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Abstract
This paper proposes a modified approach to the original whale optimization algorithm which is a nature-inspired swarm-

based optimization algorithm known as the modified whale optimization (MWOA) algorithm. The superiority of proposed

modified algorithm over original algorithm in terms of implementation time and solution quality is compared by taking

several benchmark test functions. Further, the real application of the said approach in the engineering field is carried out by

designing a PID with derivative (PIDF) controller for frequency regulation of a the most realistic scenario of automatic

generation control of a two-area interconnected power system composing of a PV grid and a thermal generator. It is

observed that MWOA-based PIDF controller is more effective for the load frequency control compared to conventional

PID controller.

Keywords Automatic generation control (AGC) � Multi-area multi-source power system � Modified whale optimization

algorithm (MWOA) � PIDF controller � PV grid

1 Introduction

The principle focus of load frequency control (LFC)

problems is to ensure the frequency and the inter-area tie-

line power inside sensible range to manage the adjustment

in demand and disturbance [1]. It also helps in maintaining

the system frequency and the voltage within a prescribed

limit while giving an acknowledged size of power quality

[2]. To achieve this purpose, different algorithms such as

hearty control [3], decentralized angle [4], straight quad-

ratic [5], shaft moving [6] and variable structure [7] have

been proposed in the literature. However, these algorithms

have a few drawbacks which diminish their execution.

Hence, many authors have applied artificial intelligence,

for example fuzzy logic (FL) [8] and neural network (NN)

[9]. In spite of the fact that these algorithms are proficient

in managing the nonlinearities of the power system, they

have different disadvantages.

Another answer for the LFC issue is to use an evolu-

tionary algorithm (EA). The nonlinearity functions in LFC

can be easily settled down by EA. Genetic algorithm (GA)

[10], particle swarm optimization [11], bacteria foraging

[12], firefly algorithm [13, 14], gravitational search

[15, 16], bat algorithm [17] and cuckoo look calculation

[18] are treated with LFC design. Despite the fact that these

algorithms give a superior execution for the design issue,

they have lots of disadvantages like significant time of

usage, commonly caught into local optima, etc. Besides,

the impact of PV on LFC design by means of optimization

algorithm was not examined in the literature.

Whale optimization algorithm (WOA) is a newly sug-

gested optimization approach which has been applied to a
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variety of optimization tasks because of its exciting features

compared to other similar techniques [19]. It is simple,

flexible, easy to programme and has a distinctive ability to

maintain an appropriate balance among the exploration and

exploitation phases in the search process which results in

improved performance. Also, it is a derivative-free and has

very few algorithm parameters [20]. Many attempts have

been made to find the variant of WOA that performed better

on optimization problems such as improved WOA [21],

nature-inspired WOA [22] and enhanced WOA [23].

Although WOA provides some adequate results for opti-

mizing a problem, it is often problematic. This causes a

large timing in implementation of the algorithm and thus

trapped in local optima [24]. In order to overcome the

limitation of WOA, hybridization with another algorithm is

implemented. This will lead to different hybrid algorithms

such as neural network-based WOA [25], hWOA-SA [26],

hWOA-PS [27]. The emphasis was to verify its adaptability

to other optimization problems, and on the other hand,

complexity was increased little more.

In original WOA algorithm, the current best candidate

solution is the target prey and the other search agents will

hence try to update their positions towards the best search

agent. Since the position of the optimal design in the search

space is not known from the earlier, this procedure of update

may bring about getting caught in local optima. Conse-

quently, in the present MWOA algorithm, some correction

factors, i.e.CF1,CF2, are introduced which can overcome the

above such problem. Thus, the proposed work defines the

feasibility of theMWOA algorithmwhich can use to find the

controller parameters in a two-area power system.

The novel contributions in this paper are briefly

described as follows:

• The impact of integration of PV grid with thermal

system under intermittent climatic conditions in a two-

area interconnected power system is investigated.

• The impact of PV system for frequency regulation is

studied under varying environmental conditions.

• The Modified WOA algorithm is proposed, and its

performance is validated for different benchmark

functions.

• The controller is designed with said MWOA algorithm

and is demonstrated that frequency regulation is

regulated by comparing it with other existing designed

controllers.

2 System under study

From the literature, it is observed that most of the existing

research works are focused on load frequency control of

thermal, hydro and gas interconnected power system. Some

of the works included the wind power system together, but

very few researches focused on interconnected power

system of either of these above-mentioned systems with PV

system as shown in Fig. 1.

2.1 Modelling of PV-thermal power system

2.1.1 Modelling of thermal power system

The thermal power system consists of generator, governor,

turbine and reheater. The transfer functions of the thermal

power system are described as follows.

The governor’s transfer function is: [28, 29]:

GgðsÞ ¼
Kg

1þ sTg
ð1Þ

The reheater’s transfer function is:

GrðsÞ ¼
1þ sKrTr

1þ sTr
ð2Þ

The turbine’s transfer function is:

GtðsÞ ¼
Kt

1þ sTt
ð3Þ

The thermal generator’s transfer function is

GPðsÞ ¼
KP

1þ sTP
ð4Þ

2.1.2 Modelling of photovoltaic system

The transfer function of the solar photovoltaic system

including PV panel, maximum power point tracker, con-

verter and filter is given by the equation.

GPVðsÞ ¼
K � Ls

s2 þMsþ N
ð5Þ

3 Structure of proposed PIDF controller

The principle steps for outlining PID controller with a

derivative filter is alluded as PIDF controller. The filter

used here is basically a low-pass filter and presents a fur-

ther parameter which can diminish the high-frequency

sensor noise and system oscillations. The derivative term of

a PID controller amplifies the harmonic components [30].

The structure of the proposed PIDF controller is shown in

Fig. 2. A traditional way to deal with the design of PIDF

controllers is to pick the additional real pole in the

derivative term. Let CPIDF(s) signifies the transfer function

of an alleged PIDF controller, which can be defined as:
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CPIDFðsÞ ¼ Kp þ
Ki

s
þ sKd

1þ s10
d

ð6Þ

where Kp, Kd and Ki are the proportional, derivative and

integral constants, respectively.

4 Optimization problem

While formulating an optimization problem, objective

function should be set first. It is set based on performance

index. In this case, the objective is the minimization of

frequency error. Integral time absolute error (ITAE) is

chosen as performance index [31]. The ITAE objective

function can be formulated as:

J ¼ ITAE ¼
Ztsim

0

DF1j j þ DF2j j þ DPTiej jð Þ � t � dt ð7Þ

where DF1 and DF2 represent the area 1 and area 2 fre-

quency deviations, DPTie shows the tie-line power devia-

tion and tsim is the total simulation time.

To optimize the controller gains, the ranges of the

controller parameters are considered as constraints.

Therefore, the considered problem may be formulated as an

optimization problem as described below;

Minimize J ð8Þ

Subject to KPmin �KP �KPmax

KImin �KI �KImax

KDmin �KD �KDmax

NNmin �NN �NNmax;

ð9Þ

where KXmin and KXmax represent the minimum and maxi-

mum limits of the controller parameters and J is the fitness

function.

5 The modified whale optimization
algorithm (MWOA)

5.1 Whale optimization algorithm

Recently, a new search algorithm known as WOA is

developed which basically uses the concept of social

behaviour of whales. Among every one of the types of

whales, humpback whales are greater in size. Whales like

Fig. 1 Two-area power system

composing of PV grid and

thermal generator

PK

IK

DK

1
s

Y(S)E(S)

NN

1
s

Fig. 2 Structure of proportional integral derivative with derivative

(PIDF) controller
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to chase krill and little fishes. Hunting procedure of

humpback whales depends on bubble-net feeding

methodology. The twisting bubble-net nourishing plan is

numerically demonstrated in WOA. Humpback whales

show some essential practices during the process of hunt-

ing. The mathematical model and optimization algorithm

for the proposed WOA calculation can be described as

follows.

5.1.1 Encircling prey

The best ability associated with all the whales is that they

have the ability to recognize the area of the prey and

subsequently start surrounding it. As the initial position of

prey is unknown previously, the said WOA algorithm

considers present optimal solution near to the most possible

solutions. The other search agents change their position

towards the position of the current best search agent in the

wake of getting the present best position. Mathematically,

it can be represented as:

X
!¼ Y

!
Z��! tð Þ � Z

!
tð Þ

���
��� ð10Þ

Z
!ðt þ 1Þ ¼ Z��! tð Þ � D

!
:X
! ð11Þ

where Z
!

is the position vector, D
!

and Y
!

are the coeffi-

cient vectors, t demonstrates the present iteration, | | is the

absolute value, ‘.’ is a component-by-component aug-

mentation and Z* is the position vector of the best solution

and in each iteration, the best solution will be updated.

Now, the vectors D
!

and Y
!

can be expressed as:

D
!¼ 2b:

!
r!� b

! ð12Þ

Y
!¼ 2 s! ð13Þ

where the estimation of b
!

is diminished directly from 2 to

0 as the cycle advance and s is an irregular vector in the

range [0, 1].

5.1.2 The mechanism of bubble-net attacking (exploitation
phase)

The scientific demonstration of the bubble-net behaviour of

humpback whales is explained in the following sections.

1 Shrinking encircling mechanism:

The primary aim of this mechanism is to lower

down the estimated values of b
!

in Eq. (12). It is

observed that the changing scope of D
!

is similarly

lessened by b
!
. All things considered D

!
will be

irregular qualities in the range [- a, a] where ‘b’ is

lessened from 2 to 0 all through cycles. Setting

arbitrary qualities for a vector ‘a’ is in the middle of

[- 1, 1] territory.

2. Spiral updating position:

The primary aim of this mechanism is to estimate

the of distance between the prey and the whale. Then

after, a spiral condition is estimated between the

position of whale and prey which can be formulated as:

Z
!

t þ 1ð Þ ¼ X0!:eks: cos 2Psð Þ þ Z� tð Þ
���!

ð14Þ

where X
0!
¼ Y��! tð Þ � Y

!
tð Þ

���
��� and it likewise shows the

distance of the ‘i’th whale to the prey, ‘.’ is a component-

by-component multiplication and k is a constant which

characterizes the condition of the logarithmic winding.

During the optimization process, a specific probability is

accepted in picking the two techniques to refresh current

position of a humpback whale. The expected probability of

selecting spiral mode or the shrinking encircling mecha-

nism is 50%. Mathematically, it can be represented as:

Z
!

t þ 1ð Þ ¼ Z��! tð Þ � D
!� X! if Q� 0:5

X0! � eks � cos 2Psð Þ þ Z��! tð Þ if Q� 0:5

(

ð15Þ

where Q is a subjective number which is varied in the range

[0, 1].

5.1.3 Search for prey (exploration phase)

This mechanism deals with exploration for prey by utiliz-

ing vector A
!
, where vector A

!
utilizes the arbitrary quali-

ties in the range of - 1 to 1 which searches the agents

forcefully to move far from a reference whale. The math-

ematical representations of the above conditions are

X
!¼ Y

!� Zrand
��!� Z

!���
��� ð16Þ

Z
!

t þ 1ð Þ ¼ Zrand
��!� D

!
:X
! ð17Þ

where Zrand
��!

is an arbitrary position vector which represents

the present population.

5.2 Modified whale optimization algorithm

According to WOA algorithm, the objective prey is the

present best candidate solution. What is more, conse-

quently the other agents will try to refresh their positions

towards the best search agent according to Eqs. (10) and

(11). Amid the initial phase of the search procedure, the

most ideal searching agent in search space is not known.

Hence, the procedure of the update may come about in

moving the search agents past the optimal value which may

bring about getting caught in local optima. To overcome

this limitation, two correction factors such as CF1 and CF2
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which modify the search agent during the search and their

values are 2.5 and 1.5, respectively. The updated equations

become:

X
!¼ Y

!
Z��! tð Þ � Z

!
tð Þ

� �
=CF1 ð18Þ

Z
!ðt þ 1Þ ¼ Z��! tð Þ � D

!� X!
� �

=CF1 ð19Þ

Similarly, in the exploitation phase, a correction factor is

introduced and in this case the spiral updating position,

Eq. (11) is modified as:

Z
!

t þ 1ð Þ ¼ X0! � eks � cos 2Psð Þ þ Z� tð Þ
���!� �

=CF2 ð20Þ

At long last, a correction factor is presented in the explo-

ration phase of the prey. So in the WOA, the position of the

search agents is refreshed in exploration stage as indicated

by an arbitrarily picked search agent according to Eqs. (16)

and (17). Thus, it might prompt arbitrary development of

whales. Accordingly, in the present MWOA strategy, the

positions of the search agents are refreshed by utilizing the

correction factors as per Eqs. (21) and (22). The pseu-

docode for our proposed approach is explained in Fig. 3.

Equations (21) and (22) are considered as:

X
!¼ Y

!� Zrand
��!� Z

!� �
=CF1 ð21Þ

Z
!

t þ 1ð Þ ¼ Zrand
��!� D

!� X!
� �

=CF2 ð22Þ

6 Simulation results and discussion

6.1 Model verification

The proposed modified WOA algorithm is being tried on

some standard benchmark functions. Table 1 shows the

performance of different algorithms over the benchmark

Initialize Whale population (p),  Max.  no. of 
iteration= T, i=1

Evaluate fitness of each population and 
select the best search agent (P)

If
Q<0.5

If
D<1

Update current position of 
the search agent 

Start

Update current position of the 
search agent 

Update current 
position of the 
search agent 

Choose an 
arbitary search 

agent (Zrand)

If i<T

Update the Search 
agent in search space 

i=i+1

Save result

END

No

No

Yes

Yes

Yes

Fig. 3 Flowchart for the

proposed modified WOA

algorithm
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functions. This test shows the predominance of the modi-

fied approach.

Table 1 speaks the fitness values (minimization) of the

benchmark functions by considering the modified algo-

rithm with the standard WOA and the published GGSA-PS

[28] algorithm. For each case, the algorithm is kept running

for 500 times and Table 1 also demonstrates the compar-

ison of the best, the worst and the mean fitness value for

each function. It can be concluded that the proposed

modified algorithm provides better results compared to

other algorithms. Thus, the proposed modified algorithm

can be used to calculate the PIDF controller parameters for

the said two-area system composing of PV grid and ther-

mal generator.

Figure 4 indicates the convergence characteristic for all

the algorithms on a Schwefel benchmark function. It can be

seen that the performance of the proposed modified WOA

algorithm is much superior that other algorithms.

6.2 Implementation of proposed MWOA
algorithm

In order to calculate the objective function of the above

system, some disturbances are considered and the simula-

tion continued. Here, Eq. (8) is used to find the parameters

of the PIDF, PID and PI controllers. For comparison,

MWOA-optimized PID and WOA-optimized PI parame-

ters are given in Table 2. Table 2 shows that the WOA-

based PI yields better result than the published firefly

algorithm (FA)- and genetic algorithm (GA)-tuned PI

controller. It can be further concluded from the Table 2 that

when the modified WOA employs to tune the controller

parameters, it provides better result as compared to the

WOA-tuned PI controller. Finally, it is seen that when

MWOA technique is employed to tune the PID controller,

the objective function obtained is 1.56 reduces to 1.48

when proposed MWOA technique is employed to the PIDF

controller. Hence, it can be concluded that for the engi-

neering design problem also proposed MWOA technique

Table 1 Different bench functions with their fitness (minimization) value by applying hGGSA-PS [28], WOA and the proposed MWOA

algorithms

Functions name Test functions Range Algorithms Best Worst Mean

Rosenbrock F7 ¼
Pn�1

i¼1 100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

� �
[- 30,30]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

0.978

1.012

1.123

2.125

3.564

3.365

1.956

2.015

2.486

Schwefel F1 xð Þ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j [-10,10]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

1.997*10-9

2.459*10-9

2.986*10-9

2.895*10-9

3.123*10-9

3.216*10-9

2.986*10-10

3.789*10-10

2.795*10-9

Sphere F2 xð Þ ¼
Pn

i¼1 x
2
i

[- 100,100]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

1.213*103

1.456*103

1.678*103

3.265*103

4.026*103

5.708*103

2.123*103

3.012*103

3.978*103

Schwefel F3 xð Þ ¼ max xij jf ; 1� i� ng [- 100,100]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

1.569*10-15

1.659*10-14

1.986*10-14

5.697*10-15

5.659*10-14

5.217*10-14

4.653*10-15

4.956*10-15

3.567*10-14

Rastrigin F8 ¼
Pn

i¼1 x2i � 10 cosð2PxiÞ þ 10
� �

[- 5.1,5.1]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

3.126*10-13

4.569*10-13

5.456*10-12

7.265*10-28

6.569*10-27

7.567*10-27

4.565*10-28

7.456*10-28

6.787*10-27

Step F4 xð Þ ¼
Pn

i¼1 xi þ 0:5½ �ð Þ2 [- 100,100]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

2.265*10-28

3.565*10-28

2.567*10-27

2.368*10-29

4.623*10-29

3.568*10-28

6.523*10-28

7.569*10-28

8.567*10-27

Ackly
F5 ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
x2i

r !
�

exp
1

n

Xn

i¼1
cos 2pxi

	 

þ 20þ e

[- 32, 32]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

0.059

0.289

0.885

0.259

0.656

0.997

0.059

0.856

0.901

Noisy quadric F6 ¼
Pn

i¼1 ix
4
i þ random 0; 1ð Þ [- 1.2,1.2]n 1. Prop. MWOA

2. Std. WOA

3. hGGSA-PS

2.369*10-7

4.369*10-7

4.567*10-6

6.658*10-6

7.965*10-6

8.679*10-5

5.023*10-6

5.465*10-6

6.758*10-6
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provides better result as compared to original WOA tech-

nique. To evaluate the time-domain performance, the fol-

lowing disturbances are considered:

6.3 Disturbance 1: a 10% step change in thermal
system demand

A 10% step increment in demand of thermal system is

used, and the system response is shown in Fig. 5a–c. It

can be observed that there is appreciable difference

between the PID and proposed MWOA-based PIDF

controller performance as the system overshoots are less.

To represent the simulation results, the following cases

are considered:

• Case-1: The system response using a PI controller with

the genetic algorithm (GA) is represented with a legend

‘Published GA-Based PI [14] ’.

• Case-2: The system response using a PI controller with

the firefly algorithm (FA) is represented with a legend

‘Published FA-Based PI [14] ’.

• Case-3: The system response using a PI controller with

the whale optimization algorithm (WOA) is represented

with a legend ‘WOA-Based PI’.

• Case-4: The system response using a PID controller with

the modified whale optimization algorithm (MWOA) is

represented with a legend ‘MWOA-Based PID’.

• Case-5: The system response using a PIDF controller

with the proposed modified whale optimization algo-

rithm is represented with a legend ‘Proposed MWOA-

Based PIDF’.

6.4 Disturbance 2: a 10% step change
in both areas

In this scenario, both the thermal system demand and the

PV temperature are increased at a step of 10%. Figure 6a–c

shows the system response of the power system. From the

response curves, it is found that in case of modified WOA-

based PIDF controller, the overshoots are less and the

system response reached steady state rapidly as compared

to MWOA-based PID and WOA-based PI controllers.

Fig. 4 Convergence plots for

MWOA, WOA, GSA and GA

algorithms

Table 2 Controller parameters for the two-area power system with HVDC line

Parameter Proposed MWOA-tuned PIDF controller MWOA-tuned PID WOA-tuned

PI

FA-tuned

PI [14]

GA-tuned

PI [14]

KP1 - 1.9117 - 0.1070 - 0.4563 - 0.8811 - 0.5663

KI1 - 0.0649 - 0.0906 - 0.2254 - 0.5765 - 0.4024

KD1 - 1.5383 - 0.6112 – – –

KP2 - 1.8875 - 1.8938 - 0.8967 - 0.7626 - 0.5127

KI2 - 1.3179 - 1.8935 - 0.9865 - 0.8307 - 0.7256

KD2 - 0.1417 - 0.2505 – – –

NN 5.5236 – – – –

ITAE 1.4841 1.5602 4.1211 7.4259 12.124
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6.5 Parameter variation

A parameter variation test is connected to verify the

effectiveness of the proposed MWOA-based two-area

power system. Figure 7 demonstrates the frequency

response curve of the first region with variety in governor

time constant. It is observed that the system is consistent

with the proposed controller. Finally, the variation in the

turbine time constant test is performed to support the

supremacy of the proposed controller. The response is

A

B

C

Fig. 5 a–c Response of the

system for Disturbance-1
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shown in Fig. 8. A conclusion can be made from the above

study that the composed controller is fit for giving adequate

damping and the robustness.

6.6 Performance indices and robustness

The adequacy of the outlined controllers is verified through

different indices; for example, the integral absolute error

A

B

C

Fig. 6 a–c) Response of the

system for Disturbance-2
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(IAE), integral time absolute error (ITAE), the integral

square error (ISE) and the integral time multiply square

error (ITSE) are used as:

Integral absolute error (IAE)

IAE ¼
Ztsim

0

DF1j j þ DF2j j þ DPTiej jð Þ � dt ð23Þ

Integral time absolute error (ITAE)

ITAE ¼
Ztsim

0

DF1j j þ DF2j j þ DPTiej jð Þ � t � dt ð24Þ

The integral squar error (ISE)

ISE ¼
Ztsim

0

DF1ð Þ2þ DF2ð Þ2þ DPTieð Þ2
h i

:dt ð25Þ

The integral time multiply square error (ITSE)

ITSE ¼
Ztsim

0

DF1ð Þ2þ DF2ð Þ2þ DPTieð Þ2
h i

t:dt ð26Þ

Table 3 gives the estimations of different indices for every

controller. It is obvious from the tables that the perfor-

mance indices are less with proposed MWOA-based PIDF

controllers as compared to other controllers. This confirms

Fig. 7 Change in frequency of

area 1 with uncertainty in

governor time constant

Fig. 8 Change in frequency of

area 1 with uncertainty in

turbine time constant

Table 3 Optimized lead–lag

controller parameters for

different objective functions

Techniques/controller/objective function IAE ITAE ISE ITSE

Proposed MWAO-tuned PIDF 0.4971 1.4841 0.0744 0.0581

MWOA-tuned PID 0.5625 1.5602 0.0815 0.0601

WOA-tuned PI 1.0566 4.1211 0.1663 0.4262

FA-tuned PI 1.7207 7.4259 0.2907 0.4723

GA-tuned PI 2.3341 12.124 0.3202 0.8618
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the time-domain characteristics are decreased by utilizing

the proposed modified algorithm.

7 Conclusion

In this paper, a novel approach is made by proposing a

modified whale optimization algorithm for a PID with

derivative controller design for frequency regulation of a

two-area PV grid and thermal generator power system. The

superiority of the proposed MWOA algorithm over original

WOA in terms of implementation time and solution quality

is compared by taking several benchmark test functions. As

a next step, the proposed MWOA technique is then applied

to optimize a PIDF controller for frequency control of

hybrid power systems. It is observed that MWOA-based

PIDF controller is more effective for LFC problems com-

pared to conventional PID controller.
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Appendix

The parameters of the thermal system: Tp = 20 s; Tt-
= 0.3 s; Tr = 10 s; T12 = 0.545 p.u; Tg = 0.08 s; KP-

= 120 Hz/p.u MW; B = 0.8 p.u MW/Hz; a12 = - 1;

R = 0.4 Hz/p.u MW; Kr = 0.33 p.u MW; A = 18; B = 900;

C = 100; D = 50.
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