the

previous threshold. They sharply decrease at HIS, HSV and

HSL and sharply increase at CIEXYZ. The track of

threshold 9 stabilises to the end whilst threshold 9 increases

from CIELUV. Finally, threshold 8 records the highest

value, which starts to increase to YCbCr and stabilises its

track until YCGCb. The value slightly drops at YUV and

continues to sharply drop at HIS, HSV and HSL. Finally,

its value sharply increases at CIEXYZ and stabilises its

track to the end.

C:2 G-measure criterion

The second criterion within the behaviour of parameters

defined as G-measure, which refers to the geometric mean

for values of precision and recall or the general measure for

classification of algorithms based on the performance and

accuracy of the measured sample classification.

Figure 28 shows that G-measure exhibits a behaviour

similar to that of F-measure due to the symmetry in their

final values, which affect the behaviour of G-measure

according to the threshold distribution values at each col-

our space used.

3.1.3.2 Time complexity criterion Time complexity cri-

terion is the time processing algorithm for all image sam-

ples needed during image segmentation process based on

the size of the image [74]. In this section, the key criterion

of time complexity is discussed according to the distribu-

tion of threshold values with different colour spaces.

Figure 29 shows that the criterion has the lowest

threshold value at 8.01%, whereas the highest threshold

value is at 12.42%, which indicates that the threshold

values for this criterion are nearly identical. Consequently,

the matching in its values clearly influences the behaviour

of this criterion. Thus, the track of threshold values appears

to be identical from the starting point to the end of its track.

The threshold values start at the lowest value, which

sharply increases from Norm-RGB until YCgCr and then

continues to slightly increase until YIQ. The values sharply

drop until HIS, HSV and HSL. Finally, they start to slightly

increase until CIEXYZ, and their tracks stabilise until

CIELAB and slightly decrease until the end of its track.

3.1.3.3 Error rate within dataset The error rate is the

minimum of error rate measured during the implementation

of the training process based on the dataset used by an

irreducible classifier which implemented the training and

validation process [69].

A. Error rate of validation criterion

A cross-validation process, which is widely used in this

study, is used to set the error rate for the training data. The

dataset is divided into three sections, namely the majority

of data for training and validation and testing.

Figure 30 illustrates the measurement of the error rate

for validation criterion based on nine thresholds according

to different colour spaces. The threshold values are iden-

tical for each colour space. Thus, the track of the threshold

values starts at the lowest value from Norm-RGB and

sharply increases until YCgCr. It slightly increases to YIQ

and sharply declines until HIS, HSV and HSL. It sharply

increases to CIEXYZ. It slightly rises until CIELAB and

slowly drops to the end of the track.

B. Error rate of training criterion

The training set is also an important stage in calculating

the error rate during the dividing process of the dataset.

Figure 31 shows the behaviour of the training criterion.

Figure 31 shows the behaviour of the error rate of

training criterion according to the distribution of threshold

values at each colour space. This figure exhibits a status

similar to that of the validation criterion through matching

threshold values according to each colour space. The val-

ues of the threshold start from Norm-RGB, sharply rise

until YCgCb and slightly drop until YUV. These values
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slightly rise to YIQ, sharply decline to HIS, HSV and HSL

and sharply rise again to CIEXYZ. They continue to

slightly rise to the CIELAB, slightly decline to CIELUV

and slightly rise until the end of their track.

In conclusion, the behaviour of criteria in all scenarios is

affected by the distribution of threshold values for each

criterion according to the different colour spaces used. The

reliability group has three main sections. The first section

represents a matrix of parameters, which includes proba-

bilistic parameters that have nearly identical behaviour as

in the charts. The TN criterion and FP criterion have a

similar behaviour but in the opposite direction due to the

values of the FP criterion, which are complementary to the

TN criterion. The TP criterion and FN criterion have a

similar behaviour for the same reason. The second section

represents a relationship of parameters including the four

main criteria. The behaviour of the criteria is affected by

the values of the matrix of parameters according to their

measurement. The third section includes two criteria,

namely F-measure and G-measure. Both criteria have

similar behaviour due to the convergence of their values.

By contrast, the time complexity has a specific behaviour

as shown in the diagram. The behaviour of the time com-

plexity is clearly affected by the large convergence

between its values, which is distributed according to the

threshold values compared with the different colour spaces.
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Finally, the error rate within the dataset has two basic

criteria, namely validation and training. The behaviour of

the two criteria is clearly affected by the matching between

the threshold values at each colour space for these criteria.

Therefore, the results show differences between the beha-

viours of criteria, thereby emphasising the need to use all

the criteria as multidimensional measurements in the

methodology proposed.

3.2 Benchmarking of real-time IoT skin detectors

In this stage, the process of integration is implemented

between the best MCDM techniques according to the

proposed methodology. AHP is performed to generate

different weights according to the criteria used in our

study. This method is based on the preferences of six

evaluators from different universities in Malaysia using

pairwise question method to provide the results of the final

weights. By contrast, the TOPSIS method is employed to

generate the final results based on the obtained weights

from the method and the performed decision matrix. The

results are based on the two main contexts, namely indi-

vidual and group contexts. Thus, the selection of a suit-

able context is recommended based on experiment

implementation and different aggregation processes con-

ducted to achieve the selection procedure. These contexts

are emphasised based on individual decision-making for

decision-makers and group decision-making for multiple

decision-makers. The results are obtained through the

integration process for selecting the best alternatives,

which is considered the main objective of this sec-

tion. Consequently, the results for the six evaluators are

presented and discussed in detail.

3.2.1 Multi-layer weight measurement using AHP

Table 14 presents the results based on the preferences of

the six evaluators from the Malaysian universities. Ques-

tions are presented according to the rules of the hierarchical

analysis process. ML-AHP is applied to generate standard

weights according to the preferences of the evaluators. The

first evaluator presents the percentage of the reliability

group at 57.3%, the time complexity group percentage at

35.3, and the error rate group at 7.4%. The second evalu-

ator presents the percentage of the reliability group at

28.1%, the time complexity group at approximately 8.1%

and the error rate group at 63.8%. The third evaluator

presents the percentage of the reliability group at 33.3%,

the time complexity group at 33.3% and the error rate

group at 33.4%. The fourth evaluator presents the per-

centage of the reliability group at 62.2%, the time com-

plexity group at 30.2% and the error rate group at 7.6%.

The fifth evaluator presents the percentage of the reliability

group at 23.9%, the time complexity group at 13.8% and

the error rate group at 62.3%. The last evaluator presents

the percentage of the reliability group at 21.1%, the time

complexity group at 68.6% and the error rate group at

10.2%. The results of the criteria weights gathered from the

six evaluators are utilised to complete the decision matrix

that will be used in decision-making.

3.2.2 TOPSIS performance based on different evaluators’
weights

In this section, TOPSIS is used to evaluate and benchmark

the skin detector approach on the basis of 108 colour space

algorithms from the perspective of the six evaluators. Thus,

this procedure is applied to select the best method.

Table 14 provides the preference weights of the features

with the appropriate colour space algorithm from the per-

spective of the evaluators. Six experts conduct pairwise

comparisons to evaluate the degree of importance of each

evaluation criterion. TOPSIS is implemented to distinguish

the worst and best performances of the skin detection

approach for each experiment. The results from these

experiments are compared with the ideal and worst per-

formances. S� and Sþ represent the approaches whose

performances are closest to the worst and ideal perfor-

mances, respectively. Based on the TOPSIS rules, the

approach closest to the best performance and farthest from

the worst performance is selected as the ideal approach.

The preferences of the six evaluators are as follows.

According to the results of ML-AHP, the weights given

by the first evaluator for the reliability group, represented

in different parameters, are 41.5%, 12.8% and 3% for TP,

FP, TN and FN (accuracy, recall, precision and specificity)

and F-measure and G-measure, respectively. The time

complexity group is given a weight of 35.3%, whereas the

error rate group represented in training and validation is

given weights of 6.2% and 1.2%, respectively. Each colour

space algorithm is evaluated using different attributes. The

results of the TOPSIS ranking indicate that the first eval-

uator gives an average of 0.49763 ± 0.13776. The value of

the highest rank is 0.8080, whereas the lowest is 0.1527.

Table 17 in Appendix presents the complete results from

the first evaluator.

The weights given by the second evaluator for the

reliability group represented in TP, FP, TN and FN (ac-

curacy, recall, precision and specificity) and F-measure and

G-measure are 2.5%, 8.5% and 17.1%, respectively. A

weight of 8.1% is given for the time complexity group,

whereas the error rate group is given the same weight of

31.9% for training and validation. The results from the

second evaluator yield an average of 0.38137 ± 0.28451.

The highest rank value is 0.955, whereas the lowest is
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0.117. Table 18 in Appendix presents the complete results

from the second evaluator.

For the reliability group, the third evaluator gives a

weight of 11.1% for each parameter. The time complexity

group is given a weight of 33.3%, whereas the error rate

group represented in training and validation is given a

weight of 16.7% for each parameter. The results from the

third evaluator yield an average of 0.42512 ± 0.22686.

The highest rank value is 0.8588, whereas the lowest is

0.0453. Table 19 in Appendix presents the complete results

from the third evaluator.

The weights given by the fourth evaluator for the reli-

ability group represented in TP, FP, TN and FN (accuracy,

recall, precision and specificity) and F-measure and G-

measure are 33.7%, 9.9% and 18.6%, respectively. The

time complexity group is given a weight of 30.2%, whereas

the error rate group represented in training and validation is

given weights of 6.8% and 0.8%, respectively. The results

from the fourth evaluator yield an average of

0.49409 ± 0.13362. The highest rank value is 0.8009,

whereas the lowest is 0.1475. Table 20 in Appendix pre-

sents the complete results from the fourth evaluator.

The weights provided by the fifth evaluator for the

reliability group represented in TP, FP, TN and FN (ac-

curacy, recall, precision and specificity) and F-measure and

G-measure are 3.3%, 13.7% and 6.8%, respectively. A

weight of 13.8% for the time complexity group is given.

Training and validation parameters representing the error

rate group are given weights of 15.6% and 46.8%,

respectively. The results from the fifth evaluator attain an

average of 0.37469 ± 0.28847. The highest rank value is

0.9678, whereas the lowest is 0.0093. Table 21 in

Appendix presents the complete results from the fifth

evaluator.

The weights given by the sixth evaluator for the relia-

bility group represented in TP, FP, TN and FN (accuracy,

recall, precision and specificity) and F-measure and G-

measure are 14.5%, 1.9% and 4.8%, respectively. The time

complexity group is given a weight of 68.6%, whereas the

error rate group represented by training and validation is

given 2.6% and 7.7%, respectively. The results of the

colour space algorithms achieve an average of

0.49286 ± 0.22406. The highest rank value is 0.8373,

whereas the lowest is 0.0552. Table 22 in Appendix pre-

sents the complete results from the sixth evaluator.

Further details are discussed in Fig. 32, representing the

preferences of the evaluators’ rankings based on internal

and external aggregation values.

According to the tables generated by applying the

TOPSIS method for selecting ideal alternatives, the final

results of internal aggregation vary. Therefore, these results

are evaluated by each evaluator based on the similarities of

their values, as shown in Fig. 32. The results for the firstTa
bl
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and fourth evaluators show a similar preference in the

YCbCr colour space. The results for the second and fifth as

well as the third and sixth evaluators yield similar results

by selecting the normalised RGB colour space. Therefore,

most of the evaluators’ results confirm the selection of the

normalised RGB colour space. The details in the next

section show the results for the internal and external

aggregations within the group decision.

In summary, the results from the evaluators indicate a

lack of consensus for making a joint decision because of

the difficulty and complexity of individual decision-mak-

ing. Thus, the group decision-maker context discusses and

compares individual decisions based on the results. The

next section shows the results for the internal and external

aggregations within the group decision-making.

3.2.3 Group TOPSIS with internal and external aggregation

Many decision-making issues are resolved through coop-

erative efforts within organisations. However, according to

the two methods mentioned in the literature, TOPSIS

expands to the group decision environment, either through

internal or external aggregations. Internal aggregations aim

to adopt the aggregation process in the separation phase. In

such situations, group separation is conducted amongst

various aggregating decision values based on the distance

of the positive and negative ideals followed by the fol-

lowing process. Thus, the internal aggregation calculation

based on the summation values of the negative separation

is divided by the summation of negative separation values

and the summation of positive separation values for all

evaluators (S�/(S� ? Sþ)), whereas external aggregation is

determined by calculating the averages of all ranked values

for all evaluators. Table 15 shows the results of group

TOPSIS with the applied internal and external aggrega-

tions. The results of external aggregation show that high

values are obtained in the normalised RGB colour space

and demonstrate relatively identical internal and external

aggregation values.

Fig. 32 Virtualised ranking for six evaluators
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Findings show that the ideal values are 0.8160529 and

0.7867003 for the internal and external aggregations,

respectively. The results of the colour space algorithms

according to the external and internal aggregations reach

averages of 0.4442933 ± 0.4827987 and 0.432439 ±

0.4776001, respectively. The outcome of aggregation

indicates similarities between the internal and external

rankings of various colour space algorithms based on the

perspective of the six evaluators. Figure 33 depicts the

post-aggregation performance of the tested colour space

Table 15 Group decision-maker of TOPSIS method with external and internal aggregations

Internal agg External agg Internal agg External agg Internal agg External agg Internal agg External agg

0.75540413 0.728462921 0.20360009 0.214195117 0.715588808 0.691935664 0.279624839 0.312910362

0.765196872 0.736389302 0.21591285 0.229576432 0.724241963 0.698777958 0.300911904 0.339703176

0.767852619 0.739821909 0.23173244 0.249084501 0.731854128 0.707212241 0.308457646 0.348268337

0.782640989 0.753053356 0.25926195 0.281543083 0.756977802 0.735531853 0.341683829 0.384646775

0.78710423 0.756176802 0.26985588 0.293246805 0.754938985 0.73633807 0.371135821 0.412022354

0.816052934 0.786700332 0.30534859 0.330809909 0.736803272 0.718643343 0.338953272 0.382506261

0.813965619 0.785896345 0.33419751 0.356791553 0.729903493 0.712498735 0.368212545 0.37422124

0.810499041 0.784046586 0.30093977 0.326460009 0.515374436 0.513875895 0.386732112 0.397444093

0.812223751 0.785187243 0.14599179 0.157226071 0.524876249 0.524507387 0.398296954 0.41215902

0.528687669 0.515726373 0.16484707 0.181634526 0.53610646 0.537663155 0.411358516 0.428581196

0.556994391 0.546756829 0.18018585 0.200337559 0.537532174 0.539699114 0.429681672 0.452548606

0.567140466 0.559039624 0.19160121 0.213963775 0.542377533 0.545824282 0.441647021 0.467996274

0.579574405 0.574562659 0.21609028 0.242289732 0.561806889 0.570219026 0.467240628 0.49721201

0.601220114 0.602263027 0.22822913 0.255473124 0.575542102 0.588126927 0.495159404 0.526272567

0.613722011 0.617775486 0.27251061 0.303336236 0.581126593 0.594388763 0.464266919 0.494224097

0.642234098 0.654293665 0.28922547 0.316288837 0.586841973 0.60114385 0.402121301 0.407531084

0.666071374 0.681478298 0.25760519 0.285586241 0.283693552 0.299792879 0.4327481 0.445226292

0.636330937 0.646975467 0.05761645 0.069834309 0.29925125 0.320435618 0.440526947 0.455249427

0.285016588 0.281777803 0.09911678 0.118817042 0.309874324 0.334265639 0.447260892 0.4642178

0.305581424 0.307989038 0.09953502 0.118972956 0.322532775 0.350801277 0.467630772 0.490694814

0.316238506 0.321609669 0.11937824 0.142097419 0.345216693 0.379455744 0.480401648 0.506404736

0.331350588 0.340460308 0.16104049 0.188962284 0.358171157 0.395063854 0.510635945 0.544026889

0.353404239 0.367720779 0.16590355 0.193305803 0.390751637 0.43218305 0.52892327 0.562017886

0.362473843 0.378914072 0.21495894 0.243265948 0.413390184 0.451820341 0.516560441 0.547924446

0.396209899 0.416160982 0.24540104 0.271386883 0.380152917 0.420463658

0.420109276 0.438695526 0.20982833 0.238723023 0.238152693 0.258811181

0.390775756 0.41025661 0.70565322 0.683287128 0.255374026 0.281651402

0.178322097 0.182153553 0.71283127 0.68875634 0.264022127 0.292947512

0.000000000
0.100000000
0.200000000
0.300000000
0.400000000
0.500000000
0.600000000
0.700000000
0.800000000
0.900000000
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algorithms based on the results of the six external

evaluators.

4 Validity process

This section provides an insight into the validation and

comparison of the different colour spaces obtained for this

research. The validation process is an important measure

for various empirical researchers in validating the accuracy

of the results. Therefore, the results obtained must be

validated according to the MCDM techniques. For this

procedure, the initial step is the comparison of the different

colour spaces based on the results. The statistical mea-

surement method is used to calculate the values for the

mean and standard deviation of each threshold value used.

Figure 34 shows the overview of the design and imple-

mentation of a validation process.

4.1 Colour space measurement

The selection of the appropriate alternative based on the

different criteria in skin detection can be implemented

using the TOPSIS method. Thus, two categories of results,

namely external and internal aggregations, are collected.

This study aims to obtain results from external aggregation

because it includes all values of comparison between the

criteria and alternatives based on the calculation of aver-

ages amongst different ranking values. Figure 35 shows the

behaviour of different colour spaces according to the cri-

teria at specific threshold values.

Figure 35 shows that the behaviour of all the colour

spaces is relatively identical based on their original values.

The behaviour of YIQ starts at the lowest value at threshold

1 and increases gradually until it reaches threshold 2. It

stabilises to threshold 3, gradually rises to threshold 5 and

stabilises until it reaches threshold 6. It gradually rises to

threshold 8 and stops at threshold 9. The behaviour of YUV

starts with a gradual rise from threshold 1 to threshold 4. It

continues to rise to thresholds 6 and 7 and stabilises until

threshold 8 before it declines at threshold 9. The beha-

viours of YCgCb and CIELAB start from thresholds 1 and

2 and gradually rise to threshold 5. They stabilise at

threshold 6, rise to threshold 8 and decline to threshold 9.

YCgCr and CIEXYZ show identical behaviours and start a

gradual rise from threshold 1 to threshold 5. They stabilise

slightly at threshold 6 and gradually rise to threshold 8.

Finally, they drop slightly to threshold 9. By contrast,

CIELUV shows a distinct behaviour as it exhibits a gradual

rise from threshold 1 to threshold 8. It declines slightly to

threshold 9. CIELCH rises from threshold 1 to threshold

2 and slightly rises to threshold 5. It stabilises slightly

to threshold 6, gradually rises to threshold 8 and drops to

threshold 9. IHLS shows a distinct behaviour as it to

Validation and comparison

Threshold measurements
• Calculating mean and STD for each 

colour space based on nine 
thresholds

Colour space measurement
• Conducting a comparison between 

colour spaces to determine their 
behaviour and significance degree

Fig. 34 Overview of the design

and implementation of a

validation process

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9

D
at

a 
Sq

ua
nc

e

Thresholds

Final Ranking Norm-RGB
YCbCr
YCgCr
YCgCb
YUV
YIQ
HIS,HSV,HSL
IHLS
CIEXYZ
CIELAB
CIELUV
CIELCH

Fig. 35 Colour space

measurement

Neural Computing and Applications (2020) 32:8315–8366 8355

123



gradually rise from threshold 1 until threshold 9 at the same

level. YCbCr starts from threshold 1 to threshold 2 and

slightly rises to threshold 5. It stabilises slightly at

threshold 6, gradually rises to threshold 8 and declines to

threshold 9. The behaviours of HIS, HSV and HSL start

from threshold 1 and rise gradually until they reach

threshold 5. Afterwards, they slightly rise to threshold 6,

stabilise at threshold 7 and slightly decline slightly until

threshold 9. Finally, normalised RGB starts from threshold

1 and gradually rises until threshold 5. It slightly rises to

threshold 6 before it stabilises until threshold 9.

Therefore, the behaviour of all the colour spaces varies

corresponding to their obtained values from external

aggregation. The colour space YIQ yields the lowest value,

whereas normalised RGB records the highest value

amongst the colour spaces. The rest of the colours come

sequentially as shown in Fig. 35.

4.2 Threshold measurements

This section presents the calculation of mean and standard

deviation value of the threshold values for all colour

spaces. Nine threshold values are adopted based on the case

study in this research. The threshold values are distributed

as 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95 for each

colour space (see Table 16).

Table 16 highlights the results obtained for each

threshold value. The results show that the mean value is

the lowest with threshold 0.5 and gradually increases with

the threshold until it reaches the highest value at the

threshold of 0.9 and decline at threshold 0.95. The find-

ings also indicate that the best result is at the threshold of

0.9.

5 Conclusion

In this work, the IoT system is adopted to collect data

required for analysis, evaluation and comparison, and

MCDM techniques are utilised to evaluate and benchmark

skin detection approaches. Firstly, different images are

collected from the real-time camera in an IoT environment.

Processes are applied on the basis of developed skin

detection approaches by using multi-agent learning in dif-

ferent colour spaces to create the decision matrix. The

decision matrix is evaluated on the basis of different cri-

teria with various skin engines. The performance of mul-

tidimensional criteria for skin detection engines is verified

by identifying the correlation between different criteria

through the Pearson method and by determining their

behaviour based on nine thresholds at each colour space.

The results confirm that the existing statistical significant

differences and differentiated behaviours between criteria

ensure that all the available criteria used are needed in the

evaluation because multidimensional measurements are

necessary. Moreover, the integration between MCDM

techniques for the evaluation and benchmarking of skin

detection approaches is presented. This research utili-

ses the ML-AHP method based on the pairwise technique,

which relies on the differences in evaluator preferences.

This approach is the best technique for the identification of

the weights of the criteria. The TOPSIS method used is the

ideal MCDM technique for the selection of the best alter-

native based on group decision-making in skin detection

approaches. Accordingly, the overall comparison of

external and internal aggregation values presented that the

normalised RGB at the sixth threshold is the highest value

and was the most recommended of all spaces, whereas the

YIQ colour space had the lowest value and was the worst

case. Moreover, the lowest threshold was obtained at 0.5,

whereas the best value was 0.9. Further studies should

focus on time complexity algorithms by considering the

criteria of the evaluation and benchmarking of real-time

IoT skin detectors and defining their procedure objectively.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Appendix

See Tables 17, 18, 19, 20, 21, and 22.

Table 16 Mean and standard deviation for threshold values

Mean ± SD

Ø = 0.5 0.372021 0.256188

Ø = 0.6 0.392262 0.249095

Ø = 0.65 0.400940 0.247265

Ø = 0.7 0.413236 0.244608

Ø = 0.75 0.432983 0.234217

Ø = 0.8 0.446975 0.241581

Ø = 0.85 0.473835 0.223924

Ø = 0.9 0.491004 0.210286

Ø = 0.95 0.468699 0.223906
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Table 17 First evaluator results to evaluate and benchmark for different colour space algorithms

S- S? Rank-1 S- S? Rank-1 S- S? Rank-1 S- S? Rank-1

0.017116 0.023158 0.424983 0.009156 0.022128 0.292674 0.015896 0.020653 0.43492 0.013994 0.017025 0.451157

0.01710 0.021884 0.438591 0.010468 0.021006 0.332587 0.015979 0.018949 0.457475 0.016688 0.014636 0.532751

0.017451 0.021761 0.445044 0.012167 0.019615 0.382829 0.016506 0.018181 0.475855 0.017815 0.01397 0.560475

0.017711 0.01998 0.469907 0.015418 0.017485 0.468584 0.01851 0.015249 0.548308 0.02190 0.01148 0.656041

0.017574 0.019217 0.477674 0.016609 0.016912 0.495476 0.019311 0.016471 0.539681 0.025756 0.010115 0.718008

0.019251 0.01618 0.543337 0.020919 0.014871 0.584491 0.018909 0.018659 0.503319 0.02140 0.011558 0.649348

0.019658 0.016476 0.544033 0.024939 0.014025 0.640054 0.019207 0.019209 0.499965 0.010957 0.021933 0.333146

0.020242 0.016829 0.546028 0.020382 0.015042 0.575386 0.013934 0.021122 0.397477 0.012632 0.019034 0.398909

0.020012 0.016694 0.54520 0.006275 0.024552 0.20355 0.014446 0.019271 0.428442 0.013728 0.017568 0.438654

0.012038 0.022626 0.347277 0.008922 0.022309 0.285672 0.015226 0.01800 0.458223 0.015115 0.016235 0.482135

0.013778 0.018305 0.42946 0.01020 0.021172 0.325073 0.015469 0.017288 0.472242 0.017511 0.013695 0.56115

0.014687 0.016925 0.46460 0.01190 0.020192 0.370863 0.015868 0.016178 0.495166 0.01860 0.012329 0.601348

0.015915 0.015169 0.51200 0.014591 0.018471 0.441309 0.017956 0.013951 0.562754 0.022321 0.010186 0.686651

0.01823 0.012524 0.592768 0.016206 0.017681 0.478228 0.019364 0.01190 0.619292 0.026254 0.008256 0.760767

0.019224 0.011506 0.625583 0.020438 0.015237 0.572888 0.020518 0.011857 0.63375 0.021894 0.010309 0.67988

0.023195 0.008182 0.739238 0.02330 0.01499 0.608563 0.020138 0.011537 0.635763 0.012113 0.022977 0.345187

0.026927 0.00640 0.808013 0.019744 0.016251 0.548517 0.010175 0.022137 0.31490 0.014357 0.01766 0.448432

0.022262 0.00880 0.716689 0.004807 0.026663 0.152757 0.011829 0.01950 0.377605 0.015118 0.016579 0.476947

0.007669 0.023758 0.244021 0.008494 0.023973 0.261619 0.012976 0.018135 0.417086 0.015877 0.015522 0.505644

0.009927 0.021132 0.319624 0.008573 0.024146 0.262031 0.014384 0.016539 0.465159 0.018085 0.012969 0.582367

0.011158 0.019982 0.358322 0.01036 0.022762 0.312786 0.016982 0.014108 0.546218 0.01915 0.011923 0.61630

0.01287 0.018686 0.407856 0.014269 0.020216 0.413765 0.01800 0.013178 0.577385 0.022987 0.008582 0.728141

0.015811 0.01652 0.489042 0.014818 0.020313 0.42180 0.022239 0.010351 0.682394 0.026526 0.007128 0.78820

0.01690 0.015562 0.520636 0.019962 0.018171 0.52348 0.025965 0.009292 0.736451 0.025135 0.008226 0.753416

0.021132 0.013556 0.60920 0.023494 0.017284 0.576149 0.02120 0.011007 0.658184

0.025116 0.012542 0.666941 0.019389 0.01821 0.515676 0.00960 0.022484 0.299276

0.020591 0.013824 0.598319 0.015769 0.022035 0.417118 0.011454 0.019838 0.366046

0.00645 0.0246 0.207729 0.015712 0.020789 0.430455 0.01246 0.018731 0.399483
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Table 18 Second evaluator results to evaluate and benchmark for different colour space algorithms

S- S? Rank-2 S- S? Rank-2 S- S? Rank-2 S- S? Rank-2

0.046322 0.003036 0.938494 0.006707 0.041529 0.139038 0.03947 0.007516 0.84004 0.005623 0.041159 0.120201

0.04632 0.002893 0.941223 0.006735 0.041519 0.139575 0.039461 0.007442 0.841341 0.005724 0.041144 0.122125

0.046327 0.002895 0.941184 0.006777 0.041507 0.140361 0.039465 0.007413 0.841868 0.005775 0.04114 0.123097

0.046325 0.002657 0.945756 0.006877 0.041492 0.142186 0.039472 0.007288 0.844138 0.005991 0.041128 0.127153

0.046316 0.002582 0.947204 0.006926 0.041486 0.143066 0.039485 0.00732 0.843613 0.006256 0.041122 0.132047

0.046321 0.002157 0.955508 0.00711 0.041473 0.146338 0.039479 0.007412 0.841935 0.005968 0.041128 0.126724

0.046322 0.002178 0.95509 0.007328 0.04147 0.150167 0.039471 0.007428 0.841613 0.015611 0.030939 0.335358

0.046319 0.002185 0.954958 0.007084 0.041475 0.145892 0.024163 0.022414 0.518773 0.015627 0.030907 0.335819

0.046321 0.002185 0.954949 0.00592 0.041274 0.125443 0.024163 0.022388 0.519067 0.015641 0.030892 0.336133

0.029496 0.017708 0.624859 0.005954 0.041257 0.126122 0.024174 0.022368 0.519393 0.015662 0.030877 0.336534

0.029505 0.017627 0.626008 0.005989 0.041243 0.126806 0.024169 0.022359 0.519447 0.015693 0.030859 0.337112

0.029511 0.017603 0.62637 0.00603 0.041238 0.12757 0.024168 0.022349 0.519546 0.015715 0.03085 0.337478

0.029518 0.017579 0.626756 0.006121 0.041225 0.12929 0.024185 0.022323 0.520024 0.015791 0.030837 0.338656

0.029537 0.017543 0.627382 0.006176 0.041223 0.13029 0.024199 0.022303 0.520388 0.015894 0.030829 0.34018

0.029552 0.017526 0.62772 0.006396 0.041195 0.134395 0.024211 0.022298 0.520562 0.01578 0.030838 0.338502

0.029594 0.017499 0.628418 0.006548 0.041204 0.137135 0.02422 0.022295 0.520698 0.015725 0.031081 0.335961

0.02965 0.017485 0.629038 0.006347 0.041215 0.133439 0.00878 0.037766 0.188638 0.015748 0.031025 0.336686

0.029583 0.017503 0.628276 0.00041 0.046401 0.008748 0.008802 0.037742 0.189106 0.015757 0.031014 0.336899

0.016222 0.031263 0.341627 0.000891 0.046374 0.018858 0.008824 0.03773 0.189543 0.015765 0.031005 0.337073

0.016238 0.031231 0.342076 0.000897 0.046375 0.018981 0.008853 0.037718 0.190102 0.015799 0.030985 0.337707

0.01625 0.031218 0.342327 0.001144 0.046364 0.02407 0.008923 0.037701 0.191374 0.015828 0.030976 0.338184

0.016269 0.031202 0.342717 0.001658 0.046345 0.034534 0.008968 0.037692 0.192201 0.015907 0.030958 0.339418

0.016308 0.031185 0.34337 0.001745 0.046344 0.036295 0.009116 0.037678 0.194811 0.01599 0.030955 0.340618

0.016324 0.03118 0.343634 0.002402 0.046331 0.049292 0.009274 0.037676 0.197537 0.015948 0.030958 0.339995

0.016407 0.031159 0.344934 0.002908 0.046327 0.059059 0.009069 0.037683 0.193974

0.016499 0.031158 0.34621 0.002346 0.046333 0.048198 0.005497 0.041204 0.117704

0.016395 0.031163 0.344729 0.039471 0.007568 0.839113 0.005538 0.041181 0.118539

0.006664 0.041555 0.138195 0.039466 0.007518 0.839996 0.005566 0.041171 0.119093
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Table 19 Third evaluator results to evaluate and benchmark for different colour space algorithms

S- S? Rank-3 S- S? Rank-3 S- S? Rank-3 S- S? Rank-3

0.028304 0.006507 0.813078 0.005219 0.025144 0.171881 0.0246 0.007016 0.778097 0.008446 0.023141 0.267388

0.028245 0.006159 0.820989 0.005423 0.025055 0.17793 0.024306 0.00678 0.781895 0.008637 0.023087 0.272251

0.028451 0.006115 0.823085 0.005708 0.024953 0.186161 0.024377 0.006586 0.787306 0.008699 0.023102 0.273552

0.028361 0.005617 0.834675 0.006236 0.02488 0.200413 0.024386 0.006033 0.801676 0.009383 0.023003 0.289712

0.028111 0.005446 0.83772 0.006496 0.024822 0.207419 0.024801 0.006057 0.803702 0.010199 0.022915 0.308003

0.028111 0.004621 0.858828 0.00741 0.024719 0.230638 0.02473 0.006556 0.790455 0.009334 0.022987 0.288791

0.028118 0.004702 0.856745 0.00831 0.024707 0.25168 0.024495 0.006804 0.782609 0.011865 0.018274 0.393676

0.028025 0.004843 0.852661 0.00728 0.02474 0.227355 0.017179 0.013419 0.561448 0.011953 0.018035 0.398584

0.028095 0.004772 0.8548 0.004422 0.025342 0.148573 0.0171 0.013242 0.563579 0.012066 0.017908 0.402551

0.018127 0.012275 0.596238 0.004497 0.025409 0.150379 0.017264 0.013056 0.569393 0.012232 0.017787 0.407481

0.018193 0.011721 0.608174 0.004846 0.025194 0.16131 0.017076 0.013062 0.566609 0.012254 0.017743 0.408508

0.01822 0.011583 0.611344 0.004954 0.025324 0.16362 0.016959 0.013015 0.56579 0.012435 0.017633 0.413567

0.018229 0.011459 0.614026 0.005464 0.025248 0.177912 0.017102 0.012817 0.571606 0.012798 0.017588 0.421174

0.018342 0.011261 0.619605 0.005715 0.025347 0.183993 0.017081 0.012725 0.573074 0.013423 0.017477 0.434404

0.01856 0.011031 0.627212 0.006937 0.024839 0.218305 0.017237 0.01269 0.575956 0.012723 0.017605 0.419508

0.018763 0.010957 0.631335 0.00742 0.025152 0.227804 0.017523 0.012517 0.583325 0.013226 0.017923 0.424595

0.01923 0.010774 0.640908 0.006477 0.025373 0.203358 0.009257 0.021659 0.299425 0.013334 0.017465 0.432927

0.018701 0.010965 0.630396 0.00137 0.028812 0.045399 0.00929 0.021504 0.301687 0.013377 0.017389 0.43481

0.00952 0.020394 0.318237 0.002365 0.028652 0.076255 0.009385 0.021419 0.304672 0.013361 0.017342 0.435172

0.009656 0.020195 0.323474 0.002378 0.028691 0.076525 0.009498 0.021336 0.308049 0.013517 0.0172 0.440052

0.009748 0.020118 0.326404 0.002875 0.028616 0.091302 0.009784 0.021216 0.315615 0.013837 0.017062 0.447815

0.009933 0.019988 0.331974 0.003973 0.028465 0.122466 0.010164 0.021065 0.325455 0.014168 0.01695 0.455303

0.010164 0.019976 0.337216 0.004119 0.028499 0.126284 0.010699 0.020988 0.337661 0.014417 0.016996 0.458954

0.010281 0.019948 0.340114 0.005566 0.028442 0.163675 0.011207 0.021017 0.347787 0.014122 0.017077 0.452649

0.010943 0.019722 0.356856 0.006562 0.028443 0.187464 0.010388 0.021081 0.330107

0.011514 0.019796 0.367742 0.005406 0.028489 0.159485 0.008008 0.023488 0.254254

0.010813 0.019815 0.353047 0.024624 0.007324 0.770762 0.008118 0.023326 0.258177

0.004862 0.025351 0.160935 0.024486 0.007092 0.775421 0.008183 0.023272 0.260149
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Table 20 Fourth evaluator results to evaluate and benchmark for different colour space algorithms

S- S? Rank-4 S- S? Rank-4 S- S? Rank-4 S- S? Rank-4

0.015111 0.018951 0.443638 0.007501 0.018849 0.284675 0.013887 0.016931 0.450615 0.011582 0.01459 0.442541

0.015088 0.017913 0.45719 0.00857 0.017968 0.322941 0.013908 0.015543 0.47224 0.013751 0.012744 0.519004

0.015383 0.017816 0.463347 0.009955 0.016882 0.370936 0.014315 0.01492 0.489662 0.014664 0.012234 0.54518

0.015563 0.016358 0.48754 0.012607 0.015239 0.452735 0.015845 0.012523 0.558556 0.017979 0.010362 0.634391

0.015422 0.01574 0.494891 0.013585 0.014791 0.478745 0.016501 0.01351 0.549828 0.021133 0.009358 0.69308

0.016683 0.013252 0.557317 0.017104 0.013246 0.563567 0.016176 0.015301 0.513903 0.017581 0.010417 0.627937

0.016989 0.013492 0.557365 0.020397 0.01262 0.617783 0.01637 0.015748 0.509683 0.009343 0.018221 0.338946

0.017415 0.013775 0.558346 0.016666 0.013376 0.554754 0.012002 0.01741 0.408063 0.010654 0.015891 0.401356

0.017252 0.013667 0.557967 0.005215 0.02063 0.201777 0.012386 0.015913 0.437684 0.011525 0.014716 0.439191

0.010599 0.018599 0.362996 0.007331 0.018866 0.279849 0.013004 0.01488 0.466357 0.012633 0.013645 0.480741

0.011922 0.01509 0.441361 0.008374 0.017952 0.318071 0.013174 0.014304 0.479434 0.014541 0.011646 0.555276

0.012622 0.01397 0.474639 0.009754 0.017197 0.361924 0.013471 0.013417 0.501006 0.015418 0.01058 0.593044

0.01357 0.012554 0.519457 0.011946 0.01585 0.429776 0.01511 0.011624 0.565188 0.018425 0.008924 0.673713

0.015388 0.01042 0.596245 0.013256 0.015256 0.464927 0.016221 0.009986 0.618953 0.02162 0.007478 0.743004

0.016189 0.009587 0.628063 0.016729 0.013317 0.556794 0.017137 0.009939 0.632929 0.018078 0.009021 0.667119

0.019347 0.006955 0.735581 0.019068 0.013177 0.591348 0.016865 0.009675 0.635454 0.010315 0.019087 0.350825

0.022355 0.005556 0.800942 0.016153 0.014161 0.532846 0.008592 0.018534 0.31673 0.012075 0.01483 0.448789

0.018602 0.007439 0.714324 0.003902 0.022546 0.147521 0.009892 0.016433 0.375768 0.012677 0.013969 0.475746

0.006627 0.019775 0.250993 0.006915 0.02042 0.252985 0.010807 0.015351 0.413134 0.013274 0.013133 0.502677

0.008386 0.017668 0.321872 0.00698 0.020556 0.253498 0.011933 0.014096 0.458438 0.015039 0.011126 0.57478

0.009361 0.016749 0.358514 0.008443 0.019472 0.302456 0.014027 0.0122 0.534834 0.015911 0.010301 0.607016

0.01073 0.015708 0.405842 0.01164 0.017493 0.399538 0.014868 0.011466 0.564588 0.019 0.007769 0.709775

0.01309 0.014004 0.483137 0.012095 0.017563 0.407812 0.018298 0.009331 0.662265 0.021859 0.006734 0.764473

0.013968 0.013259 0.513015 0.016296 0.015927 0.505731 0.021328 0.008568 0.713395 0.020726 0.007523 0.733699

0.017405 0.011672 0.598589 0.019195 0.015259 0.557114 0.017445 0.009832 0.639546

0.020642 0.010912 0.654178 0.015832 0.015965 0.497913 0.008075 0.018903 0.299324

0.016963 0.01189 0.587903 0.013795 0.018052 0.433171 0.009542 0.016803 0.362195

0.005306 0.020805 0.203192 0.013733 0.01704 0.446267 0.010345 0.015928 0.393754
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72. Chaves-González JM et al (2010) Detecting skin in face

recognition systems: a colour spaces study. Digit Signal Proc

20(3):806–823

73. Zhengzhen Z, Yuexiang S (2009) Skin color detecting unite

YCgCb color space with YCgCr color space. In: 2009 interna-

tional conference on image analysis and signal processing. IEEE

74. Abadpour A, Kasaei S (2005) Pixel-based skin detection for

pornography filtering. Iran J Electr Electron Eng 1(3):21–41

75. Yang J et al (2004) Adaptive skin detection using multiple cues.

In: 2004 international conference on image processing, 2004.

ICIP’04. IEEE

76. Ma Z, Leijon A (2010) Human skin color detection in RGB

space with Bayesian estimation of beta mixture models. In: 2010

18th European signal processing conference. IEEE

77. Tolieng V et al (2017) Identification and lactic acid production

of bacteria isolated from soils and tree barks. Malays J Micro-

biol 13(2):100–108

78. Khan R et al (2012) Color based skin classification. Pattern

Recognit Lett 33(2):157–163

79. Shin MC, Chang KI, Tsap LV (2002) Does colorspace trans-

formation make any difference on skin detection? In: Proceed-

ings of sixth IEEE workshop on applications of computer vision,

2002 (WACV 2002). IEEE

80. Schmugge SJ et al (2007) Task-based evaluation of skin

detection for communication and perceptual interfaces. J Vis

Commun Image Represent 18(6):487–495

81. Kasson JM, Plouffe W (1992) An analysis of selected computer

interchange color spaces. ACM Trans Gr (TOG) 11(4):373–405

82. Xiong W, Li Q (2012) Chinese skin detection in different color

spaces. In: 2012 international conference on wireless commu-

nications and signal processing (WCSP). IEEE

83. Araban S, Farokhi F, Kangarloo K (2011) Determining effective

colour components for skin detection using a clustered neural

network. In: 2011 IEEE international conference on signal and

image processing applications (ICSIPA). IEEE

84. Beale MH, Hagan MT, Demuth HB (2010) Neural network

toolbox. User’s Guide MathWorks 2:77–81

85. Zolfaghari H, Nekonam AS, Haddadnia J (2011) Color-base

skin detection using hybrid neural network & genetic algorithm

for real times. Int J Comput Sci Inf Secur 9(10):67–71

86. Bhoyar K, Kakde O (2010) Skin color detection model using

neural networks and its performance evaluation. J Comput Sci.

Citeseer

87. Doukim CA et al (2011) Combining neural networks for skin

detection. arXiv preprint arXiv:1101.0384

88. Flach PA, Lachiche N (2004) Naive Bayesian classification of

structured data. Mach Learn 57(3):233–269

89. Metzger A, Sammodi O, Pohl K (2013) Accurate proactive

adaptation of service-oriented systems. In: Cámara J, de Lemos
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for participatory forest planning using AHP and TOPSIS. For-

ests 7(5):100

126. Kalid N et al (2018) Based on real time remote health moni-

toring systems: a new approach for prioritization ‘‘large scales

data’’ patients with chronic heart diseases using body sensors

and communication technology. J Med Syst 42(4):69

127. Zaidan A et al (2015) Robust pornography classification solving

the image size variation problem based on multi-agent learning.

J Circuits Syst Comput 24(02):1550023

128. Taylan O, Kaya D, Demirbas A (2016) An integrated multi

attribute decision model for energy efficiency processes in

petrochemical industry applying fuzzy set theory. Energy Con-

vers Manag 117:501–512

129. Barrios MAO et al (2016) An AHP-topsis integrated model for

selecting the most appropriate tomography equipment. Int J Inf

Technol Decis Mak 15(04):861–885

130. Albahri O et al (2019) Based multiple heterogeneous wearable

sensors: a smart real-time health-monitoring structured for

hospitals distributor. IEEE Access 7:37269–37323

131. Albahri A et al (2018) Real-time fault-tolerant mhealth system:

comprehensive review of healthcare services, opens issues,

challenges and methodological aspects. J Med Syst 42(8):137

132. Saaty TL (1990) How to make a decision: the analytic hierarchy

process. Eur J Oper Res 48(1):9–26

133. Saaty TL (1977) A scaling method for priorities in hierarchical

structures. J Math Psychol 15(3):234–281

134. Saaty TL, Vargas LG (1984) Inconsistency and rank preserva-

tion. J Math Psychol 28(2):205–214

135. Al-Azab FGM, Ayu MA (2010) Web based multi criteria

decision making using AHP method. In: Proceeding of the 3rd

international conference on information and communication

technology for the Moslem world (ICT4M) 2010. IEEE

136. Rahmatullah B et al (2017) Multi-complex attributes analysis

for optimum GPS baseband receiver tracking channels selection.

In: 2017 4th international conference on control, decision and

information technologies (CoDIT). IEEE

Neural Computing and Applications (2020) 32:8315–8366 8365

123

https://doi.org/10.1007/s11235-017-0401-5
https://doi.org/10.1142/S0219622017500183
https://doi.org/10.1142/S0219622017500183
https://doi.org/10.1155/2014/459375
https://doi.org/10.1155/2014/459375


137. Salih MM et al (2018) Survey on fuzzy TOPSIS state-of-the-art

between 2007–2017. Comput Oper Res 104:207–227

138. Alsalem M et al (2018) Systematic review of an automated

multiclass detection and classification system for acute Leu-

kaemia in terms of evaluation and benchmarking, open chal-

lenges, issues and methodological aspects. J Med Syst

42(11):204

139. Kalid N et al (2018) Based real time remote health monitoring

systems: a review on patients prioritization and related’’ big

data’’ using body sensors information and communication

technology. J Med Syst 42(2):30

140. Chen C-T (2000) Extensions of the TOPSIS for group decision-

making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9

141. Huang Y-S et al (2013) Aggregation of utility-based individual

preferences for group decision-making. Eur J Oper Res

229(2):462–469

142. Xia M, Chen J (2015) Multi-criteria group decision making

based on bilateral agreements. Eur J Oper Res 240(3):756–764

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Affiliations

A. A. Zaidan1 • B. B. Zaidan1 • M. A. Alsalem2
• O. S. Albahri1 • A. S. Albahri3 • M. Y. Qahtan1

1 Department of Computing, Faculty of Arts, Computing and

Creative Industry, Universiti Pendidikan Sultan Idris,

Tanjung Malim, Malaysia

2 College of Administration and Economic, University of

Mosul, Mosul, Iraq

3 Iraqi Commission for Computers & Informatics, Baghdad,

Iraq

8366 Neural Computing and Applications (2020) 32:8315–8366

123


	Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology
	Abstract
	Introduction
	Methodology
	Data collection phase
	Identification and performance phase
	Identification of the decision matrix
	Development of skin detector by using multi-agent learning dependent on different colour spaces
	Crossing between the developed skin detector and three main groups of criteria
	Evaluation and testing of developed skin detector according to three criteria groups

	Performance of decision matrix
	Correlation between criteria
	Performance analysis of criteria


	Development phase
	Developing a decision-making solution for the skin detection approach based on integrated ML-AHP and TOPSIS
	Adoption of ML-AHP to investigate the weights of different evaluators
	Pairwise comparisons for each criterion
	Design of ML-AHP measurement structure
	Calculating the weights of criteria and checking the consistency value

	Utilisation of TOPSIS for evaluation and benchmarking of real-time IoT skin detection approaches
	Decision-making context



	Result
	Multi-criteria analysis and comparison
	Results of the proposed decision matrix
	Correlation between criteria results
	Correlation analysis in layer 1
	Correlation analysis in layer 2
	Correlation analysis in layer 3

	Performance analysis of criteria results
	Reliability group
	Time complexity criterion
	Error rate within dataset


	Benchmarking of real-time IoT skin detectors
	Multi-layer weight measurement using AHP
	TOPSIS performance based on different evaluators’ weights
	Group TOPSIS with internal and external aggregation


	Validity process
	Colour space measurement
	Threshold measurements

	Conclusion
	Appendix
	References




