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Abstract
Based on the theory of local receptive field based extreme learning machine (ELM-LRF) and ELM auto encoder (ELM-

AE), a new network structure is proposed to take advantage of global attributes of image and output feature of each layer in

the structure. This proposed network structure is called extreme learning machine with autoencoding receptive fields

(ELM-ARF), which has two parts including convolution feature extraction and feature coding. In the convolution feature

extraction part, local features are extracted using orthogonalized local receptive fields. The ELM-AE theory and local

receptive fields are used to encode the global receptive fields, which is used to extract global features. The pooled global

features and local features are combined and input into the next layer. In the feature coding part, the shallow layer feature

can be input to any deep layer through the ELM-ARF connection structure. A series of encodings are performed on the

combined features in each layer to achieve a nonlinear mapping relationship from input information to target categories. In

order to verify the validity of the structure, ELM-ARF is tested on four classic databases: USPS, MNIST, NORB and

CIFAR10. The experimental results show that ELM-ARF effectively improves image classification accuracy by encoding

the combined features that contain global attributes.

Keywords Local receptive field based extreme learning machine (ELM-LRF) � ELM auto encoder (ELM-AE) �
Local receptive fields � Global receptive fields � Image classification

1 Introduction

Currently, efficient machine learning algorithms [1, 2] are

the focus of many researchers. To complete the training of

the network quickly and efficiently without iteration,

Huang et al. [3, 4] proposed a simple and effective extreme

learning machine (ELM). In ELM, the connection weights

as well as biases between the input layer and the hidden

layer are randomly initialized, and the regularized least

squares method is used to analytically determine the weight

of the output layer. Huang et al. [5] extended ELM by

introducing kernel learning and proposed an extreme

learning machine with kernel (KELM), which achieved

better results by introducing the kernel function into ELM.

In KELM, the selection step of the number of nodes is

omitted by using the feature kernel mapping.

In some classification methods, feature extraction and

selection play an important role before performing classifica-

tion using classifiers [6, 7]. Both ELM and KELM are single-

hidden-layer network structures, which could not handle image

classification problems well [8]. Some improved algorithms

based on ELM [8–10] have deepened the number of layers or

changed the structure. These algorithms only improve their

general approximation ability and do not improve the ability to

extract important feature in the image. To solve the problems,

Huang et al. [11] proposed a local receptivefield based extreme

learning machine (ELM-LRF), which is enable to process

images directly by combining the concept of local receptive

fieldwith ELM.The input layer and hidden convolutional layer

inELM-LRFare locally connected,which allow the network to

process the local structure of the image like convolutional

neural networks (CNNs) [12–15]. Since theELM-LRFdoesnot
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require back-propagation (BP) algorithm [16] during training,

the computation and time required for training are greatly

reduced.

ELM-LRF is improved in two ways. On one hand,

ELM-LRF has only one convolutional layer and one

pooling layer, and its performance is limited by the shallow

architecture. Therefore, researchers propose to improve it

by using multiple sets of convolutional and pooling layers

to obtain more abstract feature representations, such as

CKELM [17] and DC-ELM [18], and they prove that

multiple set of convolutional and pooling layers could

effectively improve classification accuracy. However, DC-

ELM simply increases the number of convolutional layers

and does not consider the identifiable category details

contained in the shallow features, resulting in a waste of

feature. On the other hand, single-scale local receptive

fields are used in ELM-LRF and it is not suitable for

complex texture image classification. Liu et al. [19] pro-

posed a multi-mode ELM-LRF (MM-LRF-ELM) frame-

work. In MM-LRF-ELM, the feature in each RGB channel

and depth feature are, respectively, extracted, and then, the

above features are used to construct the nonlinear feature.

Huang et al. [20] proposed an extreme learning machine

with multi-scale local receptive fields (ELM-MSLRF) by

combining several local receptive fields of different sizes.

Compared with ELM-LRF, ELM-MSLRF obtains a better

result in texture image classification. He et al. [21] propose

an extreme learning machine with hybrid local receptive

fields (ELM-HLRF), which uses the Gabor function as a

convolutional kernel filter. Gabor filters with different

scales and directions are used to extract more features in

ELM-HLRF. Extracted features are combined with local

receptive field features to improve classification accuracy.

Due to the limitation of local receptive field size and the

way of convolution, features with global attributes cannot

be extracted by the above methods.

Because of the above two issues, this paper proposes a new

network structure extreme learning machine with autoen-

coding receptive fields (ELM-ARF). ELM-ARF is mainly

improved in two aspects. Firstly, the theory of ELM

auto encoder (ELM-AE) [22] and local receptive fields is

used to train global receptive fields, which are used to extract

the object contour in the image. After being pooled sepa-

rately, global receptive field features are concatenated with

the local receptive field features and input into next layer.

Then, by using the identity mapping theory in residual net-

work (ResNet) [23], the shallow layers are directly connected

to the deep layers, so that the category details contained in the

shallow layer feature can flow to any deep layer in the net-

work. By performing a series of combined coding on the

feature extracted from each layer, ELM-ARF makes full use

of the feature contained in the image to effectively improve

the accuracy of image classification.

The main content of this paper is organized as follows.

The theory of ELM-AE is introduced in Sect. 2. The

structure and training processes of ELM-ARF are intro-

duced in Sect. 3. Section 4 presents our experimental

results on USPS, MNIST, NORB and CIFAR10 databases.

The paper concludes in Sect. 5.

2 Related works

The main objective of ELM-AE is to make three different

equivalent representations of the original input features: (1)

compressed representation, the input feature is equivalently

mapped from the original feature space to the low-dimensional

feature space; (2) sparse representation, the input feature is

equivalently mapped from the original feature space to the

high-dimensional feature space; and (3) equal dimension rep-

resentation, the input features are equivalentlymapped from the

original feature space to the equal-dimensional feature space.

The equivalent representation of ELM-AE can be

implemented in two steps.

In the first step, the mapping matrix b is obtained by using

the principle of ELM training output weight matrix. X 2
RN�ni is the input sample matrix, N is the number of samples,

and ni is the dimension of samples. The input weight a 2
Rni�nh between the input layer and the hidden layer is ran-

domly initialized, and the hidden-layer offset is b 2 RN�nh .

Then, the output feature matrix of the hidden layer is

H ¼ gðXaþ bÞ 2 RN�nh , where nh represents the dimension

of the hidden-layer feature and g �ð Þ is the activation function.

X is used as an output feature to train the network output

weight b, and then X ¼ Hb. b can be calculated by:

b¼

Inh
C

þHTH

� ��1

HTX N[ nh

HT IN

C
þHHT

� ��1

X N\nh

8>>><
>>>:

ð1Þ

In the second step, the input sample features are equivalently

mapped by using the trained mapping matrix b to obtain the

equivalent features Xout ¼ XbT, Xout 2 RN�nh . When

ni [ nh, the compression equivalent representation is imple-

mented; when ni\nh, the sparse equivalent representation is

implemented; when ni ¼ nh, the equal-dimensional equiva-

lent representation is implemented.

3 Network structure of ELM-ARF

In order to extract feature with global attributes and to utilize

the category details contained in the shallow layer feature, the

ELM-ARF consists of a convolution feature extraction part

and a feature coding part, as shown in Fig. 1.
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3.1 Convolution feature extraction

In the convolution feature extraction part, the global

receptive fields are encoded by using the theory of ELM-

AE. The convolution features are extracted from the local

receptive fields and the global receptive fields. After being

pooled separately, the above two features are concatenated

to fuse different receptive field features, and these fused

features are input into the next convolutional layer.

3.1.1 Autoencoding of global receptive field

The global receptive field is trained by utilizing the theory

of ELM-AE and local receptive fields. During ELM-AE

training, a randomly initialized input weight matrix is

required. Since the local receptive fields have obvious

advantages in the extraction of image features [11], we use

the local receptive fields that are also randomly initialized

as the input weight to train the global receptive field.

Because the local receptive fields are not in the form of a

matrix, it cannot be used directly. Therefore, the local

receptive fields need to be equivalently transformed into

the form of a weight matrix for training. The equivalent

transformation is shown in Figs. 2 and 3.

As shown in branch A of Fig. 2, a 3� 3 matrix is

convoluted with a 2� 2 local receptive field. The

convolution step is shown in the middle part of the branch

A, and the local receptive field generates a feature map

with a size of 2� 2 in the sliding order of a, b, c and d.

Branch B indicates that the 3� 3 matrix is convoluted with

four 3� 3 receptive fields. In the receptive field, the matrix

value at the position of the coefficient 0 has no effect on the

generated convolution value. Therefore, each step of the

convolution operation in the branch A can be equivalent to

that of the corresponding 3� 3 receptive field in the branch

B. The generated convolution values of branch B are

arranged in a matrix according to the convolution order in

branch A, and the matrix is the same as the matrix gen-

erated by the branch A. Therefore, the convolution opera-

tion of the branch A can be equivalently represented by the

branch B.

In Fig. 3, each column of the 3� 3 matrix is concate-

nated to generate a column vector of 9� 1, and the four

receptive fields (e, f, g and h) are, respectively, concate-

nated to generate column vectors. These column vectors

are transposed into row vectors and merged into a matrix

with a convolution order of e, g, f and h. Then, the con-

volution operation of the branch B in Fig. 2 can be

equivalent to the product operation of the two matrices in

Fig. 3. Therefore, in this paper, the local receptive fields

are extended to the weight matrix. The ELM-AE method is

utilized to train the global receptive field matrix.

1st layer 2nd layer Feature dimension 
reduction layer

Two hidden layer
extreme learning machine

A

A: Concatenate by column
B: Concatenate
C: Convolution
P: Pooling

A

The convolution feature extraction part The feature coding part

B

B

B

B

A

C

P

C

P

Local receptive fields
Local receptive fields

Global receptive fields Global receptive fields

Fig. 1 Architecture of ELM-ARF
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Suppose the size of the input image is d � d, and the

size of the local receptive field is r � r, then the size of the

output feature map is d � r þ 1ð Þ � d � r þ 1ð Þ. The input
weight matrix Â

init 2 Rr2�g is randomly initialized, and g is

the number of local receptive fields. Â
init 2 Rr2�g is

orthogonalized using singular value decomposition (SVD)

method to generate a matrix Â 2 Rr2�g. Let

F ¼ d � r þ 1ð Þ2�g, Â is extended to the weight matrix

W 2 Rd2�F according to the concept shown in Figs. 2 and

3. Then, the hidden-layer output matrix H ¼ XW, and the

global receptive field matrix B̂ 2 Rd2�F is trained by using

formula (1). The global receptive field matrix to the k-th

feature map is B̂k 2 Rd2� d�rþ1ð Þ2 ; k ¼ 1; 2; . . .; g. Each

column in B̂k 2 Rd2� d�rþ1ð Þ2 ; k ¼ 1; 2; . . .; g is changed

into a receptive field form. These receptive fields, which

are arranged in the convolution order of the branch A of

Fig. 2, to the k-th feature map are the k-th global receptive

field Bk 2 Rd�d� d�rþ1ð Þ2 ; k ¼ 1; 2; . . .; g. Therefore, the

number of global receptive fields is the same as the number

of local receptive fields, and the size of the two types of

feature maps is the same.

3.1.2 Convolution and pooling operation

In Fig. 1, the first layer and the second layer are, respectively,

composed of a convolutional layer and a pooling layer. Local

receptive fields and global receptive fields are used to extract

features in two convolutional layers. Similar with ELM-LRF

[11], AL 2 Rr�r�g; L ¼ 1; 2 is used to equivalently represent

the local receptive fields, where L is the layer number of

convolutional layers, r is the local receptive fields size, g is

the number of local receptive fields, and aLk 2 Rr�r; k ¼
1; 2; . . .; g is the k-th local receptive field of the L-th layer.

a b c d e f g h

A B

Fig. 2 Convolution step. A
represents convolution step of

2� 2 local receptive field, and

the convolution order is a, b, c

and d. B represents convolution

step of 3� 3 receptive fields,

and the convolution order is e, f,

g and h
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The size of the input image XL�1 is d � d, and the size of the

output feature map is d � r þ 1ð Þ � d � r þ 1ð Þ. The con-

volutional node i; jð Þ in the feature map of the k-th local

receptive field is calculated as:

lLi;j;k Xð Þ ¼
Xr
u¼1

Xr
v¼1

xiþu�1;jþv�1 � au;v;k; i; j

¼ 1; . . .; d � r þ 1ð Þ ð2Þ

The global receptive fields BL
k 2 Rd�d� d�rþ1ð Þ2 ; k ¼

1; 2; . . .g; L ¼ 1; 2 are trained according to Sect. 3.1.1.

bLi;j;k 2 Rd�d is the receptive field corresponding to the

convolutional node i; jð Þ in the k-th feature map of the L-th

layer. The convolutional node i; jð Þ in the feature map of

the k-th global receptive field is calculated as:

gLi;j;k Xð Þ ¼
Xd
u¼1

Xd
v¼1

xu;v � bu;v;i;j;k; i; j ¼ 1; . . .; d � r þ 1ð Þ

ð3Þ

Then, the generated lL and gL are, respectively, input into

the pooling layer of size e, and the combinatorial node

p; qð Þ in the k-th pooling map of local and global receptive

field is, respectively, calculated as:

lhLp;q;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXpþe

i¼p�e

Xqþe

j¼q�e

lLi;j;k

� �2vuut ; p; q ¼ 1; . . .; d � r þ 1ð Þ

ð4Þ

ghLp;q;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXpþe

i¼p�e

Xqþe

j¼q�e

gLi;j;k

� �2vuut ; p; q ¼ 1; . . .; d � r þ 1ð Þ

ð5Þ

The generated lhL and ghL are concatenated into

XL ¼ lhL; ghL
� �

. XL is input to the next layer and repeats

the above operations to fully fuse the local feature with the

global feature.
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e f g h

e
g
f
h

1 1 0 1 1 0 0 0 0
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0 1 1 0 1 1 0 0 0

Fig. 3 Equivalent of the convolution step
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3.2 Feature coding

In the feature coding part, the dimensions of the convolu-

tion features of each layer are reduced, and then, the low-

dimensional features are input into the final two-hidden-

layer extreme learning machine for encoding and

classification.

3.2.1 Feature dimension reduction

In order to make full use of the identifiable category details

in the shallow layer features, the input image, the first layer

output feature maps and the second layer feature maps are,

respectively, concatenated to generate a feature vector.

Image or feature maps are concatenated by columns to

generate high-dimensional feature vectors. For example,

the image size of the NORB database is 32� 32� 2, and

the generated feature vector is 2048-dimension. In order to

reduce the dimension while encoding, these three vectors

are, respectively, multiplied by its corresponding matrices

of the feature dimension reduction layer. And sample labels

are used to train the weight matrix giði ¼ 1; 2; 3Þ according
to the theory of ELM. Let X1 ¼ X1, X2 ¼ X2 and X3 ¼ X0,

three weight matrices can be trained by formula (6), where

i ¼ 1; 2; 3, T 2 RN�m is the label matrix corresponding to

the input image, and m is dimension of T. N is the number

of features in Xi, and Pi is the dimension of the features in

Xi.

gi ¼

IPi

C
þ XT

i Xi

� ��1

XT
i T N[Pi

XT
i

IN

C
þ XiX

T
i

� ��1

T N\Pi

8>>><
>>>:

ð6Þ

Then, the output of the feature dimension reduction layer is

Yi ¼ Xigði ¼ 1; 2; 3Þ, and Yi 2 RN�m. The label vector of

the NORB database is 5 dimensions. After the encoding of

giði ¼ 1; 2; 3Þ, the dimension of output feature Yi ¼
Xigði ¼ 1; 2; 3Þ is reduced to 5, which effectively reduces

the calculation amount of the subsequent equivalent

encoding.

3.2.2 Two-hidden-layer extreme learning machine

After dimension reduction step, features Y1, Y2 and Y3 are

concatenated, and Q ¼ ½Y1;Y2;Y3� is input into the two-

hidden-layer ELM which is used to combine and encode

features of each layer. Among them, b1 and b2 are used to

encode features, and b3 is used to classify final features.

The dotted line in the two-hidden-layer ELM indicates that

the input feature is concatenated with the output feature.

For example, R ¼ Qb1 and the input of the b2 layer is

R;Q½ �. S ¼ R;Q½ �b1, and the input of the b3 layer is

S;R;Q½ �, where S 2 RN�m, R 2 RN�m, Q 2 RN�3m. It can

be observed that this connection structure can ensure that

the features of each layer can flow to deeper layers in the

structure, so that the features in the first layer can be uti-

lized while the b3 layer utilizes the features S;R;Q½ �.
In order to enable b1 and b2 to perform dimensionality

reduction while encoding features, b1 and b2 are trained

using the sample label T. Let H1 ¼ Q, H2 ¼ R;Q½ �,
H3 ¼ S;R;Q½ �. N is the number of features Hi, and Mi is

the dimension of the features Hi.

bi¼

IMi

C
þHT

i Hi

� ��1

HT
i T N[Mi

HT
i

IN

C
þHiH

T
i

� ��1

T N\Mi

8>>><
>>>:

ð7Þ

Better accuracy is obtained using kernel mapping in the

classification layer of b3. By transforming the matrix pro-

duct in the formula into a kernel function, the mapping of

features from low-dimensional space to high-dimensional

space is realized. The traditional KELM only has a form of

formula used when N\M3. However, when N[ [M3,

the above formula will produce a high-dimensional square

matrix. For example, MNIST has 60,000 sample features,

and the sample dimension is only 784. Formula used when

N\M3 will produce a square matrix of 60000� 60000.

The inversion of the high-dimensional square matrix will

significantly increase the amount of calculation. In order to

improve the classification accuracy and avoid the genera-

tion of high-dimensional matrix, when N[M3, we replace

the HT
3H3 in b3 with the Gaussian radial basis kernel

function (8) to realize the partial nuclear mapping function

of KELM, as shown in formula (9).

Kðx1; x2Þ ¼ exp � x1 � x2k k2

r2

 !
; r[ 0 ð8Þ

b3 ¼
�
IM3

C
þ K HT

3 ;H
T
3

	 
��1

HT
3T ð9Þ

The input test feature of the b3 layer is h3, and the output

prediction value of the two-hidden-layer ELM is t ¼ h3b3.

When N\M3, we use the traditional form of KELM, and

the predicted value is calculated as:

t ¼ Kðh3;H3Þ
�
IN

C
þ KðH3;H3Þ

��1

T ð10Þ
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3.3 Time and space complexities

The structure in Fig. 1 is used as an example to analyze the

time and space complexities of the ELM-ARF. The training

sample matrix is X 2 RN�d2 , and the test sample matrix is

Xt 2 RM�d2 . The local receptive field size is r. The number

of both local receptive fields and global receptive fields per

layer is g. The pooling size is e. The output feature matrix

of the first layer is X1 2 RN�l1g, where l1 ¼ d � r þ 1ð Þ2.
The second layer output feature matrix is X2 2 RN�l2g,

where l2 ¼ d � 2r þ 2ð Þ2. The label matrix of the training

sample is T 2 RN�m, and the label matrix of the testing

sample is Tt 2 RM�m. The time and space complexities of

the single-layer ELM-LRF are used to compare with that of

ELM-ARF. In the single-layer ELM-LRF, the number of

local receptive fields is 4g, and other parameters are the

same as ELM-ARF.

In the training stage, the time complexity of ELM-ARF

is O N 6l21g
2 þ 6l22g

2 þ 8l1l2g
2 þ 4d2l1gþ 2d4

	 

þ 9 l31 þ
		

l32Þg3 þ d6Þ. l1 and l2 are amplified to d2. Assume

d2 ¼ l1 ¼ l2 ¼ pN, where p � 1. The training time com-

plexity of ELM-ARF can be approximated as

O 4gþ 20g2ð Þp2 þ 18g3p3ð ÞN3ð Þ. The training time com-

plexity of the ELM-LRF can be approximated as

O 4gþ 32g2ð Þp2 þ 64g3p3ð ÞN3ð Þ. By adding a convolution

feature extraction layer and a feature dimension reduction

layer to reduce the amount of computation, the ELM-ARF

has a lower training time complexity.

In the testing stage, the time complexity of ELM-ARF is

O M 2d2l1gþ 4l1l2g
2ð Þð Þ, which can be approximated as

O 2þ 4gð Þgp2M3ð Þ. The testing time complexity of the

ELM-LRF can be approximated as O 4gp2M3ð Þ. Compared

to ELM-LRF, ELM-ARF has more structure, which con-

tains more calculations during testing. Therefore, ELM-

ARF has a higher testing time complexity.

The space complexity of ELM-ARF is O N 3l1gþðð
3l2gþ d2Þ þ 2d2l1gþ 4l1l2g

2þd2l2Þ, which can be

approximated as O 8þ 4gð Þgp2N2ð Þ. The space complexity

of the ELM-LRF can be approximated as O 8gp2N2ð Þ.
Compared to ELM-LRF, ELM-ARF needs to store more

weight matrices. Therefore, it has a higher space

complexity.

4 Experiments

In order to verify the validity of ELM-ARF, we carry out

experiments in USPS [24], MNIST [25], NORB [26] and

CIFAR10 [27] databases, and the experimental results are

compared with the results of some convolutional networks

trained based on the ELM method. The experimental

environment is the supercomputing system in the High

Performance Computing Center of Yanshan University,

whose specific hardware is 1 Intel E5-2683v3 CPU (28

cores 2.0 Ghz), 64 GB memory per node. We use resource

scheduling instructions to occupy 1 node (28 cores,

64 GB). The operating system and software environment

are Centos7.2, MATLAB R2018a.

4.1 USPS database

USPS is a handwritten digital recognition database con-

taining a total of 9298 images, which contain ten numbers

from 0 to 9. Example images in the database are shown in

Fig. 4. The training sample image is 7291, and the test

sample image is 2007. The number in the image is cen-

tered, and the images are all normalized to 16� 16 pixels.

The database has small number of samples and is relatively

simple, so it is first used to verify the validity of ELM-

ARF. We select all training samples and test samples for

experimentation.

Fig. 4 Example images in the USPS database

Neural Computing and Applications (2020) 32:8157–8173 8163

123



For the USPS database, we need to select the optimal

network parameters for the ELM-ARF. These parameters

include the size of local receptive fields, the number of

layers, the number of receptive fields per convolutional

layer and the penalty coefficient. The size of local receptive

fields is, respectively, set to 3� 3, 4� 4, 5� 5. The

number of layers i is set to f1; 2; 3g. The number of local

receptive fields is equal to the number of global receptive

fields, and the number of both per convolutional layer is

represented by g. The parameter g is set to f1; 2; . . .; 8g.
The number of receptive fields per convolutional layer is

2� g, and the total number of receptive fields is 2� g� i.

The penalty coefficient C is set to f10�3; 10�2; . . .; 103g.
The pooling layer size is 3� 3, which is consistent with the

literature [11].

The accuracy of ELM-ARF is changed as the parameters

change. Figure 5 shows the accuracy mesh of ELM-ARF

with different numbers of layers and different sizes of local

receptive fields. The mesh diagrams with the same number

of layers are placed on the same row, and the number of

layers increases from top to bottom. The mesh diagrams

with the same local receptive field size are placed in the

same column, from left to right, and the size is 3� 3, 4� 4

and 5� 5, respectively. All mesh diagrams show that the

accuracy is changed with the change of g and C. It can be

observed that the classification accuracy increases as the

number of layers increases while the highest classification

accuracy of the network decreases as the size of local

receptive fields increases. When the number of layers is 2

and local receptive fields size is 3� 3, the ELM-ARF can

achieve the highest accuracy in Fig. 5. When the number of

layers is 2 and the size of local receptive fields is 4� 4, the

average accuracy is the highest and the mesh is smoother.

The USPS database is relatively simple. When the network

is added to 2 layers, the accuracy has reached 99.5%. The

accuracy increase is not obvious when the network is added
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Fig. 5 ELM-ARF parameters selection on USPS database. a 1 layer and 3� 3 LRF, b 1 layer and 4� 4 LRF, c 1 layer and 5� 5, d 2 layers and

3� 3, e 2 layers and 4� 4, f 2 layers and 5� 5, g 3 layers and 3� 3, h 3 layers and 4� 4, i 3 layers and 5� 5
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to three layers, but the training time is significantly

increased. Therefore, the number of layers of ELM-ARF is

set to 2.

ELM-ARF can obtain better experimental results when

the local receptive field size is 3� 3 or 4� 4. Therefore,

these two sizes are used in combination. The first layer uses

local receptive fields of size 4� 4, and the second layer

uses local receptive fields of 3� 3. In order to test the

effect of this combination, the parameter g is set to

f1; 2; . . .; 20g, and the penalty coefficient C is set to

f10�3; 10�2; . . .; 103g for experimentation. The experi-

mental results show that accuracy is increased with the

increase in the number of receptive fields, and accuracy is

slightly reduced with the increase in the penalty coefficient.

The accuracy of the combined structure can reach 95.2%

when the number of receptive fields per layer is 2. When

the number of receptive fields is increased to 12, the

accuracy is all over 99%. When the number of receptive

fields is 38 and the penalty coefficient is 0.001, the accu-

racy of ELM-ARF reaches 99.74%, which is the highest in

Fig. 6. This shows the effectiveness of the combination of

4� 4 and 3� 3.

In Table 1, the accuracy of the ELM-ARF is compared

to other algorithms. For fair comparison, the penalty

coefficient for all algorithms is selected from

f10�3; 10�2; . . .; 103g. ELM-ARF is set to 2 layers. The

total number of receptive fields is 24. Each convolutional

layer contains 6 local receptive fields and 6 global recep-

tive fields. And the penalty coefficient is 0.1. ELM-LRF is

set to single layer, 24 local receptive fields of 4� 4 size

and pooling size of 3� 3. CKELM is set to two layers, 24

local receptive fields of 8� 8 size and pooling size of

3� 3. The DC-ELM is consistent with the literature [18].

The ELM-MSLRF is set to single layer with 24 local

receptive fields, and the size of local receptive field and

pooling is set according to the literature [20]. Other

parameters are consistent with ELM-ARF. Among the

several algorithms in Table 1, ELM-ARF achieves the

highest classification accuracy in the case of low training

time. This proves the effectiveness of ELM-ARF on small

database. In this paper, the highest testing accuracy in each

table is shown in bold.

4.2 MNIST database

In order to test the classification ability of ELM-ARF on a

database with simple image content and large number of

images, MNIST is selected for experiments. Example images

in the database are shown in Fig. 7. The MNIST database

contains 70,000 handwritten digital grayscale images from 0

to 9, of which 60,000 are used as training samples and 10,000

are used as test samples. Each image is size-normalized to

28� 28 pixels, and the content is centered. We use 60,000

images for training and 10,000 for testing.

Figure 8 shows the accuracy mesh of ELM-ARF with

different parameter combinations on MNIST, and its

arrangement is consistent with Fig. 5. When the size of

local receptive fields is 4� 4, the accuracy of the 3 layers
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Fig. 6 Accuracy and time of ELM-ARF (2 layers, 4� 4 and 3� 3) on USPS database

Table 1 Comparison of

accuracies and time on USPS

database

Methods Training time (s) Testing time (s) Testing accuracy (%)

ELM-LRF 2.16 0.44 98.54

CKELM 1.4 0.4 98.46

DC-ELM 2.4 0.8 98.46

ELM-MSLRF 2 0.6 98.74

ELM-ARF 1.7 0.47 99.49
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is lower than that of the 2 layers. Considering that the

combination of 4� 4 and 3� 3 has achieved good results

on the USPS database, we continue to experiment with the

same combination as in Sect. 4.1. The parameter g is set to

f1; 2; . . .; 15g, and the penalty coefficient is set to

f10�3; 10�2; . . .; 103g. The experimental results are shown

in Fig. 9. Figure 9a, b is the mesh diagrams of accuracy

and cost time of the combination of 4� 4 and 3� 3. When

30 (g ¼ 15) receptive fields per layer are used, the highest

accuracy of 98.95% can be achieved in Fig. 9a. Therefore,

the combination of 4� 4 and 3� 3 is more effective on the

MNIST database.

Figures 5, 6, 8 and 9 show that accuracy is increased

with the increase in g, and the change in C has a little effect

on accuracy. Comparing the mesh diagrams of the same

column in Figs. 5 and 8, it is observed that the accuracy of

ELM-ARF with 2 layers is generally higher than that of the

1 layer, but the addition of the third layer has no significant
Fig. 7 Example images in the MNIST database
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Fig. 8 ELM-ARF parameters selection on MNIST database. a 1 layer and 3� 3 LRF, b 1 layer and 4� 4 LRF, c 1 layer and 5� 5, d 2 layers

and 3� 3, e 2 layers and 4� 4, f 2 layers and 5� 5, g 3 layers and 3� 3, h 3 layers and 4� 4, i 3 layers and 5� 5
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effect on the improvement of accuracy. Comparing the

mesh diagrams of the same row, it can be found that the

increase in the size of the local receptive field has few

effects on the accuracy. Therefore, when classifying digital

images, g and the number of layers have an important

influence on the classification performance of ELM-ARF.

When the number of layers is 2 and g\7, the accuracy

increases significantly as g increases, and higher accuracy

can be obtained in less time. When g[ 7, the effect of

accuracy being improved is reduced, but the accuracy

continues to be improved.

Experimental comparison with some algorithms using

the same number of samples is shown in Table 2, in which

experimental results published in other studies are listed.

The network parameters used by each algorithm in Table 2

are different. For example, ELM-LRF is set to a single

layer and 48 local receptive fields, and ELM-MSLRF even

uses 200 local receptive fields. ELM-ARF achieves the

highest accuracy in Table 2 with only 30 receptive fields

per layer.

In order to reduce the amount of calculation, some

algorithms randomly select 10,000 or 15,000 samples from

60,000 samples for training, such as CKELM [17] and DC-

ELM [18]. For fair comparison, we use 60,000 samples for

training and 10,000 for testing. The network parameters of

these algorithms are set to be the same as ELM-ARF, and

the experimental results are shown in Table 3. The penalty

coefficient for all algorithms is selected from

f10�3; 10�2; . . .; 103g. The number of layers of ELM-ARF

is set to 2. The total number of receptive fields is 20, and

the penalty coefficient is 1000. The parameters of the DC-

ELM are set to be consistent with the literature [18]. ELM-

LRF is set to a single layer, 20 local receptive fields of

4� 4 size and pooling size of 3� 3. The ELM-MSLRF is

set to a single layer with 20 local receptive fields, and the

size of local receptive field and pooling is set according to

the literature [20]. CKELM is set to 2 layers, 20 local
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Fig. 9 Accuracy and time of ELM-ARF (2 layers, 4� 4 and 3� 3) on MNIST database

Table 2 Comparison of

accuracies and time on MNIST

database

Methods Training time (s) Testing time (s) Testing accuracy (%)

ELM [20] 431.8 – 97.39

XCov-NCAE [28] 1458.77 5.5e–6 97.42

ELM-LRF [20] 500.2 – 97.59

ELM-MSLRF [20] 531 – 98.57

SAE [29] 68,400 – 98.6

CAE-ELM [29] 1090 – 98.87

DBN [29] 20,520 – 98.87

ELM-ARF 265 22 98.95

Table 3 Comparison of unified experimental environment and

parameters on MNIST database

Methods Training time

(s)

Testing time

(s)

Testing accuracy

(%)

ELM-LRF 47 4.6 97.9

CKELM 33 4.6 97.64

DC-ELM 65 9.3 98.3

ELM-

MSLRF

46 5 97.8

ELM-ARF 48 5.5 98.63
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receptive fields of 5� 5 size and pooling size of 2� 2.

Under the same calculation conditions, the training time of

ELM-ARF is relatively long, which is caused by calcu-

lating the global receptive field and the feature coding, but

the accuracy is the highest in Table 3. From the experi-

mental results in Sects. 4.1 and 4.2, it can be concluded

that ELM-ARF has a good classification effect on hand-

written digital images when the local receptive field size of

the first layer is set to 4� 4 and the size of the second layer

is set to 3� 3.

4.3 NORB database

The images in USPS and MNIST are digital images, and

the image content is simple. To test the ability of ELM-

ARF to process images of complex content, we used the

NORB database for experiment. The database contains a

total of five categories of toy objects: people, animals,

airplanes, trucks and cars. Each category contains 10

instances, and the database has a total of 50 instances. By

utilizing different viewpoints and various lighting condi-

tions, each instance contains 972 stereoscopic images.

Fig. 10 Example images (left

and right sides) in the NORB

database
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Fig. 11 ELM-ARF parameters selection on NORB database. a 2 layers and 3� 3 LRF, b 2 layers and 4� 4 LRF, c 2 layers and 5� 5 LRF, d 3

layers and 3� 3 LRF, e 3 layers and 4� 4 LRF, f 3 layers and 5� 5 LRF
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Each stereo image has 2 images (left and right sides). All

images are unified into 32� 32 pixels. Example images in

the database are shown in Fig. 10. During the experiment,

we select 5 instances in each category and use a total of

24,300 image pairs for training. We select 5 remaining

instances in each category and use a total of 24,300 image

pairs for testing.

On the USPS and MNIST databases, the classification

accuracy of ELM-ARF with 2 layers is better than that of 1

layer. We carry out experiment by setting the number of

layers to 2 and 3 on the NORB database. The other

parameter settings are the same as 4.1 and 4.2. In the mesh

diagrams of the first row, the change trend of accuracy is

relatively stable when the number of receptive fields and

the penalty coefficient change. In the mesh diagrams of the

second row of Fig. 11, the accuracy of 3 layers is obviously

oscillated with the increase in the penalty coefficient,

which decreases the average accuracy. In Fig. 11b, the 4�
4 receptive field reaches the highest accuracy of 96.7% in

the three mesh diagrams when there are only 12 receptive

fields per layer and the penalty coefficient is 0.1. We also

use the combination of 4� 4 and 3� 3 to perform

experiments, and their accuracy is lower than that of 4� 4

local receptive field in Fig. 11b. Therefore, in the NORB

database experiment, the number of layers is set to 2, and

the size of the local receptive field is set to 4� 4.

The ELM-ARF is set to 2 layers, each of which has 6

local receptive fields of 4� 4 size and 6 global receptive

fields, and the penalty factor is 0.1. The images in Fig. 12

are output feature maps of each convolutional layer and

pooling layer when the ELM-ARF processes the input

image. In the first row, the six images on the left are the

feature maps generated by the local receptive fields of the

first convolutional layer. The right side is the feature maps

generated by the global receptive fields. The images of the

second row are pooling maps. The left and right sides are,

respectively, generated by pooling the receptive field fea-

tures. The images in the third row are the feature map

generated by the second convolutional layer. The images in

the fourth row are pooled maps. Comparing the left and

Fig. 12 Output feature maps of ELM-ARF on NORB database
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right sides of Fig. 12, the feature maps of the local

receptive fields have more texture details, while the feature

maps of the global receptive fields have a smoother object

contour.

To prove that adding the global receptive fields and the

feature coding structure effectively improves the classifi-

cation performance, experiments are carried out in two

aspects: (1) The global receptive fields is replaced by local

receptive fields. The experimental results are shown in

Fig. 13a. When C\0:1, the accuracy increases as C

increases. When C[ 0:1, the accuracy decreases as C

increases. The highest accuracy is only 93.8% when g ¼ 7,

and the training takes 47.3 s. (2) The feature coding

structure is removed, and the output features of the second

layer are directly input into the classification layer trained

with ELM. The experimental results are shown in Fig. 13b.

The accuracy increases as C increases. The highest accu-

racy is only 95.3% when g ¼ 6, and the training takes

42.4 s. Compared with Fig. 11, the accuracy of the above

two experiments is decreased. In Fig. 11b, the highest

accuracy is 96.7% when g ¼ 6, and the training takes

49.3 s. This proves that the combination of global receptive

fields and feature coding structure effectively improves the

accuracy when the training time is slightly increased.

The trends of accuracy change with respect to C in

Fig. 13a, b are different. Figure 13a, b contains local

receptive fields, so the accuracy difference between them is

caused by the global receptive fields and the feature coding

structure. It can be found that the accuracy of the structure

with the global receptive fields is not reduced as the C

increases, and the accuracy of the structure with feature

coding reaches the highest at C ¼ 0:1. Therefore, we

combine the setting methods of the penalty coefficient in

the above two structures and experiment. The penalty

coefficient C of the feature coding structure is set to 0.1,

and the penalty coefficient of the global receptive field is

set to f10�3; 10�2; . . .; 103g. The experimental results are

shown in Fig. 14a. We also set the two penalty coefficients

C uniformly to f10�3; 10�2; . . .; 103g for experimentation.

The experimental result is shown in Fig. 14b. Compared to

Fig. 14b, a has a more stable growth trend and higher

accuracy. The coefficient C of the feature coding structure

has defaulted to 0.1 in Fig. 14a. ELM-ARF achieves the

highest accuracy when the C of the global receptive fields
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Fig. 13 Effectiveness of ELM-ARF. a Remove the global experience field and b remove the feature coding structure
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Fig. 14 Penalty coefficient C selection, a C of the feature coding structure are set to 0.1, b C of the global receptive fields and feature coding

structure are uniformly changed
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is 100 and g ¼ 14. The highest accuracy in Fig. 14a is

98%, which can prove the effectiveness of the global

receptive fields.

In Figs. 11, 13 and 14, the increase in g and C has an

important influence on accuracy. Comparing the mesh

diagrams of the same row in Fig. 11, it can be found that

the increase in the size of the local receptive field has few

effects on the accuracy. Comparing the mesh diagrams of

the same column, it can be found that the increase in the

number of layers causes large fluctuations in accuracy.

Therefore, when classifying object images, g and C have

an important influence on the classification performance of

ELM-ARF. When C of the feature coding structure is less

than 1, the accuracy is improved as g and C of the global

receptive fields increase within the given range.

The experimental results published in some studies are

listed in Table 4. The number of layers of ELM-ARF is set

to 2 layers in which the total number of receptive fields is

56. The C of the feature coding structure is 0.1, and the C

of the global receptive fields is 100. ELM-ARF achieves

the highest accuracy of 98% in Table 4. For fair compar-

ison, the penalty factor for all algorithms is selected from

f10�3; 10�2; . . .; 103g. ELM-LRF is set to a single layer, 56

local receptive fields of size 4� 4 and pooling size of

3� 3. The ELM-MSLRF is set to a single layer with 56

local receptive fields, and the size of local receptive fields

and pooling is set according to the literature [20]. Two-

layer CKELM is set to 56 local receptive fields of 4� 4

size and pooling size of 3� 3. The setting of DC-ELM is

consistent with that in [18]. The experimental results are

shown in Table 5. When the total number of receptive

fields is the same, ELM-ARF obtains the highest accuracy

with the third fastest training speed, which shows the

effectiveness of the framework in dealing with complex

image classification problems.

4.4 CIFAR10 database

Finally, ELM-ARF is used to challenge the object image

database CIFAR10 commonly used for deep learning. The

Table 4 Comparison of

accuracies and time on NORB

database

Methods Training time (s) Testing time (s) Testing accuracy (%)

XCov-NCAE [28] 609 1.3e-5 82.33

SAE [29] 85,717 – 93.5

DBN [29] 15,104 – 92.8

ML-EKM-ELM [30] 60.33 11.62 93.17

CAE-ELM [29] 1208 – 94.5

ELM-LRF [21] 397 – 97.26

ELM-MSLRF [21] 403 – 97.5

ELM-HLRF [21] 516 – 97.45

ELM-ARF 216 68.2 98

Table 5 Comparison of unified

experimental environment and

parameters on NORB database

Methods Training time (s) Testing time (s) Testing accuracy (%)

ELM-LRF 262 46 97

CKELM 114 21 93.3

DC-ELM 46 34 89

ELM-MSLRF 236 47 97.1

ELM-ARF 219 69 98

Fig. 15 Example images in the CIFAR10 database
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CIFAR10 data set [26] contains 10 categories of color

images. The size of image is 32� 32� 3. Example images

in the database are shown in Fig. 15. The training set

contains 50,000 images, and the testing set contains 10,000

images. All images are used for training and testing.

None of the algorithms in Table 6 are tested on this

database, so these algorithms are trained using the same

conditions as ELM-ARF. The ELM-ARF is set to 2 layers

in which the number of receptive fields is 44. The coeffi-

cient C of the feature coding structure is set to 0.001, and

the coefficient C of the global receptive fields is set to

1000. The penalty coefficient for other algorithms is

selected from f10�3; 10�2; . . .; 103g. The total number of

local receptive fields of ELM-LRF, CKELM and ELM-

MSLRF is set to be the same as ELM-ARF. The setting of

DC-ELM is consistent with that in [18]. ELM-ARF obtains

the highest accuracy with the third fastest training speed,

and the accuracy of ELM-ARF is 5% higher than that of

the second highest CKELM.

5 Conclusion

In this paper, the extreme learning machine with autoen-

coding receptive fields (ELM-ARF) is proposed to effec-

tively utilize features with global attributes of the image

and the features extracted by each layer. By using the

theory of ELM-AE to train the global receptive fields,

ELM-ARF can effectively avoid instability caused by the

random initialization of the receptive field matrix while

extracting the global features. At the same time, the shal-

low layer features can be input to any deep layer to be

combined through the structure of the ELM-ARF, so that

the feature of each layer from shallow to deep is effectively

utilized. The experimental results show that ELM-ARF can

achieve higher accuracy on the above four databases with

less speed reduction. It can be proved that ELM-ARF can

effectively deal with object classification problems.

Although the classification results of ELM-ARF on

CIFAR10 cannot be compared with CNN, ELM-ARF does

not use the time-consuming reverse iteration to train the

network. By utilizing the theory of ELM-LRF and ELM-

AE, 63% of the CNN classification accuracy is achieved

with only 247 s. In future research, the local receptive field

will be further studied to improve ELM-ARF while dealing

with classification problems.
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