
ORIGINAL ARTICLE

Detecting outliers in industrial systems using a hybrid ensemble
scheme

Biao Wang1 • Zhizhong Mao2

Received: 19 November 2018 / Accepted: 17 June 2019 / Published online: 24 June 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
The massive growth of process data in industrial systems has promoted the development of data-driven techniques, while

the presence of outliers in process data always deteriorates the effectiveness. This paper focuses on detecting outliers in

industrial systems under the assumption that no labeled training data are available. Our method is on the basis of ensemble

learning, and the base learners include both one-class classifiers and multi-class classifiers. The core idea is that one-class

classifier ensemble model is used to address the problem of missing label, and the usage of multi-class classifier ensemble

model is to further improve its performance when outlier examples are available. The essential motivation for this proposal

is that results from a classifier trained using only positive data will not be as good as the results using both positive and

negative data. We investigate the performance of the proposed scheme with a series of experiments. Ten benchmark data

sets and two real-world industrial systems are used, and the results approve the performance of our detection scheme.

Keywords Outlier detection � Ensemble learning � Machine learning � Industrial system

1 Introduction

Modern process industry has embraced the dawn of a data-

based epoch due to the difficulty in deriving physical model

for complicated processes. Many data-driven techniques

have been developed to facilitate industrial systems in the

last years. However, the presence of outliers, to a great

extent, prevents their applications in practical systems. This

can be found from both process control systems and process

monitoring systems. This motivates us to develop an outlier

detection scheme dedicated to industrial systems.

1.1 Motivation and challenges

System identification is always a key step for process

control. In adaptive control or predictive control, the result

of system identification will influence the control

performance heavily. Due to the difficulty in constructing

mechanism models, many data-based models have been

proposed to describe process systems, e.g., transfer func-

tion models, state-space models, polynomial models, and

spectral models. Then, process data will be used to learn

system parameters. Note that no matter which model is

used, the data quality will always play an important role,

and hence, a set of unrepresentative training samples may

trigger biased identification result.

From the perspective of process monitoring, traditional

models obtained from first principles are of much difficulty

since modern industrial processes are usually large scale

and complex. This is similar to the scenario in process

control. In this situation, constructing efficient and reliable

monitoring systems from process data becomes alternative.

Of most studies, methods on the basis of multivariate

statistics, such as PCA (principal component analysis) and

PLS (partial least square), have drawn great attention.

Actually, they have been applied in many industrial

applications. We have noted that one important step in

applying these data-based techniques is to obtain the por-

tion of data representing the normal operating condition.

But by disrupting the correlation structure of PCA or PLS

& Zhizhong Mao

maozhizhong@ise.neu.edu.cn

1 School of Automation, Shenyang Aerospace University,

Shenyang 110136, China

2 School of Information Science and Engineering, Northeastern

University, Shenyang 110819, China

123

Neural Computing and Applications (2020) 32:8047–8063
https://doi.org/10.1007/s00521-019-04307-5(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04307-5&domain=pdf
https://doi.org/10.1007/s00521-019-04307-5

model, the presence of outliers may trigger more false

alarms or conceal true alarms.

As a consequence, outlier detection for industrial systems

is a very practical work. Due to the particular characteristics

of industrial data, however, many traditional detection

methods can hardly be applied directly. Here, we summarize

some challenges of detecting outliers for industrial systems.

A. Online data are lack of labels. It is very expensive, if

not impossible, to label all measurements for online

applications. This point may be the greatest challenge

for many traditional outlier detection approaches, such

as classification-based methods, in which training set

must include sufficient instances sampled from both

normal and abnormal classes.

B. The detection should be implemented online. This

point can be a great challenge for nearest-neighbor-

based or distance-based methods since the detection

phase of these methods is usually time-consuming.

This computation complexity is unaffordable for large-

scale data.

C. Process data are usually noisy even faulty. In noisy

environments, the robustness to noise can be more

important than the performance results themselves.

This point has also triggered great troubles for many

outlier detection approaches, especially for those based

on statistical models.

1.2 Related work

Outlier detection has always been in an extraordinary

effervescence in data mining and machine learning. It has

numerous applications, such as credit card fraud detection,

discovery of criminal activities in electronic commerce,

video surveillance, weather prediction, and pharmaceutical

research. Many outlier detection methods have been pro-

posed [1]. They can be categorized into five groups, i.e.,

classification-based techniques, nearest-neighbor-based

techniques, cluster-based techniques, statistics-based tech-

niques, and information-theory-based techniques [2].

Restricted by the data feature in industrial systems, these

methods have rarely been applied here. For example,

classification-based techniques usually require training sets

containing both normal data and outliers; neighbor-based

techniques usually have more computational complexity at

the test phase. These problems are always difficult to solve

for application here.

While, in the field of process industry, most proposed

outlier detection methods are used for fault diagnosis,

researches dedicated to detecting outliers in industrial

systems are limited. Based on graph theory and spa-

tiotemporal correlations of physical processes, [3] proposes

a fully distributed general anomaly detection scheme for

general large-scale networked industrial sensing systems.

In [4], RBF network is used to construct the model of

controlled object at first; then, auto-regression hidden

Markov model is used to identify outliers based on fitting

residuals. By taking flow information, application data, and

the packet order into account, [5] proposes a self-learning

anomaly detection approach for industrial control systems.

Two types of anomalies are classified in [6] in the energy

system of steel industry. A dynamic-time-warping-based

method that combines adaptive fuzzy C means is proposed

for the trend anomaly, and a k-nearest neighbor algorithm

is designed for deviant anomalies. For improving fault

detection performance, [7] proposes an online outlier

identification and removal scheme based on neural net-

work. In our early works [8, 9], we have proposed to use

one-class classifier ensemble model as outlier detector in

industrial systems. As information about outliers has not

been developed, its performance can be further improved.

1.3 Contribution

In this paper, we extend our early work [10] with the aim of

improving its detection performance. We propose to con-

struct a binary classifier ensemble detection model when

sufficient process measurements are available for training.

We also find that the number of measurements from abnor-

mal conditions is still much smaller than that under normal

condition. To alleviate this problem hence, we propose to use

an over-sampling algorithm to process the training set. Due

to the usage of more system information, we expect this

detection model to outperform our early work. In addition,

we use the sliding window technique to update the training

sets in order to make the detection model adaptive.

The remainder of this paper is structured as follows:

some fundamentals used throughout this paper will be

introduced in Sect. 2. Details regarding the proposed

detection scheme will be presented in Sect. 3. Section 4

will show the experimental results and analysis. Finally,

Sect. 5 concludes the paper and suggests some directions

for future research.

2 Fundamentals

In this section, we introduce some preliminary knowledge

regarding one-class classification, binary classification, and

ensemble learning.

2.1 One-class classification

One-class classification (OCC) is among the most difficult,

but very promising, areas of the contemporary machine

learning [11, 12]. It works with the assumption that during

8048 Neural Computing and Applications (2020) 32:8047–8063

123

the training phase it has only objects originating from a

single class at our disposal. This may be caused by cost

restraints, difficulties or ethical implication of collecting

some samples or simply complete lack of ability to access

or generate objects. This is common in many real-life

applications, such as intrusion detection system, fault

diagnosis, or object detection. As we have no access to any

counterexamples during the training phase, constructing an

efficient model and selecting optimal parameters for it

become a very demanding task. Figure 1 illustrates several

one-class classifiers trained with a banana-shaped data set.

Note that only target points (denoted by ‘‘*’’) are available

during the training phase.

2.2 Binary classification

In classification problem, the goal is to learn a mapping from

inputs x to outputs y, where y 2 1; . . .;Cf g, withC being the

number of classes. If C ¼ 2, this is called binary classifi-

cation; if C[2, this is called multi-class classification. One

way to formalize the classification problem is as function

approximation. We assume y = f(x) for some unknown

function f , and the goal of learning is to estimate the function

f given a labeled training set and then to make predictions

using ŷ ¼ f̂ xð Þ. Our main goal is to make predictions on

novel inputs, meaning ones that we have not seen before,

since predicting the response on the training set is easy.

In this paper, we only focus on the binary classification

problem (C = 2). Here we only introduce several common

binary classifiers and briefly categorize them into the fol-

lowing three groups.

A. Rule-based classifiers: Rule learning for classification is

an important branch of classification problem. Based on

thismechanism,manymachine learning algorithms have

been proposed, among which fuzzy rule learning [13]

and decision tree [14] may be the most representatives.

B. Neural network (NN)-based classifiers: Using NN as a

classifier has never been a novel proposal. However,

many modified methods based on NN were always

developed due to its strong learning ability in last

decades, such as incremental RBFNN, decremental

RBFNN [15] and evolutionary RBFNN [16].

Support vector machine (SVM)-based classifiers: the

presence of SVM is dedicated to classification problem.

Methods like c-SVM [17] and m-SVM [18] have been used

extensively.

2.3 Ensemble learning

We have seen a significant development of algorithms

known as ensemble classifiers or multiple classifier

systems. The underlying idea of ensemble learning for

classification problems is to build a number of base clas-

sifiers and then combine their outputs using a fusion rule. It

has been observed that classifier ensembles usually out-

perform single classifiers for many classification problems

[19]. The reason may be that a combination of multiple

classifiers reduces risks associated with choosing an

insufficient single classifier [20, 21]. Note that two key

problems should be considered when developing ensemble

modes. One is diversity enhancement, and the other is

decision fusion.

For the first issue, two main categories, i.e., homogenous

ensemble and heterogeneous ensemble, are two main

techniques. In homogeneous ensemble models, all base

learners are equipped with the same form. Enhancement of

ensemble diversity could be achieved via the manipulations

of input data and the base learner as follows: � partition

the training data set into several sample subsets. Bagging

[22] and Random Forest [23] are two representative

methods. They have also been developed for OCC

ensemble models; ` partition the feature space of training

data into several feature subsets. Random Subspace [24]

should be the most famous representatives that can also be

incorporated by ensembles of OCC models; ´ diversify the

parameters of the single base classifier. Furthermore, by

diversifying parameters of the single base learner, several

‘‘different learners’’ can be generated. While in heteroge-

neous ensemble models, different base learners are used

and trained with the same training set, the most popular

heterogeneous ensemble is Stacking [25].

Referring to the problem of decision fusion, the most

popular solution should be majority voting scheme, which

assigns the label of the class predicted by the highest

number of classifiers from the pool to a new object. In

addition, continuous output for each individual is also

proposed in order to apply more sophisticated fusion

algorithms. Simple fusions of support functions such as

supremum and averaging do not involve learning process.

When fuser weight selection began to be treated as a

specific learning process, several algorithms such as linear

function, mixture of Gaussian, perceptron and evolutionary

algorithms have been developed as models of the fuser.

Recently, several heuristic search algorithms like genetic

algorithm and firefly algorithm have developed.

3 The proposed outlier detection scheme

In this section, we firstly outline the proposed detection

scheme, followed by details regarding the two detection

models.

Neural Computing and Applications (2020) 32:8047–8063 8049

123

3.1 Outline of detection scheme

We illustrate the general flow of the proposed detection

scheme in Fig. 2, from which we can find three main

phases. At the initial training phase, an OCC ensemble

model is trained with process data collected online. Then,

this model is used for detecting subsequent measurements

at the online detection phase. Note that at this phase, we set

two buffers to store normal samples (buffer 1) and outliers

(buffer 2). When the collected samples in these two buffers

meet certain criterion, the program will go to the transition

phase. At this phase, we train a binary classifiers ensemble

model, instead of the OCC ensemble model, with the

measurements stored in both two buffers. It is noteworthy

that this is the main difference from the method in our early

work [10]. As stated in [26], results from a classifier trained

using only positive data will not be as good as the results

using positive and negative data. Thus, unless one has only

training samples known to be from one class and no other

information, one-class learners are likely not the best

approach.

Note that we will encounter another problem called data

imbalance when constructing binary classifiers at the

transition phase. A classifier affected by the data imbalance

-15 -10 -5 0 5 10

-10

-5

0

5

10

-15 -10 -5 0 5 10

-10

-5

0

5

10

-15 -10 -5 0 5 10

-10

-5

0

5

10

-15 -10 -5 0 5 10

-10

-5

0

5

10

-15 -10 -5 0 5 10

-10

-5

0

5

10

-15 -10 -5 0 5 10

-10

-5

0

5

10

(a) (b)

(c) (d)

(e) (f)

Fig. 1 a SVDD; b Parzen

density data description; c K-

means data description; d K-

nearest neighbor data

description (k = 5); e self-

organizing map data

description; f minimum

spanning tree data description

8050 Neural Computing and Applications (2020) 32:8047–8063

123

problem would see strong accuracy overall but very poor

performance on the minority class. To cope with this

problem, we use a resampling algorithm called SMOTE

(synthetic minority over-sampling technique) [27] to pre-

process the training set prior to the training of the binary

classifier ensemble model. Then, a more balanced training

set can be obtained, with which we can train a more

accurate binary classifier ensemble model. In this paper, we

call this ensemble model as core detection model and use it

in the subsequent detection.

3.2 Initial detection model

In this paper, we assume that none history data is available

for training the initial detection model. This assumption is

reasonable in many practical applications. Training samples

thus, for the initial model, can only come from samples

collected in real time. Suppose we begin to construct the

initial detection model at time t0, then only samples col-

lected before t0 can be used. Thereby, the size of training set

is heavily restricted by the requirement for early detection.

Note that the determination of time t0 is not an easy work. A

too large value indicates a long time before the detection,

while a too small value may imply an insufficient training

set. This may need certain specific knowledge.

Due to the lack of labeled samples, one-class classifiers

will be used as the detector as this phase. To improve the

performance of single model, we construct a one-class

classifier ensemble model as the initial detection model.

The construction process can be demonstrated in Fig. 3.

We construct a two-level heterogeneous ensemble model in

order to obtain diverse base learners. At the first level, we

partition the input space into several feature subspaces with

algorithm RSM (random subspace method). Then for each

feature subset, a heterogeneous ensemble model is con-

structed. The reason why we use heterogeneous models,

rather than homogeneous models, is that the limited

training samples in this phase can be explored sufficiently

since all training samples will be used by each base learner.

Note that we use three one-class classifiers, i.e., Parzen

density (PD), support vector data description (SVDD), and

K-means (KM), to construct sub-ensemble models at each

feature subset. The reason is that these three classifiers

belong to different learning paradigms and perform better

at the corresponding category. As categorized in [28], PD

is a density-based classifier, SVDD belongs to the bound-

ary-based paradigm and KM is a method based on

reconstruction.

One crucial step in any ensemble combination is that of

score normalization to account for the fact that the different

Classification

Normal and abnormal
classified measurements

The number of
normal measurements

reaches M?

Use the previous
reference model

Buffer 1

Buffer 2Real-time
measurement

Outlier

Normal

Yes

No

Store the
reference model

Training data

Learn the core
detection model

Store the reference
model

SMOTE

Modified
training set

Initial training

Online detection

Transition

Learn the initial
detection model

Fig. 2 General structure of the

whole outlier detection scheme

Neural Computing and Applications (2020) 32:8047–8063 8051

123

algorithms may use scores on different scales, or they

might even have a different ordering of the scores [29]. So

we should normalize scores of individual classifiers in

order to combine their outputs without inadvertently

overweighting any one. Generally, the calibration methods

for supervised classifiers fall under two categories, i.e.,

parametric and nonparametric. Parametric methods assume

that the probabilities follow certain well-known distribu-

tions, and nonparametric methods usually employ

smoothing, binning, and Bagging methods to infer proba-

bility. While these methods cannot be directly applied to

the outlier detection models due to the absence of labeled

samples, one solution is to treat the missing labels as

hidden variables and apply the expectation–maximization

(EM) algorithm to maximize the expected likelihood of the

data [30]. Due to the extensive usage of logistic regression

for transforming classification outputs into probability,

here we employ this method to process the outputs of one-

class classifiers. Meanwhile, EM algorithm is used to learn

the parameters of logistic regression.

Let X ¼ x1; x2; . . .; xNf g denote a set of N d-dimensional

observations, and F ¼ f1; f2; . . .; fNf g denote the

corresponding outlier scores assigned to observations in X.

Without loss of generality, it is assumed that the higher fi
is, the more likely xi is an outlier. The objective is to

estimate the probability that xi is an outlier given its outlier

score fi, i.e., pi ¼ P Ojfið Þ. Then, the probability that xi is

normal can be computed accordingly by P Mjfið Þ ¼ 1� pi.

Here, O and M represent outlier class and normal class,

respectively. According to the Bayesian theorem:

pi ¼ P Ojfið Þ ¼ P fijOð ÞP Oð Þ
P fijOð ÞP Oð Þ þ P fijMð ÞP Mð Þ ð1Þ

Then, we can describe it with a logistic function

pi ¼ 1= 1þ exp �aið Þð Þ, from which we can obtain:

ai ¼ log
P fijOð ÞP Oð Þ
P fijMð ÞP Mð Þ ð2Þ

Here, ai can be deemed a discriminant function that clas-

sifies xi into one of the two classes. It has been proved that

for a Gaussian distribution with equal covariance matrices,

ai can be simplified to a linear function, i.e., ai ¼ Afi þ B:

Then, we have:

RSM

Feature
Subset 1

Feature
Subset 2

PD 1

SVDD 1

KM 1

KM 2

PD 2

SVDD 2

F
U
S
E
R

Output

PD m

Feature
Subset m SVDD m

KM m

Input

Fig. 3 General structure of initial detection model

8052 Neural Computing and Applications (2020) 32:8047–8063

123

pi ¼
1

1þ exp �Afi � Bð Þ ð3Þ

The task hence has been converted to estimate parameters

A and B from the training samples. Here, we let ti be a

binary variable whose value is 1 if xi belongs to the outlier

class and 0 if it is normal. Then, ti can be described by a

Bernoulli distribution:

p tijfið Þ ¼ ptii 1� pið Þ1�ti ð4Þ

Here we assume that the observations are drawn indepen-

dently; then, we can compute the likelihood of X with:

p t1; . . .tN jFð Þ ¼
YN

i¼1

ptii 1� pið Þ1�ti ð5Þ

Thus, parameters can be optimized by maximizing the

likelihood function. Generally, it is more computationally

convenient to minimize the negative log-likelihood

function:

NL t1; . . .tN jFð Þ ¼ �
XN

i¼1

ti log pi þ 1� tið Þ log 1� pið Þ½ �

¼
XN

i¼1

1� tið Þ Afi þ Bð Þ½

þ log 1þ exp �Afi � Bð Þð Þ�
ð6Þ

In contrast to supervised classification where labeled

samples xi; tif g are available, we cannot learn the param-

eters directly by minimizing the function in Eq. 6 in the

situation of outlier analysis. In this paper, EM algorithm

[31] is used to estimate the missing labels and parameters

simultaneously.

As we have mentioned previously, the aim of trans-

forming outlier scores of base classifiers is to use more

sophisticate fusion algorithms. In this paper, we employ an

algorithm called exponential induced ordered weighted

averaging (EIOWA) proposed in [32]. It has been proved

that EIOWA outperforms many common fusion rules like

majority voting, mean, max, and product for most used data

sets. Note that in our early work [10], we also employ

EIOWA as the fusion rule and prove its effectiveness.

We conclude the initial model in the form of pseudo-code

and show it in Algorithm 1. Note that in this algorithm, we

need to determine two parameters in advance, i.e., the

number of feature subsets m and the threshold of model

transition M. We have to admit that these two parameters

are determined in a heuristic manner. Parameter m is

related to the dimension of data set, i.e., high-dimensional

data set will deduce more feature subsets. While the

parameter M is totally user-defined, we have no prior

information about the data set. Specific values of these

parameters will be introduced at the experimental parts.

Algorithm 1. Initial Detection Model
Input: Training set , the number of feature subsets m, threshold M, new measurement .

()

()

()
()

()

1

1

2

3

1. RSM ,..., ; // Use RSM to generate m feature subsets
2. for 1 to
3. PD , SVDD , KM ; // Train m sub-models
4. end for;
5. Test point
6. for 1 to
7. PD ;
8. SVDD ;
9. KM ;
10. end for
11

Train T Tm

Ti i i i

j

i j ji

i j ji

i j ji

S S S
i m
S

x
i m

x p
x p

x p

→
=

→

=
=

=
=

()
()

1 1 3 3
11

1

. E ,..., ,..., ,..., ; // Use EIOWA to fuse the outputs of sub-models
12. E ,..., ; // Calculate the threshold
13. if
14. Declare as normal and transfer it into buffer 1;
15. el

j jm j jm j

m j

j j

j

p p p p P
T

P T
x

ξ ξ
=

=
≥

se
16. Declare as outlier and transfer it into buffer 2;
17. end if
19. N1 number of samples in buffer 1, N2= number of samples in buffer 2;
20. if N1 M
21. Go to the transition phase and clear buffer 1;
22.

jx

=
≥

else
23. Go to next test point;

Output: Label of .

Neural Computing and Applications (2020) 32:8047–8063 8053

123

3.3 Core detection model

It has been observed that the results from a classifier

trained using only positive data will not be as good as the

results using positive and negative data. Thus, unless one

has only training samples known to be from one class and

no other information, one-class learners are likely not the

best approach [26]. Inspired by this statement, we propose

to construct a binary classifier ensemble model with both

normal samples and outliers collected previously.

Although we can collect some outliers with the initial

model, the quantity is too small compared with the normal

samples. To mitigate this data imbalance problem, we

employ a resampling method called SMOTE to process the

samples that will be used to train the binary classifiers. For

random over-sampling, several researchers agree that this

method can increase the likelihood of occurring overfitting

since it makes exact copies of existing instances. There-

fore, we use a more sophisticated approach. Through this

algorithm, abnormal class is over-sampled by taking each

outlier and introducing synthetic examples along the line

segments joining any or all nearest neighbors from

abnormal class. With this modified training set, we train a

heterogeneous ensemble of binary classifiers, in which

bootstrap sampling is employed. We call this model as the

core detection model and show its structure in Fig. 4.

Different from the initial model, bootstrap samplingmethod

is also used to generate more subsets in addition to RSM. As

concluded in [33], the Bagging techniques generally outper-

form Boosting in noisy data environments. Such an advantage

of Bagging is of much significance for application we are

interested here since practical process usually suffers from

noise. As a consequence, the combination of bootstrap sam-

pling will not only reduce the computational load, but also

enhance the model robustness. Note that we use three base

learners, i.e., decision tree, RBF neural network, and SVM, for

each sample subset. Such a configuration could not only guar-

antee the diversity, but enhance the accuracy of the ensemble

model. With regard to the used fusion method, majority voting

is used here since outputs of base learners are predictive labels.

We also summarize the core detection model at transition

phase in the form of pseudo-code and show it in Algorithm 2.

Note that in this algorithm, the detector will update once

samples inbuffer 1 (normal samples) reachN, which is usually

determined by the user. The objective of this setting is tomake

the detector adaptive toward newmeasurements by retraining

it. The rationale behind this is that samples located nearer by

time or distance may resemble each other more.

Bootstrap Sample
Subset 2

Sample
Subset 1

Sample
Subset n

DT 1

RBF 1

RBF 2

SVM 1

DT 2

SVM 2

RBF n

DT n

SVM n

Fuser Output

.

.

. . . .

Input

Fig. 4 General structure of core detection model

8054 Neural Computing and Applications (2020) 32:8047–8063

123

Algorithm 2. Core Detection Model.
Input: Training set , the number of sample subsets n, threshold N, new measurement .

() 11. Bootstrap ,..., ; //Use Bootstrap to generate n sample subsets
2. for =1 to n
3. DT , NN , SVM ; //Use subsets to train base learners
4. end for;
5. Test point ;
6. for =1 to n
7. D

Train T Tn

Ti i i i

j

S S S
i
S

x
i

→

→

()
()

()
()1 1 1

T ;
8. NN ;
9. SVM ;
10. end for;
11. MV ,..., , ,..., , ,..., ; //Use majority voting to get the final label
12. if =Normal
13. Buffer 1 ;
14. else
15. Buffer 2

D
i j ji

N
i j ji

S
i j ji

D D N N S S
j jn j jn j jn j

j

j

x L
x L
x L

L L L L L L L
L

x

x

=
=

=

→

←

← ;
16. end if;
17. M1=number of samples in buffer 1, M2=number of samples in buffer 2;
18. if M1=N
19. Retrain the detector and clear buffer 1;
20. else
21. Go to next test point.

j

Output: Label of .

4 Experiments and analysis

In this section, we carry out extensive experiments to

investigate the performance of the proposed outlier detec-

tion scheme. Because our detection scheme integrates two

different models with the consideration of varying situa-

tions in realistic applications, we firstly investigate the

performance of these two models separately. For the initial

detection model, we use 10 data sets with small size of

training samples to represent the initial detection phase.

For the core detection model, we use 10 data sets whose

sizes are larger. Moreover, a fraction of outlier samples are

also available in this experiment. Finally, we evaluate the

whole detection scheme on two practical industrial

systems.

4.1 Evaluation of the initial detection model

At this part, we investigate the performance of the initial

detection model (IDM). All procedures are implemented in

MATLAB with the help of toolboxes PRTools1 and dd_-

tools.2 To simulate the scenario of initial detection phase in

practice, data sets, baselines, and metrics are all devised

particularly.

4.1.1 Data Sets

Data sets used in this part are all taken from the UCI

Repository.3 A brief description is given in Table 1. Note

that most of these data sets have multiple classes; we

choose the most two prominent classes and filter out the

remaining classes. This process is similar to that in most

other researches. In addition, we use fivefold cross-vali-

dation to process data sets in order to reduce bias induced

by randomness in splitting data sets. Then, averaging

results will be listed.

4.1.2 Baselines

We compare IDM with the following four types of

competitors:

1. A heterogeneous ensemble model (HeE). Three one-

class classifiers (PD, SVDD, and KM) are directly used

to construct a heterogeneous ensemble model. The

difference from IDM is the lack of reconstruction of

feature space by RSM. The used fusion rule is identical

with that of IDM.

2. RSM series. This includes three random subspace

methods whose base learners are PD, SVDD, and KM,

respectively. The used fusion rules are all identical

with that of IDM.

3. Bagging series. This includes three Bagging ensemble

models whose base learners are PD, SVDD, and KM,1 http://prtools.org/.
2 https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-

systems/pattern-recognition-bioinformatics/pattern-recognition-

laboratory/data-and-software/dd-tools/. 3 http://archive.ics.uci.edu/ml/index.php.

Neural Computing and Applications (2020) 32:8047–8063 8055

123

http://prtools.org/
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-laboratory/data-and-software/dd-tools/
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-laboratory/data-and-software/dd-tools/
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-laboratory/data-and-software/dd-tools/
http://archive.ics.uci.edu/ml/index.php

respectively. The used fusion rules are all identical

with that of IDM.

4. IDM with majority voting fusion algorithm

(IDM_MV). The difference from the IDM is that

outputs of base classifiers are directly used in the

majority voting fusion rule.

4.1.3 Metrics

Traditionally for a basic two-class classification problem,

the most frequently used metrics are accuracy and error

rate. In this paper, we denote the outlier class as the pos-

itive class and the target class as the negative class. Fol-

lowing this convention along with the confusion matrix

given in Table 2, accuracy and error rate are defined as:

Accuracy ¼ TNþ TP

TNþ FPð Þ þ TPþ FNð Þ ;

Error Rate ¼ 1� accuracy

ð7Þ

But for certain situations where the ratio between sizes

of two classes is very large, the accuracy metric can be

deceiving [34]. Then, we use a famous evaluation criterion

that takes into account both normal and outlier class, i.e.,

receiver operating characteristic (ROC). It allows the

visualization of the trade-off between true-negative rate

(TNR) and false-negative rate (FNR).

TNR ¼ TN

TNþ FP
; FNR ¼ FN

FNþ TP
ð8Þ

Because the error on the majority class can be estimated

relatively well, it is assumed that for all one-class classi-

fiers a threshold can be set beforehand on the target error.

Therefore, by varying this threshold and measuring the

error on the outliers, an ROC curve can be obtained.

Although the ROC curve can give a good summary of the

performance of a one-class classifier, it is difficult to

compare two ROC curves. The most common way is to

summarize a ROC curve in a single number, i.e., the area

under the ROC curve (AUC). This value integrates the

FNR over varying TNR. A higher value indicates a better

separation between target and outlier objects.

In addition to the AUC values, we also use two types of

nonparametric statistic tests to provide a statistical

comparison.

The first test is Friedman ranking test, which can check

whether the assigned ranks are significantly different from

assigning to each classifier an average rank via assessing

the ranks of methods over all examined data sets. Under the

null hypothesis that all the algorithms are equivalent, the

Friedman statistic:

v2F ¼ 12N

k k þ 1ð Þ
X

j

R2
j �

k k þ 1ð Þ2

4

" #
ð9Þ

This statistic is distributed according to v2F with (k - 1)

degrees of freedom when N and k are big enough

(N[10; k[5). N and k are the number of data sets and

algorithms, respectively. Rj is the average rank of algo-

rithms for all the data sets. Generally, Friedman’s v2F is

undesirably conservative, and a better statistic has been

derived as:

FF ¼ N � 1ð Þv2F
N k � 1ð Þ � v2F

ð10Þ

This statistic is distributed according to the F-distribution

with k � 1; k � 1ð Þ N � 1ð Þð Þ degrees of freedom.

If the result of Friedman test indicates statistical sig-

nificance among the compared methods, we then use two

post hoc tests, i.e., Nemenyi test and Bonferroni–Dunn test,

to check whether the ranking difference between each pair

of methods is significant or not. The performance of two

algorithms is significantly different if the corresponding

average ranks differ by at least the critical difference (CD):

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k þ 1ð Þ

6N

r
ð11Þ

The values of qa for both Nemenyi test and Bonferroni–

Dunn test can be found in [35].

Table 1 Description of data sets used for evaluating IDM

No. Data set # Examples # Normal examples Features

1 Breast 286 201 9

2 C.H. disease 303 165 13

3 E-coli 220 77 7

4 Hepatitis 155 32 19

5 Glass 214 17 9

6 Imports 159 71 25

7 Ionosphere 351 225 34

8 Soybean 183 91 35

9 Vowel 180 90 13

10 Wine 2 178 71 13

Table 2 Confusion matrix

Actual label

Positive class Negative class

Predicted label

Positive class True positive (TP) False positive (FP)

Negative class False negative (FN) True negative (TN)

8056 Neural Computing and Applications (2020) 32:8047–8063

123

4.1.4 Results and analysis

Comparison of AUC values of all methods on all data sets

is presented in Table 3. In addition, we also provide ranks

of all methods on each data set and averaging values over

all data sets. Then, statistical results with respect to

Friedman test and two post hoc tests are listed in Tables 4,

5 and 6.

Based on the results in Table 3, we can easily observe

that IDM outperforms other methods on most data sets (8

out of 10). Specifically, IDM outperforms HeE on all data

sets. This result indicates that using RSM to reconstruct the

feature space could improve the performance of heteroge-

neous ensemble models. Then comparing the result of IDM

with those of RSM series, we can find that IDM outper-

forms RSM_PD and RSM_SVDD on nine data sets and

outperforms RSM_KM on all data sets. This result implies

that constructing sub-ensemble models on subsets gener-

ated by RSM could improve the performance of RSM-

based models. Then from the results of Bagging series

methods, we can find that their deviation from IDM is

greater than that of other competitors. This result indicates

that using Bagging technique on small-scale data sets may

be an unwise decision. Finally, we can also see the

improvement of the usage of EIOWA fusion method from

the result of IDM_MV.

Then, we investigate the performance of all methods

with statistic tests. From Table 4, we can find that the value

of F-statistic (49.21) is much larger than the critical value

(5.79). This indicates that the null hypothesis of Friedman

is rejected and there is significant difference among these

methods. Then from the results presented in Tables 5 and

6, we find that the differences between IDM and IDM_MV,

RSM_SVDD, HeE are not significant. It is clear that the

differences between FHO-ME and RS-PD, RS-KM and all

Bagging series method are significant. This indicates that

the Bagging technique is not suitable for small-scale data

sets again. Furthermore, we can also find the significant

differences between RSM series method and Bagging

series methods. Thus, we can conclude that the usage of

feature portioning technique has improved the classifica-

tion performance significantly. In addition, usage of the

proposed fusion method could also improve the classifi-

cation performance with respect to AUC values. Never-

theless, results represented by statistical tests indicate that

this improvement is not significant. Maybe with more data

sets we could obtain more positive result for our method.

Table 3 Comparison of AUC values of FHO and other four groups of methods

No. HeE RSM Bagging IDM_MV IDM

PD SVDD K-means PD SVDD K-means

1 66.9 (4) 52.6 (6) 68.2 (2) 59.9 (5) 46.9 (8) 48.1 (7) 45.4 (9) 67.8 (3) 69.1 (1)

2 72.1 (5) 73.0 (3) 72.8 (4) 72.0 (6) 65.0 (7) 64.8 (8) 64.1 (9) 73.2 (2) 74.8 (1)

3 94.3 (3) 90.5 (6) 94.8 (2) 92.9 (5) 80.3 (9) 87.8 (7) 86.3 (8) 93.9 (4) 95.5 (1)

4 72.6 (4) 72.8 (3) 73.9 (1) 72.0 (5) 63.6 (8) 66.0 (7) 62.0 (9) 71.4 (6) 73.5 (2)

5 91.2 (4) 88.4 (6) 93.3 (2) 92.1 (3) 81.2 (9) 87.1 (7) 86.2 (8) 90.3 (5) 94.3 (1)

6 87.4 (3) 84.7 (6) 88.2 (2) 86.4 (4) 78.9 (9) 81.3 (7) 79.9 (8) 85.9 (5) 88.7 (1)

7 94.6 (3) 95.5 (1) 91.7 (6) 92.7 (5) 86.6 (7) 84.9 (9) 84.6 (8) 93.5 (4) 95.3 (2)

8 94.4 (3) 91.3 (6) 93.9 (4) 92.5 (5) 78.5 (9) 81.7 (7) 79.4 (8) 96.1 (2) 96.5 (1)

9 88.4 (4) 88.0 (5) 90.3 (2) 87.9 (6) 79.4 (8) 82.5 (7) 77.8 (9) 89.6 (3) 99.2 (1)

10 95.2 (4) 94.2 (6) 95.8 (3) 94.2 (5) 86.1 (9) 89.3 (7) 86.4 (8) 97.4 (2) 97.9 (1)

Overall average 85.71 (3.7) 83.10 (4.8) 86.29 (2.8) 84.26 (4.9) 74.65 (8.3) 77.35 (7.3) 75.21 (8.4) 85.91 (3.6) 88.48 (1.2)

Best results are given in bold

Table 4 Result of Friedman test (significance level is 0.05)

F-statistic Critical value Significant difference

49.21 5.79 Yes

Table 5 Comparison result of

Nemenyi test (0.1 significance

level)

CD Averaging rank

IDM RSM

SVDD

IDM

MV

HeE RSM

PD

RSM

KM

Bagging

SVDD

Bagging

PD

Bagging

KM

3.5 1.2 2.8 3.6 3.7 4.8 4.9 7.3 8.3 8.4

Neural Computing and Applications (2020) 32:8047–8063 8057

123

4.2 Evaluation of the core detection model

At this part, we investigate the performance of the core

detection model (CDM). Data sets used here include more

samples than those in Sect. 4.1. Baseline methods here are

also particularly selected, and all procedures are imple-

mented on KEEL.4

4.2.1 Data sets

Data sets used in this experiment are all taken from KEEL-

data set Repository. A simple description is shown in

Table 7, from which we can find that all sizes of samples

are larger than those in former experiments. Here we also

use fivefold cross-validation to process data sets.

4.2.2 Baselines

We compare CDM with the following five competitors:

1. SVDD with negative examples (SVDD-N). When

negative examples are taken into account, the decision

boundary could become tighter than that of the original

SVDD.

2. CDM_OC. This model is identical with the CDM

except for the usage of one-class classifiers as base

learners.

3. IDM. This is the initial detection model.

4. A heterogeneous ensemble of binary classifiers (HeB).

DT, RBF neural network and SVM are directly used as

base learners in this ensemble model.

5. CDM without SMOTE (CDM_woS). This model is

identical with CDM except for the usage of algorithm

SMOTE.

4.2.3 Metrics

It is noteworthy that reducing the number of false negatives

is more significant than that of false positives in practice.

Thus, we employ another metric called F-measure that can

adjust the ratio of FPR to FNR, in order to evaluate the

performance of different methods more reasonably.

Fm ¼
1þ b2
� �

PPV� TNR

b2PPVþ TNR
ð12Þ

where

PPV ¼ TN

TNþ FN
ð13Þ

Here, we set b ¼ 0:5, indicating that more penalty will

be assigned on false positives. In addition, statistical tests

are also used in this experiment.

4.2.4 Results and analysis

Configurations of base learners used in ensemble models

are listed in Table 8. We should note that these parameters

are not determined by any optimizing technique. They are

only default values in KEEL. This is similar to that in the

initial model, where all parameters of one-class classifiers

are also not determined by any optimizing technique. It is

observed that optimizing base learners is unnecessary for

an ensemble model. Results with respect to F-measure are

presented in Table 9. Statistical results are shown in

Table 10.

From Table 9, firstly we can find that CDM has

achieved the best averaging value of F-measure, and its

averaging rank is also the best. This indicates that CDM

performs better for most cases. Then, we compare the

result of CDM with that of CDM-OC; we can see that

CDM outperforms IDM on seven data sets. This compar-

ison implies that binary classifier ensemble models usually

perform better than one-class classifier ensemble models

Table 6 Comparison result of

Bonferroni–Dunn test (0.1

significance level)

CD Average rank

IDM RSM

SVDD

IDM

MV

HeE RSM

PD

RSM

KM

Bagging

SVDD

Bagging

PD

Bagging

KM

3.1 1.2 2.8 3.6 3.7 4.8 4.9 7.3 8.3 8.4

Table 7 Description of data sets used for evaluating CDM

No. Data set # Example IR Features

1 Segmentation 2308 6.01 19

2 Yeast 1 1484 8.11 8

3 Yeast 2 1004 9.14 8

4 Vowel 988 10.10 13

5 Shuttle 1829 13.87 9

6 Solar flare 1066 23.79 11

7 Car 1728 24.04 6

8 Chess 2935 35.23 6

9 Abalone 2338 39.31 8

10 Wine 1482 58.28 11

4 www.keel.es.

8058 Neural Computing and Applications (2020) 32:8047–8063

123

http://www.keel.es

when outlier samples are available during the training

phase. However, it is noteworthy that this statement is valid

when these two types of ensemble models have identical

structure, since we can find that CDM_OC outperforms

two binary classifier ensemble models according to the

results of CDM-woS and HeB. Then, we can also see the

advantage of CDM when we compare its performance with

that of SVDD-N. Meanwhile, from the results CDM and

HeB we can find that using Bagging technique could fur-

ther improve the performance of heterogeneous ensemble

models. In addition, we can also find that Bagging tech-

nique outperforms RSM, which can be found from the

results of CDM_OC and IDM. Finally, we can find the

significance of algorithm SMOTE from the results of CDM

and CDM_woS.

The statistical significance of the ranking differences has

been verified by the Friedman test, followed by two post

hoc tests for pairwise comparisons. In Table 10, the value

of F-statistic (11.79) is much larger than critical value

(3.90). Such a result indicates that the null hypothesis of

Friedman test should be rejected. Then from the results in

Tables 11 and 12, we can find that CDM outperforms IDM,

HeB, and SVDD-N significantly. The advantage over

CDM-OC and CDM-woS is not significant, even though

we can still conclude a success of our method.

4.3 Experiment on electric arc furnace system

To evaluate the performance of the whole detection

scheme, we first carry out an experiment on a real-world

industrial system, i.e., electric arc furnace (EAF) system.

EAFs are used extensively in industry to convert scrap

metal into molten steel. The EAF system is a very complex

and highly energy-intensive process. Approximately 60%

of the energy consumed by the EAF represents electrical

energy and the other 40% accounts for chemical energy,

resulting from the burner materials and the chemical

reactions occurring within the furnace. This high-energy

Table 8 Configurations of base

learners used in ensemble

models

Type Algorithm Parameter Setting

Decision tree C 4.5 Instances per leaf = 2

Neural network RBFN Neurons = 50

Support vector machine c-SVM Kernel function = RBF; c = 100

Table 10 Result of Friedman tests for all the data sets (significance

level is 0.05)

F-statistic Critical value Significant difference

11.79 3.90 Yes

Table 11 Comparison of all methods against each other with the

Nemenyi test

CD CDM CDM

OC

CDM

woS

IDM HeB SVDD-N

2.1661 1.3 2.3 3.2 3.8 5.5 5.9

Table 9 Comparison of

F-measure values of all the

methods

No. CDM CDM

woS

HeB CDM

OC

IDM SVDD-N

1 0.9648 (1) 0.9152 (2) 0.8849 (5) 0.8910 (4) 0.9092 (3) 0.7986 (6)

2 0.9774 (1) 0.9530 (3) 0.9330 (4) 0.9548 (2) 0.9101 (5) 0.9016 (6)

3 0.9175 (2) 0.9028 (3) 0.8870 (5) 0.9213 (1) 0.8992 (4) 0.8656 (6)

4 0.8986 (1) 0.8516 (3) 0.8113 (4) 0.7738 (5) 0.8627 (2) 0.7517 (6)

5 0.9434 (1) 0.8339 (5) 0.8891 (4) 0.9007 (3) 0.9112 (2) 0.8002 (6)

6 0.8527 (1) 0.8426 (3) 0.8397 (4) 0.8435 (2) 0.8076 (5) 0.7663 (6)

7 0.9119 (1) 0.8767 (3) 0.8490 (5) 0.9015 (2) 0.8701 (4) 0.8251 (6)

8 0.9546 (1) 0.8908 (3) 0.8809 (4) 0.9084 (2) 0.8778 (5) 0.8290 (6)

9 0.9226 (2) 0.9071 (4) 0.8883 (6) 0.9312 (1) 0.9135 (3) 0.8925 (5)

10 0.9194 (2) 0.8832 (3) 0.8796 (4) 0.9232 (1) 0.8661 (5) 0.8447 (6)

Averaging

Value

0.9263

1.3

0.8857

3.2

0.8743

5.5

0.8949

2.3

0.8828

3.8

0.8275

5.9

Best results are given in bold

Table 12 Comparison of all methods against each other with the

Bonferroni–Dunn test

CD CDM CDM

OC

CDM

woS

IDM HeB SVDD-N

1.9461 1.3 2.3 3.2 3.8 5.5 5.9

Neural Computing and Applications (2020) 32:8047–8063 8059

123

consumption of the EAF motivates the development of

control and optimization strategies that would reduce pro-

duction costs, while maintaining targeted steel quality and

meeting environmental standards.

A simple schematic diagram of the EAF operation can

be shown in Fig. 5. The scrap is loaded into the furnace and

the roof is then closed, before the electrodes bore down the

scrap to transfer electric energy. Natural gas and oxygen

are injected into the furnace from the burners which get

combusted releasing chemical energy that is also absorbed

by the scrap. The scrap keeps melting through absorbing

electrical, chemical and radiation energy. When sufficient

amount of space is available within the furnace, another

scrap charge is added and melting continues until a flat

batch of molten steel is formed at the end of the batch.

Through the evolution of carbon monoxide from molten

metal a slag layer is formed, which contains most of the

oxides from the reactions of the metals with oxygen. Slag

chemistry is adjusted through oxygen and carbon lancing,

besides some direct addition of carbon, lime and dolomite

through the roof of the furnace. Cooling panels are used to

cool down the roof and the walls of the furnace, in addition

to the gas and molten metal zones.

We can find real-time measurements of several variables

which have been used to design the controller [36]. In this

paper, a 17-dimensional data set taken from eight variables

(primary voltage, secondary voltage, primary current,

secondary current, short net resistance, short net reactance,

and arc impedance) is used. This data set comes from a

realistic 30-ton three AC EAF system. We only choose

5000 examples from the original data set. In our data set,

500 examples are outliers, which distribute in the data set

separately. Sizes of training sets for initial model and core

model are 100 and 500, respectively. Here we use a robust

data scaling method proposed in [37], since our data set

contains outliers. In particular, we use the median of each

feature values to represent its mean value, and the standard

deviation is computed with half observation that is more

close to the corresponding median.

We compare our detection scheme with the method

proposed in [4] (AR-HMM) and our early work [10] (Hy-

EOCC), as well as two traditional outlier detection meth-

ods, i.e., one-class SVM (OCSVM) [38] and mixture of

Gaussian (MOG) [39]. Results are listed in Table 13. We

refer to our whole detection scheme as hybrid ensemble

outlier detection model (HEOD), since it includes two

distinct detection models.

According to this comparison, we can easily find the

higher performance of our detection scheme (HEPD) with

respect to both two criteria. Note that AUC value is a

criterion evaluating the general performance of outlier

detection methods. We can hence say that our detection

scheme has achieved the best general result over its com-

petitors on EAF data set. We should claim that other

detection models also adopt our updating rule for justified

results. Via the comparison of HEOD and Hy-EOCC, we

can confirm the effectiveness of the binary ensemble in the

core detection model. In addition, we can also see that

ensemble detection models (HEOD and Hy-EOCC) usually

outperform single detection models. In this experiment,

each training set has relatively less examples, to which

MOG may subject. For the result with respect to F-score,

only one threshold is fixed to investigate the false-positive

rate and true-positive rate. Also, our detection scheme has

got the best result. This indicates that HEOD has the lowest

false-positive rate when the true-positive rate is fixed at a

certain value. We can also explain this phenomenon as that

HEOD can identify more outliers than other methods when

accepting the same normal samples at the training phase.

Fig. 5 A simple operational procedures of EAF

Table 13 Comparison results on EAF data set

HEOD AR-HMM Hy-EOCC OCSVM MOG

AUC 0.9827 0.9273 0.9717 0.9566 0.9190

F-score 0.9649 0.9407 0.9593 0.9480 0.9382

Best results are given in bold

8060 Neural Computing and Applications (2020) 32:8047–8063

123

4.4 Experiment on wind tunnel system

Then, we carry out an experiment on another industrial

system, i.e., wind tunnel (WT) system. WT systems are

used for testing scale models, mostly of airplanes, in the

speed region of 0 to Mach 1.3. It is necessary to keep the

Mach number constant at a predefined set point because

most measured variables are a function of the Mach

number, for given test conditions of stagnation pressure

and temperature. This motivates the control of WT

systems.

A schematic diagram of transonic wind tunnel is shown

in Fig. 6. The air is injected into the wind tunnel through

the main control hydraulic servo valve and the main

injector. Then, it passes the third and the fourth corner in

order to reach the stilling chamber, where air speed is low

relatively. After the stilling chamber, the potential energy

is translated to kinetic energy before it reaches the test

section. The test section is closed in a large plenum

chamber, and scale model is mounted at this section. Air

exchange can be implemented through slots at the top and

bottom walls. Then part of the air is injected back into the

wind tunnel through the plenum exhaust valve and the

plenum injector, and the remaining part is distributed

uniformly through mesh screens. After the mesh screen, the

air goes through a diffuser and deflects when passing the

first corner. Finally, part of the air is ejected out through the

main exhaust hydraulic servo valve, and the rest returns to

the compressor intake.

As discussed in [40], there are totally five main

impacting variables (displacement of the main control

hydraulic servo valve, the displacement of the main

exhaust hydraulic servo valve, the displacement of mesh

screen hydraulic servo valve, the stagnation pressure, and

the angle of attack) that have strong connection with the

control of WT. Therefore, a 5-dimensional WT data set is

used in this experiment. This data set also comes from a

realistic wind tunnel system, and the working condition is

0.578 Mach number and 110 kPa total pressure. Data

scaling is implemented on this data set. We select 5000

examples from the original data set, of which 500 are

outliers. We also compare our method with AR-HMM, Hy-

EOCC, OCSVM and MOG.

Comparison results are listed in Table 14. Based on this

result, we can also find the advantage of HEOD over its

competitors with respect to both criteria, while some little

difference exists compared with the results on EAF data

set. We should firstly note that results of all methods in

terms of both criteria become worse than those on EAF

data set. The reason should be that outliers in this

Plenum
Injector

Main
Control

Hydraulic
Servo
Valve

Stilling Chamber Plenum Chamber

Test Section

Mesh Screens

Diffuser

#1

#2#3

#4

Main Exhaust
Hydraulic

Servo Valve

Main Injector

Air

Air

Air

Exhaust
Valve

Control Valve

Fig. 6 Schematic diagram of transonic wind tunnel systems

Neural Computing and Applications (2020) 32:8047–8063 8061

123

experiment are more close to the normal pattern so that

detection methods can hardly identify certain ones. We

then find that the difference between HEOD and Hy-EOCC

also becomes smaller in this experiment. The reason may

be that outlier examples in the training set are more dif-

ferent from those at the test phase. In addition, we have

also found that MOG outperforms OCSVM, which is dif-

ferent from that on EAF data set. This indicates that

training samples in this experiment are more representa-

tive. In summary, the advantage of our detection scheme is

also prominent in this experiment.

Finally, we discuss the issue of computational com-

plexity. For all detection methods used in our experiments

on both EAF data set and WT data set, two types can be

categorized, i.e., single model and ensemble model. Note

that ensemble detection methods usually include more sub-

models due to their mechanism. This will usually induce

more training and test time compared with single models.

If we can apply the parallel computing technique, however,

the computational complexity can be greatly reduced.

Assuming that we use a multi-core computer or more

computers to construct the ensemble model, the consuming

time should approach to that of the single model.

5 Conclusions

An outlier detection scheme dedicated to industrial systems

is proposed in this paper. A one-class classifier ensemble

model is constructed as the initial detection model.

Because we aim to implement the detection as early as

possible, the training samples for this model are limited.

Thus, random subspace is used to construct the ensemble

model. Experimental results have shown that this initial

detection model outperforms many competitors. Then a

binary classifier ensemble model (core detection model) is

constructed when more training samples are available.

Experimental results approve this core detection model

when we compare its performance with several competi-

tors. Finally, we investigate the performance of the whole

detection scheme with two real-world industrial systems.

Its effectiveness has been verified by both systems.

However, several points are still open issues, such as the

determination of number of subsets, when using Bagging

and RSM, and a more sophisticate fusion method for binary

classifiers. These problems may be the direction of future

researches.

Acknowledgements This work was supported by National Natural

Science Foundation of China (Grant Nos. 51634002 and 61702070)

and National Key R & D Program of China (Grant No.

2017YFB0304104).

Compliance with ethical standards

Conflict of interest No conflict of interest exits in the submission of

this manuscript, and manuscript is approved by all authors for

publication.

References

1. Wang Z et al (2015) Incremental multiple instance outlier

detection. Neural Comput Appl 26(4):957–968

2. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a

survey. ACM Comput Surv 41(3):1–58

3. Chen PY, Yang S, Mccann JA (2014) Distributed real-time

anomaly detection in networked industrial sensing systems. IEEE

Trans Ind Electron 62(6):1–1

4. Liu F, Mao Z, Su W (2012) Outlier detection for process control

data based on a non-linear auto-regression hidden Markov model

method. Trans Inst Meas Control 34(5):527–538

5. Schuster F, Paul A, König H (2013) Towards learning normality

for anomaly detection in industrial control networks. Springer,

Berlin, pp 61–72

6. Zhao J et al (2014) Adaptive fuzzy clustering based anomaly data

detection in energy system of steel industry. Inf Sci

259(3):335–345

7. Ferdowsi H, Jagannathan S, Zawodniok M (2014) An online

outlier identification and removal scheme for improving fault

detection performance. IEEE Trans Neural Netw Learn Syst

25(5):908–919

8. Wang B, Mao Z, Huang K (2017) Detecting outliers in complex

nonlinear systems controlled by predictive control strategy.

Chaos Solitons Fractals 103:588–595

9. Wang B, Mao Z (2018) Detecting outliers in electric arc furnace

under the condition of unlabeled, imbalanced, non-stationary and

noisy data. Meas Control 51(3–4):83–93

10. Wang B, Mao Z (2017) One-class classifiers ensemble based

anomaly detection scheme for process control systems. Trans Inst

Meas Control 40(12):3466–3476

11. Cabral GG, Oliveira ALI, Cahú CBG (2009) Combining nearest

neighbor data description and structural risk minimization for

one-class classification. Neural Comput Appl 18(2):175–183

12. Wang J et al (2017) Dynamic hypersphere SVDD without

describing boundary for one-class classification. Neural Comput

Appl 3:1–11

13. Cordón O, Jesus MJD, Herrera F (1999) A proposal on reasoning

methods in fuzzy rule-based classification systems. Int J Approx

Reason 20(1):21–45

14. Shlien S (1990) Multiple binary decision tree classifiers. Pattern

Recognit 23(7):757–763

15. Broomhead DS, Lowe D (1988) Multivariable functional inter-

polation and adaptive networks. Complex Syst 2(3):321–355

16. Rivas VM et al (2004) Evolving RBF neural networks for time-

series forecasting with EvRBF. Inf Sci 165(3):207–220

17. Vapnik V, Cortes C (1995) Support vector networks. Mach Learn

20(3):273–297

Table 14 Comparison result on WT data set

HEOD AR-HMM Hy-EOCC OCSVM MOG

AUC 0.9544 0.9181 0.9502 0.9318 0.9370

F-score 0.9478 0.9193 0.9453 0.9281 0.9302

Best results are given in bold

8062 Neural Computing and Applications (2020) 32:8047–8063

123

18. Scholkopf B et al (2000) New support vector algorithms. Neural

Comput 12(5):1207–1245

19. Sesmero MP et al (2012) A new artificial neural network

ensemble based on feature selection and class recoding. Neural

Comput Appl 21(4):771–783

20. Tian J, Gu H, Liu W (2011) Imbalanced classification using

support vector machine ensemble. Neural Comput Appl

20(2):203–209

21. Ge S et al (2016) Dynamic Clustering Forest: an ensemble

framework to efficiently classify textual data stream with concept

drift. Inf Sci 357:125–143

22. Breiman L (1996) Bagging predictors. Mach Learn

24(2):123–140

23. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

24. Ho TK (1998) The random subspace method for constructing

decision forests. IEEE Trans Pattern Anal Mach Intell

20(8):832–844

25. Wolpert DH (1992) Stacked generalization. Neural Netw

5(2):241–259

26. Manevitz LM, Yousef M (2001) One-class SVMs for document

classification. J Mach Learn Res 2(1):139–154

27. Chawla NV et al (2002) SMOTE: synthetic minority over-sam-

pling technique. J Artif Intell Res 16(1):321–357

28. Tax DMJ (2001) One-class classification (concept-learning in the

absence of counter-examples). Delft University of Technology,

Delft

29. HaijunZ et al (2011)Textual and visual content-based anti-phishing:

a Bayesian approach. IEEE Trans Neural Netw 22(10):1532–1546

30. Gao J, Tan PN (2006) Converting output scores from outlier

detection algorithms into probability estimates. In: Sixth inter-

national conference on data mining

31. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood

from incomplete data via the EM algorithm. J R Stat Soc

39(1):1–38

32. Parhizkar E, Abadi M (2015) BeeOWA: a novel approach based

on ABC algorithm and induced OWA operators for constructing

one-class classifier ensembles. Neurocomputing 166:367–381

33. Khoshgoftaar TM, Van Hulse J, Napolitano A (2011) Comparing

boosting and bagging techniques with noisy and imbalanced data.

IEEE Trans Syst Man Cybern A Syst Hum 41(3):552–568

34. He H, Garcia EA (2009) Learning from imbalanced data. IEEE

Trans Knowl Data Eng 21(9):1263–1284

35. Demsar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7(1):1–30

36. Li L, Mao Z (2012) A direct adaptive controller for EAF elec-

trode regulator system using neural networks. Neurocomputing

82(4):91–98

37. Chiang LH, Pell RJ, Seasholtz MB (2003) Exploring process data

with the use of robust outlier detection algorithms. J Process

Control 13(5):437–449

38. Schölkopf B et al (2014) Estimating the support of a high-di-

mensional distribution. Neural Comput 13(7):1443–1471

39. Bishop CM (1995) Neural networks for pattern recognition.

Oxford University Press, Oxford

40. Wang X, Yuan P, Mao Z (2015) Ensemble fixed-size LS-SVMs

applied for the Mach number prediction in transonic wind tunnel.

IEEE Trans Aerosp Electron Syst 51(4):3167–3181

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:8047–8063 8063

123

	Detecting outliers in industrial systems using a hybrid ensemble scheme
	Abstract
	Introduction
	Motivation and challenges
	Related work
	Contribution

	Fundamentals
	One-class classification
	Binary classification
	Ensemble learning

	The proposed outlier detection scheme
	Outline of detection scheme
	Initial detection model
	Core detection model

	Experiments and analysis
	Evaluation of the initial detection model
	Data Sets
	Baselines
	Metrics
	Results and analysis

	Evaluation of the core detection model
	Data sets
	Baselines
	Metrics
	Results and analysis

	Experiment on electric arc furnace system
	Experiment on wind tunnel system

	Conclusions
	Acknowledgements
	References

