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Abstract
The convolutional neural network architecture has different components like convolution and pooling. The pooling is

crucial component placed after the convolution layer. It plays a vital role in visual recognition, detection and segmentation

course to overcome the concerns like overfitting, computation time and recognition accuracy. The elementary pooling

process involves down sampling of feature map by piercing into subregions. This piercing and down sampling is defined by

the pooling hyperparameters, viz. stride and filter size. This down sampling process discards the irrelevant information and

picks the defined global feature. The generally used global feature selection methods are average and max pooling. These

methods decline, when the main element has higher or lesser intensity than the nonsignificant element. It also suffers with

locus and order of nominated global feature, hence not suitable for every situation. The pooling variants are proposed by

numerous researchers to overcome concern. This article presents the state of the art on selection of global feature for

pooling process mainly based on four categories such as value, probability, rank and transformed domain. The value and

probability-based methods use the criteria such as the way of down sampling, size of kernel, input output feature map,

location of pooling, number stages and random selection based on probability value. The rank-based methods assign the

rank and weight to activation; the feature is selected based on the defined criteria. The transformed domain pooling

methods transform the image to other domains such as wavelet, frequency for pooling the feature.

Keywords Pooling intelligence � Hybrid machine learning tools � Supervised algorithms � Stable sampling �
Deep learning methodology � Self-learning artificial neural network

1 Introduction

Convolutional neural network (CNN) architecture has dif-

ferent components like convolution and pooling. The

pooling is crucial component placed after the convolution

layer. It is also called as subsampling or down sampling

layer which discard around 75% information, without

affecting the information. It plays a vital role in visual

recognition [1, 2], detection and segmentation course to

overcome the concerns like overfitting, computation time

and recognition accuracy. The few architectures of CNN

[3] do not use the pooling. The performance of deep

learning architectures degrades substantially without

pooling. The absence of pooling causes propagation of

local feature to neighboring receptive fields which ulti-

mately weakens the representation power of CNN, and

network becomes very sensitive to input deformations. The

activation in pooling regions does not have any weight and

biases as like in convolution layer which do not affect the

depth of feature map. The pooling operation shrinks feature

map resolution and preserves the critical discriminative

information required for recognition task.

It reduces the number of neuronal connections, size of

feature map [4]. It does not need the zero padding and

performs the defined operations on the input feature maps.

Hence, it reduces the parameters, increases computational

efficiency and regulates overfitting.

Ideally pooling operation preserves discriminative

information while discarding irrelevant image details. It
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reduces the spatial dimension (see Fig. 1) which leads to

loss of information. However, such a loss is beneficial for

the network because the decrease in dimension results in

less computational overhead for the forthcoming layers,

and makes the algorithm robust to the translational

invariance’s.

Two hyperparameters, filter size F and stride S, are

associated with pooling layer. The number of pixels

skewed between each window is termed as stride. The

equal values of spatial extent and stride define the over-

lapped [6, 7] and non-overlapped [8, 9] pooling methods.

The overlapped pooling reduces two types of error rates by

0.4% and 0.3% [7]. The shape of filter varies between the

square and rectangle [10]. Larger pooling window loses the

important features of image [4]. An image of size

224 9 224 pixels will output as a 112 9 112 pixels image

with pooling size of 2 9 2 with a stride of 2 as shown in

Fig. 1. The input image dimensions applied to the pooling

layer are represented as W 9 H 9 D in which W is width,

H is height, and D is depth of image. The output image

dimensions after the application of pooling layer are

New width ¼ Input width� Filter widthð Þ
Stride

þ 1 ð1Þ

New width ¼ Input width� Filter widthð Þ
Stride

þ 1 ð2Þ

The most popular choices of pooling layers are average,

max, sum and median pooling [11]. The max [12] pooling

captures only the maximum activation [10] and skips the

remaining in the pooling region, while average pooling

calculates mean of all activation. The sum pooling adds all

elements in the feature map, while median pooling [11]

selects the median value from the pooling region of feature

map. Median pooling [11] may capture the false value in

the noisy environment. The max and average are the basic

two variants of pooling operation. The max pooling can be

represented mathematically as

akij ¼ max
p;qð Þ2Rij

xkpq ð3Þ

Here, ykij represents the output of kth feature map of

element xkpq within pooling region Rij. The max pooling is

fast and quickly shrinks the hidden layer dimensions. It

introduces the degree of invariances but suffers with gen-

eralization ability due to the disjoint nature [13]. The

average pooling calculates the average of all activation.

The average pooling in mathematical form is

ykij ¼
1

Rij

�
�
�
�

X

p;qð Þ2Rij

xkpq: ð4Þ

Here, ykij represents the output of kth feature map of

element xkpq within pooling region Rij. Figure 2 represents

the processed output after applying max and average

pooling. The max pooling is able to extract the features like

edge and textures, whereas average pooling may not extract

these features, as it takes an average value that may not be

important for object detection. A max pooling is used by

[14] in 2007 when backward propagation is applied in

CNN. The max pooling according to [15] is superior in

capturing the invariance in image with good generalization

and faster convergence capabilities. It is tested on the

normalized uniform NORB [16] dataset with half percent

improvement in results. A detailed analysis of max and

average pooling is carried out by [17]. They found that the

performance of either max or average pooling depends on

the data and its feature and either pooling strategy may not

be optimal for classification problem. A probabilistic max

pooling is proposed by [18] for convolutional deep belief

networks for full-sized and high-dimensional images. It is

tested on several classification benchmarks such as MNIST

[19] and CALTECH-101 [20].

1.1 Bottlenecks with max and average pooling

Generally, CNN employs two types of pooling, namely

average and max pooling due to their computational effi-

ciency. Although the use of max pooling has resulted in

excellent empirical results [7, 21], it can overfit the training

data and does not guarantee generalization on test data.

Average pooling, on the other hand, considers all the ele-

ments in the pooling region, and thus, areas of low acti-

vation may lessen the effect of areas of high activation

Fig. 1 Down sampling using pooling [5]

Fig. 2 Output feature after applying max and average pooling
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[22, 23]. According to [24], average pooling produces

better classification results on the CALTECH-101 [20]

datasets. These two types of pooling work well on some

known datasets, but have few drawbacks. The max pooling

picks the highest value in pooling region, but fails in a

situation, when the intensity of main element is lesser than

the insignificant elements and if most of the elements have

the High magnitude (see Fig. 3). Another situation arises

when the image has many noises with larger values in the

pooling region (see Fig. 5).

In this situation stated 101 is noise selected by the max

pooling operation. The other situation arises when there are

many larger values in pooling region having lesser differ-

ence (such as 11 and 13). These difference values are

relatively less, but it may bring large effects through mil-

lions of net parameters. This leads to overfitting of training

data and results in an unacceptable result.

The average pooling takes all low and high magnitudes

of the elements and calculates the mean value of all ele-

ments in the pooling region. It may fail in situation when

multiple zeros are present in pooling region (see Fig. 4).

2 Variants of pooling processes in CNN

The max and average pooling fails in the certain state

(Figs. 3, 4, 5); hence, researcher proposes the different

variants of pooling for accuracy improvement. These

variants are defined based on the choice of output activa-

tion chosen, value and nature of hyperparameters, number

of stages required for pooling, down sampling approach,

relations between the neighboring activation, level of fea-

ture, order of feature, position of activation and sharing of

same filter to all feature maps. This article reviews (see

Table 1) the pooling process based on the four major cat-

egories based on value, rank, probability and transformed

domain pooling methods. The value-based criteria again

categorized as pixel and patch-based pooling. The patch-

based pooling, such as subclass [25] and series multi-

pooling [26], considers the patch area to be pooled. Alike

values of stride and pooling kernel define the overlapped

and non-overlapped pooling methods.

2.1 Value-based pooling methods

The value-based pooling down samples the pooling region

and selects the single activation based on its value. It is

further classified as significance, patch-based and multi-

sampling methods. The patch-based method selects dif-

ferent patches, and pooling operations are applied on these

patches. The down sampling operation in pooling discards

the 75% information that leads to the loss of information.

The multisampling better scales the spatial resolution of the

output feature map while preserving the benefits of tradi-

tional subsampling layers such as increasing receptive field

and reducing computational costs.

2.1.1 Significance pooling

In significance pooling methods, kernel swifts and aggre-

gates the information within pooling region and replaces it

with single value. The other process involves the region of

interest detection (patch) and applying pooling operation

on patch. The pooling operation aggregates the information

in pooling region and transforms it into a single value

based on criteria of pooling method. The few significance

pooling methods introduce the randomness in selection of

average and max pooling methods, since these two meth-

ods have better performance in certain conditions

Mixed pooling [9] uses the combination of both max and

average pooling (hence named mixed pooling) for boosting

the regularization abilities of CNNs and addresses the

bottlenecks of average and max pooling [22, 23]. The

selection of max and average pooling is based on a

parameters k; its value reflects either max or average

pooling selection. The mixed pooling is expressed by

Eq. 5.

Fig. 3 Failure state of max pooling [9] Fig. 4 Failure state of average pooling [9]

Fig. 5 Failure state of max pooling [62]
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ykij ¼ k � max
p;qð Þ2Rij

xkpq þ 1� kð Þ � 1

Rij

�
�
�
�

X

p;qð Þ2Rij

xkpq ð5Þ

Here, ykij represents the output for kth feature map. The

element at location (p, q), within the pooling region Rij

with size Rij, is represented by xkpq. The value of k is

random either one or zero. During forward propagation

process, k is recorded and will be used for the backward

propagation operation. The mixed pooling [9] found

superior to max and average pooling in terms of accuracy,

and in addressing the overfitting issues. The mixed pooling

fails in reflecting the advantages of max and average

Table 1 Review chart of pooling variants

Pooling variants

Value based Significance Max pooling [22]

Average pooling [62]

Mixed pooling [9]

Global average pooling [28]

LEAP pooling [31]

Spatial pyramid pooling [8]

Kernel pooling [40]

Fractional max pooling [13]

Dynamic correlation pooling [4]

Multi-activation pooling [45]

Combined pooling [46]

Detail preserving pooling [30]

Concentric circle pooling [47]

K support pooling [44]

Transformed invariant pooling [36]

Patch Subclass pooling [25]

Series multi-pooling pooling [26]

Partial mean pooling [50]

Region of interest pooling [99]

Multi-scale orderless pooling [49]

Multisampling Checker board pooling [54]

Parallel grid pooling [55]

Probability-based pooling methods Lp pooling [100]

Stochastic spatial sampling pooling (S3Pool) [63]

Hybrid pooling [66]

Stochastic pooling [59]

Dropout max pooling [10]

Sparsity stochastic pooling [64]

Failure density probability pooling [72]

Mixed, gated and tree pooling [69]

Rank-based pooling methods Multipartite pooling [41]

Ordinal pooling [70]

Global weighted rank pooling [71]

Rank-based average pooling [65]

Rank-based weighted pooling [65]

Rank-based stochastic pooling [65]

Transformed domain pooling methods Time domain-based pooling [96]

Frequency domain-based pooling [80]

Wavelet domain-based pooling [79]
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pooling at the same time, since it selects either method in

pooling process. The other random pooling is alpha pooling

proposed by [27]. It introduce the parameter a which uses

alpha integration to decide the selection between max and

arithmetic average pooling.

Global average pooling [28] replaces the fully connected

(FC) layer. The basic idea of global average (GA) pooling

is to gross the average value of each feature map and fed

this vector to the softmax layer. The absence of FC layer

reduces the number of parameter and computation time,

since FC layer requires around 90% of parameters as

compared other layers of CNN. The feature map here

corresponds to the class of classification task. Thus, the

feature maps are inferred as class confidence maps. It does

not require the optimization of parameters, hence avoids

the overfitting issue and robust to spatial translations of

input feature map. The variant of GA pooling is [29] which

uses log mean exponential function (AlphaMEX) to extract

the features.

Detail preserving pooling (DPP) [30] uses inverse

bilateral filter for preserving the important details of feature

maps. A learnable parameter controls the downscaling of

feature map in order to preserve important structural

details. Asymmetric and symmetric are two variants of

DPP. The symmetric version enhances all the details, while

asymmetric enhances the features higher than the average

activation. The DPP incurs minor computational overhead

and performs similar to max/extremum or average pooling,

or on a nonlinear continuum of intermediate functions.

DPP can be combined with stochastic pooling [22] methods

with further accuracy gains as detail preservation and

regularization complement each other.

LEAP pooling [31] uses the shared linear filter applied

on each feature map, hence reduces the number of

parameters and training error. The LEAP filter learns a

shared linear filter in every feature map and aggregates the

features within pooling region (see Fig. 6). The shared

LEAP operator is rationalized with backward propagation

algorithm during the end-to-end training stage. The com-

putational complexity of LEAP pooling is much smaller

than other pooling methods.

Spatial pyramid pooling [8] conventionally, deep neural

network requires fixed size input. In some applications,

such as recognition and detection, input images are usually

cropped and warped, and then fed into the deep neural

network. Crop operator cannot obtain the whole object

which means crop may lead to some information loss in

some sense, and warp operator would introduce unwanted

geometric distortion. These limitations will harm the

recognition accuracy of neural network. A new pooling

strategy called spatial pyramid pooling (SP pooling) is

proposed by [8], which borrow the idea from the spatial

pyramid matching model [32, 33]. The outstanding con-

tribution of this structure is to generate fix length output

regardless of the input size, while previous networks can-

not. This layer is placed between the final convolutions/

pooling layer and the first FC layer, hence performs

information aggregation to avoid fixed size of input image

(see Figs. 7, 8). The SP pooling divides the feature map

into subimage and extracts the maximum value from

pooling region.

It is similar to the bag of words which pools in local bin

to maintain spatial information. It generates the fixed sized

output irrespective of input size, which means the scale of

image does not affect the final performance, and it would

extract scale invariant feature. SP pooling customs multi-

level spatial bins, while sliding window method customs

only a single window size.

Fig. 6 Illustration of LEAP and traditional pooling [31]

Fig. 7 CNN with and without spatial pyramid pooling [8]

Fig. 8 Network structure of spatial pyramid pooling [8]
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The other variant of SP pooling is pyramid pooling [34]

that integrates the spatial information into the feature

vectors. The pyramid pooling reduces the dimensions

without losing the important information. Initially, the

feature map is divided into a 6 9 6 dimensional different

subregions (bins). Tables 2 and 3 summarize the window

sizes required for forming bins and different pyramid

structures used by [34]. They used the Alex net for

experimentation which has 5 layers followed by FC layer.

The experimental results on INRIA Holidays and

Oxford buildings dataset show the superiority in image

retrieval. The other variant of SP pooling named atrous

spatial pyramid pooling (ASP pooling) is proposed by [35]

for segmentation of objects at manifold scales. ASP pool-

ing reviews feature map at manifold sampling rates and

effective fields of views, hence efficient in capturing the

objects and context at manifold scales.

Transformation invariant pooling (TI) [36] is inspired

by max pooling [17] and multiple instance learning [37]. It

is applied on the top layer before FC layer. It generates new

feature from a predefined set of possible transformations

which is independent of nuisance variations such as rota-

tion or scale of input. TI pooling passes multiple trans-

formed versions of the input separately through the

network to get feature representations for each transformed

instance aggregated together by a max pooling operation to

achieve transformation invariance. The aggregated feature

representations are later passed to the rest of the network

for the downstream task.

The FC layer introduces dense computation and

increases the amount of parameter, making it slow and

prone to overfit. Inception [38] and residual learning [39]

use the GA pooling [28] to overcome this issue. It is

computationally efficient but unable to capture higher-

order feature interactions, which plays a vital role in

recognition task.

Kernel pooling [40] captures the higher-order features

using Gaussian radial basis function, and GA pooling

creates the final feature vector across all spatial locations.

Two feature vectors x and y with U as a kernel pooling, the

inner-product between U(m) and U(n) approximate a kernel

up to a certain order p

U mð ÞTU nð Þ �
Xp

i¼0

a2i mTn
� �i� K m; nð Þ ð6Þ

The kernel composition identified by the coefficients is

either predefined or learned from data. The kernel function

with Hilbert space boosts the performance of classifier

Fractional max pooling The conventional non-over-

lapped pooling method down samples the feature map by

discarding 75% information. This sudden reduction in

spatial information may abandon some useful evidence

required for consequent operations, especially when small

input image is used. The fractional max pooling (FMP)

[13] shrinks the spatial dimensions in more gradual way as

shown in Fig. 9. FMP reduces the spatial size by intro-

ducing a factor a (1\ a \ 2). The value of a is selected

randomly or pseudo-randomly in the specified range for

spatial dimension reduction. Like stochastic pooling [22],

FMP [13] introduces a degree of randomness to the pooling

method. The authors [41] call the FMP as spatial stochastic

max pooling. However, unlike stochastic pooling [22], the

randomness is mostly related with region of pooling, not

the way of execution in pooling circle.

FMP is tested on the CIFAR [42] datasets and promising

results are found; however, their observations lacked suit-

able motivation and the technique still needs to be tested on

other architectures such as inception and residual networks.

The FMP introduces randomness in terms of choice of

pooling region that can be chosen in a random or pseu-

dorandom manner. Pooling regions can be disjoint or

overlapping. It is found that Random FMP is good on its

own but may underfit when shared with dropout or training

data augmentation. Pseudorandom approach generates

Table 2 Window size for required bins [34]

Window H 9 W size Stride

Window1 2 9 2 2

Window2 4 9 4 2

Window3 3 9 6 and 6 9 3 1

Table 3 Pyramid structure [34]

Pyramid Layers

Pyramid 1 Window1 ? Window3

Pyramid 2 Window2 ? Window3

Pyramid 3 MAX ? Window3

Pyramid 4 MAX ? Window1 ? Window2

Pyramid 5 MAX ? Window2 ? Window3

Fig. 9 Comparison of down sampling process between conventional

and fractional max pooling method [43]

884 Neural Computing and Applications (2020) 32:879–898

123



more stable pooling regions. Overlapping FMP performs

better than disjoint FMP. A variant of FMP as bi-linearly

weighted fractional max pooling (BW-FMP) [43] reduces

the spatial size more gradually. The BW-FMP is applied on

ResNet (50 layered) and VGG Net (19 layered) with

compact number of filters on four datasets such as FGVC-

Aircraft, Oxford-IIIT Pet, STL-10 and CIFAR-100.

Experimental results show that the use of BW-FMP

improves the memory consumption and processing time by

18% and 13%, at the cost of classification accuracy.

Accuracy is still higher for same configuration with low

memory and faster computation time. While comparing

with stochastic pooling [22], computation time and mem-

ory usage are same, but yields higher accuracy. The BW-

FMP method offers flexibility in pooling size though

trading off memory constraint (and computation time) for

classification.

Dynamic correlation pooling [4] uses non-overlapping

window with correlation information of adjacent activation

is based on Mahalanobis distance. The pooling method

operation is tabbed between average, max and mixed

pooling. The Mahalanobis distance is measured and com-

pared between two adjacent activations with a reference

value c. If the Mahalanobis distance is lesser than c,
average pooling is applied. The lesser value of Maha-

lanobis distance indicates that pooling regions are highly

correlated with strong similarity. Hence, it is required to

reserve the general characteristics and rise the error value,

to prevent local constraints. The larger value of Maha-

lanobis distance indicates no correlation of data with

adjacent pooling region; hence, max pooling is selected to

preserve edge features. The Mahalanobis distance between

the two adjacent (block 2 and block 3) is calculated and

compared with the reference value c (see Fig. 10). If the

compared value between the d(x1, x2), d(x1, x3) is lesser

than c, then average pooling is opted while for less than or

equal to c indicates the selection of max pooling. When

d(x1, x2)—c and d(x1, x3)—c have unlike signs, then the

mixing operation will be performed by using Eq. 7 in

which coefficients are calculated using Eq. 8.

yi;j;k ¼ k � max
m;nð Þ2Rij

am;n;k þ 1� kð Þ � 1

Rij

�
�
�
�

X

m;nð Þ2Rij

am;n;k ð7Þ

k ¼

d x1; x3ð Þ � cj j
d x1; x2ð Þ � cj j þ d x1; x2ð Þ � cj j ; d x1; x3ð Þ[ c; d x1; x2ð Þ\c

d x1; x2ð Þ � cj j
d x1; x2ð Þ � cj j þ d x1; x2ð Þ � cj j ; d x1; x2ð Þ[ c; d x1; x3ð Þ\c

8

>><

>>:

ð8Þ

Dynamic correlation pooling is tested with Lenet-5 on

MNIST [19], USPS and CIFAR-10 [42] dataset and com-

pared with max, average, stochastic and mixed pooling.

Experimental results prove the superiority of dynamic

correlation pooling in terms of accuracy, rate of accuracy

and lower error rate.

K support spatial pooling [44] was proposed for HEp-2

cell classification. The conventional CNNs mostly rely on

the stable size data that hint the structure deformation. This

issue is resolved by using SP pooling, but it does not

consider the frequency of activation which is a vital mark

for recognizing different forms of images. It mostly relies

on aggregating activations in predefined spatial region,

which retains only the strongest activation. This method

sorts the activations in ascending order in pooling region

and retains only the first k larger activations. The final

degree of activation is the mean value of the retained

k values. This procedure is repeated for each neuron to

produce the activation degrees of all neurons in a distinct

region.

Multi-activation pooling (MAP) [45] is applied for

accurate classification without increasing depth and train-

able parameters. MAP picks top-K activation in every

pooling region to assure that the maximum information can

pass through subsampling gates. The pooling region is

larger in size such as 4 9 4, 8 9 8, 16 9 16, and even

larger can be used with max pooling. They used more

number of convolution layers before certain pooling layer

followed by ReLU. This arrangement reduces the noise

even absence of few ignored information. The top-K acti-

vations are picked, clubbed and constrained the summation

by a constant r, which ranges from zero to one. The r
value of 1/k reflects average pooling of top-K activation.

Generally, the value of r is little greater than 1/k to avoid

weakening of activation with limited active features. The

MAP method achieves higher accuracy on classification

task without increasing the depth and trainable parameters.

In plain networks, such as VGG and ALL-CNN, this

method of pooling is competitive in achieving higher

accuracy on classification tasks with depth and trainable

parameters not increased.

Combination of max and average pooling is used by

[46] to achieve the better performance for traffic sign

recognition. The pooling method selection in each
Fig. 10 Dynamic correlation pooling [4]
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subsampling layer affects the recognition accuracy. Out of

the different combination proposed by the author [46],

average–average-max combination achieves faster and

smaller convergence speed, value and lowermost error rate

indicates a good classification ability.

Concentric circle pooling The SP pooling layer

improves the image classification, but not effective on

rotated image scenes. This sensitivity to the rotation of

images degrades the classification performance in remote

sensing images. The concentric circle pooling (CCP) [47]

screens the feature map into a series of annular subregions

and groups the confined features within the annular sub-

region. The CCP layer is added before the FC layer (see

Fig. 11). The response of pooling region in annular sub-

region is pooled using average and max pooling. The

output of last convolutional layer is divided into the

number of the annular subregion. This division is square

ring shaped, since square kernels are computationally

effective at the partial expense of rotational invariance. The

division ranges between 1 and R, (R represents square

kernel number). The output dimensions of CCP layer are

r 9 K where r[{1, R}, and K represents number of filters

applied in last convolutional layer. The pooling proposed

by [48] uses Choquet integral for pooling.

2.1.2 Patch-based pooling methods

In these types of pooling methods, initially objects are

detected and the pooling operations are applied on these

patches. The examples of patch pooling methods are multi-

scale orderless pooling [49], subclass pooling [25], partial

mean pooling (PMP) [50] and series multi-pooling [26].

Multi-scale orderless pooling (MOP) [49] is inspired

from spatial and feature space pooling of local descriptors

[33]. MOP improves the invariance property of pooling

without lowering the discriminative power, fine tuning on

target datasets. The deep activation features are extracted at

different scales. These scales are coarset and local patch

scales. The coarset scale corresponds to the whole image,

and fine scale corresponds to the local region. The coarset

scale preserves the global spatial layout, while finer scales

allow to capture more local, fine-grained details of data.

These fine-grained details are aggregated via vectors of

locally aggregated descriptors (VLAD) encoding, which

has an orderless nature and thus contributes to amore

invariant representation. Finally, the initial global deep

activations and the VLAD encoded features are concate-

nated to form a new image representation. The MOP for

CNN is more potent translation, rotation and scaling

[49].Their method proved successful at a wide variety of

applications, including scene classification, data retrieval

and, most significant, image classification producing

competitive results on MIT indoor scenes classification

datasets.

Subclass pooling (SCP) [25] is three layered which

addresses the issue of double obstruction with a partial

training data. This scheme preserves the high-level spatial

information and suppresses occlusions and other noises,

hence boosts the overall performance. Initially, local fea-

tures are pooled to preserve the spatial correlation into

subclasses according to spatial areas. The fuzzy max

pooling is applied during the test phase in order to conquer

the erratic local features from obstructed areas (see

Fig. 12). The final average pooling enhances the robustness

by routinely weighting on every subclass. This method is

found robust to various occlusions in random patterns.

Series multi-pooling [26] scheme is inspired by the SP

pooling [8] and associated with selected patch of feature

map. It creates the multi-scale features and extracts rich

features with expanded the patch area. This will overcome

the confines of local (see Fig. 13) series structure in the

input data. The expanded patch range is used due to dif-

ferent lesion sizes of each patient. It captures the sur-

rounding area features aligned on central pixel which is

expressed as f = [f0, f1, f2], and corresponding areas are R0,

R1, R2.

Fig. 11 Concentric circle pooling [47]

Fig. 12 Framework of subclass pooling [25]
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The region size R0 is w 9 w 9 n, where n represents the

dimension. The relationship between region size and fea-

ture is expressed by following

fi ¼ MaxPooling 2�ið Þ Rif g ð9Þ

In above Eq. 9, (2-i) represents maximum pooling

operation times.

The central region R1, R2 has dimensions of (w/2) 9 (w/

2) 9 n and (w/4) 9 (w/4) 9 n, respectively. The different

regions R0, R1 and R2 are input original image, area cut out

from the center of R0 and R1. The regions R0, R1 and R2

correspond to f0, f1 and f2 with twice, single and without

max pooling operations. The f2 is directly connected in

series with f1 and f0. The multi-pooling is attached to the

top of input series connection design that expands input

patch, eludes the introduction of redundant information. It

is tested on BRATS2015 dataset which shows the accuracy

improvement by 17%.

Partial mean pooling (PMP) [50] uses two stages to

pool the patch-based features (see Fig. 14). The two stages

of PMP are intra- and inter-patch pooling. The intra-patch

step captures the discriminative responses and filters the

harmful belongings of position variance on feature maps,

while inter-patch step transforms these feature maps to low

dimensions. The input feature map is sorted in descending

order and evaluates the average value of top-K responses to

get the pooling feature from input feature map. The PMP

seek a trade-off between max pooling and average pooling.

In inter-patch pooling stage, different patch features are

accumulated to form a global demonstration. The L2 nor-

malization and PCA can be applied to achieve the

improvement in the discriminating ability. The

experimental results prove the superiority over max and

average pooling in terms of accuracy on several benchmark

datasets.

Top-K pooling [51] is the variant of PMP pooling [50].

During the forward pass, the feature map size reduces and

noise influence become more severe [50]. Top-K pooling

improves the performance by reduces the effects noise on

feature map during training phase. This pooling

scheme then calculates the mean of top-K features from

organizing responses in pooling region. The max pooling

schemes are mostly susceptible to noise, while top-

K pooling performs well in fetching the statistics of

responses. The top-K pooling response changes from max

to average pooling with variation in K from unity to

window size. The def-pooling [52] layers learn the

deformation of object chunks of various sizes and

semantic meanings. After training the def-pooling layer,

the object part will result in high activation value. A

scale-dependent pooling is proposed by [53] to tackle the

scale variation with improvement in detection accuracy

on small objects.

2.1.3 Multisampling pooling methods

The down sampling operation in pooling learns spatially

invariant features and reduces computational costs,

depends on the tuned hyperparameters. The down sampling

operation does not use the full spectrum of input features,

since it rejects around 75% information, while resolution

scales down quadratically in a 2D CNN. To overcome

these issues, two types of sampling and hence pooling

methods are proposed checkered subsampling and parallel

grid pooling by [54, 55]. The multisampling better scales

the spatial resolution of the output feature map while pre-

serving the benefits of traditional subsampling layers such

as increasing receptive field and reducing computational

costs. This results in advantages like forward pass pro-

ducing higher resolution feature maps, better gradient

updates for deep layers during training and streamlining

CNN design by reducing the need for dilated convolutions.

It improves the accuracy of image classification by simply

applying multisampling with no data augmentation is used.

Initially, the feature map is fragmented into k 9 k sam-

pling windows. Consider the input image having size of

6 9 6 is applied to pooling layer with stride value of two.

Suppose we have chosen the blue element as shown in

Fig. 15. This operation results output feature map having

the size of 3 9 3 called as submap. These two submaps are

processed separately resulting in a total of four submaps.

The process of generating multiple submaps at a subsam-

pling layer is called multisampling. This particular instance

of multisampling is called checkered subsampling [54] due

to the checkerboard.Fig. 14 Framework of partial mean pooling [50]

Fig. 13 Framework of series multi-pooling [26]
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Parallel grid pooling (PGP) [55] is applicable to various

CNN models without altering their learning strategy (see

Fig. 16). The PGP down samples the feature map without

discarding any intermediate feature and can be regarded as

a data augmentation technique. Furthermore, they demon-

strate that a dilated convolution can naturally be repre-

sented using PGP operations, which suggests that the

dilated convolution can also be regarded as a type of data

augmentation methods.

The pooling operation depends on two hyper parame-

ters, viz. stride and kernel size. Initially, pooling is applied

on input feature map with unity stride value which makes

full use of the input feature map information. It will pro-

duce an intermediate feature map. This intermediate fea-

ture map is separated into (w/s) 9 (h/s) blocks (grid) of

size s 9 s. All these down sampled grids are processed in

parallel for pooling operation, hence named as parallel grid

pooling. Note that the weights (i.e., parameters) of the

following network are shared between all branches; hence,

there is no additional parameter throughout the network.

PGP performs down sampling while maintaining the spatial

structure of the intermediate features, thereby producing

output features shifted by several pixels. This works as data

augmentation; with PGP, the layers are trained with s2

times larger number of mini-batches compared to the case

without PGP. Experiments on CIFAR-10/100 [42] and

SVHN [15] with six network models demonstrated that

PGP.

2.2 Probability-based pooling methods

This type of pooling calculates the probability to make

trade-off between the average and max pooling. The fea-

tures of both max pooling and average pooling are reflected

in the pooling process by introducing the mixing mecha-

nism. The various methods based on probability are

stochastic, fractional max, dropout max, failure density,

hybrid, region of interest and mixed gated and tree pooling

method. The probability-based pooling method helps in

improving the error rate and prevents the overfitting.

The max pooling produces better result [7, 21], but it

suffers with over fitting issue and affects the generalization

ability on test data. The average pooling takes the average

of all activation in pooling region. A biological inspired

pooling is proposed by [56] and is modeled on complex

cells. The theoretical analysis is done by [57] and suggests

better regularization of Lp pooling [58] over max pooling.

The weighted average of activation over the pooling Rj is

given as

Sj ¼
X

i2Rj

a
p
i

 !1
p

ð10Þ

The variation rate of p decides the type of pooling

region, such as p = 1 corresponds to max–average pooling,

while p = 1 results in max pooling. The Lp pooling

improves the error rate compared to max pooling; it

resulted in exceptional image classification results and a

new state of the art on the Street View House Numbers

(SVHN) [15] classification benchmark.

The regularization method plays crucial role for the

successful applications of neural networks. The max and

average pooling suffers with regularization effect of

dropout. A new dropout inspired regularization method

named stochastic pooling [22, 59] replaces the determin-

istic average and max pooling techniques, since this

pooling method suffers with regularization effect of drop-

out. It is simple and applicable to CNN with positive

nonlinearities and achieves good performance on several

tasks. The stochastic pooling arbitrarily preferences the

activations according to a multinomial distribution; hence,

non-maximal activations of feature maps are utilized. A set

of probabilities p are evaluated for each region j by nor-

malizing the activation.

pi ¼
ai

P

k2Rj
ak

ð11Þ

A location from multinomial distribution is occupied

based on probability value. The pooled activation is for-

mulated as,

sj ¼ al where l�P p1; . . .; p Rj

�
�
�
�

� �

ð12Þ

Fig. 15 Checkered sampling [54]

Fig. 16 Parallel grid pooling scheme [55]
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Although stochastic pooling has the same benefits as

max pooling, its stochastic nature helps in improving error

rate and prevents overfitting, thus making it an effective

network regularization technique that can be combined

with approaches like dropout [60, 61] and data augmen-

tation [21]. It does not require any hyperparameter for

tuning and reduces training and testing errors. The

stochastic pooling selects the random values; it may select

0.1 as the pooling result, which is inappropriate for the

network. In the process of pooling, we should ignore the

relatively small values. In order to select the values which

are representative and take more values into account, [62]

proposes restricted stochastic pooling. The restricted

stochastic pooling [62] is the blend of max and stochastic

pooling which randomly selects value from the first n lar-

ger values in each pooling region. Initially, all values of

pooling region are sorted pick out the first n larger values.

This scheme selects the random value from these selected

values. The restricted stochastic pooling is represented as

yrestricted ¼ random Snð Þ ð13Þ

In the above Eq. 13 random is the process which ran-

domly selects the first nth larger values of Sn. If n is three

then three values are selected shown in gray color have

same probability of selection (see Fig. 17). The selected

value of n affects the accuracy and processing time. The

optimum value found by [62].

Stochastic spatial sampling pooling (S3Pool) [63] is two

step method that uses stochastic down sampling. A pooling

window (2 9 2) glides over the feature map with unit

stride value tailed by the down sampling. The down sam-

pling picks single value from non-overlapping pooling

region in uniform and deterministic manner (see Fig. 18).

From signal processing point of view this is not the optimal

way of reconstructing the signal. The S3Pool method

replaces the general down sampling step by stochastic

spatial sampling (S3Pool). The blend of stochastic and

S3Pool work as a strong regularization and data augmen-

tation step by introducing distortions in the feature maps.

The S3Pool partitions the feature map of h 9 w into

p = (h/g) vertical and q = (w/g) horizontal strips, here

g represents grid size. It selects arbitrarily (g/s) rows and

(g/s) columns to acquire the down sampled feature map of

size (h/s) 9 (w/s). This down sampling is stochastic in

nature; hence, it produces different feature maps for

training which amounts to perform a type of data aug-

mentation at intermediate layers which yields unlike fea-

ture maps at each pass for the same training examples,

which amounts to implicitly performing a sort of data

augmentation, but at intermediate layers. The grid size

controls the distortion for adapting the CNN with designs

and datasets. This is useful to house the CNN with multiple

pooling, which ultimately controls the trade-off between

regularization strength and converging speed. The S3Pool

performs ‘‘virtual’’ data augmentation and hence acts a

strong regularizer. The S3Pool is fast to compute during

training phase and does not require additional parameters.

It introduces little computational overhead over the general

max pooling.

Max pooling dropout [10] uses the combination of max

pooling and drop out technique (see Fig. 19). During the

training phase activations are randomly preference using

multinomial distribution. During the testing phase proba-

bilistic weighted pooling is used, which acts a model

averaging. The probabilistic weighted pooling fits training

data in well manner as well as generalizes the testing data

better than the max and scaled max pooling. The proba-

bilistic pooling performs very well on small retain proba-

bility as compared to the max and scaled max probability.

Fig. 17 Sample Image showing the selection criteria of restricted

stochastic pooling [62]

Fig. 18 S3Pool, pooling window k = 2, stride s = 2, grid size g = 2

[63]

Fig. 19 Procedure of max pooling dropout [10]
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This performance gap reduces as retaining probability

increases. Max pooling dropout with typical retaining

probabilities (around 0.5) often outperforms stochastic

pooling with greater margin. Experimental evidence

endorses the advantage of using max pooling dropout, and

confirms the dominance of probabilistic weighted pooling

over max and scaled max pooling.

Sparsity-based stochastic pooling [64] incorporates the

leads of max, average and stochastic pooling. A degree of

sparsity is introduced for acquiring the optimized feature in

pooling region (see Fig. 20). The feature value is stretched

from average to maximum value. This optimized feature

value is engaged for probability weights assignment of

activations in normal distribution. This method uses

weighted random sampling in order to preserve the

advantages of stochastic pooling. The non-stationary nature

of image feature and stochastic nature of pooling regions

improves the performance of pooling [65]. This method is

tested on benchmark datasets like MNIST [19], CIFAR-10,

CIFAR-100 [42], and SVHN [15] that reflects the

improvement in recognition accuracy.

Hybrid pooling method (HPM) [66] uses maximum and

average pooling. During training stage the convolution

feature map is detached to two regions for max and average

pooling. A max and average pooling method is applied for

the probability of p and 1-p. The optimal p is around 0.75.

The output of these combined method is weighted average

of the two methods. It is represented as

yvw ¼ p�max xij
� �� �

þ 1� pð Þ �mean xij
� �� �

ð14Þ

Figure 21 shows the procedure for max and average

pooling while right one shows calculation of hybrid pool-

ing method during the testing phase.

The authors [66] trained the model with mini-batch

gradient descent method. The batch size, momentum and

learning rate is set at 50, 0.99 and 1. It is found experi-

mentally that the HPM produces better generalization

ability of CNN on MNIST dataset if the mixing probability

is properly adjusted.

Failure probability density pooling The failure proba-

bility theory is utilized by [67] for CNN regularization. The

pooling dispense failure probability density (FPD) to the

activations of feature map. This feature map image con-

tains eigenvectors from high to low dimensions to sustain

the association of high-dimensional image features. The

weights are updated by assigning FPD to the activations of

feature map. It is tested on CIFAR-10, CIFAR-100 [42],

and SVHN [15] and equated with advanced dropout,

maxout, and stochastic pooling methods for classification

task in terms of speed and accuracy. The experimental

results reflects the superiority of failure density probability

pooling.

Mixed gated tree pooling is an improvement over the

mixed pooling [22] where random coefficient are replaced

with a real number stretching from 0 to 1. This real number

assigns the weights of maximum and average values. This

mixing proportion mechanism reflects the features of max

and average pooling, while the randomness of the sampling

process is sacrificed. The stochastic pooling provides the

weight probability of activation and picks the activation

based on this probability. The gated max–average pooling

is formulated as

fgate xð Þ ¼ r wTx
� �

fmax xð Þ þ 1� r wTx
� �� �

favg xð Þ ð15Þ

Above Eq. 15, the values in pooling region are signified

by x and the values of the gating mask are denoted by

w. The first approach is further classified as responsive

(mixed max–average pooling) and unresponsive (gated

max–average pooling) to the characteristics of pooling

region. The mixed max–average pooling approach results

in some specific, unchanging blend of max and average.

The gated max–average pooling approach uses a gating

mask to govern a ‘‘responsive’’ blend of max and average

pooling. A sigmoid function is applied to inner-product

between the region to be pooled and gating mask. The

output of this stage uses mixing balance amid max and

average. Furthermore, inspired by [68], who incorporated

MLPs with decision trees, [69] used a binary decision tree

to learn a combination of previously learned individual

Fig. 21 Comparison of hybrid pooling scheme and normal pooling

(max or average) [66]Fig. 20 Framework of sparsity-based stochastic pooling [64]
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pooling filters. A particular incarnation of their approach,

which combined their tree and max–average methods,

achieved state-of-the-art results on several benchmarks. In

particular, they outperformed several high-performing

convolutional networks such as NIN [28], stochastic

pooling [22], the DCNNs presented by [24], maxout net-

works and drop connect networks [60] on various image

classification benchmarks, including the MNIST [19],

CIFAR-10 and CIFAR-100 [42], and SVHN [15] datasets.

Notably, despite their successes, RCNNs outperformed

them on the CIFAR-100 [42] dataset. Furthermore, for

future DCNNs to readily incorporate decision analysis

tools such as decision trees into their architectures, further

work on reducing the computational costs and exorbitant

number of model parameters required by such models is

still required.

2.3 Rank-based pooling methods

In these types of pooling, the activations of feature map in

pooling region have different weights and are combined

together via a weighted sum. These weights are learned

during the gradient-based optimization or training. A key

difference between ordinal pooling network (OPN) and a

pooling operation is that while a typical pooling acts upon

one feature map at a time, OPN consists of a different set of

weights for each feature map, and therefore, pools feature

from all the feature maps simultaneously. Figure 22 shows

the comparison between value, location and rank-based

pooling methods.

Multipartite pooling [41] based on the multipartite

ranking of the features in pooling layers of deep CNN. The

Fisher discrimination is used to map features into a space.

This mapping is used as a measure to rank the existing

features, with respect to their specific discriminant power,

for each class. The multipartite ranking is used to score the

separability of instances, and to aggregate one versus all

scores, giving an overall distinction score for each features.

Therefore, this pooling scheme projects the features to a

new space and then score them by an accumulative

bipartite ranking approach. The feature selection operator

picks the most informative and highest scores convolu-

tional features in a pooling window, by learning a multi-

partite ranking scheme from the training set. Inspired by

stochastic pooling, higher ranked activations in each

window are picked with respect to their scoring function

responses. This leads to an efficient spread of responses

and effective generalization for deep CNN. The perfor-

mance consistently improves in all the experiments.

Authors conducted experiment on four publicly available

datasets (MNIST [19], CIFAR-10, CIFAR-100 [42], and

SVHN [15]) and report the errors of four different pooling

schemes (maximum, average, stochastic [59, 22] and

multipartite). This multipartite pooling method outper-

forms on standard benchmark datasets all other pooling

strategies (average, maximum and stochastic pooling) with

identical evaluation protocols. It also provides a more

efficient generalization for the deep learning architectures.

The multipartite pooling considers the distribution of each

class and calculates the rank of individual features. Due to

the data driven process of scoring, the performance gap

between training test errors is considerably closer. The

conducted experiments on various benchmarks confirm that

the proposed strategy of multipartite pooling consistently

improves the performance of deep convolutional networks,

by using better model generalization for the test time data.

Ordinal pooling [70] process is used to assign and

arrange different weights to all activations of feature map

in pooling region. These arrangements are based on their

rank and order of sequence, and these are combined via

weighted sum method. These weights are learned during

the gradient-based optimization or training. A key differ-

ence between ordinal pooling network (OPN) and a pooling

operation is that while a typical pooling acts upon one

feature map at a time, OPN consists of a different set of

weights for each feature map, and therefore, pools feature

from all the feature maps simultaneously. Owing to this

fact, OPN is referred in this work as a pooling network

rather than a pooling operation.

The idea of a rank-based weight aggregation was first

introduced by [71], who proposes a global weighted rank

pooling (GWRP).The GWRP estimates a score associated

with a segmentation class. The GWRP works on the ele-

ments of feature map to evaluate the score of segmentation

class. In GWRP, all the elements of a feature map are first

sorted in the descending order, depending upon their scores

for a particular segmentation class. However, the weights

that are assigned based on the order of the elements are

determined from a hyperparameter and therefore do not

change during the training. A confidence weighted pooling

is proposed by [72] for color constancy. The mathemati-

cally ordinal pooling is represented by

sj ¼
X

i2Rp

w ord aij
� �� �

aij 8j 2 1;N½ � ð16Þ

In this, aij represents all the activations within the

pooling region Rp in a feature map, and N represents total

number of feature maps. The order ord() determines the
Fig. 22 Pooling operations. a 2 9 2 pooling region, b location-based

and c ordinal pooling network [70]
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weights of activation. The weights of pooling region will

be same if order of sorted sequence remains same. The

ordinal pooling has same number of parameters as that of

location-based pooling. The ordinal pooling generalizes

both average and max pooling due to the nonlinearity

introduced by sorting step. For example, if all the weights

are equal to 1/Rp, then average pooling scheme will be

selected. Similarly if the maximum activation value is 1

and rest are 0 then max pooling will be selected. These

sorting steps avoid the effects of under and over valuation

of larger or smaller activation, hence preserve the infor-

mation in most efficient manner. The ordinal pooling is

experimented on MNIST [19] dataset; it found that clas-

sification accuracy is improved by 0.10%; hence, conver-

gence is faster.

Global weighted rank pooling (GWRP) [71] estimates a

score associated with a segmentation class. The GWRP

works on the elements of feature map to evaluate the score

of segmentation class. In GWRP, all the elements of a

feature map are first sorted in the descending order,

depending upon their scores for a particular segmentation

class, which is similar to our case. However, the weights

that are assigned based on the order of the elements are

determined from a hyperparameter and therefore do not

change during the training. A rank-based pooling mecha-

nism generates the pooling output based on the weighted

sum of activations [65]. It identifies the important activa-

tion using evaluated rank, hence achieves better perfor-

mance. There are 3 different weighting strategies namely,

rank-based average pooling (RAP), rank-based weighted

pooling (RWP) and rank-based stochastic pooling (RSP) as

proposed by [65] and as shown in Fig. 23. In rank-based

pooling initially, all activations are sorted within the

pooling region in descending order and ranks a(i) are

assigned based on their position. In this, higher ranks are

assigned to lower activations

a ið Þ[ a jð Þ ) r ið Þ\r jð Þ ð17Þ

When two activations have same value, then above

equation is modified as

a ið Þ ¼ a jð Þ ^ i\j ) r ið Þ\r jð Þ ð18Þ

The RAP is regarded as the trade-off between the max

and average pooling. A defined rank threshold eliminates

the near zero activations. The weights of nominated acti-

vations are set to be 1/t, while rests are set as 0. The output

is calculated as

Sj ¼
1

t

X

i2Rj;ri � t

ai ð19Þ

In above equation, Rj is the pooling region selected in jth

feature map with i as index of activation. The ri and ai are

the activations rank. The changes in the value of t are from

unity to pooling size which corresponds to the selection of

max to average pooling. The RAP filters out the negative

activations considering only high responses, hence pre-

serves the important information and improves the dis-

criminating capabilities.

In RWP, each activation is weighted by a coefficient in

the pooling region. It assigns larger weights to more

important and higher activation which significantly

improves the performance. The ranking can be linear as

well as nonlinear function as given by Eq. 20

Fig. 23 Rank-based pooling scheme [65]
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pr ¼ a 1� að Þr�1; r ¼ 1; . . .; n ð20Þ

In above equation, r and n represent the hyperparameter,

rank of activations and size of pooling region. The acti-

vations in each region are weighted by the probability pi

pi ¼
ai

P

k2Rj
ak

ð21Þ

The RSP substitutes the conventional pooling operations

by stochastic procedure [73]. A multinomial distribution

produces the probabilities p and provides the weight to the

activation. The value of a (alpha) reflects the two cases of

RSP, when the reflected value is unity then max pooling

will be selected, otherwise the reflected value less than

unity, stochastic pooling will be selected. The backward

propagation propagates the gradients through the nomi-

nated activations and updates the parameters of nominated

activations, while others are frozen. Experimental results

shows the effectiveness of these pooling on MNIST [19],

CIFAR-10, CIFAR-100 [42] and NORB [16] datasets.

2.4 Transformed domain-based pooling
methods

Pooling operation reduces the spectral variance on the

input features maps. The max pooling is the utmost com-

mon pooling strategy. It helps in reducing spectral variance

by eliminating the variability in the time frequency space.

This variability occurs due speaking charms, channel dis-

tortions, etc. The padding in time and frequency pooling is

effective for deep CNN [74]. The speech processing is

mostly explored in frequency dimensions [75, 76], though

[77] did investigate CNNs with pooling in time, but not

frequency. However, most CNN work in vision performs

pooling in both space and time (i.e., x and y dimensions)

[7]. Heterogeneous pooling [78] provides constrained fre-

quency shift invariance with minimal speech class confu-

sion in the speech spectrogram. It is compared with the

fixed size pooling. The larger pooling size imposes large

invariance in frequency shift, not differentiated with sim-

ilar formant frequencies among the different speech

sounds. The fixed pooling size increases the confusion the

close major formant frequencies.

The pooling size relates a trade-off between the desired

invariance over a range of frequency shift and the unde-

sirable phonetic confusion which appears due to the dis-

tinct phones’ formants within the range. The heterogeneous

pooling uses different pooling size to numerous subclasses

of the full feature maps.

Wavelet pooling [79] The general form of pooling

operations employs a neighborhood approach to subsam-

pling, reminiscent of nearest neighbor interpolation in

image processing. Neighborhood interpolation techniques

perform fast, with simplicity and efficiency, but introduce

artifacts such as edge halos, blurring and aliasing. Mini-

mizing discontinuities in the data are critical to aiding in

network regularization and increasing classification accu-

racy. The wavelet pooling algorithm [79] uses second-level

wavelet decomposition and discards the first-level sub-

bands for reducing the feature dimensions. This approach

forgoes the nearest neighbor interpolation method in favor

of an organic, subband method that more accurately rep-

resents the feature contents with less artifacts. This method

addresses the overfitting issue of max pooling, while

reducing features in a more structurally compact manner

than pooling via neighborhood regions. This method is

compared with max, average, mixed and stochastic pooling

on benchmark image classification datasets such as MNIST

[19], CIFAR-10 [42], Street House View Numbers (SHVN)

and Karolinska Directed Emotional Faces (KDEF).

Experimental results on four benchmark classification

datasets demonstrate that proposed method outperforms or

performs comparatively with methods like max, mean,

mixed and stochastic pooling. After performing the second-

order decomposition, the image feature is extracted using

second-order wavelet subbands. The pooling is done using

inverse DWT.

Spectral pooling [80] reduces the dimensions in fre-

quency domain by truncating the lower frequencies in

power spectrum. It preserves more information per

parameter with same number of parameters [80] than other

pooling methods. The main idea of spectral pooling is that,

it truncates the concentrated lower frequencies in power

spectrum while filtering the high frequencies that acts as

noise, hence lowers the information loss with any arbitrary

output map dimensions. This reduces the feature map

dimensions in slow manner as a function of network depth.

It is achieved by applying discrete Fourier transform (DFT)

on input feature map. It is assumed that the DC component

is present at the center of the domain and truncates the

frequency representation of central H 9 W submatrix of

frequencies. This central submatrix is governed by the

dimensions of output feature map. Finally, the inverse DFT

maps the truncated representation back to the spatial

domain. This can be implemented at a negligible additional

computational cost in CNN that employ Fast Fourier

Transform (FFT); spectral pooling offers the advantage

like it maintains more information and does not suffer from

the sharp reduction in output dimensionality exhibited by

other pooling techniques. It allows flexibility in reducing

the map size gradually as a function of layer. The pooling

approach adopted by [81] uses spectral axis. The spectral

pooling suffers with large amount of computational con-

sumption [82]. The author [82] uses FFT-based convolu-

tion with spectral pooling. The pooling method proposed

by [83] and [84] uses the Hartley transform and discrete

Neural Computing and Applications (2020) 32:879–898 893

123



cosine transform. In all convolutional neural network (All-

CNN) [85], the pooling is replaced with another convolu-

tional layer of equivalent stride and filter size. Another

approach, RNN-based pooling [86], replaces the pooling

operation with a long short-term memory (LSTM) unit,

which is a variant of recurrent neural network (RNN). In

this case, after all the activations in each pooling region

have been scanned sequentially, the final output from RNN

layer is returned as the pooled value.

Recently, a novel architecture is introduced by [87] as

Caps Net overcomes the issue of information loss. The

Caps Net has group of neurons called as capsules. The

outputs from the capsules in one layer are routed to the

capsules in the subsequent layer based upon the assignment

coefficients which are determined from the expectation

maximization algorithm

A novel feature pooling method utilizes the region

structure information adaptively based on different exem-

plars, referred as adaptive region pooling [88]. The adap-

tive region pooling method extracts features that account

for the structure of object parts, which facilitates handling

the large variation of objects. The various pooling methods

used in action recognition are listed in [89–97]. Attentive

pooling approach [98] is compared with single max pool-

ing for drug–drug interaction extraction.

3 Discussion

The convolution operation in CNN detects the different

level features like low, mid and high levels. The pooling

operation reduces the dimensions of such features. The

feature maps of early layers preserve more important

information as compared to later one. The early layer

feature map captures local features, while later layer cap-

tures global features. A larger feature map in the early layer

produces higher accuracy, but requires more memory usage

and computation time. The max pooling in the early stage

and average pooling in later stage would be a better choice

for better results. The rapid early down sampling causes

more information loss; hence, it must be avoided.

The max pooling and average pooling are the two

choices of pooling, but these pooling suffer in certain sit-

uation; hence, variants are evolved by numerous researcher

based on different criteria. These criteria are based on

pooling hyperparameters (stride, filter size), input output

feature map, location of pooling, number of stages, way of

down sampling and random selection based on probability

value. The pooling process in this article reviewed is based

on the value, rank, probability and transformed domain

approach. The down sampling is either sudden or gradual,

and it may use multisampling approach. The sudden way of

down sampling rejects about 75% information, which

vanishes most of important features. The FMP [13] avoids

sudden rejection of spatial information in more gradual

way by introducing a parameters, while its variant BW-

FMP [43] improves the memory consumption and pro-

cessing time by 18% and 13%, at the cost of classification

accuracy.

Another way of down sampling to preserve the features

information are proposed by [54] and [55] as like multi-

sampling process. The multisampling process scales the

spatial resolution of the output feature with benefits of

traditional subsampling layers such as increasing receptive

field and reducing computational costs. The parallel grid

pooling [55] down samples the feature map without dis-

carding any intermediate feature, and these features are

processed in parallel operation.

The average pooling considers all activation with equal

contribution in pooling region. This process downplays the

higher activation values and considers all other activation

also. If average pooling is used at the earlier layers, it will

significantly reduce the accuracy of system, while in upper

layers difference is less severe. The K support spatial

pooling sorts all activation in pooling region in ascending

order and retains first k larger activations. The final degree

of activation is the mean value of the retained k values.

The max and average pooling produce better results for

certain state. Therefore, a proper choice between the max

and average pooling results in better performance under

such state. The mixed pooling [9] defines a parameter

which selects either methods, but it fails in reflecting the

simultaneous advantages of these two methods. The

dynamic correlation pooling selects max, average and

mixed pooling based on the Mahalanobis distance. The Lp

pooling selects between these two pooling method based

on the probability value with improvement in error rate. A

multinomial distribution is used for selecting the non-

maximal activation in stochastic pooling [59, 22]. It offers

the benefits of max pooling, while its stochastic nature

helps in error rate improvement and prevents overfitting.

A probability value decides the average and max pool-

ing by hybrid pooling [66] and mixed gated tree pooling

[69]. The dynamic correlation pooling [26] method uses the

correlation between the adjacent value to decide between

the two methods. A combination of average, max and

average pooling is used by [46]; it is found experimentally

that average–average-max combination achieves faster and

smaller convergence speed and lowermost error rate.

The scale of input may affects the performance, but SP

pooling [8] is designed for such situations, which produces

the fixed size output irrespective of input size. The pooling

such as SP pooling [8], GA pooling [28], concentric circle

pooling [47] and multi-pooling [26] are connected at the

top layer. The GA pooling [28] replaces the FC layer,
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hence reduce the number of parameters, since most of the

parameters of CNN are related to FC layer.

The TI pooling [36] is applied on the top layer before

FC layer. It generates new feature from a predefined set of

possible transformations, which is independent of rotation

and scale of input. TI pooling [36] passes multiple trans-

formed versions of the input separately through the net-

work for transformed instance aggregation with max

pooling operation to achieve transform invariances. It is

computationally efficient but unable to capture higher-

order feature interactions. The higher-order features are

captured by Kernel pooling [40] using Gaussian radial

basis function. The subclass pooling [25] preserves the

high-level spatial information and suppresses occlusions

and other noises. It uses fuzzy max pooling and average

pooling in order to conquer the erratic local features from

obstructed areas. It is found robust to various occlusions in

random patterns.

The use of filtering is another way of preserving the

important features. The LEAP [31] pooling avoids the use

of separate filter for each feature, instead uses shared filter

to reduce number of parameters, while detail preserving

pooling [30] uses inverse bilateral filter for preserving the

important structure details.

The size of pooling region affects the performance, in

few situations small size while larger size does not intro-

duce the larger depth of feature map. The multi-activation

pooling [45] uses the larger pooling kernels (such as 4 9 4,

8 9 8, 16 9 16) with max pooling for accurate classifi-

cation without increasing depth and trainable parameters.

Partial mean pooling [50] and S3Pool [63] use two

stages for pooling in order to improve the discrimination

ability. The PMP [50] method uses intra- and inter-patch

pooling. Intra-patch step captures and filters the position

variance on feature maps, while inter-patch step transforms

it into low dimensions. These features are sorted in

descending order and evaluate the average value of top-

K responses to get the pooling feature. The S3Pool [63]

glides the pooling window over the feature map tailed by

the down sampling which selects single feature.

The rank-based pooling applies the weight to the acti-

vations of feature map and is combined together via a

weighted sum. Multipartite pooling [41] projects the fea-

tures to a new space and then score them by an accumu-

lative bipartite ranking. It selects most informative and

highest scores features using multipartite ranking. The

different rank-based pooling listed in literature are GWRP

[71], RAP, RWP, RSP [65]

The transformed domain approaches use different

domains such as time [77], space [7], frequency [80] and

wavelet domain [79]. The frequency transformed domain-

based pooling filters the higher frequency by truncating the

lower frequency in power spectrum. This transformation is

achieved by using the transforms like DFT [80], FFT [82],

Hartley transform [84] and discrete cosine transform [27].

The wavelet pooling [79] uses second-level wavelet

decomposition and discards the first-level subbands for

reducing the feature dimensions in a more structurally

compact manner.

4 Future scope

In CNN, pooling layer transforms the pooling kernel fea-

ture into most prominent feature which preserves the cru-

cial information. Most of the traditional pooling do not

consider the effect of noise in the pooling kernel. It may

result in undesirable output, since noise value is accumu-

lated and propagated in the subsequent feature maps. The

local features are more affected by the presence of noise.

Further pooling layer ignores the activations related to the

task and precise location of the object. Therefore, pooling

layer should ignore the effects of noise present in the

pooling kernel and extract the task-related information.

This interpretation can be further investigated with due

consideration of three-dimensional CNN and multi-pooling

applications.

5 Conclusion

In CNN, pooling layer transforms the pooling kernel fea-

ture into most prominent feature which preserves the cru-

cial information. The feature maps of early layers preserve

more important information as compared to later one. The

early layer feature map captures most of the local features,

while later layer captures global features. A larger feature

map in the early layer produces higher accuracy, but

requires more memory usage and computation time. The

max pooling in the early stage and average pooling in later

stage would be a better choice for better results. The rapid

early down sampling causes more information loss; hence,

it must be avoided. The value-based pooling methods rely

on the selection of an activation value based on certain

criteria. Most of traditional value-based pooling methods

do not consider the effect of noise in the pooling kernel. It

may result in undesirable output, since noise value is

accumulated and propagated in the subsequent feature

maps. This presence of noise affects most of the local

features in feature map. The transformed domain-based

pooling can easily filter out such noise because of fre-

quency transformation. This method filters the higher fre-

quency (noise) by truncating the lower frequency in power

spectrum. The processing time required for transform-

based pooling may be quite larger as compared to other

pooling methods. This enlarge time is due to the
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transformation from spatial to other and original domain.

Additionally, the rank-based method considers all the

activation with weighted sum; hence, effect of such noise is

diluted with other activations, but it requires more

parameters, memory in the form of weights. The proba-

bility-based methods avoid such computation timing issues

by evaluating the probability of most prominent feature for

further routing. A refinement of probability values at dif-

ferent layer results in better performance.
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