
ORIGINAL ARTICLE

Graph constraint-based robust latent space low-rank and sparse
subspace clustering

Yunjun Xiao1 • Jia Wei1 • Jiabing Wang1 • Qianli Ma1 • Shandian Zhe2 • Tolga Tasdizen3

Received: 10 February 2019 / Accepted: 18 June 2019 / Published online: 27 June 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Recently, low-rank and sparse representation-based methods have achieved great success in subspace clustering, which

aims to cluster data lying in a union of subspaces. However, most methods fail if the data samples are corrupted by noise

and outliers. To solve this problem, we propose a novel robust method that uses the F-norm for dealing with universal noise

and the l1 norm or the l2;1 norm for capturing outliers. The proposed method can find a low-dimensional latent space and a

low-rank and sparse representation simultaneously. To preserve the local manifold structure of the data, we have adopted a

graph constraint in our model to obtain a discriminative latent space. Extensive experiments on several face benchmark

datasets show that our proposed method performs better than state-of-the-art subspace clustering methods.

Keywords Dimension reduction � Low-rank and sparse representation � Subspace clustering � Manifold clustering

1 Introduction

In the field of computer vision and pattern recognition,

dealing with high-dimensional data is a challenging task. In

most cases, these high-dimensional data can be represented

by a low-dimensional subspace. For example, the face data

under different illumination conditions can be

approximated by a low-dimensional linear subspace [1].

Subspace clustering aims to cluster the data points drawn

from a union of low-dimensional subspaces.

The subspace clustering problem has attracted attention

in recent years, and many methods have been proposed to

address it, including iterative methods [2–4], algebraic

methods [5–7], statistical methods [8–11], and methods

based on spectral clustering [12–22]. Researchers favor the

methods based on spectral clustering, which can obtain

better results. These methods divide the spectral clustering

problem into two steps. First, an affinity matrix is built

from the data. Then, spectral clustering is applied on the

affinity matrix to segment the data. The basis of such

methods is to construct an informative affinity matrix.

Recently, various algorithms based on sparse represen-

tation [13, 14] or low-rank representation [15–17, 20, 22]

have been proposed in the literature for subspace cluster-

ing. Such methods are robust to noise and outliers and do

not require the knowledge of the dimensions and the

number of subspaces. Most of these methods are based on a

self-expressiveness model, which states that each sample

can be expressed as a linear combination of other samples.

They utilize all samples as a dictionary and find a sparse or

low-rank representation matrix. With relatively clean data,

X ¼ XR, where X is the data matrix and R is the coeffi-

cient matrix. With corrupted data, the constraint is changed

& Jia Wei

csjwei@scut.edu.cn

Yunjun Xiao

csxyunjun@mail.scut.edu.cn

Jiabing Wang

jbwang@scut.edu.cn

Qianli Ma

qianlima@scut.edu.cn

Shandian Zhe

zhe@cs.utah.edu

Tolga Tasdizen

tolga@sci.utah.edu

1 School of Computer Science and Engineering, South China

University of Technology, Guangzhou, China

2 School of Computing, University of Utah, Salt Lake City,

USA

3 Scientific Computing and Imaging Institute, University of

Utah, Salt Lake City, USA

123

Neural Computing and Applications (2020) 32:8187–8204
https://doi.org/10.1007/s00521-019-04317-3(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04317-3&domain=pdf
https://doi.org/10.1007/s00521-019-04317-3

to X ¼ XRþ E, where E denotes the reconstruction error.

In general, the subspace clustering problem can be summed

up as the following optimization problem:

min
R;E

kRkk þ kkEkt s:t: X ¼ XRþ E; diagðRÞ ¼ 0

ð1Þ

where k � kk and k � kt are suitable norms, k is a trade-off

parameter, and the constraint diagðRÞ ¼ 0 is optionally

used to avoid a trivial solution of R.

The methods differ in the choice of norms for the reg-

ularization on R and/or the reconstruction error E. For

example, Elhamifar and Vidal proposed sparse subspace

clustering (SSC) [13, 14] based on sparse representation

(SR) [23]. The l1 norm is chosen for k � kk to get a rela-

tively sparse matrix R, and the F-norm and/or the l1 norm

of E are used to handle Gaussian noise and/or outliers. Liu

et al. [16, 17] argued that due to learning the sparse rep-

resentation of each data vector individually, SSC may not

be able to capture the global structure of data, and the

performance of SSC will be largely depressed when the

data is grossly corrupted. Consequently, they proposed a

method called the low-rank representation (LRR), which

finds the lowest rank representation of all data jointly. They

used the nuclear norm k � k� for k � kk to obtain a relatively

low-rank matrix R and the l2;1 norm of E to tackle sample-

specific corruptions, where some data vectors are corrupted

and others are clean. Vidal et al. [20] held that using data as

the dictionary is unreasonable when data are grossly cor-

rupted. They learned a noise-free dictionary from corrupted

data and found the low-rank representation based on the

learned dictionary. They named this algorithm low-rank

subspace clustering (LRSC). In LRSC, the nuclear norm

k � k� is applied to k � kk, the F-norm, and the l1 norm of E

is used to handle Gaussian noise and outliers. Wang et al.

[21] reported that the representation matrix is often

simultaneously sparse and low rank, and they therefore

combined SSC and LRR, termed low-rank sparse subspace

clustering (LRSSC). In LRSSC, the nuclear norm k � k� and
the k � k1 norm are used for k � kk, and the F-norm of E is

used to deal with Gaussian noise. Also, several variants of

these algorithms have been proposed, such as least squares

regression (LSR) [19], l0-SSC [24], SSC-learned orthogo-

nal matching pursuit (SSC-LOMP) [25], subspace cluster-

ing with learning an adaptive low-rank graph (SC-LALRG)

[26], and subspace clustering with block diagonal repre-

sentation (BDR) [27]. These methods have yielded state-

of-the-art results in different subspace segmentation tasks.

However, finding sparse or low-rank representation is

time-consuming when the dimension of the feature is high

[14]. To tackle this problem, we can process the high-di-

mensional data into low-dimensional data using principal

component analysis [28] or random projections [29] prior to

obtaining sparse or low-rank representation. The major

drawback of this method is that it may lose too much

information, leading to poor performance. A more reason-

able approach is to find the low-dimensional embedding and

sparse or low-rank representation jointly. Patel et al. [30]

proposed an extension of SSC: latent space sparse subspace

clustering (LS3C). Given a dataset, LS3C finds a low-di-

mensional embedding and a sparse representation matrix

simultaneously. They also proposed an extension of LS3C:

latent space low-rank and sparse subspace clustering

(LSLRSSC) [31]. LSLRSSC finds a low-dimensional

embedding and a sparse and low-rank representation matrix

simultaneously. Also, Wei et al. [32] proposed an extension

LS3C, which they called latent space robust subspace seg-

mentation (LSRS2). In LSRS2, the weighted l1 norm and

the nuclear norm are used for the representation matrix.

These methods learn a low-dimensional space without

losing too much information, and a PCA-like regularization

term is added to their objective functions. PCA aims to

discover the global structure of the Euclidean space; nev-

ertheless, the local manifold structure is more necessary

than the global Euclidean structure in many real-world

application problems [33, 34]. Tang et al. [35] designed a

special term describing the property of learned space

instead of PCA that can keep the local manifold structure of

the high-dimensional data: robust subspace learning-based

low-rank representation (RSLLRR). RSLLRR learns a low-

rank representation matrix, but the representation matrix is

often sparse and low rank. In addition, the methods men-

tioned above using the F-norm or the l2;1 norm to capture

the reconstruction error are not robust [36–38].

Consequently, in this paper, we propose a novel algo-

rithm, robust latent space low-rank and sparse subspace

clustering (RLSLRSSC). To preserve the local manifold

structure of the high-dimensional data, we devise a graph

constraint term instead of a PCA-like term in the objective

function of our proposed algorithm. Moreover, to make our

algorithm robust to noise, we characterize the reconstruc-

tion error more precisely. Due to the limited representa-

tional capability with insufficient data and the error in data

acquisition and transmission, we assume a portion of the

error obeys a Gaussian distribution. Hence, we use the

F-norm to depict Gaussian noise. We use the l1 norm or the

l2;1 norm to depict outliers. In summary, our main contri-

butions are as follows:

1. By adopting a graph constraint term rather than a PCA-

like term, we propose a novel representation learning

method that finds a discriminating latent space and a

low-rank and sparse representation matrix

simultaneously.

2. We depict the noise more accurately, so the robustness

of our algorithm will be enhanced.

8188 Neural Computing and Applications (2020) 32:8187–8204

123

3. A simple and efficient iterative method is proposed to

optimize our algorithm.

The remainder of this paper is organized as follows. In

Sect. 2, we briefly review some related work. Section 3

presents the proposed method RLSLRSSC. In Sect. 4, we

describe the optimization algorithms, the time complexity,

and convergence analysis. Section 5 reports experimental

results. Section 6 concludes this paper.

2 Related work

In this section, we briefly review sparse and low-rank

subspace clustering methods, including SSC [13, 14], LRR

[16, 17], LRSSC [21], and LSLRSSC [31]. For brevity, we

summarize some notations in Table 1.

2.1 Sparse subspace clustering (SSC)

Sparse representation (SR) [23] is an effective tool for

representing and compressing high-dimensional data. In

the recent years, an increasing number of methods have

been proposed based on SR. Also, a lot of applications

derive from SR, such as Tree2Vector [39, 40]. Similarly,

SSC [13, 14] learns the affinity matrix for a dataset based

on SR. Given a dataset, X ¼ ½x1; x2; . . .; xN � 2 RD�N drawn

from a union of Q independent linear subspaces

S1; S2; . . .; SQ. Each sample xi 2 RD can be linearly and

approximately represented by a combination of a few

points from the rest of the samples in X. The idea of SSC

can be expressed as follows:

min
R

kRk1 s:t: X ¼ XR; diagðRÞ ¼ 0 ð2Þ

where R ¼ ½r1; r2; . . .; rN � 2 RN�N is a coefficient matrix

whose column ri is the representation vector corresponding

to xi, diagðRÞ 2 RN is the vector whose elements equal the

diagonal elements of R, and 0 2 RN is a vector containing

zeros only.

In fact, the data lie in a union of affine subspaces. In this

condition, we obtain the following optimization:

min
R

kRk1 s:t: X ¼ XR; diagðRÞ ¼ 0;RT1 ¼ 1 ð3Þ

where 1 is a vector containing one only. Considering that

the data may be corrupted, the constraint X ¼ XR should

be relaxed to X ¼ XRþ E. E is the noise matrix, and the

F-norm is used to capture the noise. The following prob-

lem, therefore, can be solved to obtain the representation

matrix R:

min
R

kX� XRk2F þ kkRk1 s:t: diagðRÞ ¼ 0;RT1 ¼ 1

ð4Þ

where k is a regularization parameter. This problem can be

solved by using the alternating direction method of multi-

pliers (ADMM) [41].

2.2 Low-rank representation (LRR)

LRR [16, 17] uses low-rank representation to construct an

affinity matrix for a group of data. Similar to SSC, LRR

uses the data X as the dictionary. When the data is noise-

free, a low-rank representation R can be obtained by

solving the problem

min
R

rankðRÞ s:t: diagðRÞ ¼ 0 ð5Þ

However, the above optimization problem is difficult to solve.

As a common approach to addressing the above problem, the

rank function is replaced by its convex surrogate, the nuclear

norm. When the data is corrupted by some arbitrary noise E,

i.e., X ¼ XRþ E, the l2;1 norm is employed to deal with the

noise. The objective function of LRR is

min
R;E

kRk� þ kkEk2;1 s:t: X ¼ XRþ E ð6Þ

The above problem can be solved by an inexact augmented

Lagrange multiplier (ALM) method [42].

2.3 Low-rank and sparse subspace clustering
(LRSSC)

The representation matrix R is often simultaneously sparse

and low rank. By combining SSC and LRR, a low-rank and

sparse representation can be learned. In LRSSC [21], the

representation matrix can be found by solving the follow-

ing optimization problem:

min
R

kX� XRk2F þ k1kRk� þ k2kRk1

s:t: diagðRÞ ¼ 0;RT1 ¼ 1
ð7Þ

where k1 and k2 are two regularization parameters. This

problem can be solved using the ADMM [41] method.

Table 1 Summery of main notations used in this paper

Matrix Bold capital symbol, e.g., X

Vector Bold lowercase symbol, e.g., xi

XT Transpose of matrix X

Wij The (i, j)th of matrix Wij

k:kF F-norm, i.e., kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i;j M
2
i;j

q

k:k1 l1-norm, i.e., kMk1 ¼
P

i;j jMi;jj
k:k2;1 l2;1-norm, i.e., kMk2;1 ¼

P

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i M
2
i;j

q

k:k� Nuclear norm, i.e., sum of the singular values

I Identity matrix

Neural Computing and Applications (2020) 32:8187–8204 8189

123

2.4 Latent space low-rank and sparse subspace
clustering (LSLRSSC)

Finding low-rank and sparse representation is very time-

consuming. Dissimilar to LRSSC, LSLRSSC [31] finds a

latent low-dimensional space and a low-rank and sparse

representation matrix simultaneously. LSLRSSC can be

expressed as the following problem:

min
P;R

kPX� PXRk2F þ k1kRk� þ k2kRk1

þ k3kX� PTPXk2F s:t: diagðRÞ ¼ 0;RT1 ¼ 1;PPT ¼ I

ð8Þ

where k1, k1, k1 are three trade-off parameters and P is a

projection matrix. The last term is used for guaranteeing

that the projection does not lose too much information in

the original domain. This problem can be solved by opti-

mizing P and R alternatively using ADMM [41]. In SSC,

LRR, LRSSC, and LSLRSSC, once the representation

matrix R is learned, the affinity matrix W can be con-

structed by W ¼ jRj þ jRTj, where jRj is the modulus of

R. Finally, spectral clustering [43] is used to obtain clus-

tering results.

3 Robust latent space low-rank and sparse
subspace clustering (RLSLRSSC)

In this section, we present a novel method, robust latent

space low-rank and sparse subspace clustering

(RLSLRSSC). Our model consists of three steps. First, it

projects the high-dimensional data onto a lower dimen-

sional space, and we add a graph constraint to promote the

discriminative ability of the projected space. Second, the

projected data is represented by a low-rank and sparse

representation matrix. Third, we need to deal with the noise

and outliers. Simply, we aim to learn a low-rank and sparse

representation matrix and a discriminative projection

matrix simultaneously by using a graph constraint.

RLSLRSSC can be expressed as the following optimization

problem:

min
P;R;G;E

kf ðGÞ þ k1f1ðRÞ þ k2f2ðPÞ þ k3f3ðEÞ

s:t: PX ¼ PXRþGþ E;PPT ¼ I;RT1 ¼ 1
ð9Þ

where k; k1; k2; k3 are four regularization parameters, P is a

projection matrix, R is a low-rank and sparse representa-

tion matrix, G denotes universal noise, and E denotes

outliers. In most cases, universal noise obeys a Gaussian

distribution, and we can apply the F-norm for G,

f ðGÞ ¼ kGk2F . One can find both sparse and low-rank

representation as is performed in LRSSC by setting

f1ðRÞ ¼ kRk� þ akRk1, where a is a trade-off parameter.

To deal with outliers, the l1 norm or the l2;1 norm is

employed for E, f3ðEÞ ¼ kEk1 or f3ðEÞ ¼ kEk2;1. f2ðPÞ
describes the property of the learned space, which enforces

discrimination of the learned space.

The graph constraint term f2ðPÞ learns a transformation

matrix, which can preserve useful information and projects

the data onto a discriminative latent space, where different

classes are separated more easily compared with the orig-

inal space. Because the local manifold structure is more

significant than the global Euclidean structure [33, 34],

preserving the local manifold structure in the projected

space is more reasonable. We hope that if two data points

xi and xj are close in the original space, their corresponding

low-dimensional embedding yi and yj should be close, too.

f2ðPÞ is designed to preserve the preferable relationship

between the data samples. As a result, we choose the k

nearest neighbors of each data point by Euclidean distance.

Then, the adjacency graph W can be obtained with the k

nearest neighbors by using radial basis function (RBF). In

RBF, it is important to select the value of r. However,
when the data includes clusters with different local statis-

tics, the adjacency graph may not be accurate even using

the optimal r. In addition, it is hard to get the optimal r
because there are many parameters in our model. To

overcome these problems, W is defined as

Wij ¼ exp �
xi � xj
�

�

�

�

2

2

rirj

 !

xi 2 NðxjÞ or xj 2 NðxiÞ

0 otherwise

8

>

<

>

:

ð10Þ

where NðxiÞ denotes the nearest neighbors of xi and ri is a
local scaling [44] parameter for xi, which permits self-

tuning of the point-to-point distances according to the local

statistics of the neighborhoods of xi. The local scale ri can
be defined as ri ¼ dðxi; xtÞ, where xt is the tth neighbor of

xi.

We formulate the graph constraint term f2ðPÞ as

min
P

f2ðPÞ ¼
X

N

i¼1

X

N

j¼1

1

2
kyi � yjk22Wij ð11Þ

where yi is the low-dimensional embedding corresponding

to xi and we have yi ¼ Pxi. Let D be a diagonal matrix with

Djj ¼
P

j¼1 Wij, and L be the Laplacian matrix with

L ¼ D�W. The objective function (11) can be modified

as the following equivalent problem:

min
P

f2ðPÞ ¼ trðPXLXTPTÞ s:t: PPT ¼ I ð12Þ

The above optimization problem can be seen as a simpler

one in orthogonal locality preserving projections (OLPP)

[45–47]. If the sample size is less than the feature

8190 Neural Computing and Applications (2020) 32:8187–8204

123

dimension of the sample, we will come across the under-

sampled size problem. To ensure that the matrix M ¼
XLXT will be nonsingular, we may use PCA to reduce the

dimensionality of the data in advance.

By expanding f ðGÞ, f1ðRÞ, f2ðPÞ , and f3ðEÞ, our pro-
posed model (9) can be expressed as

min
P;R;E

kkPX� PXR� Ek2F þ k1kRk� þ k2kRk1

þ k3trðPXLXTPTÞ þ k4kEkl s:t: RT1 ¼ 1;PPT ¼ I

ð13Þ

where k � kl denotes a certain norm. We consider two kinds

of norms on E: (i) the l1 norm, resulting in a model denoted

by RLSLRSSC-L1; and (ii) the l2;1 norm, resulting in a

model denoted by RLSLRSSC-L21.

4 Optimization

The optimization problem (13) is difficult to solve, and it is not

jointly convex concerning (P;R;E). We can divide the opti-

mization problem (13) into three subproblems to find the pro-

jection matrix P, the representation matrix R, and the error

matrix E separately. These subproblems are solved alterna-

tively by updating one variable and fixing the other ones. Each

subproblemwill be discussed in detail in the following section.

4.1 Update of projection matrix P

Given fixed R and E, the cost function in Eq. (13) is further

reduced to

JP ¼ min
P

kkPX� PXR� Ek2F þ k3trðPXLXTPTÞ

s:t: PPT ¼ I

ð14Þ

The above objective function is nonconvex with a local

minimum of it obtained as follows. First, considering

PPT ¼ I, we have

kPX� PXR � Ek2F ¼ trðPUðPÞPTÞ ð15Þ

where UðPÞ ¼ ðX� XR� PTEÞðX� XR� PTEÞT. In this
case, the objective function in Eq. (14) can then be

rewritten as

JP ¼min
P

ktrðPUðPÞPTÞ þ k3trðPXLXTPTÞ

min
P

trðPðkUðPÞ þ k3XLX
TÞPTÞ

s:t: PPT ¼ I

ð16Þ

To optimize the above minimization in the tth iteration, we

use UðPt�1Þ to estimate the UðPÞ in Eq. (16), where Pt�1 is

the projection matrix acquired in ðt � 1Þth iteration. Using

the eigenvalue decomposition (EVD) technique, we have

U; S;U½ � ¼ EVDðkUðPÞ þ k3XLX
TÞ ð17Þ

Then, we can update P as the d eigenvectors in U associ-

ated with the first d smallest eigenvalues in S, i.e.,

Pt ¼ Uð:; 1 : dÞT.

4.2 Update of representation matrix R

We then can optimize R with P and E fixed. By ignoring

irrelevant terms, the cost function in Eq. (13) reduces to

min
R

kkPX� PXR � Ek2F þ k1kRk� þ k2kRk1

s:t: RT1 ¼ 1
ð18Þ

To solve the above minimization, we need to introduce two

auxiliary variables, J and S and reformulate the optimiza-

tion problem. For brevity, let A ¼ PX and B ¼ PX� E.

We can rewrite Eq. (18) as

min
R

kkB� ARk2F þ k1kJk� þ k2kSk1

s:t: RT1 ¼ 1; R ¼ J; R ¼ S;
ð19Þ

We can solve the above problem by using the inexact

augmented Lagrangian multiplier (ALM) [42] method. The

augmented Lagrangian function of Eq. (19) is

min
R

kkB� ARk2F þ k1kJk� þ k2kSk1

þ tr½K1ðRT1� 1Þ� þ tr½K2ðR� JÞ� þ tr½K3ðR� SÞ�

þ u1

2
kRT1� 1k2F þ u2

2
kR� Jk2F þ u3

2
kR� Sk2F

ð20Þ

where K1, K2 , and K3 are three Lagrangian multipliers and

u1, u1, u3 are three penalty factors. The optimization of

Eq. (20) can be found in Algorithm 1.

4.3 Update of noise matrix E

In order to solve E, we keep P and R fixed. Hence, the

objective function in Eq. (13) can be rewritten as

min
E

kkPX� PXR � Ek2F þ k4kEkl ð21Þ

when the l1 norm is used for noise, we have

min
E

kkPX� PXR � Ek2F þ k4kEk1 ð22Þ

This problem can be efficiently solved by shrinkage [48].

Whereas the l2;1 norm is used for noise, we have

Neural Computing and Applications (2020) 32:8187–8204 8191

123

min
E

kkPX� PXR � Ek2F þ k4kEk2;1 ð23Þ

According to Lemma 1, we can update E by

E ¼ argmin
1

2
kPX� PXR� Ek2F þ k4

2k
kEk2;1:

Lemma 1 [49] Given a matrix y ¼ ½y1; y2; . . .; yN �, if the
optimal solution of

min
Z

1

2
kZ� yk2F þ gkZk2;1

is Z�, and then, the ith column of Z� is

Z�ð:; iÞ ¼
kyik2 � g
kyik2

yi if g�kyik2
0 otherwise

8

<

:

4.4 The algorithms

We first describe the algorithmic procedure for solving R

in Algorithm 1. Then, we discuss the whole algorithmic

procedure for solving Eq. (13) in Algorithm 2. Once the

representation matrix R is learned, spectral clustering is

applied on the affinity matrix W ¼ jRjT þ jRj to obtain the

clustering result. The proposed methods are summarized in

Algorithm 3.

4.5 Complexity and convergence analysis

4.5.1 Time complexity

We analyze the time complexity of two main subproblems

of RLSLRSSC optimization as follows:

1. The most time-consuming subproblem is computing

low-rank and sparse representation. In Algorithm 1,

step 5 is the most time-consuming due to singular value

decomposition (SVD) with the cost of OðNÞ3, where
N is the number of data samples. The time complexity

of computing the matrix inverse in step 3 costs OðdÞ3,
where d is the dimension of latent space. In short, the

total time complexity of Algorithm 1 is i1 OðNÞ3,
where i1 is the iterative number of this algorithm.

2. For updating the projection matrix P, the most time-

consuming step is EVD. The time complexity of this

step is also OðNÞ3.
Algorithm 1 is a step of Algorithm 2, and as a result, the

total time complexity of RLSLRSSC is i1 i2 OðNÞ3, where
i1 is the iterative number of Algorithm 1, and i2 is the

number of iterations of Algorithm 2.

Then, we analyze the time complexities of all the

compared methods briefly. For SSC, the time complexity is

iD� OðNÞ3, where i is the iterative number and D is the

size of dimension. For LSR and LRSC, the time com-

plexity is OðNÞ3. For LRR and BDR, the time complexity

is i OðNÞ3. The time complexity of LSLRSSC and our

algorithm is same, which is i1 i2 OðNÞ3.

Algorithm 1 Inexact ALM Algorithm for Equation
(20)
Input:

The matrix A and B.
Output:

The low-rank and sparse representation matrix J.
1: Initialize: R = 0,J = 0,S = 0, Λ1 = 0, Λ2 = 0, Λ3 =

0, u1 = 10−6, u2 = 10−6, u3 = 10−6, maxu = 106 =
10−8, ρ = 1.1

2: while not converged do
3: Fix other variables and update R by

R = (λATA + u111T + (u2 + u3)I)−1(λATB +
u111T + u2J+ u2S− 1Λ1 − Λ2 − Λ3)

4: Fix other variables and update S by
S = argmin λ2

u3
S 1 + R+ Λ3

u3
− S 2

F

5: Fix other variables and update J by
J = argmin λ1

u2
J ∗ + R+ Λ2

u2
− J 2

F

6: Update Λ1, Λ2, Λ3 by
Λ1 = Λ1 + u1(RT1− 1)
Λ2 = Λ2 + u2(R− J)
Λ3 = Λ3 + u3(R− S)

7: Update u1, u2, u3 by
u1 = min(ρu1, maxu)
u2 = min(ρu2, maxu)
u3 = min(ρu3, maxu)

Check the convergence conditions
RT1− 1 ∞ and R− J ∞

and R− S ∞
8: end while

Algorithm 2 Iterative Procedure for Equation (13)
1: Initialize:

Projection P by solving Equation (12)
noise matrix E as E = 0

2: for i = 0; i < imax; i ++ do
3: Fix P, E and optimizing R by solving Equation (20)

using Algorithm 1.
4: Fix R, E and optimizing P by solving Equation (17).
5: Fix P, R and optimizing E by solving Equation (22)

or (23).
6: end for
7: return R

Algorithm 3 Robust Latent Subspace Clustering by
RLSLRSSC
1: Obtain low-rank and sparse representation matrix R by

using Algorithm 2.
2: Normalize the columns of R as ri = ri

ri ∞
.

3: Construct a similarity graph by W = |R|+ |R|T .
4: Apply spectral clustering to the similarity graph W.
5: return Cluster labels for all data.

8192 Neural Computing and Applications (2020) 32:8187–8204

123

4.5.2 Convergence analysis

A proof to ensure the convergence of the inexact ALM

method can be found in [17], so we assume Algorithm 1 is

convergent. Now, we consider the convergence of Algo-

rithm 2.

Proposition 1 The cost function J ¼ kkPX� PXR�
Ek2Fþ k1kRk� þ k2kRk1 þ k3trðPXLXTPTÞ þ k4kEkl
converges to a minimum by employing Algorithm 2.

Proof First, it is easy to prove that J� 0 for any P;R;E.

Then, based on Algorithm 2, assume we have completed

t iterations and Pt;Rt;Et are obtained. In the ðt þ 1Þth
iteration, Rtþ1 ¼ argminR JðPt;Rt;EtÞ after step 3. There-

fore, JðPt;Rtþ1;EtÞ� JðPt;Rt;EtÞ. Similarly, we also have

Ptþ1 ¼ argminP JðPt;Rtþ1;EtÞ and JðPtþ1;Rtþ1;EtÞ�
JðPt;Rtþ1;EtÞ after step 4. Finally, we have Etþ1 ¼
argminE JðPtþ1;Rtþ1;EtÞ and JðPtþ1;Rtþ1;Etþ1Þ�
JðPtþ1; Rtþ1;EtÞ after step 5. Hence, JðPtþ1;Rtþ1;

Etþ1Þ� JðPt;Rt;EtÞ, and we can deduce that RLSLRSSC

is convergent.

5 Experimental results

In this section, we carry out several experiments on three

face benchmark databases to demonstrate the superior

clustering performance of our proposed method

RLSLRSSC. We compare our RLSLRSSC with SSC, LSR,

LRR, LRSC, BDR, LRSSC, and LSLRSSC. Two measures

are employed to evaluate the performance of all approa-

ches, i.e., clustering accuracy (ACC) and normalized

mutual information (NMI) [50]. To test the robustness of

these methods, we show their results on the databases

corrupted by four kinds of noise: Gaussian noise, Laplacian

noise, sample-specific corruptions, and Gaussian and

Laplacian mixed noise. We describe four kinds of noise

experiments in detail in the following paragraphs.

For the first experiment, we add Gaussian noise to the

database. The level of noise intensity (LNI) varies from 0

to 5. When the LNI = 0, the original database is used. The

corrupted data are constructed by adding Gaussian noise

with zero mean and variance 0:01� LNI.

For the second experiment, we add Laplacian noise to

each image. Similar to the first experiment, the LNI varies

from 1 to 5. The corrupted data are generated by adding

Laplacian noise with the location parameter zero and the

scale parameter 0:05� LNI.

For the third experiment, we add Gaussian noise to some

selected samples. The level of corruption percentage (LCP)

varies from 1 to 10. We randomly select LCP� 10%

percentage of the data samples and add Gaussian noise

with the LNI = 2 to them.

For the last experiment, we add two kinds of noise to the

images: Gaussian noise and Laplacian noise. The LNI

varies from 1 to 5. To construct the contaminated data,

Gaussian noise with zeros mean and variance 0:01� LNI

is added to all images, and then, Laplacian noise with the

location parameter zero and the scale parameter 0:05�
LNI is added.

5.1 Experiment on the ORL database

The ORL database [51] consists of 400 human face images,

with 40 distinct subjects containing 10 different images.

For each subject, the images were taken under varying

lighting conditions, with different facial expressions and

facial details at different times. All the images were taken

against a dark background with upright, frontal positions.

The size of the face images is 32� 26. The images of the

ORL database are shown in Fig. 1.

We describe the parameter setting here. The parameters

are set to k ¼ 0:01; k1 ¼ 0:1; k2 ¼ 0:01; k3 ¼ 0:1; k4 ¼ 0:1

for the clean data. For the corrupted data, tuning all

parameters will cost too much time. Because k; k4 are the

coefficients of the error matrix, they indicate the pollution

levels. Hence, we fine-tune only k; k4 for the corrupted

data. We choose a set of optimal parameters and then

repeat five runs and obtain five results and calculate the

average result to obtain the final performance.

First, we use the ORL database corrupted by Gaussian

noise to demonstrate our method. The performance of

related methods is listed in Table 2. When the original

images are used, the accuracy of RLSLRSSC-L21 is

86:10%, which is higher than LSLR-SSC (the second

place) by 5:40%, which is because RLSLRSSC uses a

Fig. 1 Samples from the ORL database and contaminated ORL

database. a The original ORL database. b The ORL database

corrupted by Gaussian noise. c The ORL database corrupted by

Laplacian noise. d The ORL database corrupted by Gaussian and

Laplacian mixed noise. The LNI of the corrupted images is 2

Neural Computing and Applications (2020) 32:8187–8204 8193

123

Table 2 Clustering results on the ORL database corrupted by Gaussian noise

Method Measure LNI ¼ 0 LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 77.65 ± 3.11 79.30 ± 2.04 76.05 ± 2.13 76.30 ± 1.04 72.25 ± 1.84 69.55 ± 2.13

NMI 88.53 ± 0.77 89.85 ± 0.65 86.76 ± 0.48 86.74 ± 0.79 84.08 ± 0.71 82.29 ± 1.10

LSR1 ACC 74.10 ± 1.40 72.30 ± 1.65 70.20 ± 1.71 70.70 ± 3.46 60.95 ± 2.43 55.80 ± 0.82

NMI 85.93 ± 0.49 84.49 ± 0.42 83.53 ± 1.07 82.47 ± 1.36 75.62 ± 1.36 71.65 ± 0.71

LSR2 ACC 72.20 ± 2.10 72.10 ± 1.57 69.65 ± 2.39 70.45 ± 2.40 60.85 ± 1.44 56.30 ± 1.24

NMI 85.81 ± 1.07 84.37 ± 0.55 83.66 ± 1.09 82.56 ± 1.38 75.85 ± 0.50 72.43 ± 1.05

LRR ACC 73.50 ± 2.78 69.65 ± 2.13 71.10 ± 3.35 69.45 ± 1.78 64.40 ± 1.39 56.35 ± 2.10

NMI 86.02 ± 1.19 83.36 ± 0.62 83.63 ± 1.27 82.76 ± 0.62 78.28 ± 1.16 72.86 ± 1.15

LRSC ACC 67.90 ± 1.65 70.40 ± 1.94 63.70 ± 3.16 45.35 ± 2.15 39.55 ± 1.49 38.70 ± 1.19

NMI 81.51 ± 0.57 83.33 ± 0.81 77.71 ± 1.08 67.74 ± 0.90 63.52 ± 0.74 61.63 ± 0.94

BDR ACC 72.90 ± 2.21 74.45 ± 1.55 70.15 ± 1.22 64.10 ± 2.27 55.75 ± 1.82 48.70 ± 0.67

NMI 85.67 ± 1.08 86.28 ± 0.67 82.75 ± 0.54 78.05 ± 0.92 71.84 ± 1.22 66.51 ± 0.39

LRSSC ACC 79.35 ± 1.91 77.30 ± 0.84 72.60 ± 1.72 64.35 ± 2.45 61.35 ± 1.04 61.50 ± 1.61

NMI 89.13 ± 0.44 87.86 ± 0.56 84.07 ± 0.86 78.06 ± 1.80 78.20 ± 0.33 79.41 ± 0.83

LSLRSSC ACC 80.70 ± 2.20 76.45 ± 2.41 71.40 ± 1.04 61.45 ± 1.45 61.65 ± 2.26 63.45 ± 4.30

NMI 89.04 ± 1.07 87.22 ± 0.79 82.67 ± 0.58 74.65 ± 1.58 77.28 ± 1.36 79.06 ± 1.98

RLSLRSSC-L1 ACC 85.65 ± 0.91 82.90 ± 1.51 82.45 ± 2.16 77.15 ± 2.65 75.10 ± 1.69 74.40 ± 1.62

NMI 93.45 ± 0.61 91.73 ± 0.50 90.70 ± 0.84 87.63 ± 0.47 85.68 ± 1.12 84.72 ± 0.50

RLSLRSSC-L21 ACC 86.10 ± 1.14 82.30 ± 1.77 81.15 ± 1.81 78.80 ± 1.04 74.00 ± 1.81 73.80 ± 1.78

NMI 93.61 ± 0.66 91.30 ± 1.02 89.05 ± 0.68 88.03 ± 0.26 85.13 ± 0.73 84.81 ± 0.58

Table 3 Clustering results on the ORL database corrupted by Laplacian noise

Method Measure LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 79.85 ± 1.44 78.75 ± 1.08 73.45 ± 1.59 60.95 ± 2.19 53.85 ± 1.23

NMI 89.92 ± 0.88 88.11 ± 0.21 84.52 ± 0.63 76.40 ± 0.99 70.41 ± 1.23

LSR1 ACC 73.85 ± 2.38 72.40 ± 2.28 62.80 ± 1.98 41.75 ± 1.49 30.65 ± 2.24

NMI 86.06 ± 1.25 85.01 ± 1.61 76.98 ± 0.82 61.84 ± 1.31 51.86 ± 1.18

LSR2 ACC 72.10 ± 3.15 74.15 ± 1.88 63.70 ± 2.35 42.05 ± 2.00 31.50 ± 1.97

NMI 85.87 ± 1.56 85.90 ± 0.98 77.76 ± 1.10 61.62 ± 1.60 52.20 ± 0.96

LRR ACC 71.40 ± 3.04 70.75 ± 1.13 65.05 ± 2.38 44.25 ± 1.39 40.85 ± 1.42

NMI 84.15 ± 1.34 84.32 ± 0.50 79.03 ± 1.78 65.45 ± 0.93 63.23 ± 1.08

LRSC ACC 70.50 ± 1.48 67.55 ± 2.01 40.30 ± 1.24 37.00 ± 0.85 33.75 ± 0.90

NMI 83.18 ± 0.70 79.64 ± 1.26 63.85 ± 1.30 60.15 ± 1.10 57.44 ± 0.98

BDR ACC 75.50 ± 1.98 67.85 ± 1.99 58.50 ± 2.30 34.50 ± 0.94 27.05 ± 0.89

NMI 86.22 ± 0.97 81.98 ± 0.89 74.23 ± 0.74 55.26 ± 0.82 48.78 ± 0.56

LRSSC ACC 77.45 ± 1.27 72.50 ± 1.36 61.35 ± 0.80 59.15 ± 1.82 55.55 ± 2.31

NMI 87.90 ± 0.53 84.46 ± 0.64 78.11 ± 0.95 76.26 ± 0.73 72.83 ± 1.64

LSLRSSC ACC 78.95 ± 0.80 71.50 ± 1.31 61.05 ± 1.92 61.95 ± 1.49 55.25 ± 1.81

NMI 88.66 ± 0.55 82.53 ± 0.45 77.85 ± 1.21 77.26 ± 0.88 72.78 ± 0.72

RLSLRSSC-L1 ACC 81.95 ± 2.15 79.95 ± 3.16 76.90 ± 1.07 66.20 ± 2.31 56.55 ± 1.63

NMI 91.48 ± 0.58 88.74 ± 1.24 87.33 ± 0.72 79.78 ± 1.48 73.16 ± 0.35

RLSLRSSC-L21 ACC 83.65 ± 1.52 80.60 ± 1.49 77.90 ± 2.83 65.60 ± 1.75 58.50 ± 1.58

NMI 92.73 ± 0.63 89.83 ± 0.25 87.25 ± 1.17 79.29 ± 0.76 74.27 ± 1.00

8194 Neural Computing and Applications (2020) 32:8187–8204

123

graph constraint rather than a PCA-like term, so

RLSLRSSC can preserve the local manifold structure well.

When the LNI increases gradually from 1 to 5, the per-

formance of all the methods decreases. Overall,

RLSLRSSC achieves the best result.

We evaluate the performance of related methods on the

ORL database corrupted by Laplacian noise. The results

are listed in Table 3. As displayed in Table 3, in most

cases, RLSLRSSC-L21 can obtain better results. Hence,

we deduce that the l2;1 norm can capture Laplacian noise

well.

We then obtain the clustering performance on the ORL

database with sample-specific corruptions. As displayed in

Fig. 2, SSC has better results when the LCP is chosen from

the set {4, 7, 8, 9}, and our algorithm can obtain compet-

itive results. RLSLRSSC can obtain the best results when

the LCP belongs to the set {1, 2, 3, 5, 6, 10}. Overall,

RLSLRSSC can deal with sample-specific corruptions

well.

As Table 4 shows, RLSLRSSC is robust to Gaussian

and Laplacian mixed noise. When the LNI varies from 1 to

4, the performance of RLSLRSSC precedes the competing

methods. When the LNI = 5, LSLRSSC has the best per-

formance, RLSLRSSC and LRSSC are competitive, pos-

sibly because if we fine-tune only the parameter k; k4 for

saving the time of parameter adjustment, a local optimum

is obtained.

5.2 Experiments on the UMIST database

The UMIST database [52] consists of 564 images of 20

individuals. We use a cropped version of the UMIST

database that is publicly available on the Web page of

University of Sheffield.1 Each image covers a range of

poses from profile to frontal views. We resize the images

from 112� 92 to 32� 32. The images of UMIST database

are shown in Fig. 3.

We set the parameters to k ¼ 0:003; k1 ¼ 0:1; k2 ¼
0:01; k3 ¼ 0:1; k4 ¼ 0:01 for the clean data. Then, we fine-

tune k; k4 for the corrupted data. Also, we choose a set of

optimal parameters, repeat five runs, and calculate the

average result to get the final performance.

First, we use the UMIST database corrupted by Gaus-

sian noise. Table 5 shows the results of the different

methods. When we use the original UMIST database, the

accuracy of RLSLRSSC-L21 is 69.01%, which is higher

than LRSC (the second place) by 19.65%. When the LNI

increases gradually from 1 to 5, RLSLRSSC-L1 achieves

the best performance in most cases.

Next, we evaluate the performance of all methods on the

UMIST database corrupted by Laplacian noise. The results

are displayed in Table 6. When LNI� 3, RLSLRSSC-L1

obtains the best results, and when LNI� 4, RLSLRSSC-

L21 obtains the best results.

As Fig. 4 shows, the performance of RLSLRSSC on the

UMIST database with sample-specific corruptions is better

than that of the other methods. When the LCP varies from

1 to 10, the accuracy and NMI of RLSLRSSC are higher

than those of the other methods by 8% and 9% at least,

respectively. Compared with other algorithms, RLSLRSSC

more effectively handles sample-specific corruptions.

Table 7 lists the results of the different methods for the

UMIST database corrupted by Gaussian and Laplacian

mixed noise. When the UMIST database is corrupted

slightly by Gaussian and Laplacian mixed noise,

RLSLRSSC performs better than the other methods.

1 2 3 4 5 6 7 8 9 10

LCP

60

65

70

75

80

85
A

cc
ur

ac
y

Accuracy on the ORL database with sample-specific corruptions.

SSC
LRS1
LRS2
LRR
LRSC
BDR
LRSSC
LSLRSSC
RLSLRSSC-L1
RLSLRSSC-L21

(a)

1 2 3 4 5 6 7 8 9 10

LCP

78

80

82

84

86

88

90

92

94

N
M

I

NMI on the ORL database with sample-specific corruptions.

SSC
LRS1
LRS2
LRR
LRSC
BDR
LRSSC
LSLRSSC
RLSLRSSC-L1
RLSLRSSC-L21

(b)

Fig. 2 Clustering performance on the ORL database with sample-specific corruptions. a Accuracy; b NMI

1 https://www.sheffield.ac.uk/eee/research/iel/research/face.

Neural Computing and Applications (2020) 32:8187–8204 8195

123

https://www.sheffield.ac.uk/eee/research/iel/research/face

However, when the LNI = 5, the performance of LSLRSSC

is the best, which may be for the same reason as for the

experiment on the ORL database. Overall, RLSLRSSC is

suitable to deal with Gaussian and Laplacian mixed noise.

5.3 Experiment on the CMU face database

The CMU face database consists of 624 black-and-white

face images of 20 individuals. The images vary in pose

(straight, left, right, up), expression (neutral, happy, sad,

angry), eyes (wearing sunglasses or not), and back. The

CMU face images dataset with size 30� 32 is obtained

from the UCI repository of machine learning databases.2

The CMU face database can be found in Fig. 5. We

illustrate the 2D visualization of the CMU face by con-

ducting t-sne [53] on the original CMU face database, and

the clustering results are shown in Fig. 6).

We set the parameters to k ¼ 0:001, k1 ¼ 0:1; k2 ¼
0:01; k3 ¼ 0:01; k4 ¼ 0:001 for the original CMU face

database. Then, we fine-tune k; k4 for the corrupted data.

Also, we choose a set of optimal parameters and then

repeat five runs and obtain the average result.

First, Gaussian noise is added to the CMU face database.

Table 8 shows the results of different methods.

RLSLRSSC achieves about 10% better performance than

the other methods under all corruption conditions.

RLSLRSSC outperforms other algorithms on the CMU

face database corrupted by Gaussian noise.

Next, we evaluate the performance of all methods on the

CMU face database corrupted by Laplacian noise. The

results are displayed in Table 9. Compared with other

methods, RLSLRSSC-L1 achieves better results.

We then obtain the clustering results on the CMU face

database with sample-specific corruptions displayed in

Table 4 Clustering results on the ORL database corrupted by Gaussian and Laplacian mixed noise

Method Measure LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 80.85 ± 0.55 75.05 ± 1.05 60.15 ± 0.80 52.50 ± 0.73 32.15 ± 1.87

NMI 89.08 ± 0.25 85.68 ± 0.68 75.26 ± 0.95 69.44 ± 0.41 54.29 ± 1.23

LSR1 ACC 71.90 ± 1.31 67.75 ± 2.97 42.15 ± 1.33 28.80 ± 2.34 20.35 ± 1.02

NMI 84.52 ± 0.58 79.53 ± 1.36 60.96 ± 0.55 49.81 ± 1.47 43.87 ± 1.01

LSR2 ACC 72.95 ± 1.44 64.45 ± 0.94 42.20 ± 2.41 28.45 ± 1.08 21.75 ± 0.83

NMI 84.95 ± 0.85 78.38 ± 0.71 60.83 ± 1.68 50.01 ± 0.73 44.66 ± 0.67

LRR ACC 70.70 ± 1.26 68.20 ± 0.65 46.15 ± 2.10 40.10 ± 2.82 34.95 ± 0.74

NMI 83.76 ± 0.33 81.30 ± 0.59 66.88 ± 1.50 62.15 ± 1.49 57.57 ± 0.82

LRSC ACC 72.60 ± 2.33 39.40 ± 1.04 36.85 ± 1.76 33.60 ± 1.43 31.20 ± 0.86

NMI 83.57 ± 0.75 63.39 ± 0.72 60.38 ± 0.96 57.33 ± 1.23 55.25 ± 0.26

BDR ACC 73.20 ± 2.43 57.65 ± 1.77 35.40 ± 1.78 23.60 ± 1.71 20.15 ± 1.01

NMI 85.01 ± 0.99 71.99 ± 1.32 55.44 ± 1.31 46.81 ± 1.48 44.00 ± 0.65

LRSSC ACC 77.00 ± 2.52 65.15 ± 1.63 58.60 ± 2.45 55.00 ± 2.05 40.45 ± 0.57

NMI 87.31 ± 1.00 80.93 ± 1.17 76.49 ± 0.69 72.39 ± 1.24 60.98 ± 0.26

LSLRSSC ACC 75.15 ± 2.01 61.35 ± 2.40 58.50 ± 2.10 55.45 ± 1.87 41.65 ± 0.93

NMI 85.96 ± 1.07 78.27 ± 1.14 76.54 ± 1.60 71.82 ± 1.01 61.11 ± 1.05

RLSLRSSC-L1 ACC 83.65 ± 1.49 78.90 ± 1.01 65.05 ± 0.99 59.80 ± 2.10 39.40 ± 1.35

NMI 91.59 ± 0.53 87.42 ± 0.13 79.12 ± 0.51 74.52 ± 1.04 59.47 ± 0.72

RLSLRSSC-L21 ACC 83.05 ± 1.80 79.55 ± 1.02 65.70 ± 0.89 59.40 ± 1.98 38.95 ± 0.69

NMI 91.57 ± 0.75 87.58 ± 0.29 79.98 ± 0.66 74.18 ± 1.31 58.53 ± 0.45

Fig. 3 Samples from the UMIST database and contaminated UMIST

database. a The original UMIST database. b The UMIST database

corrupted by Gaussian noise. c The UMIST database corrupted by

Laplacian noise. d The UMIST database corrupted by Gaussian and

Laplacian mixed noise. The LNI of the corrupted images is 2

2 http://archive.ics.uci.edu/ml/datasets/cmu?face?images.

8196 Neural Computing and Applications (2020) 32:8187–8204

123

http://archive.ics.uci.edu/ml/datasets/cmu%2bface%2bimages

Table 5 Clustering results on the UMIST database corrupted by Gaussian noise

Method Measure LNI ¼ 0 LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 45.64 ± 0.38 47.03 ± 1.28 44.84 ± 0.68 47.24 ± 1.56 43.24 ± 0.89 43.30 ± 1.86

NMI 65.86 ± 0.62 65.56 ± 0.32 64.42 ± 0.88 66.20 ± 0.83 63.22 ± 0.68 62.75 ± 0.94

LSR1 ACC 45.29 ± 1.72 44.42 ± 0.80 44.77 ± 1.47 46.78 ± 1.13 44.56 ± 0.92 43.34 ± 2.87

NMI 64.00 ± 0.77 63.50 ± 0.51 62.34 ± 1.53 64.41 ± 0.33 62.05 ± 0.50 59.53 ± 1.15

LSR2 ACC 44.28 ± 1.84 44.63 ± 1.10 45.36 ± 1.53 46.82 ± 0.57 42.89 ± 2.11 42.50 ± 1.27

NMI 64.07 ± 0.82 63.27 ± 0.59 63.34 ± 1.39 64.11 ± 0.46 61.31 ± 0.82 57.83 ± 1.45

LRR ACC 45.81 ± 0.99 44.00 ± 2.49 46.85 ± 1.52 46.64 ± 1.45 44.42 ± 1.84 42.40 ± 1.67

NMI 64.52 ± 0.89 63.69 ± 0.92 64.67 ± 0.52 63.70 ± 1.27 61.82 ± 1.03 60.42 ± 0.77

LRSC ACC 49.36 ± 1.05 46.16 ± 1.70 42.19 ± 1.05 41.18 ± 0.89 41.95 ± 1.16 41.18 ± 1.78

NMI 66.76 ± 1.19 64.32 ± 0.36 57.90 ± 1.31 57.23 ± 1.17 57.54 ± 0.99 57.97 ± 1.15

BDR ACC 34.89 ± 1.33 46.71 ± 1.14 45.39 ± 1.32 46.43 ± 2.82 41.98 ± 2.08 34.47 ± 1.98

NMI 46.54 ± 2.01 62.62 ± 0.46 61.19 ± 0.9 62.18 ± 0.97 55.42 ± 1.02 46.43 ± 1.07

LRSSC ACC 46.47 ± 1.49 46.47 ± 0.91 48.77 ± 1.25 46.05 ± 1.87 46.43 ± 2.03 44.97 ± 0.61

NMI 65.64 ± 0.76 65.41 ± 0.65 65.32 ± 0.66 65.87 ± 1.05 64.91 ± 0.59 64.91 ± 1.06

LSLRSSC ACC 45.43 ± 1.19 44.66 ± 1.21 45.43 ± 1.67 47.97 ± 0.98 47.79 ± 1.64 46.92 ± 2.40

NMI 64.76 ± 0.44 62.93 ± 0.84 64.69 ± 0.92 60.47 ± 1.03 61.05 ± 1.13 66.05 ± 1.07

RLSLRSSC-L1 ACC 68.00 ± 2.07 62.50 ± 2.16 61.53 ± 3.13 61.98 ± 2.02 57.46 ± 1.37 58.82 ± 2.15

NMI 83.87 ± 1.83 80.12 ± 1.48 78.98 ± 1.12 78.46 ± 1.16 76.31 ± 0.89 75.97 ± 1.23

RLSLRSSC-L21 ACC 69.01 ± 2.16 62.30 ± 2.06 60.35 ± 1.51 61.84 ± 1.68 57.04 ± 1.61 54.85 ± 1.60

NMI 84.06 ± 1.27 80.43 ± 1.03 77.65 ± 0.66 79.12 ± 1.13 74.93 ± 1.30 72.53 ± 0.88

Table 6 Clustering results on the UMIST database corrupted by Laplacian noise

Method Measure LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 48.56 ± 2.37 45.11 ± 1.14 46.16 ± 1.90 43.55 ± 1.68 41.91 ± 1.52

NMI 67.09 ± 0.66 64.33 ± 0.83 63.91 ± 1.13 63.10 ± 0.61 60.52 ± 0.58

LSR1 ACC 44.90 ± 1.00 44.97 ± 2.08 46.12 ± 0.96 37.95 ± 0.83 29.39 ± 1.36

NMI 63.69 ± 0.69 63.54 ± 1.10 63.71 ± 0.79 51.86 ± 0.62 35.81 ± 1.05

LSR2 ACC 43.51 ± 0.93 45.32 ± 1.10 45.57 ± 1.10 38.33 ± 2.44 29.36 ± 1.40

NMI 63.11 ± 0.56 63.01 ± 0.56 63.53 ± 0.72 52.52 ± 1.59 35.71 ± 1.13

LRR ACC 48.35 ± 2.82 47.27 ± 1.05 44.94 ± 1.41 41.04 ± 1.24 41.60 ± 1.33

NMI 66.08 ± 1.44 65.64 ± 1.12 61.98 ± 1.12 59.69 ± 0.90 59.36 ± 0.66

LRSC ACC 48.63 ± 2.75 42.71 ± 2.02 39.86 ± 2.15 41.50 ± 1.19 40.73 ± 1.36

NMI 65.29 ± 1.22 57.34 ± 0.99 56.55 ± 1.54 58.92 ± 0.36 57.91 ± 0.79

BDR ACC 43.03 ± 0.72 43.79 ± 1.38 43.72 ± 1.86 29.50 ± 1.63 20.73 ± 1.21

NMI 60.06 ± 0.71 61.46 ± 1.03 55.99 ± 1.07 36.61 ± 1.39 22.83 ± 1.13

LRSSC ACC 46.12 ± 2.02 46.23 ± 0.91 45.60 ± 1.44 44.87 ± 0.89 44.00 ± 1.25

NMI 65.94 ± 1.53 63.76 ± 0.67 65.73 ± 0.65 65.55 ± 0.25 64.50 ± 0.12

LSLRSSC ACC 46.09 ± 1.62 45.60 ± 2.11 46.71 ± 1.08 44.66 ± 2.26 46.37 ± 2.30

NMI 66.29 ± 0.34 58.98 ± 1.70 66.09 ± 0.54 65.11 ± 0.63 64.61 ± 1.23

RLSLRSSC-L1 ACC 67.69 ± 1.40 63.97 ± 1.88 61.95 ± 3.81 52.42 ± 1.93 46.26 ± 0.66

NMI 84.02 ± 0.62 80.14 ± 0.92 78.98 ± 2.26 72.17 ± 1.43 64.12 ± 0.51

RLSLRSSC-L21 ACC 63.93 ± 1.00 60.87 ± 1.73 58.26 ± 1.81 55.06 ± 1.03 46.68 ± 1.00

NMI 82.46 ± 0.80 79.12 ± 1.15 77.82 ± 1.17 73.15 ± 0.96 64.83 ± 0.95

Neural Computing and Applications (2020) 32:8187–8204 8197

123

Fig. 7. We observe that when the LCP varies from 1 to 10,

the clustering performances of RLSLRSSC-L1 and

RLSLRSSC-L21 are close and stable. We conclude that

RLSLRSSC is robust to sample-specific corruptions.

Table 10 lists the results of the different methods on the

CMU face database corrupted by Gaussian and Laplacian

mixed noise. We can see that RLSLRSSC-L21 yields the

best results in most cases.

5.4 Parameter setting

In this subsection, we describe the parameter setting in all

experiments. For SSC, the weighting parameter for the l1
norm is chosen from the set {0.1, 1, 10, 20, 50}. In LSR,

the parameter for kZkF is chosen from the set {0.01, 0.1, 1,

10, 100}. In most cases, the parameter is set to 100. In

LRR, the parameter for the nuclear norm is selected from

the set {0.01, 0.1, 1, 10, 100}. In LRSC, the regularization

parameter s is selected from the set {0.01, 0.1, 1, 10, 100}.

The regularization parameter a has the default setting,

a ¼ 0:5� s. In BDR, the parameters k; c are selected from

the set {0.001, 0.01, 0.1, 1, 10, 100}. In LRSSC,

LSLRSSC, and our proposed method RLSLRSSC, the

parameter for the nuclear norm k1 is selected from the set

{0.01, 0.1, 1, 10}, and the parameter for the l1 norm k2 is

k2 ¼ 0:1� k1. In LSLRSSC and RLSLRSSC, the dimen-

sion of latent space is fixed at 100.

There are seven parameters in our model, which need to

be tuned: k; k1; k2; k3; k4 in Eq. (13), k, t in (10). According

to the suggestions of [44], the values of k, t are between 4

and 7, the larger the dataset size, the larger the values of

k, t. The values of k, t are 4 because the size of dataset used

in experiment is small. In the experiments, we find out that

our algorithm can get better performance when

k2 ¼ 0:1� k1. Because there are many combinations of

remaining four parameters: k; k1; k3; k4, we can choose the

optimal value of the parameters in two steps. In the first

step, we assume that there are few outliers in the clean

dataset, so we set the value of k4 slightly large, k4 ¼ 1.

Then, we fix k4 and search for the optimal value of

k; k1; k3. The value of k is selected from the set {0.001,

0.01, 0.1, 1}, and the values of k1; k3 are selected from the

set {0.01, 0.1, 1, 10}. In the second step, we search for the

optimal value of k; k4 in {0.001, 0.003, 0.005, 0.01, 0.05,

0.1, 0.5, 1}, by fixing other parameters. For the contami-

nated dataset, we just fine-tune k; k4 for saving time. We

found that the optimal value of k is between 0.001 and 0.01

and the optimal value of k4 is between 0.001 and 0.1 for the
clean dataset. Hence, for the contaminated dataset, k is

chosen from the set {0.001, 0.002, 0.003, 0.004, 0.005,

1 2 3 4 5 6 7 8 9 10

LCP

35

40

45

50

55

60

65

70
A

cc
ur

ac
y

Accuracy on the UMIST database with sample-specific corruptions.

SSC
LRS1
LRS2
LRR
LRSC
BDR
LRSSC
LSLRSSC
RLSLRSSC-L1
RLSLRSSC-L21

(a)

1 2 3 4 5 6 7 8 9 10

LCP

35

40

45

50

55

60

65

70

75

80

85

N
M

I

NMI on the UMIST database with sample-specific corruptions.

SSC
LRS1
LRS2
LRR
LRSC
BDR
LRSSC
LSLRSSC
RLSLRSSC-L1
RLSLRSSC-L21

(b)

Fig. 4 Clustering performance on the UMIST database with sample-specific corruptions. a Accuracy, b NMI

Fig. 5 Samples from the CMU face database and contaminated CMU

face database. a The original CMU face database. b The CMU face

database corrupted by Gaussian noise. c The CMU face database

corrupted by Laplacian noise. d The CMU face database corrupted by

Gaussian and Laplacian mixed noise. The LNI of the corrupted

images is 2

8198 Neural Computing and Applications (2020) 32:8187–8204

123

0.01} and k4 is chosen from the set {0.001, 0.002, 0.005,

0.01, 0.02, 0.05, 0.1}.

We investigate how sensitive the k1; k2 is. The value of

k ¼ 0:01; k3 ¼ 0:1; k4 ¼ 0:1 is set for RLSLRSSC, and the

effects of the other two parameter are explored. k2 has the
default value of k2 ¼ 0:1� k1, so we analyze only the

effects of k1. We use the original ORL database to conduct

our experiment and obtain the average results over five

runs. The results are shown in Fig. 8. The performances of

RLSLRSSC-L1 and RLSLRSSC-L21 are very close. When

k1 increases from 0.001 to 0.1, the performance of

RLSLRSSC improves remarkably. When k1 increases from

0.1 to 1, the performance decreases sharply. Hence, an

optimal value can be discovered easily when k1 = 0.1.

Then, to research the parameter sensitivity of k3, we set
the value of k ¼ 0:01; k1 ¼ 0:1; k1 ¼ 0:01; k4 ¼ 0:1 for

RLSLRSSC and study the effects of k3. We also use the

original ORL database to conduct the experiment and get

the average results over five runs. As shown in Fig. 9, the

performance of RLSLRSSC is stable when k3 � 0:05. We

notice that when k3 ¼ 0, the performance decreases

remarkably, which shows the importance of the graph

constraint term.

Table 7 Clustering results on the UMIST database corrupted by Gaussian and Laplacian mixed noise

Method Measure LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 45.67 ± 1.82 45.81 ± 1.49 43.62 ± 0.47 41.67 ± 1.55 38.16 ± 1.64

NMI 64.08 ± 0.96 63.90 ± 0.98 62.06 ± 0.30 58.55 ± 0.96 50.86 ± 1.08

LSR1 ACC 45.81 ± 1.79 44.77 ± 1.83 37.11 ± 1.75 22.50 ± 1.12 19.06 ± 0.87

NMI 64.45 ± 0.76 61.76 ± 1.15 49.15 ± 1.47 28.18 ± 1.32 20.11 ± 0.46

LSR2 ACC 47.20 ± 2.03 43.30 ± 1.74 36.56 ± 1.34 23.62 ± 1.23 18.02 ± 0.34

NMI 64.68 ± 0.58 61.20 ± 1.07 49.51 ± 1.31 28.61 ± 0.83 19.25 ± 0.33

LRR ACC 49.15 ± 0.82 45.01 ± 0.96 41.04 ± 2.35 39.72 ± 1.04 40.28 ± 0.50

NMI 66.27 ± 1.07 60.54 ± 0.60 58.92 ± 1.70 57.10 ± 0.34 56.46 ± 0.35

LRSC ACC 46.61 ± 1.71 41.95 ± 1.43 40.42 ± 1.06 40.17 ± 2.15 37.84 ± 1.29

NMI 62.75 ± 1.13 58.86 ± 0.75 57.57 ± 0.92 55.05 ± 1.34 53.02 ± 0.56

BDR ACC 48.07 ± 2.60 42.19 ± 0.87 26.75 ± 1.05 19.65 ± 0.97 15.90 ± 0.90

NMI 63.82 ± 1.64 55.63 ± 1.48 32.32 ± 0.91 20.83 ± 1.18 16.95 ± 0.70

LRSSC ACC 46.96 ± 0.85 46.02 ± 1.58 43.90 ± 0.57 42.75 ± 0.15 42.47 ± 3.27

NMI 65.01 ± 0.43 64.69 ± 0.54 64.63 ± 0.64 62.30 ± 0.50 60.25 ± 1.78

LSLRSSC ACC 41.43 ± 0.81 46.57 ± 1.24 46.61 ± 1.63 42.61 ± 1.45 45.81 ± 1.56

NMI 59.16 ± 0.79 64.25 ± 0.98 64.54 ± 1.33 62.33 ± 0.41 62.09 ± 0.93

RLSLRSSC-L1 ACC 64.56 ± 1.93 59.79 ± 1.72 53.04 ± 2.88 46.43 ± 0.89 42.44 ± 0.94

NMI 82.96 ± 0.96 76.25 ± 0.89 72.39 ± 1.38 64.63 ± 0.91 57.34 ± 0.51

RLSLRSSC-L21 ACC 63.41 ± 4.12 53.50 ± 1.34 54.40 ± 1.78 45.43 ± 1.68 42.61 ± 1.25

NMI 81.76 ± 1.26 72.38 ± 0.96 72.72 ± 0.38 63.09 ± 0.71 56.85 ± 1.02

(a) (b) (c)

Fig. 6 Clustering result on the CMU face database. a Objective result; b cluster result; and c learned similarity graph

Neural Computing and Applications (2020) 32:8187–8204 8199

123

Table 8 Clustering results on the CMU face database corrupted by Gaussian noise

Method Measure LNI ¼ 0 LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 43.53 ± 2.29 65.67 ± 2.43 76.51 ± 2.15 77.53 ± 1.05 74.52 ± 2.82 75.35 ± 0.87

NMI 59.11 ± 2.48 77.36 ± 1.22 83.50 ± 0.95 83.79 ± 0.52 82.69 ± 1.49 81.43 ± 0.91

LSR1 ACC 87.60 ± 2.89 80.96 ± 0.44 79.84 ± 4.52 74.78 ± 0.62 75.45 ± 2.15 72.69 ± 3.69

NMI 91.05 ± 0.88 86.33 ± 0.28 85.59 ± 2.85 81.89 ± 0.41 82.21 ± 1.19 80.51 ± 2.16

LSR2 ACC 86.64 ± 1.90 81.41 ± 4.07 80.74 ± 4.63 76.31 ± 1.75 74.39 ± 1.75 75.00 ± 2.19

NMI 91.28 ± 1.25 86.90 ± 2.85 85.73 ± 2.13 82.60 ± 0.89 81.98 ± 1.82 81.47 ± 1.16

LRR ACC 78.94 ± 3.28 86.25 ± 2.15 86.64 ± 2.88 81.28 ± 2.33 78.08 ± 1.20 77.82 ± 1.96

NMI 88.13 ± 2.45 90.07 ± 0.75 90.20 ± 1.03 85.63 ± 1.67 82.93 ± 0.53 83.12 ± 0.82

LRSC ACC 82.40 ± 3.01 76.57 ± 3.42 75.26 ± 2.37 63.17 ± 1.71 50.61 ± 1.92 50.48 ± 1.13

NMI 89.95 ± 1.46 85.70 ± 1.84 82.97 ± 1.76 68.80 ± 0.81 62.50 ± 1.01 62.23 ± 0.41

BDR ACC 47.40 ± 1.75 76.63 ± 3.67 81.60 ± 1.46 76.12 ± 3.79 69.30 ± 3.21 67.82 ± 2.34

NMI 58.01 ± 0.67 82.52 ± 1.90 86.26 ± 1.17 82.29 ± 1.27 77.48 ± 2.12 73.44 ± 1.58

LRSSC ACC 80.32 ± 0.31 78.72 ± 1.49 81.31 ± 3.74 75.77 ± 1.74 67.76 ± 2.48 69.42 ± 0.52

NMI 85.23 ± 0.20 84.54 ± 1.14 86.20 ± 1.54 82.45 ± 0.77 74.44 ± 1.46 77.90 ± 0.29

LSLRSSC ACC 79.84 ± 0.63 76.25 ± 3.35 75.10 ± 2.97 76.22 ± 0.77 72.56 ± 1.77 70.06 ± 1.37

NMI 84.52 ± 0.55 82.44 ± 1.89 82.04 ± 1.82 81.38 ± 0.24 81.38 ± 0.82 78.86 ± 0.52

RLSLRSSC-L1 ACC 95.87 ± 1.42 92.50 ± 2.81 95.87 ± 1.20 84.87 ± 2.35 83.72 ± 0.85 86.15 ± 0.62

NMI 96.83 ± 0.74 94.00 ± 1.90 96.66 ± 0.86 90.62 ± 1.23 89.63 ± 0.33 89.86 ± 0.47

RLSLRSSC-L21 ACC 95.03 ± 0.00 94.71 ± 0.00 91.12 ± 3.53 86.41 ± 1.26 84.55 ± 1.45 83.65 ± 0.73

NMI 96.41 ± 0.00 95.79 ± 0.18 93.81 ± 1.76 89.65 ± 0.45 88.41 ± 0.84 89.74 ± 0.56

Table 9 Clustering results on the CMU face database corrupted by Laplacian noise

Method Measure LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 61.57 ± 1.54 75.22 ± 0.37 75.00 ± 2.91 74.01 ± 2.46 70.42 ± 1.75

NMI 74.05 ± 1.24 82.39 ± 0.33 82.98 ± 1.70 81.86 ± 1.17 76.21 ± 0.94

LSR1 ACC 86.64 ± 2.93 80.26 ± 3.58 77.24 ± 1.41 75.96 ± 3.27 59.97 ± 1.58

NMI 90.30 ± 1.68 86.41 ± 2.15 83.57 ± 0.88 80.81 ± 1.64 61.88 ± 0.34

LSR2 ACC 84.49 ± 1.55 80.16 ± 3.43 77.34 ± 1.71 76.25 ± 3.60 58.17 ± 1.29

NMI 88.83 ± 0.8 85.66 ± 2.53 83.99 ± 0.91 80.76 ± 2.50 59.75 ± 1.48

LRR ACC 84.01 ± 2.27 87.18 ± 3.18 81.80 ± 1.70 70.93 ± 1.96 53.97 ± 2.69

NMI 90.04 ± 1.09 90.68 ± 1.75 86.24 ± 1.00 75.91 ± 0.83 65.94 ± 1.29

LRSC ACC 82.82 ± 1.39 75.32 ± 2.36 44.97 ± 1.07 51.76 ± 0.96 45.22 ± 1.51

NMI 89.40 ± 1.99 83.65 ± 1.59 58.79 ± 1.22 61.53 ± 0.78 58.00 ± 0.76

BDR ACC 74.01 ± 2.97 83.43 ± 1.92 72.66 ± 1.35 59.04 ± 2.13 32.40 ± 1.90

NMI 79.82 ± 1.62 86.63 ± 1.20 76.99 ± 0.82 63.00 ± 1.52 34.74 ± 0.89

LRSSC ACC 76.86 ± 2.54 82.98 ± 1.15 73.49 ± 2.50 71.92 ± 2.77 69.94 ± 1.93

NMI 84.82 ± 2.11 88.06 ± 0.49 76.65 ± 0.78 78.93 ± 1.73 77.60 ± 0.98

LSLRSSC ACC 75.58 ± 1.62 77.18 ± 2.99 78.56 ± 2.36 70.16 ± 0.70 72.72 ± 2.25

NMI 83.17 ± 0.67 83.46 ± 0.56 83.09 ± 1.36 77.68 ± 0.77 77.97 ± 1.28

RLSLRSSC-L1 ACC 96.60 ± 0.07 93.30 ± 2.55 86.03 ± 1.86 85.03 ± 2.34 82.02 ± 1.28

NMI 97.08 ± 0.11 95.27 ± 0.98 90.08 ± 0.75 88.72 ± 1.36 84.55 ± 1.08

RLSLRSSC-L21 ACC 95.35 ± 0.93 91.83 ± 0.49 85.51 ± 0.61 84.23 ± 1.44 80.13 ± 3.49

NMI 96.03 ± 0.59 93.61 ± 0.24 89.86 ± 0.68 87.74 ± 0.61 84.67 ± 1.58

8200 Neural Computing and Applications (2020) 32:8187–8204

123

Finally, we investigate the clustering performance on

the ORL database changes by varying the regularization

parameter k; k4 for RLSLRSSC-L1 and RLSLRSSC-L21.

We set the value of k1 ¼ 0:1; k2 ¼ 0:01; k3 ¼ 0:1 and then

explore the effects of the other two parameters. We use the

ORL database corrupted by Gaussian and Laplacian mixed

noise with the value of the LNI = 3. For each set of

parameters, we average the results over five runs. Figure 10

illustrates the final results. The larger the error, the smaller

the weight, i.e., if the value of k or k4 decreases, the error

increases. The performance of RLSLRSSC-L1 is improved

to a certain extent when the value of k or k4 decreases, so

the terms associated with k and k4 are proved to work.

RLSLRSSC-L21 is not as stable as RLSLRSSC-L1. When

k ¼ 0:001, k4 decreases from 0.005 to 0.001, the perfor-

mance of RLSLRSSC-L21 declines substantially. In brief,

RLSLRSSC-L1 performs stably with different parameters

and addresses Gaussian and Laplacian mixed noise well.

1 2 3 4 5 6 7 8 9 10

LCP

30

40

50

60

70

80

90

100
A

cc
ur

ac
y

Accuracy on the CMU face database with sample-specific corruptions.

SSC
LRS1
LRS2
LRR
LRSC
BDR
LRSSC
LSLRSSC
RLSLRSSC-L1
RLSLRSSC-L21

(a)

1 2 3 4 5 6 7 8 9 10

LCP

40

50

60

70

80

90

100

N
M

I

NMI on the CMU face database with sample-specific corruptions.

SSC
LRS1
LRS2
LRR
LRSC
BDR
LRSSC
LSLRSSC
RLSLRSSC-L1
RLSLRSSC-L21

(b)

Fig. 7 Clustering performance on the CMU face database with sample-specific corruptions. a Accuracy and b NMI

Table 10 Clustering results on the CMU face database corrupted by Gaussian and Laplacian mixed noise

Method Measure LNI ¼ 1 LNI ¼ 2 LNI ¼ 3 LNI ¼ 4 LNI ¼ 5

SSC ACC 72.82 ± 3.02 74.81 ± 1.96 72.85 ± 0.82 68.21 ± 1.80 62.47 ± 1.46

NMI 82.30 ± 1.47 82.78 ± 1.45 79.65 ± 0.42 72.46 ± 1.07 69.11 ± 0.60

LSR1 ACC 78.85 ± 4.18 75.55 ± 1.43 72.53 ± 2.90 45.80 ± 0.50 24.62 ± 0.98

NMI 85.03 ± 2.57 81.47 ± 0.87 76.30 ± 2.06 48.62 ± 0.64 25.55 ± 0.61

LSR2 ACC 82.15 ± 3.05 74.87 ± 0.24 74.65 ± 1.07 46.73 ± 0.77 20.58 ± 1.16

NMI 86.89 ± 1.49 81.26 ± 0.21 77.96 ± 0.65 49.08 ± 0.70 23.33 ± 1.36

LRR ACC 86.92 ± 4.24 54.87 ± 1.71 50.93 ± 1.88 49.26 ± 1.96 52.47 ± 1.02

NMI 90.19 ± 1.91 67.89 ± 1.44 62.86 ± 1.32 61.95 ± 1.97 62.99 ± 0.53

LRSC ACC 80.86 ± 3.75 48.05 ± 2.17 43.46 ± 1.83 42.50 ± 1.72 43.30 ± 0.80

NMI 87.48 ± 2.43 60.41 ± 1.15 56.45 ± 1.24 54.85 ± 1.22 53.43 ± 0.61

BDR ACC 82.85 ± 0.89 69.33 ± 3.58 50.80 ± 1.26 26.03 ± 2.25 16.92 ± 1.12

NMI 87.87 ± 1.72 75.67 ± 1.50 54.17 ± 0.74 27.88 ± 1.66 16.98 ± 1.24

LRSSC ACC 79.46 ± 3.46 72.66 ± 1.77 66.31 ± 1.74 67.50 ± 1.08 62.28 ± 1.89

NMI 85.93 ± 0.84 77.80 ± 0.95 74.77 ± 0.81 76.08 ± 0.57 70.11 ± 1.79

LSLRSSC ACC 78.43 ± 2.99 76.57 ± 2.07 68.43 ± 1.28 69.30 ± 2.16 66.28 ± 0.92

NMI 83.53 ± 1.90 82.09 ± 0.68 75.59 ± 0.71 76.48 ± 0.82 73.58 ± 0.56

RLSLRSSC-L1 ACC 95.55 ± 0.90 86.96 ± 0.64 80.00 ± 2.79 71.70 ± 1.05 68.05 ± 0.48

NMI 96.02 ± 0.71 91.32 ± 0.54 84.04 ± 1.14 79.08 ± 0.66 72.33 ± 0.52

RLSLRSSC-L21 ACC 96.44 ± 0.13 88.40 ± 2.09 81.89 ± 2.50 74.17 ± 1.56 68.75 ± 1.32

NMI 96.85 ± 0.20 90.73 ± 1.39 86.45 ± 0.79 77.01 ± 1.46 73.30 ± 0.31

Neural Computing and Applications (2020) 32:8187–8204 8201

123

6 Conclusion and future works

This work proposes a novel subspace clustering method,

RLSLRSSC, to deal with the corrupted face database

clustering problem. The F-norm and the l1 norm or the l2;1
are used successfully to capture the noise and outliers.

RLSLRSSC simultaneously learns a robust projection and

a low-rank and sparse representation in the low-dimen-

sional subspace. By incorporating a graph constraint, the

local manifold structure can be preserved, and the dis-

criminative ability of the learned projection can be pro-

moted. We also present adequate experiments to

demonstrate that RLSLRSSC is superior to other state-of-

the-art methods.

There is, however, still an unsolved problem. To obtain

a discriminative latent space, we introduced a graph con-

straint in our model. The high-dimensional data can be

represented by the low-dimensional embedding in the

learned latent space. In fact, we get the low-dimensional

embedding in the manner of linear transformation. For the

data with nonlinear structure, our method may not work

well. In the recent years, deep learning has yielded fruitful

results. The data can be nonlinearly mapped into a latent

space by using deep learning. In the future, we plan to

combine our method with deep learning.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

50

55

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
Accuracy w.r.t.

1
 on the ORL database

RLSLRSSC-L1
RLSLRSSC-L21

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

70

75

80

85

90

95

100

N
M

I

NMI w.r.t.
1
 on the ORL database

RLSLRSSC-L1
RLSLRSSC-L21

(b)

Fig. 8 Clustering performance with different values of k1 on the ORL database. a Accuracy and b NMI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3

70

72

74

76

78

80

82

84

86

88

90

A
cc

ur
ac

y

Accuracy w.r.t.
3
 on the ORL database

RLSLRSSC-L1
RLSLRSSC-L21

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3

84

86

88

90

92

94

96
N

M
I

NMI w.r.t.
3
 on the ORL database

RLSLRSSC-L1
RLSLRSSC-L21

(b)

Fig. 9 Clustering performance with different values of k3 on the ORL database. a Accuracy and b NMI

8202 Neural Computing and Applications (2020) 32:8187–8204

123

Acknowledgements This work is supported by the National Natural

Science Foundation of China (61402181, 61502174), the Natural

Science Foundation of Guangdong Province (2015A030313215,

2017A030313358, 2017A030313355), the Science and Technology

Planning Project of Guangdong Province (2016A040403046), the

Guangzhou Science and Technology Planning Project

(201704030051).

Compliance with ethical standards

Conflict of interest We declare that we do not have any commercial

or associative interest that represents a conflict of interest in con-

nection with the work submitted.

References

1. Basri R, Jacobs D (2001) Lambertian reflectance and linear

subspaces. In: ICCV

2. Agarwal P, Mustafa N (2004) k-means projective clustering. In:

ACM symposium on principles of database systems, pp 155–165

3. Zhang T, Szlam A, Lerman G (2009) Median k-flats for hybrid

linear modeling with many outliers. In: ICCV

4. Zhang T, Szlam A, Wang Y, Lerman G (2012) Hybrid linear

modeling via local best-fit flats. Int J Comput Vis 100(3):217–240

5. Huang K, Ma Y, Vidal R (2004) Minimum effective dimension

for mixtures of subspaces: a robust GPCA algorithm and its

applications. In: CVPR

6. Ma Y, Yang AY, Derksen H, Fossum R (2008) Estimation of

subspace arrangements with applications in modeling and seg-

menting mixed data. SIAM Rev 50(3):413–458

7. Vidal R, Ma Y, Sastry S (2005) Generalized principal component

analysis (GPCA). IEEE Trans Pattern Anal Mach Intell

27(12):1–15

30

40

0.1

50

A
cc
ur
ac

y

0.05

60

70

0.02

4

0.01 0.001
0.0020.005

0.0030.002 0.004
0.001 0.005

0.01

(a)

40

50

60

0.1

70

N
M
I

0.05

80

90

0.02

4

0.01 0.001
0.0020.005

0.0030.002 0.004
0.001 0.005

0.01

(b)

30

40

0.1

50

A
cc
ur
ac

y

0.05

60

70

0.02

4

0.01 0.001
0.0020.005

0.0030.002 0.004
0.001 0.005

0.01

(c)

40

50

60

0.1

70

N
M
I

0.05

80

90

0.02

4

0.01 0.001
0.0020.005

0.0030.002 0.004
0.001 0.005

0.01

(d)

Fig. 10 Clustering performance with different values of k; k4 on the ORL database corrupted by Gaussian and Laplacian mixed noise with the

LNI ¼ 3. a Accuracy for RLSLRSSC-L1. b NMI for RLSLRSSC-L1. c Accuracy for RLSLRSSC-L21. d NMI for RLSLRSSC-L21

Neural Computing and Applications (2020) 32:8187–8204 8203

123

8. Archambeau C, Delannay N, Verleysen M (2008) Mixtures of

robust probabilistic principal component analyzers. Neurocom-

puting 71(7–9):1274–1282

9. Gruber A, Weiss Y (2004) Multibody factorization with uncer-

tainty and missing data using the EM algorithm. In: CVPR

10. Ma Y, Derksen H, Hong W, Wright J (2007) Segmentation of

multivariate mixed data via lossy coding and compression. IEEE

Trans Pattern Anal Mach Intell 29(9):1546–1562

11. Yang AY, Rao SR, Ma Y (2006) Robust statistical estimation and

segmentation of multiple subspaces. In: CVPR

12. Chen G, Lerman G (2009) Spectral curvature clustering (SCC).

Int J Comput Vision 81(3):317–330

13. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In:

CVPR

14. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algo-

rithm, theory, and applications. IEEE Trans Pattern Anal Mach

Intell 35(11):2765–2781

15. Favaro P, Vidal R, Ravichandran A (2011) A closed form solu-

tion to robust subspace estimation and clustering. In: CVPR

16. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by

low-rank representation. In: ICML

17. Liu G, Lin Z, Yan S, Sun J, Ma Y (2013) Robust recovery of

subspace structures by low-rank representation. IEEE Trans

Pattern Anal Mach Intell 35(1):171–184

18. Lu C, Lin Z, Yan S (2013) Correlation adaptive subspace seg-

mentation by trace lasso. In: ICCV

19. Lu C, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust

and efficient subspace segmentation via least squares regression.

In: ECCV

20. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC).

Pattern Recognit Lett 43(1):47–61

21. Wang YX, Xu H, Leng C (2013) Provable subspace clustering:

when LRR meets SSC. In: NIPS

22. Chen J, Yang J (2014) Robust subspace segmentation via low-

rank representation. IEEE Trans Cybern 44(8):1432–1445

23. Donoho DL, Elad M, Temlyakov VN (2006) Stable recovery of

sparse overcomplete representations in the presence of noise.

IEEE Trans Inf Theory 52(1):6–18

24. Yang Y, Feng J, Jojic N, Yang J, Huang TS (2016) L0-sparse

subspace clustering. In: ECCV

25. Li J, Kong Y, Fu Y (2017) Sparse subspace clustering by learning

approximation L0 codes. In: AAAI

26. Yin M, Xie S, Wu Z, Zhang Y, Gao J (2018) Subspace clustering

via learning an adaptive low-rank graph. IEEE Trans Image

Process 27(8):3716–3728

27. Lu C, Feng J, Lin Z, Mei T, Yan S (2018) Subspace clustering by

block diagonal representation. IEEE Trans Pattern Anal Mach

Intell 41(2):487–501

28. Jolliffe IT (2002) Principal component analysis, 2nd edn.

Springer, New York

29. Bingham E, Mannila H (2001) Random projection in dimen-

sionality reduction: applications to image and text data. In: ACM

SIGKDD international conference on knowledge discovery and

data mining, pp 245–250

30. Patel VM, Nguyen HV, Vidal R (2013) Latent space sparse

subspace clustering. In: ICCV

31. Patel VM, Nguyen HV, Vidal R (2015) Latent space sparse and

low-rank subspace clustering. IEEE J Sel Topics Signal Process

9(4):691–701

32. Wei L, Wu A, Yin J (2015) Latent space robust subspace seg-

mentation based on low-rank and locality constraints. Expert Syst

Appl 42(19):6598–6608

33. He X, Niyogi P (2004) Locality preserving projections. In: NIPS

34. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition

using laplacianfaces. IEEE Trans Pattern Anal Mach Intell

27(3):328–340

35. Tang K, Su Z, Jiang W, Zhang J, Sun X, Luo X (2018) Robust

subspace learning-based low-rank representation for manifold.

Neural Comput Appl 29:329

36. Jalali A, Sujay S, Ruan C, Ravikumar PK (2010) A dirty model

for multi-task learning. In: NIPS

37. Wang D, Liu Q, Xia Y, Dong P, Luo J, Huang Q, Feng DD

(2013) Dictionary learning based impulse noise removal via L1–

L1 minimization. Signal Process 93(9):2696–2708

38. Chen Z, Wu Y (2013) Robust dictionary learning by error source

decomposition. In: ICCV

39. Zhang H, Wang S, Zhao M, Xu X, Ye Y (2018) Locality

reconstruction models for book representation. IEEE Trans

Knowl Data Eng 30(10):1873–1886

40. Zhang H, Wang S, Xu X, Chow TWS, Wu QMJ (2018)

Tree2Vector: learning a vectorial representation for tree-struc-

tured data. IEEE Trans Neural Netw Learn Syst

29(11):5304–5318

41. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Dis-

tributed optimization and statistical learning via the alternating

direction method of multipliers. Found Trends Mach Learn

3(1):1–122

42. Lin Z, Chen M, Wu L, Ma Y (2009) The augmented Lagrange

multiplier method for exact recovery of corrupted low-rank

matrices. Technical report, UIUC technical report UILU-ENG-

09-2215

43. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering:

analysis and an algorithm. In: NIPS

44. Zelnik-Manor L, Perona P (2005) Self-tuning spectral clustering.

In: NIPS

45. Cai D, He X (2005) Orthogonal locality preserving indexing. In:

Proceedings of the 28th annual international ACM SIGIR con-

ference on research and development in information retrieval,

pp 3–10

46. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood pre-

serving projections: a projection-based dimensionality reduction

technique. IEEE Trans Pattern Anal Mach Intell

29(12):2143–2156

47. Cai D, He X, Han J, Zhang H (2006) Orthogonal laplacianfaces

for face recognition. IEEE Trans Image Process

15(11):3608–3614

48. Hale E, Yin W, Zhang Y (2008) Fixed-point continuation for l1-

minimization: methodology and convergence. SIAM J Optim

19(3):1107–1130

49. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for

edge-preserving variational multichannel image restoration.

SIAM J Imaging Sci 2(2):569–592

50. Cai D, He X, Han J (2007) Spectral regression: a unified approach

for sparse subspace learning. In: ICDM

51. Samaria FS, Harter AC (1994) Parameterisation of a stochastic

model for human face identification. In: IEEE workshop on

applications of computer vision

52. Phillips J, Bruce V, Soulie FF (1999) In face recognition: from

theory to applications. Springer, Berlin

53. Maaten LVD, Hinton G (2008) Visualizing data using T-SNE.

J Mach Learn Res 9:2579–2605

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

8204 Neural Computing and Applications (2020) 32:8187–8204

123

	Graph constraint-based robust latent space low-rank and sparse subspace clustering
	Abstract
	Introduction
	Related work
	Sparse subspace clustering (SSC)
	Low-rank representation (LRR)
	Low-rank and sparse subspace clustering (LRSSC)
	Latent space low-rank and sparse subspace clustering (LSLRSSC)

	Robust latent space low-rank and sparse subspace clustering (RLSLRSSC)
	Optimization
	Update of projection matrix {{\mathbf{P}}}
	Update of representation matrix {{\mathbf{R}}}
	Update of noise matrix {{\mathbf{E}}}
	The algorithms
	Complexity and convergence analysis
	Time complexity
	Convergence analysis

	Experimental results
	Experiment on the ORL database
	Experiments on the UMIST database
	Experiment on the CMU face database
	Parameter setting

	Conclusion and future works
	Acknowledgements
	References

