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Abstract
Inspired by the sparse mechanism of biological neural systems, an approach of strengthening response sparsity for deep

learning is presented in this paper. Firstly, an unsupervised sparse pre-training process is implemented and a sparse deep

network is begun to take shape. In order to avoid that all the connections of the network will be readjusted backward during

the following fine-tuning process, for the loss function of the fine-tuning process, some regularization items which strength

the sparse responsiveness are added. More importantly, the unified and concise residual formulae for network updating are

deduced, which ensure the backpropagation algorithm to perform successfully. The residual formulae significantly improve

the existing sparse fine-tuning methods such as which in sparse autoencoders by Andrew Ng. In this way, the sparse

structure obtained in the pre-training can be maintained, and the sparse abstract features of data can be extracted effec-

tively. Numerical experiments show that by this sparsity-strengthened learning method, the sparse deep neural network has

the best classification performance among several classical classifiers; meanwhile, the sparse learning abilities and time

complexity all are better than traditional deep learning methods.

Keywords Deep neural network � Strengthening response sparsity � Sparse backpropagation algorithm � Unified residual

formulae

1 Introduction

As a state-of-the-art learning paradigm in machine learn-

ing, deep learning can learn the layer-by-layer structure by

greedy layer-wise training, and the neurons can represent

the multilayer nonlinear expression of the data. Thus, deep

learning can profoundly reveal the complex abstract

information of the data, which are conducive to feature

extraction and classification, regression and other learning

tasks [1, 2].

For deep learning, there are usually two steps of learning

processes, one is pre-training and the other is fine-tuning.

In the pre-training stage, the abstraction features and dis-

tributions of the data can be learned in an unsupervised

way. Then, a fine-tuning process will be executed accord-

ing to special learning tasks. The well-known backpropa-

gation (BP) algorithm is the most commonly used fine-

tuning method [3]. By BP, it repeatedly adjusts the weights

of the connections top-down as to minimize a measure of

the difference between the actual output vector of the

network and the desired output vector. As a result of weight

adjustments, internal hidden neurons come to represent

important features of the task domain.

The classical BP results in neurons between neighboring

layers having a widely interconnected structure. That is

because, by implementing gradient descent, every one of

the weights will be updated in an unbiased way, and thus,

the data representation will be distributed on all layers of

the entire network. However, studies show that in the

human brain’s organizational structure and information

processing process, there do exist sparse properties, namely

response sparseness and connection sparseness. For

example, Olshausen and Field [4] suggest that by a
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combination of experimental, computational and theoreti-

cal studies, it has been verified that the existence of an

underlying principle involved in sensory information pro-

cessing, namely the information is represented by a rela-

tively small number of simultaneously active neurons out

of a large population, commonly referred to as sparse

coding. In [5], it points out that there exists sparse con-

nectivity within the basal ganglia. These two kinds of

sparsity are also known as the sparse representation of

neurons and sparse structure or sparse topology of the

network [6]. Compared with the distributed information

representation, sparse representations and sparse connec-

tions are more able to provide high-quality storage capa-

bilities and have better generalization capabilities [5]. One

group of DeepMind points out that sparseness is quite

critical to the emergence of grid-like representations when

they study automatic tracking like humans by deep learning

methods [7]. Moreover, for sparse learning, there are also

some other important works, such as transforming tree-

structured data into vectorial representations [8, 9]. How to

better understand the intrinsic sparsity of human neural

network system, so as to effectively obtain a sparse BP

learning algorithm and reduce the high complexity of deep

learning models, thus achieve a rapid and accurate feature

learning, all are of great concern.

At present, there exist many approaches to get the

sparsity of networks by regularization algorithms, and

most of them are carried out in the pre-training process.

The methods of weighting constraints in the pre-training

process includes Gaussian regularizer, Laplace regular-

izer, weight elimination and soft weight sharing, and most

of them use L2-norm or L1-norm of the connective

weights as a penalty function. In addition to adding reg-

ular items on the weights, simulating the sparse response

of the hidden neurons is another way to improve the

generalization ability of the pre-training network [10–16],

while only by sparse pre-training, the final sparseness of

the entire network cannot be held. This is due to that the

process of BP will re-adjust all weights of the entire

network top-down, and finally complete the whole

learning tasks. This is clearly contrary to the ultimate

goal, i.e., establishing a network architecture which con-

forms to the sparse representations and sparse connections

in human neural systems.

Obviously, if the sparsity for responses of hidden neu-

rons and network connections can be emphasized in the

fine-tuning BP stage, then by combining with sparse pre-

training, even if the network is randomly initiated with

dense connections, eventually only a small amount of

neurons will be responded and connected in the network.

This can not only bring a sparse deep network architecture

but also can ease over-fitting, and thereby will enhance the

generalization capacity as well as the identification

performance of the network. For achieving sparsity in BP

algorithm, some approaches have been proposed by

deleting the least important connections or enforcing a

large proportion of connections to have small weights

through pruning techniques, dropout or adding regulariza-

tion terms [17–20], while, only obtaining the connections

sparsity cannot get the responses sparsity; small connec-

tions cannot ensure small activation value of the corre-

sponding neuron since it also receives information from

other connections [21].

It is noted, however, when regularization terms are

coupled to the loss function, especially those containing

the response of each hidden neurons in all hidden layers,

deriving the gradient descent formula with a succinct form

becomes fairly complicated, and not to mention, finally

embed the formula to the codes of BP algorithm. Since

one crucial reason that BP is widely applied lies on that

the residual formula of it is concise which can be applied

for networks with arbitrary layers; thus, how to obtain

general residual formulae for the loss function combining

regularization terms, so as to get a unified sparse updating

formula of BP is very meaningful. In [22], Andrew Ng.

adds Kullback–Leibler (KL) divergence in BP process to

get the responses sparsity for autoencoders. While, due to

the difficulty of deducing the updating formula (the

complexity of formulas for two or more hidden layers can

be found in Sect. 3.2.1), it is achieved only for one hidden

layer, let alone to obtain a unified formula for networks

with arbitrary hidden layers. Zhang et al. [21] uses L1-

norm constrains directly on the response of hidden neu-

rons in the BP process, while the result is complex and not

in a concise form. All these prompt us to find some more

general and unified results for the responses sparsity in BP

learning.

In this paper, we devote to present the unified residual

formulae, which promise the sparse-strengthened capabil-

ity for both responses and connections of the network, and

can be applied for deep learning with arbitrary layers. A

deep neural network (DNN) with a deep belief network

(DBN) as the pre-training model will be introduced first.

For the unsupervised DBN learning procedure, both KL

divergence of hidden neurons and L1-norm penalty on

connection weights of each hidden layers are considered,

which are implemented to decrease the complexity of the

model and thus improve the generalization capabilities of

the network. Thus, the DBN can learn the effective data

representation in a sparse way. Based on the learned sparse

DBN, in the BP stage, since KL divergence is a standard

function for measuring how unequally two different dis-

tributions are, and L1-norm is generally used as a substi-

tution of L1-norm to get the sparse solution, we further

introduce regularization terms with KL divergence and

Laplace penalty on hidden neurons in the loss function. By
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inducing the residual formulae of loss function with the

regularization terms on KL divergence and Laplace pen-

alty, we overcome the difficulty in gradient descent

derivation when coupling penalty terms on the hidden

neurons. Finally, a unified and concise updating formula

for DNN with arbitrary layers is achieved, which is a sig-

nificant improvement of the existing results, such as those

in [21, 22]. The proposed sparse-strengthened BP method

ensures the sparse representation and the sparse architec-

ture of the final learned deep network, which can promise

the generalization capacity, accuracy rate of classification,

compression rate and speed up the convergence rate of the

deep network.

Experiments on the Fashion-MNIST database show that

the proposed deep neural networks with strengthening

sparsity has fairly good sparse response ability and sparse

topology structure, thus it can effectively learn the sparse

representation of the data. Compared with the classical

classifiers, the classification accuracy is greatly improved,

and the speed of discrimination is only a half of the tra-

ditional DNN.

2 Unsupervised sparse learning: DBN
with sparse architecture and sparse
representation

2.1 Basic learning rules of RBM and DBN

DBN is a probability generation model, consisting of one

layer of visible units and multiple layers of hidden units,

with connections between different layers but not between

units within the same layer [1]. A DBN can be viewed as a

composition of simple, unsupervised networks such as

restricted Boltzmann machines (RBMs). An RBM is a

stochastic artificial neural network, which can learn the

probability distribution over the raw features. A DBN uses

a greedy layer-wise training method [23]. For each upper

layer, it takes the output of the previously trained layer as

its input, i.e., using the trained hidden units of the previous

RBM as pre-training initialization. DBN and its learning

procedure with stacked RBMs are shown in Fig. 1. When

trained on a set of examples in unsupervised manner, a

DBN can learn to probabilistically reconstruct its input

data, and at each layer, it performs feature abstraction on

the current inputs [24]. By the unsupervised greedy layer-

by-layer pre-training of DBN, the improved weights of

multilayer RBMs can be obtained, which provides the

network with a better structure based on the understanding

of the data.

In an RBM, there are two layers: one is a visible input

layer, and the other is a hidden layer. There are connections

between the layers but no connection between units within

each layer. Let v ¼ ðv1; v2; . . .; vNv
ÞT be the visible units,

h ¼ ðh1; h2; . . .; hNh
ÞT be the hidden units, a ¼

ða1; a2; . . .; aNv
ÞT be the bias of the visible units, b ¼

ðb1; b2; . . .; bNh
ÞT be the bias of the hidden units, and W ¼

fWijgNv�Nh
with each wij being the connection weight

between vi and hj. A joint configuration, (v, h), of the

visible and hidden units has an energy given by

Ehðv; hÞ ¼ �aTv� bTh� vTWh, in which h ¼ fW ; a; bg is

the set of all parameters. PhðvÞ ¼ 1
Zh

P
h e

�Ehðv;hÞ is defined

as the distribution of the observed data vh, here Zh ¼
P

v;h e
�Ehðv;hÞ is known as the partition function or nor-

malizing constant. PhðvÞ also has another name, i.e., like-

lihood function. Maximizing it is just the task of training an

RBM. That is equal to determining the parameters to fit the

given training samples, i.e., to find a h�, such that h� ¼
argmax

H
LðhÞ with LðhÞ ¼ logPhðvÞ. By performing

stochastic steepest ascent in the log probability on the

training data, the weights are updated by

DWij ¼ � � oL
oWij

¼ � � ðhvihjidata � hvihjimodelÞ, where � is the

learning rate and h�i is the operator of expectation with the

corresponding distribution denoted by the subscript. The

absence of direct connections between hidden units in an

RBM makes it’s easy to get an unbiased sample of

hvihjidata. While, due to the difficulty of calculating Zh,

Fig. 1 Learning process of DBN. DBN uses a layer-wise training method by stacked RBMs
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obtaining an unbiased sample of hvihjimodel is quite diffi-

cult. Although it can be solved by starting from any ran-

dom state of the visible units and performing alternating

Gibbs sampling, it is an extremely time-consuming pro-

cess. A much faster learning method is by the contrastive

divergence (CD) [25].

2.2 Sparse learning for RBM and DBN

For each RBM module, if there is no restriction on the

response of hidden neurons and on the connections

between layers, an unstructured network will be generated,

which leads to poor interpretability, cumbersome compu-

tational complexity and huge space resource consumption

of the network. Since sparse regularization is more likely to

learn the structural characteristics of the data [26, 27], in

the following, we will introduce the sparse regularization

method on an RBM to obtain sparse connections and sparse

responses of the hidden layer neurons. Thus, we could get

more distinct architecture of the network and more effec-

tive representation of the raw data. In order to achieve

these aims, we introduce KL divergence on the hidden

neurons to get their response sparseness and introduce L1-

norm on the connection weights. As we know, L0-norm

corresponds to the number of nonzero elements, which is

the best sparse measurement, but solving it is an NP-hard

problem. L1-norm allows a large number parameters equal

to zero, and it is one optimal convex approximation of L0-

norm [28]. At the same time, we also introduce L2-norm on

the connection weights. Since the degree of weights’

attenuation is proportional to the values of the connection

weights, L2-norm penalty term can quickly reduce the

weights and overcome over-fitting of the model.

The objective function of the sparse RBM can be

improved as follows

max
H

LnewðHÞ ¼ LðHÞ � 1

2
k1kWk22

� k2
XNh

j¼1

KLðq k pjÞ � k3kWk1
ð1Þ

where the KL divergence, KLðq k pjÞ ¼ q log q
pj
þ ð1�

qÞ log 1�q
1�pj

is the relative entropy between two random

variables with mean q and mean pj. The KL divergence is

used to measure the difference between two different dis-

tributions. KL is a monotonically increasing function of the

distance between pj and q, and KLðq k pjÞ ¼ 0 when

pj ¼ q. The sparse parameter q is usually taken as a small

value close to 0. The purpose of introducing KL divergence

is to force the average response value of the hidden neurons

to be approximately equal to the default initial value q.

Here, we take pj ¼ 1
Ns

PNs

q¼1
1

1þe
�
PNv

i¼1
v
ðqÞ
i

Wij�bj

as the average

activation probability of the j-neuron in the hidden layer

with Ns samples, Nv is the number of nodes in the current

visual layer, k2 and k3 denote the penalty coefficients for

KL divergence and L1-norm, respectively. The derivative

calculation of KL divergence on the parameters is given in

‘‘Appendix 1.’’ By performing stochastic steepest ascent

and CD sampling process, the parameters of a sparse

unsupervised RBM are updated as

DWij ¼� � hvihjidata � hvihjirecon
� �

� k1Wij

� k2 �
1

Ns

� q
pj
þ 1� q
1� pj

� �XNs

q¼1

rðqÞj ð1� rðqÞj ÞvðqÞi

� k3 � signðWijÞ
ð2Þ

Dai ¼� � ðhviidata � hviireconÞ ð3Þ

Dbj ¼� � hhjidata � hhjirecon
� �

� k2 �
1

Ns

� q
pj
þ 1� q
1� pj

� �XNs

q¼1

rðqÞj ð1� rðqÞj Þ
ð4Þ

According to formula (2)–(4), we can obtain an RBM

with sparse expression and sparse connection properties.

Since a DBN is constructed by multilayer RBMs in a stack

way [1], then based on the sparse RBMs, the entire unsu-

pervised sparse DBN can be obtained by stacking those

sparse RBMs. That is, we use the hidden layer of each

previous RBM which has been trained sparsely as the

visible layer of the next RBM, and then train it also in a

sparse way by (2)–(4).

For the above unsupervised DBN pre-training process,

the learned information is only derived from the data itself.

To achieve a more satisfactory performance for a specific

learning task, a fine-tuning procedure should be executed

after the pre-training.

3 Sparse fine-tuning process: strengthening
sparsity of BP algorithm

The commonly used fine-tuning procedure is the BP

algorithm. BP is standard, useful, while it usually takes a

long training time, and has the risk of over-fitting. When

applied to deep networks, a so-called vanishing gradient

phenomenon always happens: from up to down, the signal

strength of error correction is getting weaker and weaker,

and ultimately cause the training to fall into a local mini-

mal. However, if we introduce sparse regularity terms of

weights and responses of hidden neurons in BP, then based

on the sparse DBN obtained in Sect. 2, all those bottle-

necks will be effectively avoided. This is because the initial

parameters learned from the pre-training sparse DBN have
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been already located in the optimal sparse subspace of the

whole parameters’ space, and the pre-training has also

provided a good layered sparse feature expression for the

data. Furthermore, with the use of the sparse BP algorithm

to be derived, the fine-tuning procedure will effectively

keep this sparse representation of the data learned from the

pre-training process, rather than redistributing it to the

entire network. All will promise the deep network to

converge faster to the global optimal solution.

In what follows, based on the original derivation for-

mulas of the traditional BP algorithm, we will present

sparse-strengthened BP algorithm with sparse regulariza-

tion terms on the response values of hidden neurons. With

the introduction of some expression which can be consid-

ered as the residual forms for Kullback–Leibler divergence

and Laplace penalty, the complicated gradient derivation

can be simplified deeply. This sparse-strengthened BP

algorithm will be conducive to a totally sparse learning of

deep networks, and they will finalize a sparse interpretation

of the data; thus, the learned sparse networks are promised

to have a better performance including the generalization

ability, identification accuracy and running times.

3.1 Traditional backpropagation algorithm

After the forward propagation process, a loss function is

constructed to calculate the error between the actual output

of the network and the desired output. The error will

propagate down from the output layer to the input layer.

The BP algorithm will evaluate the effect of the error on

each layer, and especially calculate the gradient of this

error on the weights as well as the biases of each layer

backward.

Let the number of layers in the entire deep network be L

and the number of neurons in the l-th layer be nl
(l ¼ 1; . . .; L). The first layer corresponds to the input layer,

the L-th layer is the output layer and other layers between

them are hidden layers. W ðlÞ is the connection weight

matrix between the l-th and the ðlþ 1Þ-th layer, bðlÞ is the

bias of the l-th layer, and aðlÞ is the activation vector of

neurons in the l-th layer. When l ¼ 1, að1Þ ¼ fað1Þqj g repre-

senting the value of the j-th neuron for the q-th sample.

Assume that N is the size of the sample set. Let e ¼
½1; . . .; 1�T be an N-dim vector. For each l ¼ 1; 2; . . .; L� 1,

let aðlÞ ¼ ½aðlÞ; e�,W ðlÞ ¼ ½W ðlÞ; bðlÞ�, zðlÞ ¼ aðl�1Þ �W ðl�1Þ, in
which F is the activation mapping of this layer, and

FðzðlÞÞ ¼ ðf1ðzðlÞÞ; f2ðzðlÞÞ; . . .; fNðzðlÞÞÞT. Suppose

fi ¼ fj,f ð8i; j ¼ 1; 2; . . .;NÞ. Generally, f is selected as

the sigmoid function.

The loss function of the traditional BP is

JðWÞ ¼ 1

2N

XN

q¼1

XnL

j¼1

ðaðLÞqj � yqjÞ2 ð5Þ

where N is the training sample size, yqj is the target output

of the j-th neuron in the output layer corresponding to the

q-th sample, and a
ðLÞ
qj is the actual output of it. Let g1 be the

learning rate, then by introducing the residual formula, the

updating formula for the network parameters is

W ðlÞ ¼W ðlÞ � g1 �
1

N

XN

q¼1

DW ðlÞ
q J ð6Þ

The definitions of residual formula and DW ðlÞ
q J, and the

whole derivation of (6) can be found in ‘‘Appendix 2.’’

It should be noticed that the most important reason of

BP being widely applied lies in that the residual formula of

it is quite concise and unified for arbitrary layers. Thus, in

order to obtain an easily applied updating formula of BP

which adds sparse regularization in the loss function, one

should also get a general residual formula at first.

3.2 Sparsity-strengthened backpropagation
algorithm

As the most commonly used method for updating param-

eters of a neural network, the traditional BP algorithm has

been widely used in deep learning. When applied it to fine-

tune the network pre-trained by the sparse DBN, however,

the response value of each hidden layer neuron will lie on

the whole [0, 1] interval again, and the connection of the

entire network will no longer be sparse. That means, the

sparse representation of the original data learned through

sparse DBN will not hold, and they will be redistributed on

the entire network architecture once more. The sparse

structure will be destroyed and the role or response of each

hidden neuron in the data representation will no longer be

clear.

In order to intensify the sparse expression ability of deep

learning, especially clarify those neurons which play key

positions in the data expression, and also improve the

generalization ability of the BP algorithm, we will intro-

duce some restrictions on the responsiveness of hidden

neurons to obtain a lower complexity of the networks in the

BP training process. In detail, for the loss function of the

network, the penalty items that describe the sparse

responsiveness are added, which include a KL divergence

regular term and a Laplace penalty term (i.e., the L1-norm

constraint) on the responses of the hidden neurons. These

restrictions will be conducive to sparse learning of BP, and

they will finalize sparse interpretation of the data.
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Let JKLðWÞ denote the sum of KL divergence on all

hidden neurons’ responses (where W is the hidden vari-

able), JRL1ðWÞ denote the sum of all hidden neurons’ L1
norm (W still is the hidden variable), then the improved

loss function of the sparse BP algorithm is:

JspsðWÞ ¼ JðWÞ þ s1JKLðWÞ þ s2JRL1ðWÞ

¼ JðWÞ þ s1
XL�1

l¼2

Xnl

k¼1

KLðq k p
ðlÞ
k Þ

þ s2
XL�1

l¼2

Xnl

k¼1

jpðlÞk j

ð7Þ

where s1 and s2 are parameters which control the two

sparsity penalty items, and they are used to balance the

total error of the model itself and the structural complexity

of the network. p
ðlÞ
k ¼ 1

N

PN
q¼1 a

ðlÞ
qk denotes the average

activation degree of the k-th neurons in the l-th layer, a
ðlÞ
qk ¼

f ðzðlÞqk Þ is the response value of the k-th neuron in the l-th

layer with the q-th input sample.

In what follows, we will surmount the complexity of

gradient calculation, and give the gradient formulas of both

JKLðWÞ and JRL1ðWÞ onW, respectively, and then achieve a

unified updating formulas for parameters. Based on such a

strengthening sparsity BP algorithm, the response sparsity

of hidden neurons for the whole network can be obtained

finally.

3.2.1 The gradient calculation formula of JKLðWÞ for each
layer

For JKLðWÞ, we have

oJKLðWÞ
oW

ðL�1Þ
ij

¼ o
PnL

k¼1 KLðq k p
ðLÞ
k Þ

op
ðLÞ
j

op
ðLÞ
j

oW
ðL�1Þ
ij

¼ 1

N

XN

q¼1

� q

p
ðLÞ
j

þ 1� q

1� p
ðLÞ
j

 !

f
0 ðzðLÞqj Þa

ðL�1Þ
qi

ð8Þ

Let

S
ðlÞ
qj ðL� lþ 1Þ ¼ � q

p
ðlÞ
j

þ 1� q

1� p
ðlÞ
j

 !

f
0 ðzðlÞqj Þ

then, (8) can be simplified as

oJKLðWÞ
oW

ðL�1Þ
ij

¼ 1

N

XN

q¼1

S
ðLÞ
qj ð1Þ � a

ðL�1Þ
qi

In general, let

S
ðlÞ
qj ðMÞ ¼

� q

p
ðlÞ
j

þ 1� q

1� p
ðlÞ
j

 !

f
0 ðzðlÞqj Þ; M ¼ Lþ 1� l

Pnlþ1

k¼1

W
ðlÞ
jk � Sðlþ1Þ

qk ðMÞ � f 0 ðzðlÞqj Þ l ¼ L� 1; . . .; 1

M ¼ 1; 2; . . .; L� l

8
>>>>>>><

>>>>>>>:

S
ðlÞ
qj ¼

PLþ1�l

M¼1

S
ðlÞ
qj ðMÞ

Then, we have

1) The gradient calculation formula of JKLðWÞ on

W ðL�1Þ is

oJKLðWÞ
oW

ðL�1Þ
ij

¼ 1

N

XN

q¼1

S
ðLÞ
qj � aðL�1Þ

qi ð9Þ

2) The gradient calculation formula of JKLðWÞ on W ðL�2Þ is

oJKLðWÞ
oW

ðL�2Þ
ij

¼
XnL

k¼1

oKLðq k p
ðLÞ
k Þ

op
ðLÞ
k

XN

q¼1

op
ðLÞ
k

oa
ðLÞ
qk

oa
ðLÞ
qk

oa
ðL�1Þ
qj

oa
ðL�1Þ
qj

oW
ðL�2Þ
ij

þ o
PnL�1

k¼1 KLðq k p
ðL�1Þ
k Þ

op
ðL�1Þ
j

op
ðL�1Þ
j

oW
ðL�2Þ
ij

¼ 1

N

XN

q¼1

XnL

k¼1

� q

p
ðLÞ
k

þ 1� q

1� p
ðLÞ
k

 !

f
0 ðzðLÞqk Þ

�W ðL�1Þ
jk f

0 ðzðL�1Þ
qj ÞaðL�2Þ

qi
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3) The gradient calculation formula of JKLðWÞ on W ðL�3Þ is
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Generally, one can get that
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For each sample q ¼ 1; 2; . . .;N, let S
ðlÞ
q be the row vector

which is composed by fSðlÞqj gj¼1;...;nl
, then by (12), we cal-

culate DW ðlÞ
q KL ¼ ðaðlÞÞTq � S

ðlþ1Þ
q for each sample, and

thus we have update formula for the network parameters in

a concise matrix form

W ðlÞ ¼W ðlÞ � g2 �
1

N
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where g2 is the learning rate.

3.2.2 The gradient calculation formula of JRL1ðWÞ
on W for each layer

Let
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Pnlþ1

k¼1

W
ðlÞ
jk � Rðlþ1Þ

qk ðMÞ � f 0 ðzðlÞqj Þ l ¼ L� 1; . . .; 1

M ¼ 1; 2; . . .; L� l
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On noting that p
ðlÞ
k is the average activation degree of the k-

th neurons in the l-th layer, thus each p
ðlÞ
k is nonnegative,

and we have the following recursive formula.
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2) The gradient calculation formula of JRL1ðWÞ onW ðL�2Þ is
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3) The gradient calculation formula of JRL1ðWÞ onW ðL�3Þ is
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In general, we have
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For each sample q ¼ 1; 2; . . .;N, let R
ðlÞ
q be the row vector

which is composed by fRðlÞ
qj gj¼1;...;nl

, then by (17), we cal-

culate DW ðlÞ
q RL1 ¼ ðaðlÞÞTq � R

ðlþ1Þ
q for each sample, and

thus get the update formula for the network parameters in a

matrix form:

W ðlÞ ¼W ðlÞ � g3 �
1

N

XN

q¼1

DW ðlÞ
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where g3 is the learning rate.

In all, by (23), (7), (13) and (18), we derived a unified

BP update formula for parameters of the deep network with

strengthening sparsity

W ðlÞ ¼W ðlÞ � 1

N

XN

q¼1

ðg1DW ðlÞ
q J

þ s1g2DW
ðlÞ
q KLþ s2g3DW

ðlÞ
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where s1 and s2 are the parameters controlling the sparsity

penalty items, and g1-g3 are the corresponding learning

rates for the loss function and the regularizer.

The goal of the put forward sparsity restrictions in BP

procedure is to divide the neurons of hidden layers into two

categories, one class with response values close to 0, and

those neurons are called as non-response neurons; another

with relatively large response values, known as the

response neurons, and the neurons in this class are of only a

small part. These restrictions are conducive to the sparse

learning of deep networks, and they will finalize a sparse

interpretation of the data.

Due to the difficulty of deducing a unified and coding

easily updating formula for the parameters in fine-tuning

process, especially when the loss function contains com-

plex regularization terms of responses on hidden neurons,

very few researches have been done on this field. Ng [22]

incorporates KL divergence into BP process to get the

responses sparsity for autoencoders, but the result is

deduced for only one step of chain rules of derivative and it

is a special case of formula (12) and (13). In [21], the

authors use L1-norm constrains on responses of hidden

neurons in BP, while the updating formula is not in a

concise way. In addition, lacking a form like the residual in

backpropagation, it is not quite suitable for coding. The

derived unified updating formula (19) finds a laconic

solution for DNN with arbitrary layers when the loss

function contains regularization terms of hidden neurons’

responses.

3.3 SRS-DNN: DNN with strengthening response
sparsity

With the unsupervised sparse learning of DBN presented in

Sect. 2, and further with the sparse-strengthened fine-tun-

ing process in Sect. 3.2, we have proposed a novel deep

neural network with strengthening response sparsity (SRS-

DNN). In the pre-training stage, SRS-DNN applies formula

(2)–(4) to achieve an unsupervised sparse DBN with sparse

expression and sparse connection properties. In the fine-

tuning stage, SRS-DNN uses the sparsity-strengthened BP

algorithm and the parameters updating formula (19). Thus,

SRS-DNN maintains the sparse structure of DBN, and

assures the data to be described layer-wise in a sparse way,

with a more powerful capacity of discernment.
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By such a SRS-DNN learning, the essential sparsity

characteristics of human brains can be simulated, and

finally the network will own a sparse topology structure

with sparse responsiveness. The method proposed here

guarantees the deep neural networks to have a high pro-

cessing, feature extraction, storage, promotion as well as

generalization capability.

4 Experiments

In this section, we use the Fashion-MNIST database to

show the validation of the sparse deep learning architecture

learned in Sect. 3. Zalando (the e-commerce company)

develop a novel image classification dataset called Fash-

ion-MNIST in hopes of replacing MNIST, and it is inten-

ded to serve as a new benchmark of machine learning

algorithms. Fashion-MNIST contains of 70,000 fashion

products from ten categories, with 7000 images per cate-

gory. The training set has 60,000 images and the test set

has 10,000 images. All of the digits have been size-nor-

malized and centered in a fixed-size image. Each image has

a total of 28� 28 grayscale pixels, and the 784-dimen-

sional pixels are listed into a vector. For each pixel, it has a

single pixel value associated with it, and the value is

between 0 (represents white), and 255 (represents black).

Intermediate pixel values represent shades of gray. The

dataset is freely available at https://github.com/zalandor

esearch/fashion-mnist.

For the training data with 60,000 images of ten cate-

gories, the DBN is pre-trained in a sparse way by formulas

(2)–(4) in Sect. 2.2, and it contains five layers, in which

one is a visible layer, the other three are hidden layers with

2100, 1000, 500 nodes, respectively, and the top one is a

decision layer with ten nodes. Further, the sparse fine-

tuning process is applied by the sparsity-strengthened

backpropagation algorithm, with the improved sparse loss

function described in (7). Based on the unified gradient

calculation formula (19), finally, a sparsity-strengthened

deep neural network is trained, with quite good perfor-

mances in many aspects.

The parameters used in the SRS-DNN are as follows: s
is 0.1 and the max epoch in BP is 220, the sparse parameter

q in DBN is 0.01, and that in BP is 0.05. Some other sparse

parameters, i.e., k2 and k3, which are the parameters of

sparsity penalty items for KL and L1 in RBM, are chosen as

0.005 and 0.0001, respectively. s1 and s2, which control the
sparsity penalty items of KL and L1 in BP, are 0.0001 and

0.0002. The above sparse parameters are selected from

several parameter sets listed in Table 6 (see, ‘‘Appendix

3’’).

4.1 Classification performances on Fashion-
MNIST database

4.1.1 Classification accuracy rates of fifteen methods

In Table 1, several typical classifiers and their classifica-

tion accuracy rates (AR) on Fashion-MNIST testing data

from [29] are listed. The classifiers are Decision Tree

Classifier (DTC), Passive Aggressive Classifier (PAC),

Extra Tree Classifier (ETC), Perceptron (Pct), Gaussian

Naive Bayesian (GNB), Random Forest Classifier (RFC),

Gradient Boosting Classifier (GBC), Stochastic Gradient

Descent Classifier (SGDC), K-Neighbors Classifier (KNC),

Support Vector Classification (SVC), Linear SVC (LSVC),

Support Vector Machine (SVM), Logistic Regression (LR),

Multilayer Perception Classifier (MLPC). All of the clas-

sifiers are applied for 30 times, and the average AR of them

is adopted. The results are shown in Table 1. It can be seen

that SRS-DNN has the best performance, especially in

comparing with the classical methods such as SVM, GBC,

KNC, LR, MLPC, RFC and SVC; the AR has been

increased as 7.37%, 7.90%, 7.01%, 7.98%, 5.84%, 6.16%

and 10.67%, respectively. Besides comparing with other 14

classifiers listed in Table 1, we also use DNN on this

database. Some comparisons of detailed performance for

both DNN and SRS-DNN will be presented in Sect. 4.2.

4.1.2 Classification results on all ten categories data
with SVM and SRS-DNN

To specify the performance of SRS-DNN on all ten cate-

gories data, we further evaluate the AR for different cate-

gories in the testing set. By experiment, one can find that

SVM owns quite well AR on each ten categories data, so

we use both SVM and SRS-DNN to appraise the validation

of SRS-DNN. The comparison results are shown in Table 2

and Fig. 2. From both of them, it can be observed that

Table 1 Testing accuracy (TA) of fifteen classifiers

Classifier TA Classifier TA

DTC 0.7864 PAC 0.7747

ETC 0.7587 Pct 0.754

GNB 0.511 RFC 0.8538

GBC 0.84 SGDC 0.8152

KNC 0.847 SVC 0.819

LSVC 0.7244 SVM 0.8442

LR 0.8394 SRS-DNN 0.9064

MLPC 0.8564

Bold value indicates the best testing accuracy among all the classifiers
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compared with SVM, the accuracy rates of SRS-DNN

improve significantly for each categories of the dataset.

It is interesting to note that in the ten categories of data,

some categories (say, Pullover, Coat and Shirt) are very

different to be classified even by our human being (see,

e.g., Fig. 3). For all those recognition tasks, SRS-DNN,

however, performs very well. For the Shirt data, SRS-DNN

obtains 0.726 AR, i.e., the improvement is about 20%;

from 0.555 to 0.726. At the same time, the accuracy rates

by SRS-DNN on the other two categories also are better

than those by SVM. It thus shows the reliable classification

ability of SRS-DNN.

4.1.3 Visualization of Fashion-MNIST by t-SNE

In order to further demonstrate the capability of SRS-DNN

on discovering the essential difference for ten categories

data, we use the t-distributed stochastic neighbor embed-

ding (t-SNE) projection method [30] to show the distri-

butions of them in the original high-dimensional space, and

in the higher three representation spaces by SRS-DNN (i.e.,

the activation performances of the data in the three hidden

layers).

Figure 4 shows that with the increase in layers, i.e., from

down to up in SRS-DNN, the abstract features in higher

layers are more distinctive than those in lower layers,

which are very conducive to intensify the data of a same

category to be tied together and highlight the differences

between categories. It thus shows clearly that the original

data for each category are changed from the initial scat-

tered way to aggregate tightly, especially for Pullover, Coat

and Shirt. These observations are coincident with the

results in Sect. 4.1.2.

4.2 The sparse performances and time
complexity of both SRS-DNN and DNN

In Sect. 4.1.1, we have already known that the AR of SRS-

DNN on the testing data is 90.64%, which is the best one

among the 15 classifiers. In addition, on the same testing

data, we also get the AR of original DNN. The parameters

of the network are the same, i.e., the DNN has three hidden

layers with 2100, 1000, 500 nodes and a decision layer,

with s being 0.1 and the max epoch in BP being 220.

The classification accuracy of DNN is 89.11%, which is

still lower than the result of SRS-DNN. Some other crucial

Table 2 Classification accuracy rates for ten categories data by SVM

and SRS-DNN

Labels Accuracy rate (%) Labels Accuracy rate (%)

SVM SRS-DNN SVM SRS-DNN

T-shirt 0.814 0.865 Sandal 0.934 0.977

Trouser 0.959 0.987 Shirt 0.555 0.726

Pullover 0.770 0.852 Sneaker 0.934 0.962

Dress 0.849 0.905 Bag 0.914 0.983

Coat 0.769 0.832 Ankle boot 0.944 0.968

Fig. 2 Classification accuracy for ten categories of data in SVM and SRS-DNN–SVM
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Fig. 3 Grayscale images of three quite similar categories (partial samples)
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Fig. 4 Different space representations for Fashion-MNIST data in

different layers of SRS-DNN by using t-SNE projection. a Visualiza-

tion results of the original data. b Visualization results on the abstract

features learned by the first hidden layer. c Visualization results on

the abstract features learned by the second hidden layer. d Visualiza-

tion results on the abstract features learned by the third hidden layer
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performances of both DNN and SRS-DNN are also com-

pared in this subsection.

4.2.1 Response sparsity of hidden neurons

SRS-DNN has more sparse activation performances com-

pared with DNN. In particular, the average nonzero

response ratio of three layers reduces as 43.08%, 18.84%

and 32.47%, respectively. Figure 5 shows the response

capability of hidden neurons for original DNN and SRS-

DNN. In Fig. 5, the horizontal axis is the hidden units and

the vertical axis represents the corresponding activation

probabilities. It shows that SRS-DNN has much sparser

responsiveness than DNN.

In addition, results for nonzero response ratios on differ-

ent layers for Fashion-MNIST data are shown in Table 3.

Further, Fig. 6 shows that for the hidden neurons of SRS-

DNN, 77.2% of them have almost no response. For DNN,

near a half, i.e., 49.4%, hidden neurons are active. Thus,

SRS-DNN has a very strong response sparsity. At the same

time, most of the responses with big values are fallen in the

interval [0.9, 1], which indicates that the SRS-DNNachieves

the response sparsity simultaneously, namely they are either

quite small or near 1. It can be seen that the method effec-

tively achieves the number sparseness of response neurons as

well as the response values sparseness of them.

4.2.2 Sparsity of weights

Further, we show that by the presented strengthening

response sparsity method, the weights sparsity learned in
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Fig. 5 Activation probability of hidden neurons for DNN and SRS-DNN with random selected samples. a The activation probability for each

hidden neurons in the third layer of DNN, and b the results of SRS-DNN

Table 3 Nonzero response ratio

of different categories data by

DNN and SRS-DNN

Layer 1 Layer 2 Layer 3

DNN SRS-DNN DNN SRS-DNN DNN SRS-DNN

T-shirt 0.2757 0.1586 0.2510 0.1740 0.2510 0.1740

Trouser 0.2714 0.1519 0.1060 0.1170 0.1060 0.1170

Pullover 0.2705 0.1614 0.2810 0.2220 0.2810 0.2220

Dress 0.3086 0.1895 0.1900 0.1620 0.1900 0.1620

Coat 0.2252 0.1081 0.1550 0.1390 0.1550 0.1390

Sandal 0.2562 0.1757 0.1220 0.1080 0.1220 0.1080

Shirt 0.2229 0.1071 0.1560 0.1410 0.1560 0.1410

Sneaker 0.2110 0.1043 0.0900 0.0710 0.0900 0.0710

Bag 0.3071 0.1800 0.2890 0.2170 0.2890 0.2170

Ankle boot 0.2648 0.1510 0.2230 0.1610 0.2230 0.1610
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the unsupervised sparse DBN process can also be held. We

compare the weights sparsity of DNN and SRS-DNN in

Table 4 and Fig. 7. wð1Þ, wð2Þ and wð3Þ refer the ratios of

connection weights with nonzero values between different

layers.

From Table 4 and Fig. 7, we can see that the SRS-DNN

method proposed in this paper not only obtains the

response sparsity of hidden neurons, but also retains the

connection sparsity of the network. They are due to the

advantages of the sparse strengthening method.

Thus, a sparse deep learning model which has the sparse

topology structure and the sparse learning capability of the

data is established successfully.

4.2.3 Time complexity

As it has been shown above, for SRS-DNN, in the unsu-

pervised learning phase, i.e., DBN, the KL divergence of

hidden layer neurons is introduced to achieve the responses

sparsity, and the L1-norm of connection weights is used to

achieve the connections sparsity. Based on the learned

sparse structure of DBN, in the fine-tuning phase, penalty

terms on responses sparsity are added to the loss function.

In this way, the sparse framework learned in the unsuper-

vised phase can be preserved and further fine-tuned spar-

sely, which greatly reduces the model complexity, and the

network has a better explanatory and generalization ability.

In addition, the time complexity is also pretty reduced

due to the sparse learning architecture. The sparse param-

eters of DNN and SRS-DNN, and the total running times of

them are given in Table 5. All experiments were conducted

with Inter(R) Core(TM) i7-7700 CPU@3.60 GHs and 32G

RAM. Based on the results, we can see that the running

times with SRS-DNN are less than half of that with DNN.

4.3 Remark

The above experiments show that by the sparsity-

strengthened strategy, the proposed SRS-DNN has the best

classification performance among general used classifiers,

such as DNN, SVM, Gradient Boosting Classifier,

K-Neighbors Classifier, Random Forest Classifier and other

typical classifiers. By the classification results for each one

of the ten categories, it shows more in detail that by SRS-

DNN, the distinguishable features can be efficiently

extracted in a sparsely layer-wise way, which confirms why

SRS-DNN has the best performances.

In addition, comparing with DNN, less than a quarter

hidden neurons of SRS-DNN are active while that for DNN

is a half, and much more responses of SRS-DNN are fallen
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Fig. 6 Response ratio in different range of response values

Table 4 Connection sparsity of DNN and SRS-DNN

wð1Þ wð2Þ wð3Þ

DNN 0.9747 0.991 0.9954

SRS-DNN 0.7862 0.4402 0.4062
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Fig. 7 Nonzero ratio of connections in DNN and SRS-DNN

Table 5 Comparison of parameters and running time for DNN and

SRS-DNN

Methods Pre-training Fine-tuning Time (s)

k2 k3 s1 s2

DNN – – – – 97255.972

SRS-DNN 0.005 0.0001 0.0001 0.0002 42686.165
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in the interval [0.9, 1], which dictate that the response

sparsity ability of SRS-DNN is much better than that of

DNN. Such kinds of response sparsity are more consistent

with the response mechanism of neurons in human neural

system, namely the neurons either respond or not for a

stimulus, and most of the neurons are not response. Fur-

thermore, by the sparsity-strengthened learning, SRS-DNN

holds only 40% connections between higher layers (while

nearly all connections are kept for DNN), which is more

convenient for abstract features extraction and time saving.

5 Conclusion

The proposed deep neural network with strengthening

response sparsity in this paper is inspired by the sparse

response mechanism of neurons in biology neural systems,

and we devote to obtain a sparse network which owns

pretty generalization ability. Based on the sparse structure

learned by an unsupervised sparse DBN, the network is

fine-tuned by enhancing the sparseness for both the num-

bers of hidden neurons as well as the values of them. The

unified and concise residual formulae for sparse BP

learning can be considered as the substantial improvement

of the existing sparse BP learning methods, such as the

work of Andrew Ng. for sparse autoencoders. Experiments

show that the put forward sparsity strengthening restric-

tions for responses are quite consistent with the response

mechanism of neurons in human neuron systems, i.e., for a

certain stimulus, the non-response neurons make up the

majority of the whole neurons, and most of the response

neurons are with very large response values. In addition,

the fine-tuned network also has sparsity of connections.

The sparse learning ability of the network ensures it to

process the good performances including the generalization

ability, identification accuracy and running times. It is

promised that deep learning with strengthening response

sparsity can be applied further to high-dimensional data

with small sample size, such as the neuroimaging data and

genomic data, which are under our current research.
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Appendix 1: The deviation of KL divergence
for the parameters in Sect. 2.2
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Appendix 2: The derivation of updating
formula for the traditional BP in Sect. 3.1

For the traditional BP, the total error of the network in the

backpropagation process, i.e., the loss function is

JðWÞ ¼ 1

2N

XN

q¼1

XnL

j¼1

ðaðLÞqj � yqjÞ2

where N is the training sample size, yqj is the target output

of the j-th neuron in the output layer corresponding to the

q-th sample, and a
ðLÞ
qj is the actual output of it. For sim-

plicity, we first give the parameter updating formula for

one sample. Consider JðWÞ ¼ 1
2

PnL
j¼1ða

ðLÞ
j � yjÞ2 as the

error of the network for one sample. Let g1 be the learning

rate, W
ðlÞ
ij be the connection weight of the i-th node in the l-

th layer and the j-th node in the ðlþ 1Þ-th layer

(1� i� nl þ 1, 1� j� nlþ1), then we have the following

update formula for the network parameters
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where dðlþ1Þ
j ¼ oJðWÞ

oz
ðlþ1Þ
j

is the residual of the j-th node in the

ðlþ 1Þ-th layer. For the L-th layer, i.e., the output layer, the
residual of the j-th node is
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thus the residual vector of the L-th layer is

dðLÞ ¼ ðaðLÞ � yÞ� � ðf
0 ðzðLÞÞÞ ð20Þ

where �� is the vector product operator (Hadamard pro-

duct), which is defined as the product of the corresponding

elements for one vector or matrix.
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The residual of the j-th node for the l-th layer ðl ¼
L� 1; . . .; 2; 1Þ is dðlÞj ¼ ð

Pnlþ1

k¼1 W
ðlÞ
jk d

ðlþ1Þ
k Þf 0 ðzðlÞj Þ, thus the

vector form of the residual for the l-th layer is

dðlÞ ¼ ððdðlþ1ÞÞ � ð �W ðlÞÞTÞ� � f
0 ðzðlÞÞ ð21Þ

where � is the matrix product, �W
ðlÞ

is the first nl rows of

W ðlÞ. Let

DW ðlÞ ¼ðaðlÞÞT � dðlþ1Þ ð22Þ

in which dðlþ1Þ is defined by (20)–(21) (l ¼ L� 1; . . .; 2; 1).

For the N samples case, by (22), we have DW ðlÞ
q J ¼

ðaðlÞÞTq � d
ðlþ1Þ
q for each sample q ¼ 1; 2; . . .;N. Thus, the

update formula for the network parameters in a matrix form

is

W ðlÞ ¼W ðlÞ � g1 �
1

N

XN

q¼1

DW ðlÞ
q J

Appendix 3: AR results of SRS-DNN
with different parameter sets

The following Table 6 contains different sparse parameter

sets of sparsity penalty items for KL and L1 in RBM as well

as in BP, i.e., k2, k3, s1 and s2, and also their corresponding

accurate rates of classification. Based on which, in this

paper, we select k2, k3, s1 and s2 to be 0.005, 0.0001,

0.0001 and 0.0002, respectively.
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