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Abstract
This article presents the feasibility of using support vector regression (SVR) technique to determine the fresh and hardened

properties of self-compacting concrete. Two different kernel functions, namely exponential radial basis function (ERBF)

and radial basis function (RBF), were used to develop the SVR model. An experimental database of 115 data samples was

collected from different literatures to develop the SVR model. The data used in SVR model have been organized in the

form of six input parameters that covers dosage of binder content, fly ash, water–powder ratio, fine aggregate, coarse

aggregate and superplasticiser. The above-mentioned ingredients have been taken as input variables, whereas slump flow

value, L-box ratio, V-funnel time and compressive strength have been considered as output variables. The obtained results

indicate that the SVR–ERBF model outperforms SVR–RBF model for learning and predicting the experimental data with

the highest value of the coefficient of correlation (R) equal to 0.965, 0.954, 0.979 and 0.9773 for slump flow, L-box ratio,

V-funnel and compressive strength, respectively, with small values of statistical errors. Also, the efficiency of SVR model

is compared to artificial neural network (ANN) and multivariable regression analysis (MVR). In addition, a sensitivity

analysis was also carried out to determine the effects of various input parameters on output. This study indicates that SVR–

ERBF model can be used as an alternative approach in predicting the properties of self-compacting concrete.
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1 Introduction

Self-compacting concrete (SCC) was first developed in the

year 1988, in Japan. Nowadays, SCC is one of the most

efficient concrete mixes in the world. Self-compacting

concrete is a type of concrete that can flow and fill the

formwork without any external forces. Also, it has the

ability to consolidate by its own weight. The design mix is

mainly focused on two main criteria, namely the

requirement of a large amount of finer particle and neces-

sity of high-performing water-reducing admixture. Com-

pared to other traditional concrete, it requires

comparatively less human effort which is an added

advantage. Also, it increases production rate and reduces

noise disturbances. Lot of research studies are being carried

out in the area of SCC technology; some of these resear-

ches propose better enhancement and durability. Besides

all these advantages, SCC has some negative sides. The

cost of production of SCC could be 2–3 times higher than

ordinary concrete. Therefore, to minimize the cost, some

different admixtures such as limestone filler, fly ash (FA),

metakaolin, ground-granulated blast-furnace slag (GGBS)

and ground clay bricks can be utilized. These ingredients

which are used acts as an appropriate substitute for Port-

land cement [1–7]. To develop SCC three different criteria

needed to be fulfilled, such as filling ability, passing ability,

segregation resistance. So to meet out these requirements,

several trial experiments need to be performed. Lot of

questions arises whether SCC is economical and cost-

& Prasenjit Saha

pssprasenn@gmail.com

Prasenjit Debnath

prasen458@gmail.com

Paul Thomas

paul.thomas2013@vitalum.ac.in

1 Department of Civil Engineering, NIT Silchar,

Silchar 788010, India

2 Department of Electrical Engineering, National Institute of

Technology, Silchar 788010, India

123

Neural Computing and Applications (2020) 32:7995–8010
https://doi.org/10.1007/s00521-019-04267-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-1238-5636
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04267-w&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04267-w


effective. Another main hurdle is that it is time-consuming

to determine the optimum mix. To overcome these limi-

tations, the researchers use a different optimization tech-

nique to predict the fresh and hardened properties of

concrete.

Sarıdemir [8] developed an artificial neural network

(ANN) model to predict compressive strength of concrete

containing silica fume and metakaolin. Similar to this,

Bilim et al. [9] also proposed a prediction model to esti-

mate the compressive strength of ground-granulated blast-

furnace slag concrete. Ozcan et al. [10] performed a

comparative study regarding two optimization techniques,

namely ANN and fuzzy logic, to forecast compressive

strength of silica fume concrete. For similar applications,

some of the other researchers also proposed suitable mod-

els inspired by Fuzzy and adaptive neuro-fuzzy inference

system (ANFIS) to calculate the compressive strength

[11–16]. Besides all the advantages of ANN, it has some

limitations too, such as poor generalizing performance,

slow convergence speed and over-fitting problems. More-

over, to determine the number of hidden layers, there is no

specific rule. To overcome these limitations, a new

approach, namely support vector machine (SVM) was

developed. It renovates and boosts the generalization per-

formance to attain global minimum. Some of the applica-

tions using support vector machine technique have been

discussed below.

Recently, Sonebi et al. [17] investigated the fresh

properties of self-compacting concrete using support vector

machine approach. The result was positive and encourag-

ing, which shows better filling ability, flow ability and

passing ability. Similar research work was also carried out

by different researchers to predict compressive strength of

concrete using support vector regression [18–20] and

concluded that SVC would be a better and effective model

for the forecasting compressive strength of all grades of

concrete. Similar to above-mentioned studies, a numerical

analysis was carried out by Yan et al. [21] to foreshow

elastic modulus for the normal and high strength of con-

crete using SVM model. Naseri et al. [22] carried out an

experimental analysis on SVM-based prediction technique

to determine the hardened properties of self-compacting

concrete using polypropylene fibre and nano-CuO. Liu [23]

discussed the feasibility of using SVM model to determine

autogenous shrinkage of concrete mixtures. The SVM

model was compared with ANN model to compare its

accuracy and efficacy, and the outcomes proved that SVM

has the better predicting capability. In another study,

Sobhani [24] commented the effectiveness of SVM model

to prefigure the strength of no-slump concrete and finally

results being contrasted with ANN in his studies. Dong

et al. [25] developed a tool to predict acceleration response

of nonlinear structure by using support vector machine.

From the test results, it was verified that SVM-based model

provides better remarkable performance for forecasting and

simulation. Amir Saber Mahania et al. [26] employed two

optimization techniques, namely particle swarm optimiza-

tion (PSO) and ant colony optimization, thereafter it was

hybridized and compared with weighted least squares

support vector machine to determine the optimal shape of

the double arch dam. Correspondingly, Yang [27] per-

formed an experimental investigation on corroded rein-

forced concrete. The experimental result was examined

with SVM output. It was noticed that SVM exhibits

superior prediction efficiency. SVM can be utilized for

wide applications in the field of civil engineering, namely

nonlinear structural identification, flood stage forecasting,

flood forecasting [28], fracture characteristics of concrete

[29], downscaling of precipitation [30], soil improvement,

forecasted stream flow and reservoir inflow [31], prediction

of groundwater level (GWL) fluctuations [32].

However, most of the research studies on concrete are

limited only on predicting the hardened concrete proper-

ties. It is also observed from the literature survey that there

are no such articles available focusing on prediction of both

fresh and hardened properties of self-compacting concrete

using support vector regression (SVR) method. Therefore,

an effort has been made to predict both fresh and hardened

properties of SCC using SVR technique. Also, the effi-

ciency of SVR model is compared to artificial neural net-

work (ANN) and multivariable regression analysis (MVR).

An experimental database of 115 samples was collected

from the various literatures to develop the SVR model.

This study is mainly concentrated on estimating the fresh

properties (L-box test, V-funnel test, slump flow)and

hardened properties (compressive strength) of SCC from

binder content, fly ash, water–powder ratio, fine aggregate,

coarse aggregate and superplasticizer as input parameters.

2 Data collection

The main objective of this study is to predict the output

parameters related to fresh and hardened properties of

SCC. Most of the previous research works are predomi-

nately limited to evaluating a single output characteristic of

concrete by considering a large number of input variables.

Therefore, in this study four output parameters are con-

sidered for prediction. The datasets of 115 SCC concrete

mix proportions considered for modelling the SVR are

presented in Appendix.

The SVR model is designed with six input parameters,

namely binder content (B), fly ash percentage (P), water–

powder ratio (W/B), fine aggregate (F), coarse aggregate

(C) and super plasticizer dosage (SP). In the previous

studies, modelling was concentrated only on developing
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the database from the experimental work; therefore, their

database is restricted to a particular variable. In this present

study, data are collected from diverse and distinctive

source; therefore, it can be applied over to wide applica-

tions. In the present study, out of 115 experimental data

points, 80% of the data are used to train the SVR model,

and the remaining 20% of the data are used to test the

model [33]. Statistical parameters of input and output

variables used to develop SVR models are enlisted in

Table 1.

3 Support vector machine

The support vector machine was first introduced by Vap-

nik et al. [34]. During the initial stage, it was limited to

solve the classification related problems, later it was

upgraded to solve regression-related problems also. SVM

regression follows the principle of structural risk mini-

mization (SRM) which is much more superior compared to

conventional Empirical Risk Minimization (ERM) princi-

ple. SRM principle is employed to decline the upper bound

generalization error which is very crucial for any statistical

learning process. Support vector regression (SVR) is an

extension of SVM to solve the prediction- and regression-

related problems. Both SVR and SVM use very similar

algorithms, but predict different types of variables. The

main difference comes in the slack variables used in the

two techniques. SVM for classification involves assigning

one slack variable to each training data point, whereas in

SVM for regression, there are two slack variables for each

training data point. In addition to that the main character-

istic that differentiates SVR from other model is its ability

to improvise generalization performance and to obtain an

optimal global solution at the minimum time period. In this

paper, Vapnik’s e-insensitive loss function has been used to

solve nonlinear regression estimation, and the brief

description of SVM regression can be found in Ref.

[35, 36].

4 Linear support vector regression

Considering a training dataset {(xi, yi), i = 1, 2, 3 … n},

where n is the size of training dataset, xi is the input vector

and yi is the output vector, respectively. The general linear

regression form of SVR can be written as

f x � wð Þ ¼ w � xþ b ð1Þ

where w � xð Þ indicates the dot product, w is the weight

vector, b is the bias and x is the test pattern in normalized

form. The SRM theory can be performed by reducing

empirical risk Remp(w, b) described as equation, and

empirical risk can be defined by using e-insensitive loss

function L�ðyi; f xi;wÞð Þ indicate as Eq. (3) [34]

Remp w; bð Þ ¼ 1

n

Xn

i¼1

L�ðyi;f xi;wð ÞÞ ð2Þ

L� yi; f xi;wð Þð Þ ¼ �; if yi � f xi;wð Þj j � �
yi � f xi;wÞð Þj j � �; otherwise

�
ð3Þ

L� yi; f xi;wð Þð Þ is the e-insensitive loss function, or the

tolerance error between the target output (yi) and the esti-

mated output values f xi;wð Þ in optimization process, and

xi is defined as training pattern. By using e-insensitive loss
function in linear regression problem, the complexity of

SVR model can be solved by minimizing jjwjj2. The

deviation of training data outside the �-zone can be esti-

mated by using non-negative slack variable n�i ni
� �

.

lim
w;b;n;n�

1

2
w � wþ C

Xn

i¼1

n�i þ
Xn

i¼1

ni

 !" #
ð4Þ

Table 1 Statistical parameters

of input and output variable
Components Minimum Maximum Average Reference value SD Range

Input variables

Binder content (kg/m3) 370 733 523.4 530 71.22173 363

Water–powder ratio 0.26 0.45 0.37 0.37 16.5859 60

Fly ash (%) 0 60 28.7 30 0.060 0.19

Fine aggregate (kg/m3) 656 1038 852.8 850 89.931 382

Coarse aggregate (kg/m3) 590 935 742.63 742 121.809 345

Superplasticiser (kg/m3) 0.74 21.84 8 8 4.669 21.1

Output variables

D flow (mm) 480 880 660.5 – 56.10818 330

L-box (H2/H1) 0.6 1 0.86 – 0.093575 0.4

V-funnel 1.95 19.2 7.75 – 3.844 17.2

Compressive strength (MPa) 10.2 86.8 48.22 – 17.555 69.8
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Subjected to,

yi � w � xi � b� �þ n�i
w � xi þ b� yi � �þ ni;
n�i ; ni � 0

8
<

: i ¼ 1; . . .; n

To solve the above-mentioned problem, a saddle point

of Lagrange function has to be found

Lðw; n�; n; a�; a;C; c�; c

¼ 1

2
w � wþ c

Xn

i¼1

n�i þ
Xn

i¼1

ni

 !

�
Xn

i¼1

ai yi � w � xi � bþ �þ ni½ �

�
Xn

i¼1

a�i w � xi þ b� yi þ �þ n�i
� �

�
Xn

i

ðc�i n
�
i þ ciniÞ

ð5Þ

By performing partial differential of Eq. (5) with respect

to w, b, n�i and ni, Lagrange function can be minimized by

applying Karush–Kuhn–Tucke (KKT) conditions

oL

ow
¼ wþ

Xn

i¼1

aixi �
Xn

i¼1

a�i xi ¼ 0;w ¼
Xn

i¼1

ða�i � aiÞxi

ð6aÞ

oL

ob
¼
Xn

i¼1

ai �
Xn

i¼1

a�i ¼ 0;
Xn

i¼1

ai ¼
Xn

i¼1

a�i ð6bÞ

oL

on�
¼ C �

Xn

i¼1

c�i �
Xn

i¼1

a�i ¼ 0;
Xn

i¼1

c�i ¼ C �
Xn

i¼1

a�i

ð6cÞ

oL

on
¼ C �

Xn

i¼1

ci �
Xn

i¼1

ai ¼ 0;
Xn

i¼1

ci ¼ C �
Xn

i¼1

ai ð6dÞ

where the parameter w of Eq. (6a) is related to parameter w

of Eq. (1). After that, putting Eq. (6) into the Lagrange

function (5), the dual optimization function can be

expressed as

max
a;a�

w a; a�ð Þ½ � ¼ max
a;a�

"
Xn

i¼1

yi a
�
i � ai

� �
� �
Xn

i¼1

ða�i � aiÞ

� 1

2

Xn

ij¼1

ða�i � aiÞ a�i � ai
� �

xi � xj
� �

#

ð7Þ

subjected to

Pn

i¼1

a�i � ai
� �

¼ 0;

0� a�i ; ai � 0

8
<

: i ¼ 1; . . .. . .:n

where a�i and ai are defined as Lagrange multiplier [37].

After Solving Eq. (7) with constrains in Eq. (8), the final

linear regression function can be expressed as

f x; a�;að Þ ¼
Xn

i¼1

a�i � ai
� �

xi � xð Þ þ b ð8Þ

5 Nonlinear support vector regression

To solve a complex real-world problem, the linear SVR is

not suitable. To perform nonlinear SVR, mapping of input

data into high-dimensional feature space is required where

linear regression is possible. The input training pattern xi is

reformed into feature space u xið Þ by a nonlinear function.

After that, the optimization algorithm is applied in the

same way as linear SVR. Correspondingly, the nonlinear

support vector regression can be expressed as follows

f x;wð Þ ¼ w � u xð Þ þ b ð9Þ

where w and b denote parameter vector and u xð Þ is used as

mapping function from input features to a high-dimen-

sional feature space.

The diagram of nonlinear support vector regression with

e-insensitive loss function is shown in Fig. 1. In the figure,

the support vectors are marked with bold points, which

have the largest difference from the decision boundary. On

the right-hand side of the diagram indicates e-insensitive
loss function, it has an error tolerance e, upper bound and

lower bound are calculated by slack variables n�i ; ni
� �

.

Finally, nonlinear support vector regression can be

expressed as

max
a;a�

w a; a�ð Þ½ � ¼ max
a;a�

Xn

i¼1

yi a
�
i � ai

� �
� �
Xn

i¼1

ða�i þ aiÞ
"

� 1

2

Xn

ij¼1

ða�i � aiÞ a�i � ai
� �

u xið Þ � u xj
� �� �

#

ð10Þ

subjected to

Pn

i¼1

a�i � ai
� �

¼ 0;

0� a�i ; ai � 0

8
<

: i ¼ 1; . . .n

As the inner product u xið Þ � u xj
� �

is complex, by using

Mercer’s condition [38], the inner product can be replaced

by using kernel function u xið Þ � u xj
� �

¼ K xi; xj
� �

.There-

fore, Eq. (11) can be written as

max
a;a�

w a; a�ð Þ½ � ¼ max
a;a�

Xn

i¼1

yi a
�
i � ai

� �
� �
Xn

i¼1

ða�i þ aiÞ
"

� 1

2

Xn

ij¼1

ða�i � aiÞ a�i � ai
� �

K xi; xj
� �

g
#

ð11Þ
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subjected to

Pn

i¼1

a�i � ai
� �

¼ 0;

0� a�i ; ai � 0

8
<

: i ¼ 1; . . .n

For nonlinear regression, numerous kernel functions

have been discussed in the above-mentioned literature. The

most commonly used kernel function and their corre-

sponding equations are presented in Table 2. However, in

the present study, radial basis and exponential radial basis

kernel function have been used. SVR model has been

implemented in MATLAB 2013a environment with a

support vector machine code [36]. Parameters r and d are

user-defined kernel function. By trial and error, the optimal

values of C, e and kernel parameters are determined [39].

6 Predictive model development

6.1 SVR models development

In order to predict the fresh (L-box ratio, V-funnel, slump

flow) and hardened properties of concrete (compressive

strength of concrete), nonlinear regression technique was

developed through SVR toolbox. Experimental studies

indicate that properties of concrete are mostly influenced

by binder content (B), fly ash (P), water–powder ratio (W/

B), fine aggregate (F), coarse aggregate (C) and super-

plasticiser dose (SP). Thus, these above-mentioned

parameters are taken as an input variable for SVR model,

and slump flow (D), L-box ratio, V-funnel, compressive

strength (Fc28) are taken as the output variable. These

input parameters have different units; hence, the data have

to be normalized. After the normalization, the data values

lie between the range 0 and 1. To develop the SVR algo-

rithm, several parameters are needed to be determined,

namely kernel specific parameters d and r, error insensitive
loss function e and penalty parameters C. However, the

choice of e and C can be estimated by following some

guidelines. The large value of penalty parameter C indi-

cates to minimize the empirical risk which makes the

learning algorithm more complicated, on the other hand,

the smaller value of penalty parameter C indicates mini-

mization of error within the margin, and this allows

learning algorithm with a poor approximation.

The complexity or smoothness of the approximation is

influenced by e parameter. Moreover, it also decides the

number of support vector used in final prediction operation.

So in order to develop regression function, a smaller value

of e leads to complexities in the learning process having a

large volume of support vector, still it would be effective in

prediction. On the other hand, the greater value of e may

lead to less number of support vector, resulting in data

destruction, which creates flattening in the regression

function. However, in the present study, SVR modelling

kernel parameter r and d, loss function parameter e and

penalty parameter C are finalized by trial and error method.

+ +

( , ) = . ( ) +

+

Penalty
Training error 

+ - 

Fig. 1 Nonlinear SVR with

insensitive loss function

Table 2 Different types of

kernel function
Kernel Equation

Linear kernel function K xi; xð Þ ¼ xi � x
Sigmoid kernel function K xi; xð Þ ¼ tanh axi � xþ bð Þ
Polynomial kernel function (POLY) K xi; xð Þ ¼ xi � xþ 1ð Þd

Radial basis kernel function (RBF) K xi; xð Þ ¼ exp �xi � x2

2r2

	 


Exponential radial basis kernel function (ERBF) Kxi � x ¼ exp
ffiffiffiffiffiffiffiffiffiffi�xi�x

p

2r2

	 


r is the width of RBF and ERBF functions, d is the degree of polynomial function
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6.2 ANN model development

ANN has been used in solving various civil engineering-

related problems. For the sake of conciseness, it is

restrained to the short discussion of ANN in the present

study and can be found in the literature. The input

parameter of ANN are considered as dosage of binder

content, fly ash, water–powder ratio, fine aggregate, coarse

aggregate and superplasticiser, whereas, slump flow value,

L-box ratio, V-funnel time and compressive strength have

been considered as output variables. The ANN modelling

was implemented in MATLAB 2013 software with neural

network toolbox. Total 80% experimental data were used

for training, and remaining 20% data used for testing the

trained model. A feed-forward multilayer perceptron neural

network with one hidden layer was adopted. the number of

neurons in hidden layer was varied to find the optimum

architecture. Optimum architecture of ANN model was

characterized by the number of neurons in hidden layer

with tan-sigmoid (hyperbolic tangent) transfer function and

a pure linear transfer function at output layer. Bayesian

regularization back-propagation training algorithm is used

for its better generalization to the training data.

6.3 MVR model development

In the present study for the prediction of slump flow value,

L-box ratio, V-funnel time and compressive strength of

concrete, multivariable regression analysis is also con-

ducted. Here, 80% data are used to develop the MVR

model as it was used in ANN model, and rest of 20% data

is used to predict the efficiency of the model. A relation-

ship between dependable variable and independable is

shown by the following equation:

Y ¼ a0 þ a1x1 þ a2x2 þ . . .þ apxp � e

where Y is the dependent variable, a0 is an intercept. a1, a2
and ap are the slopes x1; x2 and xp are independent variables

and e is the error. ‘‘a’’ values are obtained via least square

optimization of error.

7 Result and discussion

All models, i.e. SVR, ANN, MVR, has been designed from

a dataset of 115 SCC mix proportions. The dosages of

binder content, water–powder ratio, fly ash percentage,

volume of fine aggregate, volume of coarse aggregate and

superplasticiser were varied from 370 to 733 kg/m3, 0.26 to

0.45, 0 to 60%, 656 to 1038 kg/m3, 590 to 935 kg/m3 and

0.74 to 21.84 kg/m3 respectively. To develop the SVR

model, two different kernel function, namely, exponential

radial basis kernel and radial basis kernel were considered.

Different combinations of d, r, C and e were tried on

training dataset, and for each combination of these

parameters, performance of testing dataset was recorded.

Table 3 shows SVR model performance for slump flow

prediction with varying C for a constant kernel value and

C. Effect of variation in r on model performance for a

constant kernel value and e is presented in Table 3, and e
variation in models on performance for a constant kernel

value and C is presented in Table 3. But due to space

limitation, variation in kernel function on the performance

of slump flow prediction is only presented here. The dataset

of optimum kernel functions of the SVR model for dif-

ferent output parameters is detailed in Table 4.

To evaluate the performance of SVR, ANN, MVR

model in predicting the response, different statistical

parameters were used, namely coefficient of determination

(R2), mean absolute deviation (MAD), mean square error

(MSE), root mean square error (RMSE) and mean absolute

percentage error (MAPE). Statistical performance of

developed SVR, ANN and MVR model is summarized in

Table 5. For predicting the fresh and hardened properties

of SCC, exponential radial basis function shows higher

degree of accuracy than other prediction model. Due to

Table 3 (a) SVR model

performance with varying C for

a constant kernel value and e.
(b) SVR model performance

with varying r for a constant

kernel value and e. (c) SVR
model performance with

varying e for a constant kernel

value and C

r C e R

(a)

1.1 70 0.00001 0.8971

1.1 60 0.00001 0.9659

1.1 50 0.00001 0.9612

1.1 40 0.00001 0.9599

1.1 30 0.00001 0.959

1.1 20 0.00001 0.9617

1.1 10 0.00001 0.9612

1.1 10 0.00001 0.9612

(b)

0.1 60 0.00001 0.7439

0.3 60 0.00001 0.8986

0.6 60 0.00001 0.965

0.9 60 0.00001 0.968

1.1 60 0.00001 0.9733

1.3 60 0.00001 0.953

(c)

1.1 60 0.1 0.873

1.1 60 0.01 0.901

1.1 60 0.001 0.9312

1.1 60 0.0001 0.9521

1.1 60 0.00001 0.9659

1.1 60 0.000001 0.931
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space limitation, only the best prediction model is

discussed.

The slump flow prediction for SVR–ERBF model is

presented in Fig. 2. In the Figure, it is clearly demonstrated

that all data points are lying within 90% of prediction

interval, which confirms that SVR–ERBF model can effi-

ciently use to predict the slump flow. A coefficient of

determination 0.931 (MAD = 9.136, MSE = 136.370,

RMSE = 11.678 and MAPE = 1.458) was obtained. And

also, it suggest that SVR–ERBF model provides better

result in slump flow prediction compared to SVR–RBF

model (R2 = 0.590, MAD = 23.040, MSE = 889.769,

RMSE = 29.829 and MAPE = 3.494).

The L-box prediction for SVR–ERBF model is shown in

Fig. 3. Similarly, for the prediction of L-box ratio, all the

predicted data points are lying within 90% interval and

coefficient of determination of 0.910 (MAD = 0.018,

MSE = 0.001, RMSE = 0.025 and MAPE = 2.105) was

achieved for SVR–ERBF model while SVR–RBF model

shows lower performance (R2 = 0.595, MAD = 0.037,

MSE = 0.003, RMSE = 0.057 and MAPE = 4.187).

Figure 4 presents the plot of experimental versus pre-

dicted values of V-funnel test. For SVR–ERBF model, all

the data points are lying within 90% interval with coeffi-

cient of determination 0.958 (MAD = 0.488, MSE =

0.523, RMSE = 0.723 and MAPE = 9.381). The SVR–

RBF model-based approach shows lower performance

(R2 = 0.595, MAD = 1.402, MSE = 5.581, RMSE = 2.362

and MAPE = 29.437).

The same SVR model was used to predict compressive

strength of concrete. After the training process, the model

was used to predict the compressive strength. Figure 5

shows the experimental versus predicted compressive

strength values with SVR–ERBF model. It can be observed

that most of the data points are lying with its bound and its

correlation of determination equal to 0.955 (MAD = 2.939,

Table 4 Value of support vector

regression parameters
Exponential radial basis function Radial basis function

d C e d C e

Slump flow (mm) 1.1 60 0.00001 0.1 10 0.000001

L-BOX 0.5 1000 0.00001 0.2 130 0.0000001

V-FUNNEL 1.1 10 0.00001 0.1 10 0.00001

Compressive strength 1.1 10 0.00001 0.1 10 0.0001

Table 5 Statistical errors of

proposed SVR models
R2 MAD MSE RMSE MAPE

Exponential radial basis function

Slump flow (mm) 0.931 9.136 136.370 11.678 1.458

L-BOX 0.910 0.018 0.001 0.025 2.105

V-FUNNEL 0.958 0.488 0.523 0.723 9.381

Compressive strength 0.955 2.939 14.312 3.783 6.419

Radial basis function

Slump flow (mm) 0.590 23.040 889.769 29.829 3.494

L-BOX 0.595 0.037 0.003 0.057 4.187

V-FUNNEL 0.595 1.402 5.581 2.362 29.437

Compressive strength 0.284 11.289 228.700 15.123 23.461

ANN

Slump flow (mm) 0.615 21.982 696.403 26.389 3.469

L-BOX 0.637 0.058 0.004 0.0642 6.382

V-FUNNEL 0.857 1.366 2.738 1.654 19.500

Compressive strength 0.882 5.404 38.464 6.202 11.773

MVR

Slump flow (mm) 0.135 42.486 2845.13 53.33 6.844

L-BOX 0.649 0.0497 0.003 0.0589 5.491

V-FUNNEL 0.405 2.214 7.223 2.687 40.665

Compressive strength 0.834 5.848 63.705 7.98 14.37
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MSE = 14.312, RMSE = 3.783 and MAPE = 6.419)

achieved with SVR–ERBF model. Similarly, from the

SVR–RBF model, lower performance (MAD = 11.289,

MSE = 228.700, RMSE = 15.123 and MAPE = 23.461) is

observed.

7.1 Sensitivity analysis results and discussion

A sensitive analysis has been also carried out to obtain the

effect the input parameters on output. Therefore, to esti-

mate the effect of input parameters, a particular input

parameter is varied within its range with the other
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parameters being fixed at reference value. Similar proce-

dure is applied for other input parameters to investigate the

effect of input parameters on output value. Therefore, the

input parameters, i.e. the amount of cement, fly ash, water–

powder ratio, fine aggregate, coarse aggregate and Super-

plasticiser, were varied from 370 to 550 kg/m3, 0 to 30%,

656 to 846 kg/m3, 676 to 848 kg/m3, 600 to 1000 kg/m3

and 0.74 to 11.24 kg/m3, respectively.

From Fig. 6, it is clear that the higher concentration of

cement, fly ash and fine aggregate content absorbs water

causing declination of slump flow diameter. However,

increasing the amount of coarse aggregate, water–powder
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proportion and superplasticiser percentage results in the

improvement of slump flow diameter.

From Fig. 7, it can be observed that the increasing

water–powder ratio, superplasticiser, fine aggregate, coarse

aggregate increases L-box ratio, which reflects better

passing ability of SCC. Similarly, an increase in the dosage

of powder and fly ash reduces the L-box ratio.

Similarly, to predict the V-funnel time, the same

approach has been adopted. Influence of mix composition

in predicted V-funnel value is presented in Fig. 8, and it

indicates that increase in the amount of water–powder

ratio, cement, fly ash, fine aggregate and superplasticiser

dosage reduces V-funnel time. Likewise, increase in coarse

content increases the V-funnel time.

In Fig. 9, it is illustrated that increasing the amount of

cement content enhances compressive strength, and at the

same time increase in fly ash percentage reduces the

compressive strength. The relationship between water–

powder ratio and compressive strength of SCC is also

verified from the graph, as decrease in w/p ratio increases

compressive strength. Also, it suggests that increase in

superplasticiser dosage improves the compressive strength

due to the fact that at higher concentration of superplasti-

ciser dosage, requirement of water is less. The plot also

indicates that increase in coarse aggregate content

improves the hardened property of SCC.
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8 Conclusions

In this paper, SVR, ANN, MVR approach was used to

predict the fresh and hardened properties of self-compact-

ing concrete. Input parameters such as the mix ingredient,

namely binder content, fly ash percentage, water–powder

ratio, fine aggregate content, coarse aggregate content and

superplasticiser, are considered. Based on the study, fol-

lowing conclusions can be drawn.

1. Out of the three prediction model, SVR model with

exponential radial basis function yields the best

performance based on the highest value of coefficient

of correlation of the training and testing data and

lowest value of statistical error.

2. Sensitivity analysis shows a clear picture of effect of

various input parameters on different outputs param-

eters, namely slump flow, L-box ratio,V-funnel and

compressive strength.

3. This present study represents that the support vector

regression technique with exponential radial basis

function can be used as a powerful and reliable

alternative to solve highly nonlinear problems such as

prediction of SCC properties with a high degree of

accuracy [40].
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Appendix: Details of experimental variables
and test results

Author Year B P W/B F C SP D (mm) L-box V-funnel Fc28

Sahmaran et al. [41] 2009 500 0 0.35 1038 639 6.75 665 0.87 12.7 62.2

500 30 0.34 1006 620 6.75 765 0.95 10.2 52.4

500 30 0.35 1008 621 6.75 715 0.95 15.8 57.3

500 40 0.35 995 613 6.75 730 0.85 10.7 59.1

500 40 0.32 1004 618 6.75 745 0.95 11.7 52.3

500 50 0.35 988 608 6.75 710 0.9 19.2 40.8

500 50 0.3 1010 628 6.75 738 0.88 15.1 47.5

500 60 0.35 979 603 6.75 740 0.85 12.8 38.1

500 60 0.3 997 614 6.75 770 0.95 9.4 39.9

Siddique [42] 2012 550 15 0.41 910 590 10.45 590 0.95 6.5 29

550 15 0.41 910 590 10.72 675 0.9 7.5 35.5

550 20 0.41 910 590 6.6 600 0.7 4.8 24

550 20 0.41 910 590 7.15 645 0.95 4.5 27

550 20 0.41 910 590 9.9 605 0.82 7.5 32

550 20 0.41 910 590 11 690 0.9 4.5 33.5

550 25 0.42 910 590 7.7 600 0.6 7 26

550 25 0.42 910 590 8.25 625 0.8 5.2 28

550 25 0.42 910 590 9.9 605 0.6 7 32

550 25 0.42 910 590 11 590 0.6 4.2 21.7

550 30 0.43 910 590 7.15 610 0.87 5.4 21

550 30 0.43 910 590 7.7 600 0.9 6.5 25.5

550 30 0.43 910 590 8.8 605 0.7 8.9 27.5

550 30 0.43 910 590 9.9 675 0.95 5 31

550 35 0.44 910 590 7.15 590 0.86 6.1 17

550 35 0.44 910 590 8.8 590 0.8 8 23

550 35 0.44 910 590 9.35 645 0.9 9 25

550 35 0.44 910 590 9.9 635 0.92 10 29.5

500 30 0.35 900 600 11 660 0.9 9 29.2

500 40 0.35 900 600 10.75 675 0.93 7 28.6

Uysal and Yilmaz [43] 2011 550 25 0.33 887 752 8.8 740 0.93 11.7 73.4

550 35 0.33 878 742 8.8 750 0.91 17 67.5

550 15 0.41 910 590 9.9 625 0.82 4 26.5

550 15 0.41 910 590 10.17 675 0.8 6.6 36

Patel [44] 2003 400 30 0.39 946 900 1.4 510 0.96 4.5 45

370 36 0.43 960 900 1.85 650 0.94 3 46

430 36 0.43 830 900 0.86 480 0.6 2.5 36

430 36 0.43 827 900 2.15 810 0.95 2 48

400 45 0.45 850 900 1.4 760 1 2.5 38

400 45 0.39 916 900 1.4 580 1 3 45

400 45 0.39 916 900 1.4 600 1 3 47

400 45 0.39 916 900 1.4 570 1 3 49

400 45 0.39 916 900 1.4 590 1 3.3 49

400 45 0.39 916 900 1.4 590 1 3.5 49

400 45 0.39 916 900 2.4 770 1 3.5 43

450 45 0.39 808 900 1.58 680 1 2.3 50
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(continued)

Author Year B P W/B F C SP D (mm) L-box V-funnel Fc28

370 54 0.43 930 900 0.74 600 1 2.8 31

370 54 0.43 928 900 1.85 760 1 2.5 33

430 54 0.34 874 900 0.86 540 0.87 3.3 46

430 54 0.36 872 900 2.15 710 1 4 52

400 60 0.39 886 900 1.4 630 0.91 3.5 44

Gettu et al. [45] 2002 701 37 0.27 774 723 8.1 580 0.8 10 69.5

733 37 0.26 748 698 8.4 660 0.9 12 68.2

550 20 0.41 910 590 11.01 690 0.95 4.5 33.2

Siddique et al. [6] 2011 550 25 0.42 910 590 9.91 603 0.85 5.2 31.5

550 30 0.43 910 590 9.91 673 0.95 6.1 30.7

550 35 0.44 910 590 9.91 633 0.92 10 29.6

550 0 0.33 869 778 8.8 690 0.82 14.5 75.9

550 15 0.33 865 762 8.8 710 0.91 9.4 74.2

Güneyisi et al. [46] 2010 550 0 0.44 826 868 3.5 670 0.71 3.2 61.5

550 0 0.32 728 935 8.43 670 0.79 17 80.9

550 20 0.44 813 855 3.2 675 0.71 10.4 52.1

550 20 0.32 714 917 7.43 730 0.93 7 69.8

550 40 0.44 801 842 2.96 730 0.8 6 44.7

550 40 0.32 700 899 7.43 730 0.96 6 60.9

550 60 0.44 788 829 3 720 0.95 4 30.3

550 60 0.32 686 881 6.67 730 0.9 7 47.5

633 0 0.27 656 875 20.58 635 0.79 13.2 86.8

Nepomuceno et al. [47] 2014 643 0 0.29 761 729 19.95 630 0.86 9.9 81.9

670 0 0.27 695 772 21.84 620 0.81 10.4 85

551 16 0.31 822 772 11.34 625 0.7 11.6 59.6

564 16 0.31 841 729 11.55 630 0.77 10.3 56.8

588 16 0.28 752 820 12.39 635 0.77 11 64.8

604 16 0.28 772 772 12.71 625 0.8 9.7 63.1

613 16 0.26 686 875 12.92 615 0.77 12.7 67.5

618 16 0.28 790 729 13.02 640 0.83 11.6 63.6

649 16 0.26 726 772 13.65 650 0.84 10 69.1

613 24 0.26 685 875 15.33 645 0.8 13.3 78.2

633 24 0.26 706 820 15.86 630 0.79 12.4 79.2

649 24 0.26 726 772 16.28 655 0.84 10.5 80.3

567 25 0.3 846 729 13.86 655 0.82 11.3 69.9

607 25 0.27 774 772 15.12 640 0.83 10.8 74.5

620 25 0.27 792 729 15.54 635 0.83 10.1 75.7

Bingol and Tohumcu [48] 2013 500 40 0.35 923 663 7.5 680 0.88 6.2 55

500 55 0.35 908 652 7.5 700 0.91 7 42.7

450 0 0.45 890 810 9.25 687 0.8 9 50

480 0 0.4 890 810 13.3 650 0.88 12 52

Krishnapal et al. [49] 2013 450 10 0.45 890 810 8.2 689 0.79 8.6 45

480 10 0.4 890 810 9.9 665 0.85 9 46

450 20 0.45 890 810 6.4 690 0.78 8 41

480 20 0.4 890 810 9.68 685 0.82 8.4 42

450 30 0.45 890 810 4.8 695 0.78 8 39

480 30 0.4 890 810 9.4 680 0.8 8.1 40

575 0 0.31 794 772 17.22 645 0.75 13.3 77.8
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