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Abstract
Biomedical image retrieval is a challenging problem due to the varying contrast and size of structures in the images. The

approaches for biomedical image retrieval generally rely on the feature descriptors to characterize the images. The feature

descriptor of query image is compared with the descriptors of images from the database, to find the best matches. Several

hand-crafted feature descriptors have been proposed so far for biomedical image retrieval by exploiting the local rela-

tionship of neighboring image pixels. It is observed in the literature that the local bit-plane decoded features are well suited

for this retrieval task. Moreover, in recent past, it is also observed that the convolutional neural network-based features

such as AlexNet, Vgg16, GoogleNet and ResNet perform well in many computer vision-related tasks. Motivated by the

success of the deep learning-based approaches, this paper proposes a local bit-plane decoding-based AlexNet descriptor

(LBpDAD) for biomedical image retrieval. The proposed LBpDAD is computed by max-fusing the ReLU operated feature

maps of pre-trained AlexNet at a particular layer, obtained from the original and local bit-plane decoded images. The

proposed approach is also compared with Vgg16, GoogleNet and ResNet models. The experiments on the proposed method

over three benchmark biomedical databases of different modalities such as MRI, CT and microscopic show the efficacy of

the proposed descriptor.
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1 Introduction

Computer-based biomedical image analysis techniques

facilitate the medical experts and technicians to improve

their diagnosis of diseases, based on the crucial inputs

suggested by the computer system [49, 53]. The biomedical

image retrieval is one of the fundamental and very chal-

lenging problem for medical and health informatics [28]. In

image retrieval, the best matching image along with its

descriptions is identified from a database against a query

image, based on the content similarity between the query

and database images [19, 52]. In order to measure the

similarity between images, the feature representation plays

an important role [38, 47, 56].

In the past, the local binary pattern (LBP) was very

popular for image representation [35]. Numerous LBP

variants were proposed for addressing challenges in image

retrieval in the past decades due to the huge success and

simplicity of LBP [38]. Some notable LBP variants are
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local ternary pattern (LTP) [55], local derivative pattern

(LDP) [62], local gradient hexa pattern (LGHP) [3], local

directional gradient pattern (LDGP) [4] and local direc-

tional order pattern (LDOP) [11] for face recognition/re-

trieval purposes; local tetra pattern (LTrP) [29] and multi-

channel decoded LBP (mdLBP) [16] for image retrieval;

local intensity order pattern (LIOP) [58] and interleaved

intensity order-based local descriptor (IOLD) [12] for local

image matching; and complete dual-cross pattern (CDCP)

[44], local directional ZigZag pattern (LDZP) [46] and

local jet pattern (LJP) [45] for texture classification. The

LBP-based approaches are also widely used in biomedical

image analysis such as pulmonary emphysema analysis

[51], cell phenotype classification [33], biomedical image

classification [34] and stem cell classification [36]. The

latest developments over the LBP variant descriptors for

biomedical image retrieval include: local mesh pattern

(LMeP) [31], local ternary co-occurrence pattern (LTCoP)

[30], local diagonal extrema pattern (LDEP) [13], local bit-

plane dissimilarity pattern (LBDISP) [17], local bit-plane

decoded pattern (LBDP) [15] and local wavelet pattern

(LWP) [14]. Lan and Zhou have used the compressed

scattering coefficients for medical image retrieval [24]. It is

observed from the literature that the bit-plane decoding-

based descriptor is more suitable for the biomedical image

retrieval task [15]. Thus, in this work, we utilize the bit-

plane decoded information with convolutional neural net-

work (CNN) framework.

During the past few years, the CNN-based methods have

emerged very rapidly. The CNN-based approaches show

better efficacy compared to the hand-designed feature-

based classifications. The first revolutionary work in this

direction was AlexNet architecture by Krizhevsky et al.

[23] for image classification. After AlexNet, various deep

architectures have been proposed such as Vgg16 with deep

network [48], GoogleNet with inception module [54] and

ResNet with residual module [21] for image classification.

The CNN has also proven for other problems such as Faster

R-CNN [43] for object detection, Mask R-CNN [20] for

semantic segmentation, image fusion [22], CNN-ranker

[61] for retrieval and Cross-CNN [59] for multiple

modality data representation. The CNN-based methods are

also proven to be efficient for biomedical image analysis

such as colon cancer recognition [50], cervical cell clas-

sification [63], pneumonia detection [41], multispectral

MR images segmentation [5] and medical image registra-

tion [57].

In order to train the deep CNNs, a huge number of

images are required which may not be collected in many

real-life scenarios. This issue is generally dealt with by

applying the transfer learning with pre-trained models,

trained over some big databases. Researchers have used the

pre-trained CNN models for applications such as content-

based image retrieval [25], remote sensing image retrieval

[18], face retrieval [10], military object recognition [60]

and dumpsters recognition [42]. The CNN models pre-

trained by ImageNet database [9] are also successfully

applied in medical image applications such as mammo-

gram analysis [2], bioimage classification [32] and domain

transfer for biomedical images [37].

Some attempts have been made to utilize the CNN for

biomedical image retrieval. Qayyum et al. [39] used a

eight-layer CNN architecture similar to AlexNet for med-

ical image retrieval. They trained the network over a

database of 7200 images obtained from different sources

and gained a mean average precision of 0.69. Due to lack

of sufficient training images, they could not get very high

performance. Qiu et al. [40] have used the hash code over

‘FC6’ and ‘FC7’ AlexNet features for medical image

retrieval. The retrieval time is reduced in [40] due to binary

feature, but at the cost of degraded performance. Chung

et al. [7] used a deep Siamese CNN (SCNN) for diabetic

retinopathy fundus image retrieval. The retrieval perfor-

mance of SCNN last layer proposed in [7] is quite similar

to the CNN softmax layer. Chowdhury et al. [6] used the

CNN and edge histogram descriptor for radiographic image

retrieval. This approach works in two steps. First, the rel-

evant database classes are computed for a query image

using CNN and then, the hand-crafted edge histogram

descriptor is used to retrieve the images only from the

relevant classes. This approach has combined CNN with

hand-crafted descriptor in sequential fashion. However, in

our proposed approach, the CNN features are computed

over hand-designed feature map and fused with the original

CNN features (i.e., parallel fusion).

Motivated by the suitability of bit-plane decoding

mechanism for biomedical images, the success of CNN in

various challenging problems and the re-usability of the

pre-trained models, we propose local bit-plane decoded

CNN descriptors for biomedical image retrieval. The main

contributions of this paper can be summarized as follows:

• The local bit-plane decoding mechanism is used for

image transformation similar to LBDP [15].

• The pre-trained CNN models such as AlexNet [23],

Vgg16 [48], GoogleNet [54] and ResNet50 [21] are

employed to generate the features.

• The CNN features are generated over raw input image

as well as bit-plane decoded image and combined at the

last representation layers using different fusion

strategies.

The rest of the paper is structured as follows: Section 2

proposes the local bit-plane decoded CNN descriptor;

Sect. 3 presents the experimental setup including retrieval

framework, databases and evaluation criteria; Sect. 4
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reports the experimental results and analysis; and Sect. 5

concludes the paper.

2 Proposed local bit-plane decoded CNN
descriptor

This section illustrates the proposed local bit-plane deco-

ded AlexNet descriptor (LBpDAD) obtained by integrating

the trained AlexNet [23] with local bit-plane decoding

mechanism [15]. The trained weights of AlexNet model1

are used in this paper which is computed over a large-scale

ImageNet database [9]. The proposed method for

biomedical image retrieval is illustrated in Fig. 1. The

input image I of dimension m� n� 3 is passed through the

local bit-plane decoding mechanism proposed in [15] to

generate the local bit-plane decoded map IM as follows:

I
i;j;k
M ¼

X8

b¼1

sign Ii;j;k;Bi;j;k;b
D

� �
� 2b�1 ð1Þ

where i ¼ 2; 3; . . .;m� 1, j ¼ 2; 3; . . .; n� 1, k ¼ 1; 2; 3

represents the kth channel, b ¼ 1; 2; . . .; 8 represents the

bth bit-plane, Ii;j;k is the value at position (i, j, k) in input

image, I
i;j;k
M is the value at position (i, j, k) in the output

image map of local bit-plane decoding, B
i;j;k;b
D is the local

bit-plane decoded decimal value in bth bit-plane for the

center pixel (i, j) in kth channel and the signða; bÞ is given
as,

signða; bÞ ¼
1; if a� b

0; otherwise

�
ð2Þ

The B
i;j;k;b
D is computed as,

B
i;j;k;b
D ¼

X8

n¼1

Bi;j;k;b
n � 2n�1 ð3Þ

where Bi;j;k;b
n is the binary bit in bth bit-plane of kth channel

corresponding to the nth neighbor of Ii;j;k at unit distance in

the direction of ðn� 1Þ � 45� from positive x axis.

Now, the input image I and local bit-plane decoded

image map IM are converted into IA and IMA, respectively,

to satisfy the dimension required from the input image for

the pre-trained AlexNet. The IA and IMA are computed as,

IA ¼ sðI; ½227; 227�Þ ð4Þ

IMA ¼ sðIM ; ½227; 227�Þ ð5Þ

where sðC; ½n; n�Þ is a function to resize any 3D volume C
of dimension .� t� w into the dimension of n� n� w.

The 227� 227 denotes the spatial resolution needed from

the input for AlexNet.

Define Alex as a function of combinations of convolu-

tional, ReLU, max-pooling and fully connected layers,

which returns the features at a particular layer of pre-

trained AlexNet for an input image of dimension

227� 227� 3. The AlexNet features AlexNet and

LBpD Alex are computed for input images IA and IMA,

respectively, at class score layer (‘cs’) as,

AlexNet ¼ ReLUðAlexðIA; csÞÞ ð6Þ

LBpD Alex ¼ ReLUðAlexðIMA; csÞÞ ð7Þ

where ReLU [23] is a function defined as,

ReLUð/vÞ ¼
/v; if /v � 0

0; otherwise

�
ð8Þ

8v ¼ 1; 2; . . .;Dð/Þ, where / represents a feature vector

and Dð/Þ represents the length of feature vector /. The
ReLU operator is basically used in CNN framework to

introduce nonlinearity into convolved features by filtering

the negative values. Note that the ReLU operator over

feature vector is required to remove the negative values as

only nonnegative values are useful in most distance

measures.

The Maximum (‘Max’) fusion technique is used to

combine the AlexNet and LBpD Alex feature vectors into

final LBpDAD descriptor as,

LBpDADv ¼ MðAlexNetv; LBpD AlexvÞ ð9Þ

where LBpDADv, AlexNetv and LBpD Alexv are the vth

elements of LBpDAD, AlexNet and LBpD Alex feature

vectors, respectively, v ¼ 1; 2; . . .;DðAlexNetÞ with

DðAlexNetÞ ¼ DðLBpD AlexÞ and M is a ‘Max’ operator

defined as,

Mða; bÞ ¼
a; if a� b

b; otherwise:

�
ð10Þ

The LBpDADfc7 (i.e., final fused feature vector at ‘fc7’

layer) is computed as,

LBpDADfc7
v ¼ MðAlexNetfc7v ; LBpD Alexfc7v Þ ð11Þ

where LBpDADfc7
v , AlexNetfc7v and LBpD Alexfc7v are the vth

elements of LBpDADfc7, AlexNetfc7 and LBpD Alexfc7

feature vectors, respectively. The AlexNetfc7 and

LBpD Alexfc7 are the feature vectors computed at ‘fc7’

layer for the input images IA and IMA, respectively, as,

AlexNetfc7 ¼ ReLUðAlexðIA; fc7ÞÞ ð12Þ

1 The trained AlexNet weights available in the MATLAB are

considered.
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LBpD Alexfc7 ¼ ReLUðAlexðIMA; fc7ÞÞ ð13Þ

Similarly, the feature fused feature vector at ‘fc6’ layer can

be computed as,

LBpDADfc6
v ¼ MðAlexNetfc6v ; LBpD Alexfc6v Þ ð14Þ

where LBpDADfc6
v , AlexNetfc6v and LBpD Alexfc6v are the vth

elements of LBpDADfc6, AlexNetfc6 and LBpD Alexfc6

feature vectors, respectively. The AlexNetfc6 and

LBpD Alexfc6 are the feature vectors computed at ‘fc6’

layer for the input images IA and IMA respectively as,

AlexNetfc6 ¼ ReLUðAlexðIA; fc6ÞÞ ð15Þ

LBpD Alexfc6 ¼ ReLUðAlexðIMA; fc6ÞÞ: ð16Þ

Note that all the feature descriptors are normalized to make

the unit sum using following formula,

/v ¼
/vPDð/Þ
i¼1 /i

ð17Þ

where / is any feature vector of dimension Dð/Þ. This
normalization makes the descriptors robust against image

resolution variations.

3 Experimental setup

In this section, at first, we present the biomedical image

retrieval framework using proposed descriptor. Then

biomedical databases used for the experiments and finally

the evaluation measures are described.

3.1 Proposed biomedical image retrieval
framework

The biomedical image retrieval framework using proposed

local bit-plane decoded AlexNet descriptor (LBpDAD) is

portrayed in Fig. 2. The feature extraction steps are the

same for both query image and database images. The

image is passed through the pre-trained AlexNet to gen-

erate the direct features. The input image is also converted

into a local bit-plane decoded map which is then passed

through the pre-trained AlexNet to generate the local bit-

plane decoded features. Finally, the direct Alex features

and local bit-plane decoded Alex features are combined

using ‘Max’ fusion strategy to generate the final LBpDAD

descriptor. As the biomedical images are gray scale and

AlexNet requires three-channel input, the same gray scale

channel of our image is copied three times to create the

three-channel input. Once the descriptors are computed for

all images including query and database, the feature

matching is performed by computing the distances between

Fig. 1 Proposed local bit-plane decoded AlexNet descriptor (LBpDAD) by fusing the original AlexNet features with local bit-plane decoded

AlexNet features
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descriptors of query image and database images. Based on

the distances, the top matching images are retrieved from

the database against the given query image. The ‘Chi-

square’ distance measure is adapted in this paper as it has

shown better performance for state-of-the-art descriptors

[14, 15]. However, the performance of proposed LBpDAD

descriptor is also analyzed with other distances such as

‘Euclidean,’ ‘Manhattan,’ ‘Cosine’ and ‘Canberra’ in the

Experiment Section.

3.2 Biomedical databases used

Three biomedical databases of different modalities

including OASIS-MRI [27], TCIA-CT [8] and HeLa-Mi-

croscopic [1] are used in this paper to justify the improved

performance of proposed LBpDAD descriptor in image

retrieval framework. The Open Access Series of Imaging

Studies has released a magnetic resonance imaging data-

base (OASIS-MRI) in public domain for research and

analysis [27]. This database is based on the 421 subjects

from the age-group between 18 and 96 years. The OASIS-

MRI database contains the 176� 208 resolution cross-

sectional images. The database is divided into four cate-

gories similar to [15] having 106, 89, 102 and 124 images.

The different categories of this database represent varying

ventricular shape inside the images. The cancer image

archive (TCIA) is a storage for various cancer location

images in Digital Imaging and Communications in Medi-

cine (DICOM) image format [8]. These images are publicly

accessible for research. We have used the same TCIA-CT

database which is used in [14]. This database has 604

Colo_prone 1.0B30f CT images of the DICOM series

number 1.3.6.1.4.1.9328.50.4.2 of study instance UID

1.3.6.1.4.1.9328.50.4.1 for subject

1.3.6.1.4.1.9328.50.4.0001. The database is divided into

eight categories having 75, 50, 58, 140, 70, 92, 78 and 41

images as per the size and structure of Colo_prone. The

original image size in TCIA-CT database is 512� 512

pixels. We have also used fluorescence microscope images

for the experiment taken from the 2D HeLa database [1].

This database contains total 862 images of HeLa cells from

ten different categories corresponding to 10 different sub-

cellular patterns using fluorescence microscopy.

3.3 Evaluation criteria

The average retrieval precision (ARP), average retrieval

rate (ARR), F-Score and average normalized modified

retrieval rank (ANMRR) are used for the performance

measurement similar to [13–15, 17, 30, 31]. The ARP and

ARR are computed as,

ARP ¼ 1

C

XC

c¼1

MPc ð18Þ

ARR ¼ 1

C

XC

c¼1

MRc ð19Þ

where C is the number of classes in a database, MPc and

MRc are the mean precision and mean recall for cth class

and defined as,

MPc ¼
1

nc

Xnc

i¼1

#CRi

#TR
ð20Þ

MRc ¼
1

nc

Xnc

i¼1

#CRi

#TGc
ð21Þ

where nc is the number of images in cth class, #CRi is the

number of correctly retrieved images, #TR is the total

number of retrieved images, and #TGc is the number of

ground truth images in cth class. The F-Score is calculated

from the ARP and ARR as,

F-Score ¼ 2� ARP� ARR

ARPþ ARR
: ð22Þ

The ANMRR is calculated by following the steps provided

in [26]. Higher values of ARP, ARR and F-Score and lower

value of ANMRR represent better performance.

Fig. 2 The biomedical image

retrieval framework using

proposed LBpDAD features
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4 Results and analysis

This section presents the experimental results, comparison

between the methods and analysis. First, the results of

proposed model are compared with the state-of-the-art

methods and then its performance is analyzed for different

layers, fusion strategies, distance measures and CNN

models.

4.1 Results comparison

In order to express the improved performance of proposed

model, the LBpDADfc6 results are compared with the
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Fig. 3 The retrieval results comparison over OASIS-MRI, TCIA-CT and HeLa databases
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results of state-of-the-art descriptors such as LBP [35], LTP

[55], LDP [62], LTrP [29], LTCoP [30], LMeP [31], LDEP

[13], LBDP [15], LWP [14] and LBDISP [17]. Note that

LBpDADfc6 is used here for comparison, whereas the

comparison between LBpDADfc6, LBpDADfc7 and

LBpDAD descriptors is carried out in the next subsec-

tion. The image retrieval results in terms of the ARP (%),

ARR (%), F-Score (%) and ANMRR (%) by varying the

number of retrieved images are presented in Fig. 3. The

first, second, third and 4th rows contain the ARP, ARR, F-

Score and ANMRR plots, respectively. The first, second

and third columns are dedicated to the results over OASIS-

MRI, TCIA-CT and HeLa databases, respectively. The

Chi-square distance is used for feature matching.

It is observed from the results of Fig. 3a, d, g, j that the

proposed LBpDADfc6 descriptor outperforms the state-of-

the-art descriptors with a big margin. The LBpDADfc6

descriptor is also succeeded on TCIA-CT database and just

beats the best performing LBDP descriptor in terms of all

the evaluation measures (see Fig. 3b, e, h k). Similar

improvement in the results is also observed for HeLa

database as shown in Figs. 3c, f, i, l using the proposed

descriptor as compared to the existing descriptors. The

improved performance of the proposed descriptor may be

due to the following three reasons: (1) The used CNN

features are more discriminative when trained over big

ImageNet database, (2) the local bit-plane decoding

mechanism is better suited for biomedical images, and (3)

the fusion of raw CNN feature and local bit-plane decoded

CNN feature further improves the discriminative power of

the resultant descriptor.

The retrieved images using different methods for the

example query image of OASIS-MRI, TCIA-CT and HeLa

database are shown in Figs. 4, 5 and 6, respectively. In

these figures, the results in first to 11th rows are corre-

sponding to LBP [35], LTP [55], LDP [62], LTrP [29],

LTCoP [30], LMeP [31], LDEP [13], LBDP [15], LWP

[14], LBDISP [17] and proposed LBpDADfc6 descriptors,

respectively. The first column represents the query image.

The third to last columns represent the top ten retrieved

images in decreasing order of similarity against the query

image in first column. The false positive retrieved images

are highlighted in red color rectangles. It can be observed

Fig. 4 The retrieval results from OASIS-MRI database. The first

column represents the query image. The third to last columns

represent the top ten retrieved images in decreasing order of similarity

against the query image in first column. The results in first to 11th

rows are corresponding to LBP [35], LTP [55], LDP [62], LTrP [29],

LTCoP [30], LMeP [31], LDEP [13], LBDP [15], LWP [14], LBDISP

[17] and proposed LBpDADfc6 descriptors, respectively. The false

positive retrieved images are highlighted in red color rectangles
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from these results that the proposed method (last row)

outperforms other methods. The LBpDADfc6 is able to gain

the 100%, 90% and 100% precision over OASIS-MRI

(Fig. 4), TCIA-CT (Fig. 5) and HeLa (Fig. 6) databases,

respectively.

4.2 Performance analysis over different layers

The previous subsection presented a comparative result of

LBpDADfc6 descriptor with the existing descriptors. In this

experiment, the results of proposed descriptor are analyzed

at different layers, i.e., LBpDAD for ‘class score layer,’

LBpDADfc7 for ‘fc7’ layer and LBpDADfc6 for ‘fc6’ layer

(see Fig. 7). Moreover, the results of original AlexNet (i.e.,

AlexNet, AlexNetfc7 and AlexNetfc6 for ‘class score,’ ‘fc7’

and ‘fc6’ layers, respectively) as well as the results of local

bit-plane decoded AlexNet without fusion (i.e.,

LBpD Alex, LBpD Alexfc7 and LBpD Alexfc6 for ‘class

score,’ ‘fc7’ and ‘fc6’ layers, respectively) are also com-

pared in Fig. 7. The results are shown for ARP (first row)

and ANMRR (second row) evaluation metrics over

OASIS-MRI (first column), TCIA-CT (second column) and

HeLa (third column) databases in Fig. 7. It is perceived

across the plots of Fig. 7 that in general, the performance

of fused local bit-plane decoded AlexNet descriptors (i.e.,

LBpDAD, LBpDADfc7 and LBpDADfc6) is better than the

local bit-plane decoded AlexNet descriptors without fusion

(i.e., LBpD Alex, LBpD Alexfc7 and LBpD Alexfc6),

respectively, which in turn better than the original AlexNet

descriptors (i.e., AlexNet, AlexNetfc7 and AlexNetfc6),

respectively. Moreover, the performance gain due to ‘Max’

fusion is very prominent over HeLa database. This obser-

vation also supports that the CNN features extracted over

local bit-plane decoded image are more discriminative

compared to raw CNN features. This is so because the local

bit-plane decoded image is rich with the local relationship

at each bit-plane, whereas both CNN features have the

complementary information due to different input modal-

ities (i.e., raw input image and local bit-plane decoded

input image). It is also discovered from this experiment

that the features of LBpDADfc6 at ‘fc6’ layer are more

discriminative than the features of LBpDADfc7 at ‘fc7’ and

Fig. 5 The retrieval results from TCIA-CT database. The first column

represents the query image. The third to last columns represent the top

ten retrieved images in decreasing order of similarity against the

query image in first column. The results in first to 11th rows are

corresponding to LBP [35], LTP [55], LDP [62], LTrP [29], LTCoP

[30], LMeP [31], LDEP [13], LBDP [15], LWP [14], LBDISP [17] and

proposed LBpDADfc6 descriptors, respectively. The false positive

retrieved images are highlighted in red color rectangles
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LBpDAD at ‘class score’ layers for the OASIS-MRI and

TCIA-CT databases because the later ‘fc7’ and ‘class

score’ layer features are more fitted toward the training

database as compared to the earlier ‘fc6’ layer features.

However, the LBpDADfc7 descriptor at ‘fc7’ layer is best

the performing one on HeLa database due to the presence

of more homogeneous regions in the images.

4.3 Performance analysis using different fusion
strategies

This experiment is done to analyze the effects of different

fusion strategies for combining the features of original

AlexNet and local bit-plane decoded AlexNet. The ARP

(%) values using Maximum (Max), Addition (Add), Pro-

duct (Prod), Absolute Difference (Diff) and Division (Div)

fusion strategies are summarized in Table 1. Note that all

features are passed through the ReLU operator before

fusion. The LBpDAD, LBpDADfc7 and LBpDADfc6

descriptors are used over OASIS-MRI, TCIA-CT and HeLa

databases to validate the results in this experiment. The

number of retrieved images is set to 5 and Chi-square

distance is used in this experiment. The main objective of

the proposed method is to study the effect of feature-level

fusion of hand-crafted and CNN features. There could be

many possible fusion strategies. In experiments, we have

explored some of them. Even though Product ‘Prod’ fusion

technique has performed better in many instances (as

Product of two nonnegative feature vectors is more sparse,

which decreases the effect of inter-class variability over the

final feature vector), it introduces additional computational

overheads. Hence, we have opted for the ‘Max’ fusion

strategy in the remaining experiments.

In order to observe the statistical difference between the

results of different fusion strategies, we conduct the t test

over the results of each pair of fusion strategy. Note that

the higher value of absolute t test represents high vari-

ability between two distributions and vice versa. Moreover,

the positive sign represents the greater values for the cor-

responding distribution against other distribution. We

Fig. 6 The retrieval results from HeLa database. The first column

represents the query image. The third to last columns represent the top

ten retrieved images in decreasing order of similarity against the

query image in first column. The results in first to 11th rows are

corresponding to LBP [35], LTP [55], LDP [62], LTrP [29], LTCoP

[30], LMeP [31], LDEP [13], LBDP [15], LWP [14], LBDISP [17] and

proposed LBpDADfc6 descriptors, respectively. The false positive

retrieved images are highlighted in red color rectangles
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summarize the t test values for the results of Table 1 in

Table 2. It is clear from this table that the overall perfor-

mance using Max fusion is better, as it has positive t test

values as compared to all other fusion strategies. The t test

analysis confirms the choice of using Max fusion strategy

in proposed method. It is also observed that statistically,

the {Max, Add} fusion approaches and {Prod, Diff} fusion

approaches are very similar.

4.4 Performance analysis using different
distance measures

The Chi-square distance measure is used in the previous

results to find the dissimilarity between two images. This

experiment is conducted to analyze the effect of distance

measures over the performance of proposed descriptors.

The Euclidean (Eucld), Manhattan (L1), Cosine (Cosn),

Canberra (Canb) and Chi-square (Chisq) distance mea-

sures are considered for this experiment. The results with

different distance measures in terms of the ARP (%) for 5

retrieved images using LBpDAD, LBpDADfc7 and

LBpDADfc6 descriptors are illustrated in Table 3. The Chi-

square distance is generally used with many hand-crafted

descriptors, as it works well with histograms, whereas the

feature vector of the proposed descriptor is not in the form

of histogram. Though Canberra distance is better to find the

distance between two vectors (not histogram), for fair

Table 1 The results comparison in between Maximum (Max), Addi-

tion (Add), Product (Prod), Absolute Difference (Diff) and Division

(Div) fusion strategies in terms of the ARP values for 5 number of

retrieved images

Method Dataset Max Add Prod Diff Div

LBpDAD OASIS 68.67 69.53 69.72 66.12 63.45

TCIA 98.00 97.88 97.93 98.03 97.77

HeLa 79.43 78.74 78.63 79.48 77.26

LBpDADFC7 OASIS 68.95 68.73 69.37 68.12 66.59

TCIA 98.27 98.25 98.19 98.15 98.23

HeLa 82.21 81.77 80.16 82.14 82.94

LBpDADFC6 OASIS 69.80 69.95 70.10 69.50 67.86

TCIA 98.13 98.16 98.29 98.11 98.12

HeLa 79.62 79.26 77.74 79.91 83.14

The best results are highlighted in bold face
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Fig. 7 The comparison between AlexNet, LBpD Alex and LBpDAD

features taken from ‘Softmax,’ ‘FC7’ and ‘FC6’ layers over OASIS-

MRI, TCIA-CT and HeLa databases using ARP and ANMRR

evaluation measures. Here, AlexNet refers to the features computed

over raw image, LBpD Alex represents the AlexNet features com-

puted over local bit-plane decoded image instead of original image,

and LBpDAD depicts the features obtained after fusing AlexNet and

LBpD Alex using ‘Max’ fusion strategy

Table 2 The t test computed over the results of Table 1

Distance Add Prod Diff Div

Max 0.02 0.08 0.09 0.19

Add 0.06 0.07 0.17

Prod 0.01 0.12

Diff 0.1
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comparison with the state-of-the-art hand-crafted descrip-

tors (i.e., histogram-based features), we have used Chi-

square ‘Chisq’ distance measure in rest of the results of

this paper.

The t test values for the results of Table 3 are shown in

Table 4. It can be seen that the Chi-square distance has the

maximum t test value as compared to all other distances.

The performance of Canberra distance is also close to Chi-

square, as suggested by the smallest t test value between

them. This experiment stamps the choice of Chi-square

distance for the proposed biomedical image retrieval

framework.

4.5 Performance analysis using other CNN
models

In this experiment, we analyze the suitability of proposed

approach with other widely adapted convolutional neural

network (CNN) models such as ‘Vgg16’ [48], ‘GoogleNet’

[54] and ‘ResNet50’ [21]. The pre-trained weights of these

models available in MATLAB are used. The ‘class score’

features of these models are considered in this experiment.

Similar to AlexNet, the original features of these models are

referred as Vgg16, GoogleNet and ResNet50. Similar to

LBpDAD, the local bit-plane decoded CNN descriptors for

‘Vgg16’, ‘GoogleNet’ and ‘ResNet50’ models are denoted

by LBpDVD, LBpDGD and LBpDRD, respectively. The

retrieval results using ARP (%) versus number of retrieved

images are displayed in Fig. 8 for proposed LBpDAD,

LBpDVD, LBpDGD and LBpDRD descriptors correspond-

ing to ‘AlexNet’, ‘Vgg16’, ‘GoogleNet’ and ‘ResNet50’

models, respectively. Note that the feature dimension is

1000 in all these descriptors. The results of local bit-plane

decoded CNN descriptors fused at ‘class score’ layer are

compared with the original CNN features obtained at ‘class

score’ layer in Fig. 8. All the features are passed through

the ReLU operator before use. It is observed through this

experiment that the proposed approach is well suited for

‘AlexNet’, ‘Vgg16’, ‘GoogleNet’ and ‘ResNet’ models

over OASIS-MRI and TCIA-CT databases. In case of HeLa

database, the performance of LBpDAD and LBpDGD fea-

tures is better than the AlexNet and GoogleNet features. In

general, the ‘ResNet50’ is more discriminative than

‘AlexNet’, ‘Vgg16’ and ‘GoogleNet’, because the last

layer features of ‘ResNet50’ are generated through deep

hierarchical transformations.

Table 3 The comparison among Euclidean (Eucld), Manhattan (L1),

Cosine (Cosn), Canberra (Canb) and Chi-square (Chisq) distance

measures in terms of the ARP values for 5 number of retrieved images

Method Dataset Eucld L1 Cosn Canb Chisq

LBpDAD OASIS 68.23 68.63 67.96 68.91 68.67

TCIA 97.69 97.87 97.71 97.98 98.00

HeLa 78.56 78.91 78.59 79.63 79.43

LBpDADFC7 OASIS 69.48 68.65 68.69 67.02 68.95

TCIA 98.19 98.19 98.18 98.30 98.27

HeLa 81.62 82.18 81.04 80.75 82.21

LBpDADFC6 OASIS 69.20 69.34 69.68 68.68 69.80

TCIA 98.09 98.15 98.06 98.28 98.13

HeLa 74.75 79.78 77.16 83.29 79.62

The best results are highlighted by bold style

Table 4 The t test computed over the results of Table 3

Distance L1 Cosn Canb Chisq

Eucld - 0.15 - 0.03 - 0.18 - 0.19

L1 0.12 - 0.03 - 0.04

Cosn - 0.15 - 0.16

Canb - 0.01
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Fig. 8 The results in terms of the ARP versus number of retrieved

images by applying the proposed architecture over AlexNet [23],

VGG16 [48], GoogleNet [54] and ResNet50 [21] models. Here,

AlexNet, VGG16, GoogleNet and ResNet50 represent the features

obtained by applying ReLU over ‘softmax’ layer. The LBpDAD,

LBpDVD, LBpDGD and LBpDRD refer to the features obtained by

applying ReLU over ‘softmax’ layer in the proposed architecture

corresponding to the AlexNet, VGG16, GoogleNet and ResNet50

models
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5 Conclusion

A local bit-plane decoding and convolutional neural net-

work-based (CNN) architecture is proposed to produce the

image descriptors in this paper. The introduced approach

fuses the features at a particular layer of CNN using

maximum fusion strategy. The two feature vectors are

computed from the raw image and local bit-plane decoded

map image. All features are operated by ReLU operator

before fusion. The proposed LBpDAD descriptor corre-

sponding to the ‘AlexNet’ model is tested in image

retrieval framework over three biomedical databases of

different modalities. It is noted that the proposed descriptor

outperforms the state-of-the-art biomedical image

descriptors. It is also investigated that the performance at

‘FC6’ layer is generally better than ‘FC7’ and ‘class score’

layers. Moreover, the performance of fused features is

better than the individual features. Another observation

points out that the ‘Product’-based fusion strategy is more

suitable in the proposed architecture. As per experimental

results using different distances, the ‘Canberra’ distance

measure is more appropriate. A favorable observation is

made with respect to the proposed architecture with dif-

ferent CNNs such as ‘AlexNet,’ ‘Vgg16,’ ‘GoogleNet’ and

‘ResNet50’. The experiments and analysis support the

proposed local bit-plane decoding-based CNN descriptor in

terms of improved retrieval performance over biomedical

images.
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