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Abstract
The recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe uncertainty and

vagueness, and Hamy mean (HM) has a significant advantage of capturing the interrelationship among aggregated

arguments. In order to take full advantage of q-ROFS and HM, and consider the interactions between membership and non-

membership degrees at the same time, in this paper, we propose a family of q-rung orthopair fuzzy Hamy mean operators

based on interaction operations. First, we define interaction operational rules for q-rung orthopair fuzzy numbers. Based on

the new operational rules, q-rung orthopair fuzzy interaction HM and q-rung orthopair fuzzy interaction weighted HM

operators are proposed. Further, we propose a dual Hamy mean (DHM) operator and extend it to accommodate q-rung

orthopair fuzzy environment. Based on interaction operational rules and DHM, q-rung orthopair fuzzy interaction DHM

operator and its weighted form are also developed. Then, a novel multi-attribute group decision-making approach based on

proposed operators is introduced. Finally, a numerical instance, as well as some comparative analyses, is provided to

illustrate the validity and advantages of the new approach.

Keywords q-Rung orthopair fuzzy set � Hamy mean � q-Rung orthopair fuzzy interaction Hamy mean � Multi-attribute

group decision-making

1 Introduction

MAGDM plays an important role in modern decision sci-

ence, and it has been widely used in economics, manage-

ment and the other fields in recent years. Its essence is the

process of ranking the alternatives and selecting an optimal

scheme among a set of alternatives with respect to a list of

attribute values. Thus, how to effectively aggregate attri-

bute values is a core issue of any MAGDM methods. On

the other hand, due to the subjective nature of human

thinking in real decision-making problems, decision mak-

ers’ evaluations over alternatives are always imprecise and

fuzzy. To deal with this kind of uncertainty or imprecise-

ness, Yager [1] introduced a new tool, called Pythagorean

fuzzy set (PFS), characterized by a membership degree and

a non-membership degree. Compared with Atanassov’s

intuitionistic fuzzy set (IFS) [2], the lax constraint of PFS

that the square sum of membership and non-membership

degrees is less than or equal to one provides decision

makers more freedom to express their assessments. Due to

its higher capacity of modeling the fuzziness of informa-

tion, quite a few of achievements on PFS have been done,

such as correlation coefficients between Pythagorean fuzzy

numbers (PFNs) [4], similarity measures between PFNs

[5–7], distance measures between PFNs [8, 9], TOPSIS and

TODIM approaches [10–12], combination of PFNs and

other fuzzy sets [13–15] and future directions [16]. In

addition, more scholars have focused on Pythagorean fuzzy

MAGDM methods based on aggregation operators. For

instance, Ma and Xu [17] proposed symmetric Pythagorean

fuzzy weighted geometric and averaging operators. Garg

[18, 19] and Ragman et al. [20] introduced some Pytha-

gorean fuzzy Einstein operational laws and then proposed

some new Pythagorean fuzzy Einstein aggregation opera-

tors. Considering these aggregation operators do not take
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into account the interaction between membership and non-

membership degrees of PFNs, Wei [21] and Gao et al. [22]

proposed Pythagorean fuzzy interaction aggregation oper-

ators. To capture the interrelationship between PFNs,

Liang et al. [23, 24], Zhang et al. [25], Wei and Lu [26],

Qin [27], Yang and Pang [28] extended some existing

operators, such as Bonferroni mean (BM), Maclaurin

symmetry mean (MSM) and generalized Maclaurin sym-

metry mean to PFSs.

Recently, Yager [29] generalized IFS and PFS and

proposed the concept of q-ROFS. The constraint of q-

ROFS is that the sum of the qth power of membership

degree and the qth power of non-membership degree is less

than or equal to one. Evidently, the larger the rung q, the

more orthopairs satisfy the bounding constraint and thus

the larger the fuzzy information space that can be expres-

sed by q-ROFSs. This feature makes q-ROFSs more

powerful and useful than IFS and PFS in the aspect of

dealing with vagueness and fuzzy information. For

instance, a decision maker provides 0.9 and 0.7 as the

membership and non-membership degrees, respectively.

Given 0.9 ? 0.7[ 1 and 0.92 ? 0.72[ 1, the evaluation

attribute value (0.9, 0.7) cannot be expressed by IFSs and

PFSs. In this case, when q = 4, we can get 0.94 ? 0.74\ 1

and the evaluation value of attributes can be expressed by

q-ROFSs. Therefore, by adjusting the value of parameter q,

q-ROFSs allow decision makers to independently assign

values to membership degree and non-membership degree.

Based on these advantages of q-ROFSs, Liu and Wang

[30], Liu and Liu [31], and Wei [32] successively extended

existing operators, such as arithmetic and geometric oper-

ators, BM operator and Heronian mean to the q-ROFSs.

Meanwhile, Peng et al. [33] proposed a new exponential

operational law on q-ROFNs and then applied it to derive

the q-rung orthopair fuzzy weighted exponential aggrega-

tion operator. Liu et al. [34] propose a new method based

on the q-rung orthopair fuzzy extended Bonferroni mean

(q-ROFEBM) operator and entropy measure for dealing

with heterogeneous relationships among attributes and

unknown attribute weight information.

However, owing to the increased complications of

modern decision-making problems, the following

MAGDM issues should be considered. (1) The aforemen-

tioned q-rung orthopair fuzzy aggregation operators are

based on the algebraic operational rules proposed by Liu

and Wang [30]. Nevertheless, the traditional algebraic

operational rules of q-ROFNs proposed by Liu and Wang

[30] do not consider the interaction between membership

and non-membership degrees. For instance, let ai = (ui, vi),

(i = 1, 2,…, n) be a collection of q-ROFNs. If ak = (uk, 0),

and uk 6¼ 0, then by traditional algebraic operational rules

[30], we derive uai�ak ¼ 0, which means the non-mem-

bership degrees of the product result of uai and uak will

always be zero if vk ¼ 0. Moreover, all the aggregation

operators for q-ROFNs based on the algebraic operational

rules are also unsuitable for all the circumstances. Taking

the q-ROFWA(a1, a2,…, an) operator in the literature [30]

as an example, we will get vq�ROFWAða1;a2;...;anÞ ¼ 0 if vk ¼
0: Obviously, vai i ¼ 1; 2; . . .; n; i 6¼ kð Þ will have no influ-

ence of the final aggregation results, which is somewhat

counterintuitive. Therefore, there is need to improve the

operational laws of q-ROFNs. (2) In most decision-making

problems, some of the attributes are often correlated so that

the interrelationships among them should be taken into

account. An issue with Liu’s [31] and Wei’s [32] operators

is that they can only consider the interrelationship between

any two arguments. Thus, we should pay attention to the

aggregation technologies that can account for the interre-

lationships among multiple attributes.

Obviously, the interaction operational laws proposed by

He et al. [35, 36] can address the first issue mentioned above

by considering the interactions between membership and

non-membership degrees. Therefore, we first develop new

interaction operational laws of q-ROFNs. For the second

issue, we note that the Hamy mean (HM) introduced by

Hara et al. [37] is an effective information aggregation

technology. Compared with the Bonferroni mean (BM) and

Heronian mean [38, 39], HM is more powerful and useful as

it takes into account of the interrelationships among multiple

arguments. In addition, Qin [40], Liu and You [41] point out

that HM can be regarded as an extension of MSM from the

perspective of mathematical structure. Hence, we use HM to

aggregate q-rung orthopair fuzzy information. Based on the

above comprehensive analysis, the goal of this paper is to

develop q-rung orthopair fuzzy aggregation operators by

combining HM operators with interaction operational laws

and then apply them to solve MAGDM problems. Therefore,

we propose q-rung orthopair fuzzy interaction weighted

Hamy mean operators and its dual form and develop a new

MAGDM method under the q-rung orthopair fuzzy envi-

ronment to deal with the complex MAGDM problems

mentioned above.

The main contributions of this paper are three aspects.

First, interaction operational rules of q-ROFNs are pro-

vided. The proposed operational rules take the interaction

among membership and non-membership degrees into

account. Thus, they can reasonably handle situations in

which the membership or non-membership degrees equal

to zero values and exhibit more powerfulness and flexi-

bility than existing operational rules of q-ROFNs. Second,

novel q-rung orthopair fuzzy aggregation operators are

proposed. More concretely, we not only propose q-rung

orthopair fuzzy interaction Hamy mean operator but also

propose DHM and extend it to q-ROFSs. The proposed

operators not only take the interaction among membership

7466 Neural Computing and Applications (2020) 32:7465–7488

123



and non-membership degrees and the interrelationship

among multiple aggregated q-ROFNs into consideration,

but also demonstrate high generality than exiting q-rung

orthopair fuzzy aggregation operators. Third, a novel

approach to MAGDM with q-rung orthopair fuzzy infor-

mation is proposed. Compared with the existing MAGDM

methods, the novel method has wider and more flexible

applicable scope.

The rest of this paper is organized as follows. Section 3

briefly recalls basic concepts of the q-ROFS and HM and

then proposes interaction operational laws on q-ROFNs and

the dual form of HM in Sect. 4. In Sect. 4, we develop new q-

rung orthopair fuzzy aggregation operators, such as the q-

ROFIHM operator and the q-ROFIWHM operator. In

Sect. 5, we further develop the q-ROFIDHM and the q-

ROFIWDHM operators. In Sect. 6, we introduce a novel

approach to MAGDM problems based on the proposed

operators. In Sects. 7 and 8, a numerical example is provided

to show the validity and advantages of the proposed method.

2 Preliminaries

In this section, we introduce basic concepts, such as q-

ROFS, operational laws on q-ROFNs, HM and DHM.

2.1 q-Rung orthopair fuzzy set and improved
operational rules

Definition 1 [29] Let X be an ordinary fixed set, a q-ROFS

A defined on X is given by

A ¼ x; lA xð Þ; vA xð Þh i x 2 Xjf g; ð1Þ

where lA xð Þ and vA xð Þ represent the membership degree

and non-membership degree, respectively, satisfying

lA xð Þ 2 0; 1½ �, vA xð Þ 2 0; 1½ � and 0� lA xð ÞqþvA xð Þq � 1,

q� 1ð Þ. The indeterminacy degree is defined as

pA xð Þ ¼ lA xð Þqþð vA xð Þq�lA xð ÞqvA xð ÞqÞ1=q: For conve-

nience, lA xð Þ; vA xð Þð Þ is called a q-ROFN by Liu and

Wang [30], which can be denoted by A ¼ lA; vAð Þ.

Liu and Wang [30] also proposed operational laws for q-

ROFNs as follows.

Definition 2 [30] Let a ¼ l; vð Þ;a1 ¼ l1; v1ð Þ, and a2 ¼
l2; v2ð Þ be three q-ROFNs, and k be a positive real number,

then

1. a2 � a2 ¼ u
q
1 þ u

q
2 � u

q
1u

q
2

� �1=q
; v1v2

� �

2. a2 	 a2 ¼ l1l2; v
q
1 þ v

q
2 � v

q
1v

q
2

� �1=q� �

3: ka ¼ 1� 1� lqð Þk
� �1=q

; vk
� �

4: ak ¼ lk; 1� 1� vqð Þk
� �1=q� �

However, the above operational laws do not consider

some special cases. For instance, let a1 ¼ l1; v1ð Þ and a2 ¼
l2; v2ð Þ be two q-ROFNs, if v1 ¼ 0 and v2 6¼ 0 or v1 6¼ 0

and v2 ¼ 0, according the above operational laws, the non-

membership of the addition of a1 and a2 is zero. Obviously,

if one of the non-memberships is zero, then the result of

non-membership of addition will be zero no matter what

other values are. In order to overcome this situation, we

define new operational laws for q-ROFNs that are shown as

follows.

Definition 3 Let a ¼ l; vð Þ,a1 ¼ l1; v1ð Þ and a2 ¼
l2; v2ð Þ be any three q-ROFNs and k be a positive real

number, then interaction operational laws on q-ROFNs are

defined as:

1. a1 � a2 ¼
D

1� 1� lq1
� �

1� lq2
� �� �1=q

; 1� lq1
� �

1�ð
�

lq2Þ � 1� lq1 � v
q
1

� �
1� lq2�
�

v
q
2ÞÞ

1=q
E
:

2. a1 	 a2 ¼
D

1� v
q
1

� �
1� v

q
2

� �
� 1� lq1 � v

q
1

� �
1�ð

�

lq2 � v
q
2ÞÞ

1=q; 1� 1� v
q
1

� �
1� v

q
2

� �� �1=qE
:

3. ka ¼
�

1� 1� lqð Þk
� �1=q

; 1� lqð Þk� 1� lq�ð
�

vqÞkÞ1=q
	
:

4. ak ¼
�

1� vqð Þk� 1� lq � vqð Þk
� �1=q

; 1� 1�ðð

vqÞkÞ1=q
	
:

To compare two q-ROFNs, Liu and Wang [30] proposed

a comparison method for q-ROFNs.

Definition 4 [30] Let a ¼ l; vð Þ be a q-ROFN, then the

score function of a is defined as S að Þ ¼ lq � vq, and the

accuracy of a is defined as H að Þ ¼ lq þ vq. For any two q-

ROFNs, a1 ¼ l1; v1ð Þ and a2 ¼ l2; v2ð Þ. Then

1. If S a1ð Þ[ S a2ð Þ, then a1 [ a2;

2. If S a1ð Þ ¼ S a2ð Þ, then

If H a1ð Þ[H a2ð Þ, then a1 [ a2;

If H a1ð Þ ¼ H a2ð Þ, then a1 ¼ a2.
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3 Hamy mean and dual Hamy mean

Hamy mean (HM) was firstly proposed by Hara et al. [37]

for crisp numbers. It can consider the interrelationships

among arguments.

Definition 5 [37] Let aiði ¼ 1; 2; . . .; nÞ be a collection of

crisp numbers, and k ¼ 1; 2; . . .; n, if

HM kð Þ a1; a2; . . .; anð Þ ¼
P

1� i1\���\in

Qk
j¼1 aij

� �1=k

Ck
n

ð2Þ

then HM kð Þ is called the Hamy mean, where i1; i2; . . .; ikð Þ
traversal all the k-tuple combinations of 1; 2; . . .; nð Þ and Ck

n

is the binomial coefficient.

From Eq. (2), it is clear that the HM satisfies the

following properties:

1. HM kð Þ 0; 0; . . .; 0ð Þ ¼ 0

2. HM kð Þ a; a; . . .; að Þ ¼ a

3. HM kð Þ a1; a2; . . .; anð Þ�HM kð Þ b1; b2; . . .; bnð Þ, if ai � bi
for all i

4. mini aið Þ�HM kð Þ a1; a2; . . .; anð Þ�maxi aið Þ

From the above properties, we know the HM is a Schur-

convex and monotonic function when aggregating numer-

ical information. Based on the theory of majorization, there

exists a dual form of the HM such that it satisfies Schur

convexity and monotonic as well. Therefore, we propose

the DHM as follows:

Definition 6 Let ai ¼ ui; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of crisp numbers, and k ¼ 1; 2; . . .; n, if

DHM kð Þ a1; a2; . . .; anð Þ ¼
Y

1� i1\���\ik � n

Pk
j¼1 aij

k

 !1=Ck
n

ð3Þ

then DHM kð Þ is called the dual Hamy mean, where

i1; i2; . . .; ikð Þ traversal all the k-tuple combinations of

1; 2; . . .; nð Þ and Ck
n is the binomial coefficient.

In particular, if k = 1, based on the definition of DHM,

the DHM reduces to the geometric mean as follows:

DHM 1ð Þ a1; a2; . . .; anð Þ ¼
Y

1� i1 � n

ai10

 !1=n

ð4Þ

if k = n, based on the definition of DHM, the DHM reduces

to the arithmetic operator as follows:

DHM nð Þ a1; a2; . . .; anð Þ ¼
P

1� i1\n ai10

n
ð5Þ

Moreover, it is easy to prove that the DHM operator

satisfies the following properties:

1. DHM kð Þ 0; 0; . . .; 0ð Þ ¼ 0

2. DHM kð Þ a; a; . . .; að Þ ¼ a

3. DHM kð Þ a1; a2; . . .; anð Þ�DHM kð Þ b1; b2; . . .; bnð Þ, i.e.,

DHM is monotonic, if ai � bi for all i

4. mini aið Þ�DHM kð Þ a1; a2; . . .; anð Þ�maxi aið Þ

4 q-Rung orthopair fuzzy interaction Hamy
mean aggregation operators

In this section, based on interaction operational laws of q-

ROFNs, we extend the HM to q-rung orthopair fuzzy

environment and propose a q-rung orthopair fuzzy inter-

action Hamy mean (q-ROFIHM) operator and its weight

form (q-ROFIWHM).

4.1 q-ROFIHM operator

Definition 7 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs, and k ¼ 1; 2; . . .; n, then the q-ROFIHM

operator is defined as

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼
�1� i1\���\ik � n 	k

j¼1 aij

� �1=k

Ck
n

ð6Þ

where i1; i2; . . .; ikð Þ traversal all the k-tuple combinations

of 1; 2; . . .; nð Þ and Ck
n is the binomial coefficient.

Based on the new operational rules for q-ROFNs in

Sect. 2, the following theorem can be obtained.

Theorem 1 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs, and k ¼ 1; 2; . . .; n, then the aggregated

value by the q-ROFIHM operator is still a q-ROFN and
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Proof According to the operations for q-ROFNs, we can

get

	
k

j¼1
aij

¼
Yk

j¼1

1� v
q
ij

� �
�
Yk

j¼1

1� lqij � v
q
ij

� �
 !1=q

; 1�
Yk

j¼1

1� v
q
ij

� �
 !1=q

0

@

1

A

	
k

j¼1
aij

� �1=k

¼
Yk

j¼1

1� v
q
ij

� �1=k
�
Yk

j¼1

1� lqij � v
q
ij

� �1=k
 !1=q

;

0

@

1�
Yk

j¼1

1� v
q
ij

� �1=k
 !1=q

1

A

Then �
1� i1\���\ik � n

	
k

j¼1
aij

� �1=k

¼
  

1�
Y

1� i1\���\ik � n

1 �
Qk

j¼1

1 � v
q
ij

� �1=k
þ
Qk

j¼1

1 � lqij � v
q
ij

� �1=k
 !!1=q

;

Q

1� i1\���\ik�n

1�
Qk

j¼1

1� v
q
ij

� �1=k
þ
Qk

j¼1

1�lqij � v
q
ij

� �1=k
 ! 

�
Q

1� i1\���\ik�n

 
Qk

j¼1

�
1�lqij� v

q
ij

�1=k
!!1=q!

Subsequently, we have

�1� i1\���\ik�n 	
k

j¼1
aij

� �1=k

Ck
n

¼

1�
Y

1� i1\���\ik�n
1�
Yk

j¼1
1�v

q
ij

� �1=k
þ
Yk

j¼1

1�lqij �v
q
ij

� �1=k
 ! !1=Ck

n

0

@

1

A

1=q*

Y

1� i1\���\ik�n

1�
Yn

j¼1

1�v
q
ij

� �1=k
þ
Yk

j¼1

1�lqij �v
q
ij

� �1=k
 ! !1=Ck

n

0

@

�
Y

1� i1\���\ik�n

Yk

j¼1

1�lqij �v
q
ij

� �1=k
 ! !1=Ck

n

1

A

1=q+

According to the above process, Eq. (7) is kept.

(2) In the following, we prove that Eq. (7) is a q-ROFN.

It needs to meet two conditions:

i. 0� l� 1; 0� v� 1;

ii. 0� lq þ vq � 1:

Let

l ¼ 1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �1=k
   

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

1

A

1=q

v ¼
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �1=k
þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

0

@

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

1

A

1=q

We prove the condition (1) as follows:

We know

li 2 0; 1½ �; vi 2 0; 1½ �; and 0� lqi þ mqi � 1:

So we have

0�
Yk

j¼1

1� mqið Þ1=k � 1; and 0�
Yk

j¼1

1� lqi � mqið Þ1=k � 1:

Then

0� 1�
Yk

j¼1

1� v
q
ij

� �1=k
þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
� 1:

And

0�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �1=k
  

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

� 1:

We get

0� l ¼ 1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �1=k
   

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

1

A

1=q

� 1:

q� ROFIHM kð Þ a1; a2; . . .; anð Þ ¼ 1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �1=k
þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

0

@

1

A

1=q*

;

Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �1=k
þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

0

@

1

A

1=q+
ð7Þ
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So far, 0� l� 1 is proved. Similarly, we have 0� v� 1:
And then, we will prove the condition (2):

lq þ vq ¼ 1�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

:

We have proved that 0�
Qn

j¼1 1� lqi � mqið Þ1=k � 1:

So 0� 1�
�
Q

1� i1\���\ik � n

�
Qk

j¼1 1� lqij �
�

v
q
ij

�1=k=k��1=Ck
n

� 1:

So far, 0� lq þ vq � 1 holds, too, which means the

aggregated value obtained by the q-ROFIHM operator is

also a q-ROFN. Therefore, the proof of Theorem 1 is

complete. h

Example 1 Let a1 ¼ 0:9; 0:3ð Þ; a2 ¼ 0:7; 0:6ð Þ; a3 ¼
0:6; 0:8ð Þ be three q-ROFNs, then we utilize the q-

ROFIHM operator (suppose k = 2) to aggregate them and

get a comprehensive value. Steps are shown as follows:

In the following, we present desirable properties of the

q-ROFIHM operator.

Theorem 2 (Idempotency). Let ai ¼ li; við Þði ¼
1; 2; . . .; nÞ be a collection of q-ROFNs, if all the q-ROFNs

are equal, i.e., ai ¼ a for all i, then

q� ROFIHM kð Þ a1; a2; . . .; anð Þ ¼ a: ð8Þ

Proof Since ai ¼ a for all i, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼
�1� i1\���\ik � n 	k

j¼1 aij

� �1=k

Ck
n

¼
�1� i1\���\ik � n 	k

j¼1 a
� �1=k

Ck
n

¼
�1� i1\���\ik � n ak

� �1=k

Ck
n

¼ 1

Ck
n

Ck
na ¼ a:

h

Theorem 3 (Commutativity) Let ai ¼ li; við Þði ¼
1; 2; . . .; nÞ be a collection of q-ROFNs, and ~a1; ~a2; . . .; ~anð Þ
is any permutation of a1; a2; . . .; anð Þ; then

q� ROFIHM kð Þ a1; a2; . . .; anð Þ
¼ q� ROFIHM kð Þ ~a1; ~a2; . . .; ~anð Þ ð9Þ

Proof Since ai ¼ a for all i, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ ¼
�1� i1\���\ik � n 	k

j¼1 aij

� �1=k

Ck
n

¼
�1� i1\���\ik � n 	k

j¼1 ~aij

� �1=k

Ck
n

¼ q� ROFIHM kð Þ ~a1; ~a2; . . .; ~anð Þ:

h

q� ROFIHMðkÞ a1; a2; a3ð Þ ¼
�1� i1\���\ik � n 	k

j¼1 aij

� �1=k

Ck
n

¼ 1�

1� 1� 0:33
� �1=2� 1� 0:63

� �1=2þ 1� 0:93 � 0:33
� �1=2� 1� 0:73 � 0:63

� �1=2� �

� 1� 1� 0:33
� �1=2� 1� 0:83

� �1=2þ 1� 0:93 � 0:33
� �1=2� 1� 0:63 � 0:83

� �1=2� �

� 1� 1� 0:63
� �1=2� 1� 0:83

� �1=2þ 1� 0:73 � 0:63
� �1=2� 1� 0:63 � 0:83

� �1=2� �

0

BBBBB@

1

CCCCCA

1=C2
3

0

BBBBBB@

1

CCCCCCA

1=3

;

*

1� 1� 0:33
� �1=2� 1� 0:63

� �1=2þ 1� 0:93 � 0:33
� �1=2� 1� 0:73 � 0:63

� �1=2� �

� 1� 1� 0:33
� �1=2� 1� 0:83

� �1=2þ 1� 0:93 � 0:33
� �1=2� 1� 0:63 � 0:83

� �1=2� �

� 1� 1� 0:63
� �1=2� 1� 0:83

� �1=2þ 1� 0:73 � 0:63
� �1=2� 1� 0:63 � 0:83

� �1=2� �

0

BBBBB@

1

CCCCCA

1=C2
3

0

BBBBBB@

� 1� 0:93 � 0:33
� �

� 1� 0:73 � 0:63
� �

� 1� 0:63 � 0:83
� �� �� �1=C2

3

�1=3
+

¼ 0:7530; 0:6422ð Þ
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By assigning different values to the parameters k and q,

special cases can be obtained accordingly.

Case 1 if k = 1, based on the definition of q-ROFIHM

operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ ¼
�1� i1 � n 	1

j¼1 aij

� �1=1

n

¼ 1�
Y

1� i1 � n

1�
Y1

j¼1

1� v
q
ij

� �
þ
Y1

j¼1

1� lqij � v
q
ij

� �
 ! !1=n

0

@

1

A

1=q

;

*

Y

1� i1\���\ik � n

1�
Y1

j¼1

1� v
q
ij

� �1=1
þ
Y1

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=n

0

@

�
Y

1� i1\���\ik � n

Y1

j¼1

1� lqij � v
q
ij

� �1=1
 ! !1=n

1

A

1=q+

¼ 1�
Y

1� i1 � n

1� lqi1
� �

 !1=n
0

@

1

A

1=q*

;

Y

1� i1 � n

1� lqi1
� �

 !1=n

�
Y

1� i1 � n

1� lqi1 � v
q
i1

� �
 !1=n

0

@

1

A

1=q+

¼ �1� i1\n ai1‘
n

¼�n
i¼1 ai‘
n

¼ q� ROFIA kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIHM operator reduces to the q-

rung orthopair fuzzy interaction averaging (q-ROFIA)

operator.

Case 2 if k = n, based on the definition of q-ROFIHM

operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼ 1�
Y

1� i1\���\in � n

1�
Yn

j¼1

1� v
q
ij

� �1=n
þ
Yn

j¼1

1� lqij � v
q
ij

� �1=n
 ! ! !1=q*

;

Y

1� i1\���\ik � n

1�
Yn

j¼1

1� v
q
ij

� �1=n
þ
Yn

j¼1

1� lqij � v
q
ij

� �1=n
 ! ! 

�
Y

1� i1\���\in � n

Yn

j¼1

1� lqij � v
q
ij

� �1=n
 ! !!1=q+

¼ 1� 1�
Yn

j¼1

1� v
q
ij

� �1=n
þ
Yn

j¼1

1� lqij � v
q
ij

� �1=n
 ! !1=q*

;

1�
Yn

j¼1

1� v
q
ij

� �1=n
þ
Yn

j¼1

1� lqij � v
q
ij

� �1=n
�
Yn

j¼1

1� lqij � v
q
ij

� �1=n
 !1=q

i

¼
Yn

j¼1

1� v
q
ij

� �1=n
�
Yn

j¼1

1� lqij � v
q
ij

� �1=n
 !1=q*

; 1�
Yn

j¼1

1� v
q
ij

� �1=n
 !1=q+

¼
�1� i1\���\in � n 	n

j¼1 aij

� �1=n

Cn
n

¼ 	n
i¼1 ai

� �1=n¼ q� ROFIG kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIHM operator reduces to the q-

rung orthopair fuzzy interaction geometric (q-ROFIG)

operator.

Case 3 if q = 1, based on the definition of q-ROFIHM

operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼ 1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� vij
� �1=k

  *

þ
Yk

j¼1

1� lij � vij

� �1=k
!!1=Ck

n

;

Y

1� i1\���\ik � n

1�
Yk

j¼1

1� vij
� �1=k

  

þ
Yk

j¼1

1� lij � vij

� �1=k
!!1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lij � vij

� �1=k
 ! !1=Ck

n
+

In this case, the q-ROFIHM operator reduces to the

intuitionistic fuzzy interaction Hamy mean (IFIHM)

operator.

Case 4 if q = 2, based on the definition of q-ROFIHM

operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v2ij

� �1=k
þ
Yk

j¼1

1� l2ij � v2ij

� �1=k
 ! !1=Ck

n

vuuut
*

;



Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v2ij

� �1=k
þ
Yk

j¼1

1� l2ij � v2ij

� �1=k
 ! !1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� l2ij � v2ij

� �1=k
 ! !1=Ck

n

vuuut
+
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In this case, the q-ROFIHM operator reduces to the

Pythagorean fuzzy interaction Hamy mean (PFIHM)

operator.

Case 5 if k = 1, q = 1, based on the definition of q-

ROFIHM operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼ 1�
Y

1� i1 � n

1� li1

� �1=n
*

;
Y

1� i1 � n

1� li1

� �1=n
�

Y

1� i1 � n

1� li1 � vi1

� �1=n
+

In this case, the q-ROFIHM operator reduces to the

intuitionistic fuzzy weighted interaction geometric

(IFWIG) operator.

Case 6 if k = n, q = 1, based on the definition of q-

ROFIHM operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼
Y

1� i1 � n

1� vi1

� �1=n
�

Y

1� i1 � n

1� li1 � vi1

� �1=n
;

*

1�
Y

1� i1 � n

1� vi1

� �1=n
+

¼ IFWGIA kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIHM operator reduces to the

intuitionistic fuzzy weighted geometric interaction averag-

ing (IFWGIA) operator defined by He et al. [35].

Case 7 if k = 1, q = 2, based on the definition of q-

ROFIHM operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Yn

j¼1

1� l2ij

� �1=n
vuut

*

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

j¼1

1� l2ij

� �1=n
�
Yn

j¼1

1� l2ij � v2ij

� �1=n
vuut

+

¼ PFIWA kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIHM operator reduces to the

Pythagorean fuzzy interaction weighted averaging

(PFIWA) operator defined by Wei [21].

Case 8 if k = n, q = 2, based on the definition of q-

ROFIHM operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

j¼1

1� v2ij

� �1=n
�
Yn

j¼1

1� l2ij � v2ij

� �1=n
vuut

*

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Yn

j¼1

1� v2ij

� �1=n
vuut

+

¼ PFIWG kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIHM operator reduces to the

Pythagorean fuzzy interaction weighted geometric

(PFIWG) operator defined by Wei [21].

4.2 q-ROFIWHM operator

In many situations, the importance of each argument is not

equal and thus needs to be assigned different weights.

However, the q-ROFIHM operator does not consider the

importance of the aggregated arguments. To overcome the

shortcoming, we introduce its weighted form (q-

ROFIWHM).

Definition 8 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs, w ¼ w1;w2; . . .;wnð ÞT be the weight

vector of ai, satisfying wi 2 0; 1½ � and
Pn

i¼1 wi ¼ 1, and

k ¼ 1; 2; . . .; n. Then the q-ROFIWHM operator is defined

as

q� ROFIWHM kð Þ a1; a2; . . .; anð Þ

¼
�1� i1\���\ik � n 	k

j¼1 aij
� �wij

� �1=k

Ck
n

ð10Þ

where i1; i2; . . .; ikð Þ traversal all the k-tuple combinations

of 1; 2; . . .; nð Þ and Ck
n is the binomial coefficient.

Similarly, we can obtain the following aggregated value

by the q-ROFIWHM operator according to the operational

rules of q-ROFNs given in Definition 2.

Theorem 4 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs and k ¼ 1; 2; . . .; n, then the aggregated

value by the q-ROFIWHM operator is also a q-ROFNs and
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q� ROFIWHM kð Þ a1; a2; . . .; anð Þ

¼ 1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �wij=k
   *

þ
Yk

j¼1

1� lqij � v
q
ij

� �wij=k
!!1=Ck

n

1

A

1=q

;

Y

1� i1\���\ik � n

1�
Yk

j¼1

1� v
q
ij

� �wij=k
   

þ
Yk

j¼1

1� lqij � v
q
ij

� �wij=k
!!1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �wij=k
 ! !1=Ck

n

1

A

1=q+

ð11Þ

Proof Because aij
� �wij¼ 1� v

q
ij

� �wij� 1� lqij�
��D

mqijÞ
wij Þ1=q; 1�ð 1� v

q
ij

� �wij Þ1=qi:, we can replace lij in

Eq. (7) with 1� v
q
ij

� �wij� 1� lqij�
��

mqijÞ
wij Þ1=q and mij in

Eq. (7) with 1� 1� v
q
ij

� �wij
� �1=q

, then we can get

Eq. (11).

Example 2 In Example 1, if the input arguments a1; a2; a3
have a different importance, then we select the q-

ROFIWHM operator to aggregate. Here, we assume that

the weight of each argument is w1 ¼ 0:27,w2 ¼ 0:39 and

w3 ¼ 0:34, then

5 q-Rung orthopair fuzzy interaction dual
Hamy mean aggregation operators

In this section, based on interaction operational laws of

q-ROFNs and proposed dual HM in Sect. 3, we develop

the q-rung orthopair fuzzy interaction dual Hamy mean

operator (q-ROFIDHM) and its weighted form

(q-ROFIWDHM).

5.1 q-ROFIDHM operator

Definition 9 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs, and k ¼ 1; 2; . . .; n, then the q-

ROFIDHM operator is defined as

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼ 	
1� i1\���\ik � n

�k
j¼1 aij

k

 !1=Ck
n

ð12Þ

where i1; i2; . . .; ikð Þ traversal all the k-tuple combinations

of 1; 2; . . .; nð Þ and Ck
n is the binomial coefficient.

Based on the interaction operational laws for q-ROFNs,

the following theorem can be obtained.

Theorem 5 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs, and k ¼ 1; 2; . . .; n, then the aggregated

value by the q-ROFIDHM operator is still a q-ROFN and

q� ROFIWHM kð Þ a1; a2; a3ð Þ ¼
�1� i1\...\ik � n 	k

j¼1 aij
� �wij

� �1=k

Ck
n

1�

1� 1� 0:33
� �0:27=2� 1� 0:63

� �0:39=2þ 1� 0:93 � 0:33
� �0:27=2� 1� 0:73 � 0:63

� �0:39=2� �

� 1� 1� 0:33
� �0:27=2� 1� 0:83

� �0:34=2þ 1� 0:93 � 0:33
� �0:27=2� 1� 0:63 � 0:83

� �0:34=2� �

� 1� 1� 0:63
� �0:39=2� 1� 0:83

� �0:34=2þ 1� 0:73 � 0:63
� �0:39=2� 1� 0:63 � 0:83

� �0:34=2� �

0

BBBBB@

1

CCCCCA

1=C2
3

0

BBBBBB@

1

CCCCCCA

1=3

;

*

1� 1� 0:33
� �0:27=2� 1� 0:63

� �0:39=2þ 1� 0:93 � 0:33
� �0:27=2� 1� 0:73 � 0:63

� �0:39=2� �

� 1� 1� 0:33
� �0:27=2� 1� 0:83

� �0:34=2þ 1� 0:93 � 0:33
� �0:27=2� 1� 0:63 � 0:83

� �0:34=2� �

� 1� 1� 0:63
� �0:39=2� 1� 0:83

� �0:34=2þ 1� 0:73 � 0:63
� �0:39=2� 1� 0:63 � 0:83

� �0:34=2� �

0

BBBBB@

1

CCCCCA

1=C2
3

0

BBBBBB@

:

� 1� 0:93 � 0:33
� �0:27� 1� 0:73 � 0:63

� �0:39� 1� 0:63 � 0:83
� �0:34� �� �1=C2

3

�1=3
+

¼ 0:5938; 0:4753ð Þ
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q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lqij

� �1=k
   *

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

1

A

1=q

;

1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lqij

� �1=k
   

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

1

A

1=q+

ð13Þ

Proof According to the interaction operational laws for q-

ROFNs, we can get

�
k

j¼1
aij¼ 1�

Yk

j¼1

1� lqij

� �
 !1=q

;

0

@

Yk

j¼1

1� lqij

� �
�
Yk

j¼1

1� lqij � v
q
ij

� �
 !1=q

1

A�k
j¼1 aij

k

¼ 1�
Yk

j¼1

1� lqij

� �1=k
 !1=q

;

0

@

Yk

j¼1

1� lqij

� �1=k
�
Yk

j¼1

1� lqij � v
q
ij

� �1=k
 !1=q

1

A

Then 	1� i1\���\ik � n

�k
j¼1 aij

k
¼

Y

1� i1\���\ik � n

1�ð
  

Qk

j¼1

1� lqij

� �1=k
þ
Qk

j¼1

1� lqij � v
q
ij

� �1=k
!

�
Q

1� i1\���\ik �n

Qk

j¼1

1 � lqij � v
q
ij

� �1=k
Þ1=qÞ;

 

1 �
Q

1 � i1\���\ik � n

 

1 �
Qk

j¼1

1 � lqij

� �1=k
þ
Qk

j¼1

1 � lqij � v
q
ij

� �1=k
!!1=q

Subsequently, we have

	
1� i1\���\ik � n

�k
j¼1 aij

k

 !1=Ck
n

¼
Y

1� i1\���\ik � n

1�
Yn

j¼1

1� lqij

� �1=k
   *

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �1=k
 ! !1=Ck

n

1

A

1=q

;

1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lqij

� �1=k
   

þ
Yk

j¼1

1� lqij � v
q
ij

� �1=k
!!1=Ck

n

Þ1=qi

Therefore, Eq. (13) holds, which completes the proof. h

In the following, we discuss some desirable properties of

the q-ROFIDHM operator.

Theorem 6 (Idempotency) Let ai ¼ li; við Þði ¼ 1;

2; . . .; nÞ be a collection of q-ROFNs, if all the q-ROFNs

are equal, i.e., ai ¼ a for all i, then

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ ¼ a: ð14Þ

Proof Since ai ¼ a for all i, we have

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼ 	
1� i1\���\ik � n

�k
j¼1 aij

k

 !1=Ck
n

¼ 	
1� i1\���\ik � n

�k
j¼1 a

k

 !1=Ck
n

¼ 	
1� i1\���\ik � n

a

� �1=Ck
n

¼ aC
k
n

� �1=Ck
n¼ a:

h

Theorem 7 (Commutativity). Let ai ¼ li; við Þði ¼
1; 2; . . .; nÞ be a collection of q-ROFNs, and ~a1; ~a2; � � � ~anð Þ
is any permutation of a1; a2; � � � anð Þ; then

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ
¼ q� ROFIDHM kð Þ ~a1; ~a2; . . .~anð Þ ð15Þ
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Proof

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼ 	
1� i1\���\ik � n

�k
j¼1 aij

k

 !1=Ck
n

¼ 	
1� i1\���\ik � n

�k
j¼1 ~aij
k

 !1=Ck
n

¼ q� ROFIHM kð Þ ~a1; ~a2; . . .; ~anð Þ:

h

In the following, we discuss some cases with the

changes to the parameters k and q.

Case 1 if k = 1, based on the definition of q-ROFIDHM

operator, we have

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼
Y

1� i1 � n

1� mqi1
� �

 !1=n

�
Y

1� i1 � n

1� lqi1 � v
q
i1

� �
 !1=n

0

@

1

A

1=q

;

*

1�
Y

1� i1 � n

1� mqi1
� �

 !1=n
0

@

1

A

1=q+

¼ 	1� i1 � n ai1‘ð Þ1=n¼ q� ROFIG kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIDHM operator reduces to the q-

rung orthopair fuzzy interaction geometric (q-ROFIG)

operator.

Case 2 if k = n, based on the definition of q-ROFIDHM

operator, we have

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼ 1�
Yn

j¼1

1� lqij

� �1=n
 !1=q*

;

Yn

j¼1

1� lqij

� �1=n
�
Yn

j¼1

1� lqij � v
q
ij

� �1=n
 !1=q+

¼ 	1� i1\���\ik � n

�k
j¼1 aij

n

 !1=Cn
n

¼ �1� i1\n ai1‘
n

¼ q� ROFIA kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIDHM operator reduces to the q-

rung orthopair fuzzy interaction averaging (q-ROFIA)

operator.

Case 3 if q = 1, based on the definition of q-ROFIDHM

operator, we have

q� ROFIDHMðkÞ a1; a2; . . .; anð Þ

¼
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lij

� �1=k
þ
Yk

j¼1

1� lij � vij

� �1=k
 ! !1=Ck

n
*

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lij � vij

� �1=k
 ! !1=Ck

n

;

1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lij

� �1=k
þ
Yk

j¼1

1� lij � vij

� �1=k
 ! !1=Ck

n
+

:

In this case, the q-ROFIHM operator reduces to the

intuitionistic fuzzy interaction dual Hamy mean (IFIDHM)

operator.

Case 4 if q = 2, based on the definition of q-ROFIDHM

operator, we have

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

1� i1\���\ik � n

1�
Yk

j¼1

1� l2ij

� �1=k
þ
Yk

j¼1

1� l2ij � v2ij

� �1=k
 ! !1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� l2ij � v2ij

� �1=k
 ! !1=Ck

n

vuuut
*

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� l2ij

� �1=k
þ
Yk

j¼1

1� l2ij � v2ij

� �1=k
 ! !1=Ck

n

vuuut
+
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In this case, the q-ROFIDHM operator reduces to the

Pythagorean fuzzy interaction dual Hamy mean (PFIDHM)

operator.

Case 5 if k = 1, q = 1, based on the definition of q-

ROFIDHM operator, we have

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼
Y

1� i1 � n

1� mi1

� �1=n
�

Y

1� i1 � n

1� li1 � vi1

� �1=n
*

;

1�
Y

1� i1 � n

1� mi1

� �1=n
+

¼ IFWGIA kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIDHM operator reduces to the

intuitionistic fuzzy weighted geometric interaction averag-

ing (IFWGIA) operator defined by He et al. [27].

Case 6 If k = n, q = 1, based on the definition of q-

ROFIHM operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼ 1�
Y

1� i1 � n

1� li1

� �1=n
*

;
Y

1� i1 � n

1� li1

� �1=n

�
Y

1� i1 � n

1� li1 � vi1

� �1=n
+

In this case, the q-ROFIHM operator reduces to the

intuitionistic fuzzy weighted interaction geometric

(IFWIG) operator.

Case 7 if k = 1, q = 2, based on the definition of q-

ROFIHM operator, we have

q� ROFIHM kð Þ a1; a2; . . .; anð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

j¼1

1� v2ij

� �1=n
�
Yn

j¼1

1� l2ij � v2ij

� �1=n
vuut

*

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Yn

j¼1

1� v2ij

� �1=n
vuut

+

¼ PFIWG kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIHM operator reduces to the

Pythagorean fuzzy interaction weighted geometric

(PFIWA) operator defined by Wei [21].

Case 8 if k = n, q = 2, based on the definition of q-

ROFIDHM operator, we have

q� ROFIDHM kð Þ a1; a2; . . .; anð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Yn

j¼1

1� l2ij

� �1=n
vuut ;

*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

j¼1

1� l2ij

� �1=n
�
Yn

j¼1

1� l2ij � v2ij

� �1=n
vuut

+
:

¼ PFIWA kð Þ a1; a2; . . .; anð Þ

In this case, the q-ROFIDHM operator reduces to the

Pythagorean fuzzy interaction weighted averaging

(PFIWA) operator defined by Wei [21].

5.2 q-ROFIWDHM operator

Similarly, the q-ROFIDHM operator does not consider the

importance of the input arguments. To overcome the lim-

itation of the q-ROFIDHM operator, we propose its

weighted form (q-ROFIWDHM).

Definition 10 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a col-

lection of q-ROFNs, w ¼ w1;w2; . . .;wnð ÞT be the weight

vector of ai, satisfying wi 2 0; 1½ � and
Pn

i¼1 wi ¼ 1, and

Table 1 Decision matrix A1 by expert D1

G1 G2 G3 G4

x1 (0.5, 0.4) (0.5, 0.3) (0.2, 0.6) (0.5, 0.4)

x2 (0.6, 0.2) (0.6, 0.3) (0.6, 0.2) (0.6, 0.3)

x3 (0.5, 0.4) (0.2, 0.6) (0.6, 0.2) (0.4, 0.4)

x4 (0.6, 0.2) (0.6, 0.2) (0.4, 0.2) (0.3, 0.6)

x5 (0.4, 0.3) (0.7, 0.2) (0.4, 0.5) (0.4, 0.5)

Table 2 Decision matrix A2 by expert D2

G1 G2 G3 G4

x1 (0.4, 0.2) (0.6, 0.2) (0.4, 0.4) (0.5, 0.3)

x2 (0.5, 0.3) (0.6, 0.2) (0.6, 0.2) (0.5, 0.4)

x3 (0.4, 0.4) (0.3, 0.5) (0.5, 0.3) (0.7, 0.2)

x4 (0.5, 0.4) (0.7, 0.2) (0.5, 0.2) (0.7, 0.2)

x5 (0.6, 0.3) (0.7, 0.2) (0.4, 0.2) (0.4, 0.2)

Table 3 Decision matrix A3 by expert D3

G1 G2 G3 G4

x1 (0.4, 0.5) (0.5, 0.2) (0.5, 0.3) (0.5, 0.2)

x2 (0.5, 0.4) (0.5, 0.3) (0.6, 0.2) (0.7, 0.2)

x3 (0.4, 0.5) (0.3, 0.4) (0.4, 0.3) (0.3, 0.3)

x4 (0.5, 0.3) (0.5, 0.3) (0.3, 0.5) (0.5, 0.2)

x5 (0.6, 0.2) (0.6, 0.3) (0.4, 0.4) (0.6, 0.3)
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k ¼ 1; 2; . . .; n. Then the q-ROFIWDHM operator is

defined as:

q� ROFIWDHM kð Þ a1; a2; . . .; anð Þ

¼ 	1� i1\���\ik � n

�k
j¼1 wij 	 aij
� �

k

 !1=Ck
n

ð16Þ

where i1; i2; . . .; ikð Þ traversal all the k-tuple combinations

of 1; 2; . . .; nð Þ and Ck
n is the binomial coefficient.

Similarly, we can obtain the following theorem accord-

ing to the interaction operational rules of q-ROFNs.

Theorem 8 Let ai ¼ li; við Þði ¼ 1; 2; . . .; nÞ be a collec-

tion of q-ROFNs and k ¼ 1; 2; . . .; n, then the aggregated

value by the q-ROFIWDHM is also a q-ROFN and

q� ROFIWDHM kð Þ a1; a2; . . .; anð Þ

¼
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lqij

� �wij=k
   *

þ
Yk

j¼1

1� lqij � v
q
ij

� �wij=k
!!1=Ck

n

�
Y

1� i1\���\ik � n

Yk

j¼1

1� lqij � v
q
ij

� �wij=k
 ! !1=Ck

n

1

A

1=q

;

1�
Y

1� i1\���\ik � n

1�
Yk

j¼1

1� lqij

� �wij=k
   

þ
Yk

j¼1

1� lqij � v
q
ij

� �wij=k
!!1=Ck

n

1

A

1=q+

ð17Þ

The proof of Theorem 8 is similar to that of Theorem 4,

which is omitted here.

6 A novel approach to MAGDM problems
based on the proposed operators

In this section, we shall apply the proposed aggregation

operators to solve MAGDM problems under q-rung

orthopair fuzzy environment.

6.1 Description of a typical MAGDM problem
with q-rung orthopair fuzzy information

The q-ROFS is an effective tool to describe indeterminacy

of decision makers. Therefore, it is widely used in

MAGDM problems. A typical q-rung orthopair fuzzy

MAGDM problem can be described as: Let X ¼
x1; x2; . . .; xmf g be a collection of alternatives, G ¼
G1;G2; . . .;Gnf g be n attributes and D ¼ D1;D2; . . .;Dtf g

be a collection of decision makers. For attribute

Gj j ¼ 1; 2; . . .; nð Þ of alternative xi i ¼ 1; 2; . . .;mð Þ, deci-
sion maker Ds is required to utilize a q-ROFN to express

his/her evaluation value, which can be denoted as

asij ¼ lsij; v
s
ij

� �
. Finally, several q-rung orthopair fuzzy

decision matrices can be obtained, which can be denoted as

As ¼ asij

� �

m�n
. Weight vector of decision makers is

k ¼ k1; k2; . . .; ktð ÞT, satisfying ks 2 0; 1½ � s ¼ 1; 2; . . .; tð Þ
and

Pt
s¼1 ks ¼ 1. Weight vector of the attributes is

w ¼ w1;w2; . . .;wnð ÞT, satisfying wj 2 0; 1½ � j ¼ 1; 2; . . .; nð Þ
and

Pn
j¼1 wj ¼ 1.

Table 4 Integration decision

matrix
G1 G2 G3 G4

x1 (0.3133, 0.2604) (0.3908, 0.1701) (0.2716, 0.3398) (0.3549, 0.2308)

x2 (0.3840, 0.2109) (0.4162, 0.1837) (0.4280, 0.1389) (0.4218, 0.2383)

x3 (0.3143, 0.2970) (0.1950, 0.3719) (0.3733, 0.1898) (0.4130, 0.2197)

x4 (0.3845, 0.2327) (0.4581, 0.1581) (0.3084, 0.2220) (0.4161, 0.3082)

x5 (0.3906, 0.1985) (0.4951, 0.1580) (0.2836, 0.2758) (0.3251, 0.2640)

Table 5 Integration decision

matrix
G1 G2 G3 G4

x1 (0.3089, 0.2666) (0.3897, 0.1760) (0.2691, 0.3415) (0.3518, 0.2378)

x2 (0.3819, 0.2177) (0.4143, 0.1926) (0.4271, 0.1465) (0.4190, 0.2467)

x3 (0.3089, 0.3029) (0.1898, 0.3733) (0.3719, 0.1950) (0.4119, 0.2235)

x4 (0.3819, 0.2396) (0.4570, 0.1666) (0.3076, 0.2237) (0.4159, 0.3086)

x5 (0.3886, 0.2060) (0.4937, 0.1702) (0.2794, 0.2802) (0.3216, 0.2692)
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6.2 An algorithm to q-rung orthopair fuzzy
MAGDM problems

Step 1 In decision-making problems, attributes can be

classified into two types: the benefit type and the cost type.

Therefore, the original decision matrix can be normalized

to eliminate the impact of different attribute types. We can

normalize the decision matrix by the following equation,

asij ¼ usij; v
s
ij

� � lsij; v
s
ij

� �
Gj 2 I1

vsij; l
s
ij

� �
Gj 2 I2

8
><

>:
; ð18Þ

where I1 and I2 represent the benefit attribute type and the

cost attribute type, respectively.

Step 2 Utilize the q-ROFIWHM operator

aij ¼ q� ROFIWHM kð Þ a1ij; a
2
ij; . . .; a

t
ij

� �
ð19Þ

or the q-ROFIWDHM operator

aij ¼ q� ROFIWDHM kð Þ a1ij; a
2
ij; . . .; a

t
ij

� �
ð20Þ

to fuse all attribute values to collective information aij with

respect to each alternative for each decision maker.

Step 3 Utilize the q-ROFIWHM operator

ai ¼ q� ROFIWHM kð Þ ai1; ai2; . . .; ainð Þ; ð21Þ

or the q-ROFIWDHM operator

ai ¼ q� ROFIWDHM kð Þ ai1; ai2; . . .; ainð Þ; ð22Þ

to determine the overall evaluation value of each alterna-

tive ai i ¼ 1; 2; . . .;mð Þ:

Step 4 According to Definition 4, calculate the score

value and accuracy degree of the overall evaluation value

ai i ¼ 1; 2; . . .;mð Þ:

Step 5 Rank the alternatives and select the best one.

Table 6 Ranking results by

using different parameters q in

the q-ROFIWHM operator

Parameter q Score values of aiði ¼ 1; 2; 3; 4Þ Ranking results

q = 1 S a1ð Þ ¼ 0:0549; S a2ð Þ ¼ 0:0947; S a3ð Þ ¼ 0:0654;

S a4ð Þ ¼ 0:0786; S a5ð Þ ¼ 0:0653

x2 
 x4 
 x3 
 x5 
 x1

q = 2 S a1ð Þ ¼ 0:0097; S a2ð Þ ¼ 0:0299; S a3ð Þ ¼ 0:0159;

S a4ð Þ ¼ 0:0224; S a5ð Þ ¼ 0:0161

x2 
 x4 
 x3 
 x5 
 x1

q = 3 S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0107; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

q = 4 S a1ð Þ ¼ 0:0018; S a2ð Þ ¼ 0:0096; S a3ð Þ ¼ 0:0051;

S a4ð Þ ¼ 0:0067; S a5ð Þ ¼ 0:0046

x2 
 x4 
 x3 
 x5 
 x1

q = 5 S a1ð Þ ¼ 0:0001; S a2ð Þ ¼ 0:0057; S a3ð Þ ¼ 0:0032;

S a4ð Þ ¼ 0:0041; S a5ð Þ ¼ 0:0028

x2 
 x4 
 x3 
 x5 
 x1
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Fig. 1 Score values of the alternatives when q 2 1; 10ð Þ based on the

q-ROFIWHM operator
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Fig. 2 Score values of the alternatives when q 2 1; 10ð Þ based on the

q-ROFIWDHM operator
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7 Numerical example

In this section, an application of the proposed approach is

illustrated by a practical example about the ‘‘Location

Selection’’ problem (cited from Liu et al. [42]).

Example 3 A company plans to select a best company

location. After primary evaluation, there are five possible

locations of the company remaining on the candidate list.

They can be denoted by X ¼ x1; x2; x3; x4; x5f g: Three

decision makers Ds s ¼ 1; 2; 3ð Þ whose weight vector is k ¼
0:35; 0:45; 0:2ð ÞT are invited to assess the five possible

companies from four attributes which are defined as fol-

lows: the cost of rent (G1), the convenience of transporta-

tion (G2), the cost of labor (G3) and the environmental

impact (G4). Suppose that the weight vector of the attri-

butes is w ¼ 0:25; 0:1; 0:3; 0:35ð ÞT. The decision makers

Ds s ¼ 1; 2; 3ð Þ are required to evaluate the companies

xi i ¼ 1; 2; 3; 4; 5ð Þ with respect to the attributes

Gj j ¼ 1; 2; 3; 4ð Þ by the q-ROFNs. Therefore, three deci-

sion matrices As ¼ asij

� �

5�4
s ¼ 1; 2; 3ð Þ can be obtained,

which are shown in Tables 1, 2 and 3. Then, we apply the

proposed MAGDM approach to address the ‘‘Location

Selection’’ problem:

8 The decision-making process

(1) The decision-making steps based on the q-ROFIWHM

operator

Step 1 Normalize the decision-making matrices. As all

the attributes are benefit attributes, they do not need to be

normalized.

Step 2 For each alternative xi, aggregate each attribute

value Gj provided by decision makers Ds. Here we utilize

Eq. (19) to aggregate and we assume q ¼ 3 and k ¼ 1.

Therefore, we can get an integration decision matrix as

shown in Table 4.

Step 3 Calculate the collective evaluation value of each

alternative by Eq. (21). We assume q ¼ 3 and k ¼ 2,

then we get

a1 ¼ 0:2086; 0:1744ð Þ; a2 ¼ 0:2640; 0:1288ð Þ;
a3 ¼ 0:2346; 0:1640ð Þ;

a4 ¼ 0:2470; 0:1628ð Þ; a5 ¼ 0:2282; 0:1560ð Þ

Step 4 Calculate the scores of collective evaluation

values, we have

s a1ð Þ ¼ 0:0038; s a2ð Þ ¼ 0:0163; s a3ð Þ ¼ 0:0082;

s a4ð Þ ¼ 0:0107; s a5ð Þ ¼ 0:0081:

Step 5 Rank the alternatives. According to the score

values of overall assessments of alternatives, the ranking

Table 7 Ranking results by

using the different parameters

k in the q-ROFIWHM operator

Parameter k Scores value of aiði ¼ 1; 2; 3; 4Þ Ranking results

k = 1 S a1ð Þ ¼ 0:0040; S a2ð Þ ¼ 0:0164; S a3ð Þ ¼ 0:0083;

S a4ð Þ ¼ 0:0117; S a5ð Þ ¼ 0:0085

x2 
 x4 
 x5 
 x3 
 x1

k = 2 S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0107; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

k = 3 S a1ð Þ ¼ 0:0003; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0099; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1

k = 4 S a1ð Þ ¼ 0:0023; S a2ð Þ ¼ 0:0117; S a3ð Þ ¼ 0:0056;

S a4ð Þ ¼ 0:0075; S a5ð Þ ¼ 0:0057

x2 
 x4 
 x5 
 x3 
 x1

Table 8 Ranking results by

using different parameters k in

the q-ROFIWDHM operator

Parameter k Scores value of aiði ¼ 1; 2; 3; 4Þ Ranking results

k = 1 S a1ð Þ ¼ �0:0024; S a2ð Þ ¼ 0:0154; S a3ð Þ ¼ 0:0029;

S a4ð Þ ¼ 0:0058; S a5ð Þ ¼ 0:0041

x2 
 x4 
 x5 
 x3 
 x1

k = 2 S a1ð Þ ¼ 0:0031; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0101; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1

k = 3 S a1ð Þ ¼ 0:0039; S a2ð Þ ¼ 0:0235; S a3ð Þ ¼ 0:0106;

S a4ð Þ ¼ 0:0151; S a5ð Þ ¼ 0:0099

x2 
 x4 
 x3 
 x5 
 x1

k = 4 S a1ð Þ ¼ 0:0029; S a2ð Þ ¼ 0:0177; S a3ð Þ ¼ 0:0079;

S a4ð Þ ¼ 0:0113; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1

Neural Computing and Applications (2020) 32:7465–7488 7479

123



result of corresponding alternatives is

x2 
 x4 
 x3 
 x5 
 x1. Therefore,x2 is the best com-

pany location.

(2) The decision-making steps based on the q-

ROFIWDHM operator

Step 1 Normalize the decision-making matrices. As all

the attributes are benefit attributes, they do not need to be

normalized.

Step 2 For each alternative xi, aggregate each attribute

value Gi provided by decision makers Ds. Here we

utilize Eq. (20) to aggregate and we assume q ¼ 3 and

k ¼ 1.

Therefore, we can get the integration decision matrix

shown in Table 5.

Step 3 Calculate the collective evaluation value of each

alternative by Eq. (22). We assume q ¼ 3 and k ¼ 2,

then we get

a1 ¼ 0:2059; 0:1782ð Þ; a2 ¼ 0:2622; 0:1359ð Þ;
a3 ¼ 0:2306; 0:1680ð Þ;

a4 ¼ 0:2452; 0:1668ð Þ; a5 ¼ 0:2259; 0:1608ð Þ

Step 4 Calculate the scores of collective evaluation

values, we have

s a1ð Þ ¼ 0:0031; s a2ð Þ ¼ 0:0155; s a3ð Þ ¼ 0:0075;

s a4ð Þ ¼ 0:0101; s a5ð Þ ¼ 0:0074:

Step 5 The ranking order of the alternatives is

x2 
 x4 
 x3 
 x5 
 x1, which means x2 is the best

alternative.

Therefore, the ranking results based on the q-

ROFIWHM operator and the q-ROFIWDHM operator for

dealing with Example 3 are the same. Thus, the best

alternative is x2.

8.1 The influence of parameters
k and q on the results

To reflect the influence of parameters q on the ranking

results, we use the proposed q-ROFIWHM and q-

ROFIWDHM operators to analyze the variation tendency

of score values with the change of parameter q for the

above MAGDM problem. MATLAB software is used for

this process, and results are shown in Table 6, Figs. 1 and

2.

Figure 1 shows the variation tendency of the score

values of alternatives obtained by the q-ROFIWHM oper-

ator. For more clarity, we take the results of Fig. 1 as

examples to illustrate the score values of alternatives in

Fig. 1, which is shown in Table 6. For example, we can get

S a1ð Þ ¼ 0:0001, S a2ð Þ ¼ 0:0057, S a3ð Þ ¼ 0:0032, S a4ð Þ ¼
0:0041; S a5ð Þ ¼ 0:0028 when q = 5 and k = 2 in the q-

ROFIWHM operator. From Table 6 and Fig. 1, we can see

that the scores of alternatives are different when assigning

different parameters q to the q-ROFIWHM operator.

However, the ranking results are always

x2 
 x4 
 x3 
 x5 
 x1. In addition, the score values of

alternatives obtained by the q-ROFIWHM operator become

smaller as q increases on [1, 10]. Furthermore, when the

parameter q is less than 3, the score values of alternatives

have a sharply change. Then, as the value of q becomes

greater and greater, the score values are very close to a

Table 9 Ranking results based on different methods for Example 3

Approaches Scores value of aiði ¼ 1; 2; 3; 4Þ Ranking results

Xu’s method based on IFWA operator [43] S a1ð Þ ¼ 0:121; S a2ð Þ ¼ 0:333; S a3ð Þ ¼ 0:199;

S a4ð Þ ¼ 0:278; S a5ð Þ ¼ 0:169

x2 
 x4 
 x3 
 x5 
 x1

Ma and Xu’s method based on PFWA operator [17] S a1ð Þ ¼ �0:1093; S a2ð Þ ¼ �0:0674; S a3ð Þ ¼ �0:1025;

S a4ð Þ ¼ �0:0723; S a5ð Þ ¼ �0:0834

x2 
 x4 
 x5 
 x3 
 x1

Liu and Wang’s method based on q-ROFWA operator

[30]
S a1ð Þ ¼ �0:0361; S a2ð Þ ¼ �0:0175; S a3ð Þ ¼ �0:0328;

S a4ð Þ ¼ �0:0194; S a5ð Þ ¼ �0:0241

x2 
 x4 
 x5 
 x3 
 x1

Our approach based on q-ROFIWHM operator (k = 1) S a1ð Þ ¼ 0:0040; S a2ð Þ ¼ 0:0164; S a3ð Þ ¼ 0:0083;

S a4ð Þ ¼ 0:0117; S a5ð Þ ¼ 0:0085

x2 
 x4 
 x5 
 x3 
 x1

Our approach based on q-ROFIWDHM operator

(k = 1)
S a1ð Þ ¼ 0:0040; S a2ð Þ ¼ 0:0164; S a3ð Þ ¼ 0:0083;

S a4ð Þ ¼ 0:0117; S a5ð Þ ¼ 0:0085

x2 
 x4 
 x5 
 x3 
 x1

Our approach based on q-ROFIWHM operator (k = 2) S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0107; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

Our approach based on q-ROFIWDHM operator

(k = 2)
S a1ð Þ ¼ 0:0031; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0101; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1
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fixed value, no matter the value of q. Therefore, the

parameter q can be viewed as decision makers’ attitude.

The more the optimistic decision makers are, the smaller

the value assigned to q, and the more the pessimistic

decision makers are, the greater the value assigned to q.

Similarly, Fig. 2 illustrates the variation tendency of the

score values of alternatives obtained by the q-ROFIWDHM

operator as assigned different values of q. From Fig. 2, we

find that with different parameters q in the q-ROFIWDHM

operator, the scores vary. Specifically, score values of

alternatives by utilizing the q-ROFIWDHM operator

become greater as q increases on [1, 1.853] while the

values become smaller as q increases on (1.853, 10].

However, no matter what the parameters q are, the ranking

results are always x2 
 x4 
 x5 
 x1 
 x3. Furthermore, x2
is always the best alternative, as with the q-ROFIWHM

operator. Moreover, the score values change smoothly as

q increases on (1.853, 10], and then are also very close to a

fixed value when q becomes greater and greater.

In the following, based on the q-ROFIWHM and q-

ROFIWDHM operators, we investigate the influence of

parameter k on the score values and final ranking results.

Here, we take q ¼ 3 in the q-ROFIWHM and q-

ROFIWDHM operators. Details are shown in Tables 7 and

8.

As shown in Tables 7 and 8, the scores of overall values

are different when utilizing different parameters k. When

k = 2, 3, it produces the same ranking result

x2 
 x4 
 x3 
 x5 
 x1, whereas the ranking results are

different, i.e., x2 
 x4 
 x5 
 x3 
 x1 when k = 1, 4. This

is because the method (k = 1, k = 4) does not take into

account the interrelationship among the attributes, and

thus, the ranking result is not same as those obtained by the

method when k = 2, 3, when attributes are interrelated.

This also illustrates that our method is very flexible in the

process of aggregation and can deal with MAGDM prob-

lems where the interrelationships exist among attributes

according to different parameters.

Moreover, from Table 7, we find that the more the

interrelationships among arguments are taken into account,

the smaller the score values of overall assessments will

become, which is the difference between q-ROFIWHM

operator and q-ROFIWDHM operator. Therefore, decision

makers can appropriately select the value of k according to

their preference and actual needs.

8.2 Comparative analysis

In order to illustrate the advantages of proposed method,

we use some existing MAGDM methods to solve Example

3. Considering proposed method is based on q-ROFIWHM

or q-ROFIWDHM operator that combines interaction

operational rules with HM under q-rung orthopair fuzzy

environment, to analyze the advantages of the proposed

method, we select the following MAGDM methods as

reference approaches to solve Example 3.

(1) Comparing with the methods proposed by Xu [43],

Ma and Xu [17], and Liu and Wang [30]

In this subsection, we utilize Xu’s method [43] based on

intuitionistic fuzzy weighted averaging (IFWA) operator,

Ma and Xu’s method [17] based on the Pythagorean fuzzy

weighted averaging (PFWA) operator, and Liu and Wang’s

method [30] based on the q-rung orthopair fuzzy weighted

averaging (q-ROFWA) operator to solve Example 3.

Results are shown in Table 9.

The ranking results obtained by our method based on q-

ROFIWHM and q-ROFIWDHM operators (k = 1) are the

same as the ones obtained by methods proposed by Xu

[43], Ma and Xu [17], and Liu and Wang [30], i.e.,

x2 
 x4 
 x5 
 x3 
 x1, which can be easily explained

since they do not take interrelationships among attributes

into account. This fact also verifies the validity of the new

method (k = 1).

However, the ranking results obtained by Xu’s method

[43], Ma and Xu’s method [17], and Liu and Wang’s

method [30] are different from ones produced by our

approach based on q-ROFIWHM and q-ROFIWDHM

operators when k = 2. The reason is that the former three

methods aggregate attribute values by using simple

Table 10 Ranking results based on different methods for Example 3

Approaches Scores value of ai ði ¼ 1; 2; 3; 4Þ Ranking results

He et al.’s method based on IFWGIA operator [35] S a1ð Þ ¼ 0:0849; S a2ð Þ ¼ 0:3021; S a3ð Þ ¼ 0:1295;

S a4ð Þ ¼ 0:1979; S a5ð Þ ¼ 0:1812

x2 
 x4 
 x5 
 x3 
 x1

Wei’s method based on PFIWA operator [21] S a1ð Þ ¼ 0:0596; S a2ð Þ ¼ 0:2516; S a3ð Þ ¼ 0:1136;

S a4ð Þ ¼ 0:1575; S a5ð Þ ¼ 0:1293

x2 
 x4 
 x5 
 x3 
 x1

Our approach based on q-ROFIWHM operator (k = 2) S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0107; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

Our approach based on q-ROFIWDHM operator (k = 2) S a1ð Þ ¼ 0:0031; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0101; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1
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weighted averaging operators that are based on algebraic

operational laws. Additionally, they do not consider inter-

relationships among attributes. Thus, our proposed

approach is more reasonable than the approaches presented

in the studies [17, 30, 43].

(2) Comparing He et al.’s method [35] and Wei’s

method [21]

In this subsection, we utilize He et al.’s method [35]

based on intuitionistic fuzzy weighted geometric interac-

tion averaging (IFWGIA) operator and Wei’s method [21]

based on the Pythagorean fuzzy interaction weighted

average (PFIWA) operator to solve the above example.

Results are shown in Table 10.

From Table 10, we can find that the ranking results

obtained by our method based on q-ROFIWHM and q-

ROFIWDHM operators (k = 2) are

x2 
 x4 
 x3 
 x5 
 x1, whereas He et al.’s method [35]

based on IFWGIA operator and Wei’s method [15] based

on PFIWA operator produce a different ranking result, i.e.,

x2 
 x4 
 x5 
 x3 
 x1. The reason is that IFWGIA and

PFIWA operators only consider the interaction operational

rules but ignore the interrelationships between attributes.

Our proposed approach based on q-ROFIWHM and q-

ROFIWDHM operators not only adopts interaction opera-

tional laws, which can avoid the unreasonable influence if

one of the non-memberships being zero, but also capture

the interrelationship among attributes. Therefore, the

ranking results obtained by the proposed approach are

more reasonable than the ones obtained by He et al.’s

method [35] and Wei’s method [21].

If there are no interrelationships between arguments, in

this situation, the proposed method based on the q-

ROFIWHM and q-ROFIWDHM operators (k = 1) will

produce the same results as He et al.’s method [35] and

Wei’s method [21]. In order to test this conclusion, we

utilize the proposed approach based on the q-ROFIWHM

and q-ROFIWDHM operators (k = 1) to solve the

MAGDM problem in Example 3. The ranking result is

x2 
 x4 
 x5 
 x3 
 x1, which is the same as that obtained

by He et al.’s method [35] and Wei’s method [21]. Thus,

our approach based on the q-ROFIWHM and q-

ROFIWDHM operators is more flexible than He et al.’s

method [35] and Wei’s method [21].

(3) Comparing with the methods proposed by Xu and

Yager [44], Liang et al. [23], Liu and Liu [31], Qin

and Liu [45], and Wei and Lu [26]

In this subsection, we utilize Xu and Yager’s method

[44] based on weighted intuitionistic fuzzy Bonferroni

mean (WIFBM) operator, Liang et al.’s method [23] based

on weighted Pythagorean fuzzy Bonferroni mean

(WPFBM) operator, Liu and Liu’s method [31] based on q-

rung orthopair fuzzy Bonferroni mean operator, Qin and

Liu’s method [45] based on intuitionistic fuzzy Maclaurin

symmetric mean (IFMSM) operator, and Wei and Lu’s

method [26] based on Pythagorean fuzzy Maclaurin sym-

metric mean (PFMSM) operator, to solve the above

example. Results are shown in Table 11.

From Table 11, we can easily find that the proposed

method based on q-ROFIWHM and q-ROFIWDHM

operators (k = 2), Xu and Yager’s method [44], Liang

et al.’s method [23], Liu and Liu’s method [31], Qin and

Liu’s method [45], and Wei and Lu’s method [26] produce

the same ranking results, i.e., x2 
 x4 
 x3 
 x5 
 x1. The

reason is they are based on HM, BM and MSM operators,

Table 11 Ranking results based on different methods for Example 3

Approaches Scores value of ai ði ¼ 1; 2; 3; 4Þ Ranking results

Xu and Yager’s method based on WIFBM operator

[44]
S a1ð Þ ¼ �0:898; S a2ð Þ ¼ �0:865; S a3ð Þ ¼ �0:888;

S a4ð Þ ¼ �0:876; S a5ð Þ ¼ �0:893

x2 
 x4 
 x3 
 x5 
 x1

Liang et al.’s method based on WPFBM operator [23] S a1ð Þ ¼ �0:8398; S a2ð Þ ¼ �0:8015; S a3ð Þ ¼ �0:8297;

S a4ð Þ ¼ �0:8148; S a5ð Þ ¼ �0:8275

x2 
 x4 
 x3 
 x5 
 x1

Liu and Liu’s method based on q-ROFWBM operator

[31]
S a1ð Þ ¼ �0:7751; S a2ð Þ ¼ �0:7233; S a3ð Þ ¼ �0:7631;

S a4ð Þ ¼ �0:7445; S a5ð Þ ¼ �0:7600

x2 
 x4 
 x3 
 x5 
 x1

Qin and Liu’s method based on WIFMSM operator

[45]
S a1ð Þ ¼ �0:9194; S a2ð Þ ¼ �0:9009; S a3ð Þ ¼ �0:9119;

S a4ð Þ ¼ �0:9074; S a5ð Þ ¼ �0:9196

x2 
 x4 
 x3 
 x5 
 x1

Wei and Lu’s method based on PFWMSM operator

[26]
S a1ð Þ ¼ �0:8484; S a2ð Þ ¼ �0:8149; S a3ð Þ ¼ �0:8360;

S a4ð Þ ¼ �0:8284; S a5ð Þ ¼ �0:495

x2 
 x4 
 x3 
 x5 
 x1

Our approach based on q-ROFIWHM operator (k = 2) S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0107; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

Our approach based on q-ROFIWDHM operator

(k = 2)
S a1ð Þ ¼ 0:0031; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0101; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1
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respectively, and thus can capture the interrelationship

between attributes. This fact also further verifies that the

new method is effective when k = 2. However, they

(WIFBM, WPFBM, q-ROFWBM, WIFMSM and

PFWMSM operations) are all based on algebraic opera-

tions that will get unreasonable result if one of the mem-

bership or non-membership degrees is zero. Since our

approach based on q-ROFIWHM and q-ROFIWDHM

operators adopts the interaction operational rules defined in

Sect. 2, it can overcome the shortcomings of methods

proposed by Xu and Yager [44], Liang et al. [23], Liu and

Liu [31], Qin and Liu [45], and Wei and Lu [26] and thus

can derive more reasonable ranking results.

As aforementioned above, the ranking results obtained

by these methods are the same, which cannot reflect the

advantages of our method very well. To further illustrate

the main advantages of our method, we do a further anal-

ysis by adjusting some of the data in the above example.

Example 4 From Example 3, we know that all non-

memberships of attributes in Tables 1, 2 and 3 are nonzero

values. Thus, we change the non-membership value of

some elements in decision matrix Dk in Example 3 to zero,

that is, the value of a144 is changed from ð0:3; 0:6Þ into

ð0:3; 0:0Þ; the value of a241 is changed from ð0:5; 0:4Þ into
ð0:5; 0:0Þ; the value of a342 is changed from ð0:5; 0:3Þ into
ð0:5; 0:0Þ, and the value of a343 is changed from ð0:3; 0:5Þ
into ð0:3; 0:0Þ, respectively. Then we solve the MAGDM

problem by using the methods proposed by Xu and Yager

[44], Liang et al. [23], Liu and Liu [31], Qin and Liu [45],

and Wei and Lu [26] and the proposed approach, respec-

tively. The score values and ranking results produced by

above approaches are shown in Table 12.

In Example 4, we adjust the data a144 from ð0:3; 0:6Þ to
ð0:3; 0:0Þ;a241 from ð0:5; 0:4Þ to ð0:5; 0:0Þ;a342 from

ð0:5; 0:3Þ to ð0:5; 0:0Þ and a343 from ð0:3; 0:5Þ to ð0:3; 0:0Þ,
respectively. From Table 12, we can find that the best

alternative obtained by WIFBM, WPFBM, q-ROFWBM,

WIFMSM and PFWMSM operators is all changed from x2
into x4 while the ranking results obtained by our proposed

approach are unchanged. For the above results, we can

provide an explanation as follows. Methods based on

WIFBM, WPFBM, q-ROFWBM, WIFMSM and

PFWMSM operators use the traditional operational laws

and thus cannot consider the special situation in which

membership or non-membership degree of some attribute

values is zero. According to the traditional operational

laws, the non-membership of collective evaluation value of

alternative x4 is always zero no matter the other values.

Thus, scores of x4 increase by WIFBM, WPFBM, q-

ROFWBM, WIFMSM and PFWMSM operations when we

change some non-membership degrees of alternative x4.

However, our approach based on q-ROFIWHM and q-

ROFIWDHM operators considers the interaction opera-

tions that can reduce the unreasonable effect on ranking

results when the non-membership value of some alterna-

tives is zero.

Thus, the proposed approach is more reasonable than the

methods proposed by Xu and Yager [44], Liang et al. [23],

Liu and Liu [31], Qin and Liu [45], and Wei and Lu [26] in

solving practical decision-making problems where the

membership or non-membership values of some alterna-

tives are zero.

(4) Comparing the methods proposed by He et al. [46]

and Yang and Pang [28]

Table 12 Ranking results based on different methods for Example 4

Approaches Scores value of aiði ¼ 1; 2; 3; 4Þ Ranking results

Xu and Yager’s method based on WIFBM operator

[44]
S a1ð Þ ¼ �0:9139; S a2ð Þ ¼ �0:8925; S a3ð Þ ¼ �0:9074;

S a4ð Þ ¼ �0:7912; S a5ð Þ ¼ �0:9064

x2 
 x4 
 x5 
 x3 
 x1

Liang et al.’s method based on WPFBM operator [23] S a1ð Þ ¼ �0:8398; S a2ð Þ ¼ �0:8015; S a3ð Þ ¼ �0:8297;

S a4ð Þ ¼ �0:6869; S a5ð Þ ¼ �0:8275

x2 
 x4 
 x5 
 x3 
 x1

Liu and Liu’s method based on q-ROFWBM operator

[31]
S a1ð Þ ¼ �0:7751; S a2ð Þ ¼ �0:7233; S a3ð Þ ¼ �0:7631;

S a4ð Þ ¼ �0:6032; S a5ð Þ ¼ �0:7600

x4 
 x2 
 x5 
 x3 
 x1

Qin and Liu’s method based on WIFMSM operator

[45]
S a1ð Þ ¼ �0:9194; S a2ð Þ ¼ �0:9009; S a3ð Þ ¼ �0:9196;

S a4ð Þ ¼ �0:8096; S a5ð Þ ¼ �0:9119

x4 
 x2 
 x5 
 x1 
 x3

Wei and Lu’s method based on PFWMSM operator

[26]
S a1ð Þ ¼ �0:8484; S a2ð Þ ¼ �0:8149; S a3ð Þ ¼ �0:8495;

S a4ð Þ ¼ �0:7053; S a5ð Þ ¼ �0:8360

x4 
 x2 
 x5 
 x1 
 x3

Our approach based on q-ROFIWHM operator S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0143; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

Our approach based on q-ROFIWDHM operator S a1ð Þ ¼ 0:0031; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0141; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1
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In this subsection, we utilize He et al.’s method [46]

based on intuitionistic fuzzy interaction Bonferroni means

(WIFIBM) operator, Yang and Pang’s method [28] based

on Pythagorean fuzzy interaction Maclaurin symmetric

mean (PFIWMSM) operator, to solve the above example.

Results are shown in Table 13.

From Table 13, we can see that proposed method based

on q-ROFIWHM and q-ROFIWDHM operators (k = 2),

He et al.’s method based on WIFIBM operator [46] and

Yang and Pang’s method based on PFIWMSM operator

[28] produce the same ranking result, i.e.,

x2 
 x4 
 x3 
 x5 
 x1. The reason is both of these three

methods are not only based on interaction operational rules,

but also consider the interrelationship of attributes.

However, Yang and Pang’s method [28] and He et al.’s

method [46] also have some limitations. That is, they are

based on the IFNs and PFNs and thus cannot deal with the

situation where the sum or square sum of the membership

degree and the non-membership degree is bigger than 1,

whereas the proposed method in this paper is more pow-

erful as they are based on q-ROFNs.

To further explain the advantages of the proposed

approach in modeling fuzzy information comparing

WIFIBM and PFIWMSM operators proposed in the studies

[28, 46], we give another real-life example.

Example 5 At present, in China, large hospitals are

overcrowded, and the burden of disease is getting heavier.

As the part of China’s 13th Five-Year Plan (2016-2020) for

deepening medical and health system reform, the hierar-

chical medical treatment system (HMTS) aims to provide

an effective response to the challenges of insufficient and

unbalanced medical resources in China. Through the

implementation of HMTS, patients are divided into dif-

ferent levels of hospitals according to the urgency of dis-

eases instead of all patients rushing to large hospitals.

However, the HMTS in China has not been effectively

carried out and remains to be further perfected. To push

forward implementation of the system, four patients with

lung diseases, denoted by xi (i = 1, 2, 3, 4), need to be

distributed into different levels of hospitals. The four

patients are diagnosed from four symptoms (attributes): G1:

vital signs, including heart rate, blood pressure and so on;

G2: body temperature; G3: the frequency of cough; and G4:

the frequency of hemoptysis. The weight vector of the

attribute is w = (0.5, 0.25, 0.35, 0.25)T. Suppose that the

doctor gives the rating values for the four patients with

respect to the symptoms by using q-ROFNs, and the

decision matrix is shown in Table 14.

Then we solve the MADM problem and compare the

ranking results obtained by He et al.’s method [46], Yang

and Pang’s method [28] and proposed approach (Suppose

k ¼ 2; q ¼ 3). Details are shown in Table 15.

In Example 5, the elements a22 and a43 are (0.8, 0.7) and

(0.9, 0.6), respectively. Table 15 shows that He et al.’s

method [46], Yang and Pang’s method [28] cannot solve

the above problem as the membership degree and non-

membership degree do not satisfy the constraint conditions

of IFNs and PFNs. However, the proposed approach based

on the q-ROFIWHM and q-ROFIWDHM operators can

still work as (0.8, 0.7) and (0.9, 0.6) can be represented by

q-ROFNs by adjusting the value of q. According to the

calculation results above, the fourth patient’s condition is

the most serious, which means that she should be treated in

grade III, class A hospitals. Meanwhile, the third patient

should be treated in local hospitals since his condition is

not so serious.

Table 13 Ranking results based on different methods for Example 4

Approaches Scores value of aiði ¼ 1; 2; 3; 4Þ Ranking results

He et al.’s method based on WIFIBM operator [46] S a1ð Þ ¼ �0:037; S a2ð Þ ¼ �0:014; S a3ð Þ ¼ �0:029;

S a4ð Þ ¼ �0:022; S a5ð Þ ¼ �0:032

x2 
 x4 
 x3 
 x5 
 x1

Yang and Pang’s method based on PFIWMSM operator

[28]
S a1ð Þ ¼ �0:046; S a2ð Þ ¼ �0:026; S a3ð Þ ¼ �0:033;

S a4ð Þ ¼ �0:028; S a5ð Þ ¼ �0:043

x2 
 x4 
 x3 
 x5 
 x1

Approach based on q-ROFIWHM operator (k = 2,

proposed in this paper)
S a1ð Þ ¼ 0:0038; S a2ð Þ ¼ 0:0163; S a3ð Þ ¼ 0:0082;

S a4ð Þ ¼ 0:0143; S a5ð Þ ¼ 0:0081

x2 
 x4 
 x3 
 x5 
 x1

Approach based on q-ROFIWDHM operator (k = 2,

proposed in this paper)
S a1ð Þ ¼ 0:0031; S a2ð Þ ¼ 0:0155; S a3ð Þ ¼ 0:0075;

S a4ð Þ ¼ 0:0141; S a5ð Þ ¼ 0:0074

x2 
 x4 
 x3 
 x5 
 x1

Table 14 Decision matrix of Example 5

G1 G2 G3 G4

x1 (0.9, 0.3) (0.8, 0.1) (0.7, 0.6) (0.6, 0.3)

x2 (0.7, 0.4) (0.8, 0.7) (0.8, 0.2) (0.5, 0.3)

x3 (0.8, 0.5) (0.7, 0.5) (0.6, 0.2) (0.6, 0.4)

x4 (0.7, 0.2) (0.8, 0.2) (0.9, 0.6) (0.8, 0.4)

Bold values are q-ROFNs, but not IFNs and PFNs
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Therefore, the applicable range of our approach is wider

than He et al.’s method based on the WIFIBM operator

[46], and Yang and Pang’s method based on PFIWMSM

operator [28].

(5) Summary about the proposed operators’ superiorities

To further illustrate the advantages of proposed aggre-

gation operators, we present the characteristics of proposed

operators and operators in the studies [17, 21, 23, 26,

28, 30, 31, 35, 43–46]. Results are shown in Table 16.

From Table 16, we can find proposed operators have the

following superiorities compared with the existing opera-

tors introduced in the studies [17, 21, 23, 26,

28, 30, 31, 35, 43–46]:

(1) From the point view of operational laws, the IFWA,

PFWA, q-ROFWA, WIFBM, WPFBM, q-

ROFWBM, IFWMSM and WPFMSM operators in

the studies [17, 23, 26, 30, 31, 43–45] use traditional

operational rules and thus cannot avoid the unrea-

sonable situation if one of the membership or non-

membership degrees is zero. Moreover, IFWA,

PFWA and q-ROFWA operators cannot consider

the interrelationship among attributes, whereas

WIFBM, WPFBM, q-ROFWBM, WIFMSM,

PFWMSM operators in the studies [23, 26, 31,

44, 45] and the proposed operators in this paper

consider interrelationships of attributes.

(2) From the point view of aggregation operators,

although WIFBM, WPFBM and q-ROFWBM

[23, 26, 31, 44, 45] can consider the interrelationship

of the attributes, they only capture the interrelation-

ship between two attributes, whereas the q-

ROFIWHM and q-ROFIWDHM operators proposed

Table 15 Ranking results based on different methods for Example 5

Approaches Scores value of aiði ¼ 1; 2; 3; 4Þ Ranking results

He et al.’s method based on WIFIBM operator [46] Cannot be calculated No

He et al.’s method based on WPFIMSM operator [28] Cannot be calculated No

Approach based on q-ROFIWHM operator (proposed in this paper) S a1ð Þ ¼ 0:1225; S a2ð Þ ¼ 0:1289;

S a3ð Þ ¼ 0:0771; S a4ð Þ ¼ 0:2488

x4 
 x2 
 x1 
 x3

Approach based on q-ROFIWDHM operator (proposed in this paper) S a1ð Þ ¼ 0:0584; S a2ð Þ ¼ 0:1009;

S a3ð Þ ¼ 0:0558; S a4ð Þ ¼ 0:1044

x4 
 x2 
 x1 
 x3

Table 16 Characteristics of different aggregation operators

Aggregation

operators

Whether it considers

interrelationship of

any two attributes

Whether it considers

interrelationship among

multiple arguments

Whether it considers

interactions between

membership and non-

membership

Flexible (whether

there is a parameter to

reflect preferences)

Whether model

uncertainty is

more powerful

IFWA [43] No No No No No

PFWA [17] No No No No No

q-ROFWA

[30]

No No No No Yes

WIFBM [44] Yes No No Yes No

WPFBM [23] Yes No No Yes No

q-ROFWBM

[31]

Yes No No Yes Yes

WIFMSM [45] Yes Yes No Yes No

PFWMSM

[26]

Yes Yes No Yes No

IFWGIA [35] No No Yes No No

PFIWA [21] No No Yes No No

WIFIBM [46] Yes No Yes Yes No

PFIWMSM

[28]

Yes No Yes Yes No

q-ROFIWHM Yes Yes Yes Yes Yes

q-

ROFIWDHM

Yes Yes Yes Yes Yes
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in this paper can capture the interrelationships among

the multi-input attributes according to different

parameters k. Moreover, our approaches based on

q-ROFIWHM and q-ROFIWDHM operators adopt

the interaction operational laws that can avoid the

unreasonable effect on ranking result when the

membership or non-membership value of some

alternatives is zero, which is the same as IFWGIA

and PFIWA operators [21, 35]. However, IFWGIA

and PFIWA operators [21, 35] are special cases of

proposed q-ROFIWHM (k = n, q = 1) and q-

ROFIWDHM (k = 1, q = 2) operators, respectively.

(3) From the point view of information expression, the

scope of application of our approach is very wide.

Although WIFIBM operator [46] and PFIWMSM

operator [28] cannot only capture the interrelation-

ship of attributes but also adopt the interaction

operational laws, it can only solve MAGDM prob-

lems expressed by IFNs and PFNs. Moreover,

compared with WIFIBM operator [46] and

PFIWMSM operator [28], the proposed q-

ROFIWHM and q-ROFIWDHM operators are more

functional as they can capture the interrelationship

among multi-input arguments. Additionally, decision

makers can appropriately select the values of k, q in

the q-ROFIWHM and q-ROFIWDHM operators

according to actual needs.

In summary, because the proposed method can combine

the interaction operational laws with the HM and extend

them to deal with q-ROFNs, our approach provides a

flexible and general tool to deal with MAGDM problems.

Based on the comparisons and analysis above, our method

is more functional and powerful than existing methods

based on WA, BM and MSM operators.

9 Conclusions

The recently proposed q-ROFS can dynamically adjust the

range of indication of decision information by changing a

parameter q based on the different hesitation degrees. In

order to better integrate fuzzy information, we have com-

bined the interaction operational rules with the HM mean

and have extended them to the q-rung orthopair fuzzy

environment and propose q-rung orthopair fuzzy interac-

tion weighted Hamy mean operator and its dual form.

Further, based on the proposed operators, we establish a

novel approach to MAGDM problems in which attribute

values take the form of q-ROFNs. Finally, we give a

practical example to illustrate the applicability and

advantages of the new approach. The experimental results

show that the novel MAGDM method outperforms the

existing MAGDM methods for dealing with MAGDM

problems.

Compared with existing methods, the major advantage

of the proposed MAGDM approach is it can not only

accommodate situations in which the input arguments are

q-ROFNs and consider the interrelationships among multi-

input arguments, but also avoid the unreasonable effect on

ranking result when the membership or non-membership

value of some alternatives is zero. Furthermore, the pro-

posed method has a strong practicability and dependability

and can be further applied to various practical decision-

making problems, such as pilot hospital selection, health-

care management, supplier selection and emergency deci-

sion-making.

For future study, it is worth integrating the HM with

other classical t-conorm and t-norm, such as Frank t-norm

and t-conorm [47], and Dombi t-norm and t-conorm [48],

and further considering the interaction among the criteria

by using the Choquet integral. In addition, further research

can extend the proposed operators to other fuzzy sets, such

as interval-valued intuitionistic fuzzy set [49], interval-

valued Pythagorean fuzzy set [50], intuitionistic fuzzy soft

set [51, 52] and triangular Atanassov’s intuitionistic fuzzy

set [53], and further apply these to the fields of recom-

mendation systems, cluster analysis and so on.
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