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Abstract
In hybrid electric vehicles, the energy economy depends on the coordination between the internal combustion engine and

the electric machines under the constraint that the total propulsion power satisfies the driver demand power. To optimize

this coordination, not only the current power demand but also the future one is needed for real-time distribution decision.

This paper presents a prediction-based optimal energy management strategy. Extreme learning machine algorithm is

exploited to provide the driver torque demand prediction for realizing the receding horizon optimization. With an industrial

used traffic-in-the-loop powertrain simulation platform, an urban driving route scenario is built for the source data

collection. Both of one-step-ahead and multi-step-ahead predictions are investigated. The prediction results show that for

the three-step-ahead prediction, the 1st step can achieve unbiased estimation and the minimum root-mean-square error can

achieve 100, 150 and 160 of the 1st, 2nd and 3rd steps, respectively. Furthermore, integrating with the learning-based

prediction, a real-time energy management strategy is designed by solving the receding horizon optimization problem.

Simulation results demonstrate the effect of the proposed scheme.

Keywords Hybrid electric vehicle � Energy optimization � Extreme learning machine � Connected vehicles �
Driver demand prediction

1 Introduction

The hybrid electric powertrain technology is recently

spotlighted as a high efficient vehicular propulsion system.

The advantage of the hybrid electric powertrain is to use

the freedom in assigning the driver demand power into

different power sources, mainly the internal combustion

engine and electric machines, such that the energy con-

sumption is much less than in conventional combustion

engine-powered vehicles. In a hybrid powertrain, the power

supplied by the different power sources effects not only the

current vehicle states but also the future behaviors of the

vehicle due to the mechanical inertia. In this case, not only

the instantaneous energy efficiency but also the total

energy consumption over a driving time interval or a tar-

geted driving route can be optimized with efficient energy

management strategies. In the past two decades, a lot of

researches on hybrid electric vehicle (HEV) optimal energy

management have been driven by this potential for saving

energy [1, 2].

At early stage, focusing on the engine operating point,

rule-based engine management strategies are proposed for

improving instantaneous fuel efficiency [3]. This kind of

solution requires low computing cost for the electronic

control unite (ECU) of the vehicle powertrain system.

However, instantaneously deciding the operating point

according to the vehicle speed and the torque demand is

generally not optimal if total energy consumption is eval-

uated along a route or a time interval. Targeting a given

driving route, optimization of the global energy con-

sumption is investigated by a lot of literatures [4–7]. These

literatures present the solutions in such a way: first, define a

cost function for evaluating total energy consumption
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along the route; then, calculate the demand power along the

route based on the dynamic model of the vehicle and the

battery state of charge (SoC); finally, the optimization

result with respect to the cost function provides the power

distribution of the demand power among the power sources

and the operating point decision according to the topo-

logical structure of the powertrain. Dynamic programming

(DP) is the typical tool to solve this optimization problem.

For example, a DP-based solution is proposed in [5] where

an attempt is made by using neural network to regulate the

solution in real-time application, and stochastic DP is

exploited to count the stochasticity in the demand power

[6]. However, this kind of route-depended optimal energy

management method is unfeasible in practice due to the

requirement of fully previewed knowledge of future power

demand. Hence, research attention has been focused on the

real-time optimization, i.e., making decisions on power

distribution and operating point of the power sources in

real time without the exact information of the future trip.

The cornerstone of real-time optimization is the prediction

of the power demand or the vehicle behavior.

Real-time optimal energy management is usually con-

ducted based on the models of the vehicle dynamics and/

or the battery. Most proposed approaches formulate the

real-time optimization of energy consumption as a finite-

time optimal control problem and solve the problem

numerically in the sense of discrete time. For example, a

look-ahead optimization method is proposed to optimize

the total fuel consumption of a future period in receding

horizon policy [8]. Receding horizon optimization

approaches are also proposed in [9, 10] where iterative

algorithms based on GMRES (generalized minimum

residual) method are presented to solve the Pontryagin

condition approximately. Regarding these approaches, the

energy management problem is solved along the model-

based predicted trajectory of the future trip under the

assumption that the torque demand over the horizon is a

known constant [9] or a given approximate treatment,

such as using the output of an exponentially decreasing

model [11, 12]. To improve this unfeasible assumption, a

lot of challenges are reported focusing the main attention

on estimating the driver torque demand. In [13], auto-

regressive models are exploited to predict the driver tor-

que demand. Neural network method is proposed with the

history vehicle velocity as inputs [12]. To take the

stochastic factors into account, Gaussian process method

is employed such that the prediction is achieved in the

sense of mean value for convenience [14]. Meanwhile,

Markov-chain based methods are proposed based on

collected comprehensive data with respect to specific

driving cycle route [6, 12].

Recently, the technical progress in connectivity moti-

vates the research on HEV energy management with the

driving environment information. Under the connected-

vehicle (CV) environment, the information of vehicle-to-

infrastructure (V2I), vehicle-to-vehicle (V2V) and vehicle-

to-cloud (V2C) enables prediction for the future vehicle

behaviors or the driver power demand [15, 16]. The paper

[17] proposes a Bayesian network approach for short-term

prediction of vehicle velocity. A neural network-based

energy demand prediction approach is proposed for trip-

oriented application [18]. A so-called radial basis function

neural network is exploited to predict the driver power

demand [19]. Considerable potential has been shown by

these latest researches for developing prediction-based

energy management strategies for HEVs under CV envi-

ronment. On the other hand, it is noted that machine

learning techniques have been widely applied as prediction

method. Concerning time-serial signals, application of

neural network-based learning or ELM predicts the future

values based on the past and current data that have cor-

relative relation with the predicted signal [20, 21]. In

automotive control field, machine learning techniques have

been used in different scenarios [22–27]. The ELM algo-

rithm has shown significant advantages in time series

prediction due to the following features [28]: the training

cost of the ELM is computationally efficient, since the

input weights and the feature mapping layer are chosen

randomly and do not require adaptation; the ELM method

has universal approximation and good generalization

capabilities and can deal with global minima of convex

optimization problem.

This paper proposes a novel prediction-based optimal

energy management strategy where the ELM algorithm is

exploited to provide the driver torque demand. With the

predicted torque demand and the vehicle dynamic model,

a real-time receding horizon optimal decision policy is

constructed for torque demand distribution and the

transmission gear operation. Regarding the prediction,

both one-step-ahead and multi-step-ahead predictions with

the ELM and a chained ELM (CELM) are investigated,

respectively. Then, applying the ELM-based prediction in

real time, the torque demand distribution and transmission

gear ratio are decided by solving the optimization prob-

lem formulated with the cost function of the total energy

consumption subject to the vehicle dynamics. Moreover,

to evaluate the proposed optimization strategy, a traffic-

in-the-loop (TILP) powertrain simulation platform is

constructed. With the platform, a group of driver torque

demand profiles with the V2V and V2I information are

measured for training the ELM. Finally, the prediction

performance and the effectiveness of the prediction-based

energy management strategy are demonstrated with

numerical simulations.
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2 Problem formulation

The energy management system for an HEV is sketched as

Fig. 1. The vehicle is driven by the actual propulsion tor-

que generated by the powertrain system, mainly the com-

bustion engine and electric motor in HEVs. More exactly,

the actual propulsion torque is determined by the power

output of each power source, and the clutch and gear state

according to the mechanical structure of the powertrain.

For the parallel HEV, which is the targeted powertrain in

this paper, the actual propulsion torque is determined by

the engine torque, the motor torque and the gear ratio. The

role of energy management strategy is to deliver the

commands of the engine, motor and gear according to the

driver torque demand since the driver requests the power

for acceleration or deceleration with the accelerator or

brake pedal operations. Generally, the main purpose of

energy management is to minimize the energy consump-

tion under the constraint that the actual propulsion torque

satisfies the driver request torque.

The parallel HEV configuration is as shown in Fig. 2.

The powertrain system consists of a combustion engine and

an electric motor coupled by a mechanical coupling sys-

tem. Since the engine can be cut off from the driveline by

an equipped clutch, the powertrain can be switched

between electric vehicle (EV) mode and HEV mode. Fur-

thermore, consider that the powertrain system uses a con-

stantly variable transmission (CVT) system. For this

powertrain system, the vehicle speed v(t), the acceleration/

deceleration of the vehicle _vðtÞ and the actual propulsion

torque sdrðtÞ satisfy the following equation which can be

easily deduced according to the physical energy conser-

vation law,

M _vðtÞ ¼
gf sdrðtÞ
Rtire

� FðvðtÞÞ;

with FðvÞ ¼ Mgðlr cos hþ sin hÞ þ 1

2
qACdv

2;

ð1Þ

where gf , Rtire, M, g, lr and h denote the differential effi-

ciency, the wheel radius, the vehicle mass, the gravity

acceleration, the coefficient of rolling resistance and the

road slop, respectively, and q, A and Cd denote the air

density, the frontal area of the vehicle and the drag coef-

ficient, respectively. The actual propulsion torque is gen-

erated according to the engine torque se, the motor torque

sm and the gear ratio ig by the following relationship,

sdr ¼ igi0gf ðse þ smÞ; ð2Þ

where i0 denotes the final differential gear ratio. Mean-

while, the mechanical coupling system determines that the

speeds of the engine and motor are linked together and

relate to the vehicle speed by

xe ¼ xm ¼ igi0
1

Rtire

v; ð3Þ

where xe and xm denote the speeds of the engine and

motor, respectively.

It can be observed from the relation (2) that se and sm
are design variables to satisfy the driving demand. To

achieve a torque demand sdr, there are various ways to

distribute the engine torque se and the motor torque sm.
Moreover, the speed relation (3) means that at a vehicle

speed v, selection the gear ratio can shift the operating

speeds of the engine and motor. These facts imply that

under same driver torque demand and vehicle speed, dif-

ferent torque combinations of se and sm and gear ratio

selection produce different efficiencies of engine and motor

as shown by the maps in Fig. 3, where in Fig. 3a, BSFC

Energy
management
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system
Vehicle

Engine torque
command

Motor torque
command
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propulsion
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Vehicle
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Fig. 1 Framework of HEV

driving system

Fig. 2 Configuration of a parallel HEV
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(break specific fuel consumption) denotes the fuel mass

flow rate per unit power output of the engine and ‘‘iso-

Power’’ represents the isopotential curve of engine power.

The curves of the engine map data show that the engine can

generate same power by consuming distinct fuel; in other

words, fuel economy can be achieved by regulating the

engine operating point ðse;xeÞ.
The above specification explains the significant advan-

tage of the HEV powertrain system and motivates the

investigation for HEV energy management. The considered

energy management problem in this work is to deal with

the optimization design to distribute the driver torque

demand between the engine and motor, and select a gear

ratio such that the energy consumption can be minimized.

The cost function can be represented by

J ¼
Z tþT

t

cf
qf

_mfðseðsÞ;xeðsÞÞ
�

þ ce _meðsmðsÞ;xmðsÞÞ
�
ds;

ð4Þ

where T denotes a time horizon, _mf (g/s) and _me (kWh)

denote the fuel mass flow rate and the instantaneous elec-

tricity consumption, respectively, qf (g/L) denotes the fuel

density, and cf (¥/L) and ce (¥/kWh) denote the prices of

the fuel and electricity, respectively. It is clear that the cost

function relates to both of the engine operating point

ðse;xeÞ and the motor operating point ðsm;xmÞ. Moreover,

regarding the cost function (4), it should be noted that real-

time optimization over a future time interval is the aim of

the energy management strategy design.

Therefore, in order to achieve real-time optimization of

the energy consumption, the torque commands se and sm
must be decided on-line according to the system trajectory.

In other words, se and sm must be provided by solving the

optimization problem with the cost function (4) under the

constraint of driver demand. To do this, estimation of the

driver torque demand ŝdrðsÞ, s 2 ðt; t þ T� is needed for

predicting the trajectory of the system and using this as

constraint of optimization. As shown in Fig. 1, the driver

operates the accelerator/braking pedal mainly according to

the traffic environment. However, the CV environment

enables us to estimate the driver demand using the V2V

and V2I information. In this work, an ELM algorithm is

developed to estimate the driver demand. In order to

training the ELM algorithm, the source data are collected

by using a TILP powertrain simulation platform as shown

in Fig. 4. This constructed co-simulation platform mainly

consists of a high-fidelity traffic scenario simulator and

enterprise-level powertrain model in MATLAB/Simulink.

The V2V and V2I information, such as preceding vehicle

speed and acceleration, and traffic light phase and timing

can be real-timely detected and transferred to the ego

vehicle. The traffic scenario is randomly generated by the

real-word emulated traffic road simulation environment.

Then, group data of torque demand are obtained under

different driving environments.

As summary, the problem to be solved in this work is

described as follows. For the HEV system modeled by

Eqs. (1)–(3) under the system environment shown in

Fig. 5, suppose that the driving route is not previously

known, and the future driver torque demand is unknown.

Develop a receding horizon optimization algorithm with

the cost function (4) and control input ðse; sm; igÞ, and

under the constraint that the actual driving torque satisfies

the real-time driver torque demand. We solve this problem

in the following two phases:

(i) Find proper relevant V2V and V2I information for

estimating the future driver torque demand and

training the ELM to generate the real-time

prediction of the torque demand ŝdr over a time

interval ðt; t þ T�.
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(ii) Based on the powertrain models (1)–(3), find optimal

torque commands se and sm, and gear command ig
that minimize the cost function J defined by Eq. (4)

with the constraints that

_vðsÞ ¼
gf ŝdrðsÞ
Rtire

� FðvðsÞÞ

igðsÞi0gf ðseðsÞ þ smðsÞÞ ¼ ŝdrðsÞ

igðsÞi0
1

Rtire

vðsÞ ¼ xeðsÞ ¼ xmðsÞ

; 8s 2 ðt; t þ T �

8>>>>><
>>>>>:

ð5Þ

and the following physical constraints

semin � se � semax; smminf
� sm � smmax; igmin � ig � igmax

� ð6Þ

where the parameters with subscripts min and max

denote the corresponding minimum and maximum

values, respectively.

3 ELM-based driver torque demand
prediction

The driver torque demand prediction during the considered

future period based on the current states of ego vehicle and

real-time V2V and V2I information is considered as a

typical time series prediction problem. Machine learning

methods are suited for handling such time series prediction

problem. ELM is a state-of-the-art machine learning

method and employed for one-step-ahead prediction in this

research. Then a new algorithm is developed for

performing multi-step-ahead prediction based on CELM.

Details are given in the following subsections.

3.1 Basic ELM and chained ELM

Various machine learning methods are presented for pre-

diction; however, many of them basically share the same

general model structure, i.e., feedforward neural network,

as shown in Fig. 6, which includes three layers: input layer,

feature mapping layer, and output layer. Each input and

each output are considered as a node or a unit. Machine

learning process is to adjust the weights between nodes. In

other words, what the model learns lies in these weights.

ELMis anemerging learningparadigmproposedbyHuang

et al. [21], which is firstly proposed to improve the learning

speed of feedforward neural networks. The basic idea of ELM

is that the input weights aj 2 Rni�1 and feature mapping layer

biases b 2 Rnh�1 need not be tuned but be randomly assigned

instead and that the feature mapping layer can be represented

by either randomhidden nodes or kernels [29]. In such a setup,

the model can be simply considered as a linear system and the

output weights w 2 Rnh�1 of the model can be analytically

determined through a simple generalized inverse operation of

the feature mapping layer output matrices.

Consider the following data set for machine learning,

D ¼ fðx1; y1Þ; ðx2; y2Þ; . . .; ðxN ; yNÞg; ð7Þ

where N denotes the number of training samples. Based on

the training set D, ELM training becomes the following

optimization problem,

A

Traffic flow;
Traffic light;
Intended path;
...

@V2V & V2I

Driver Powertrain

CarMaker

Traffic Scenario

Matlab/Simulink

Vehicle

Accelerator

Brake

Driver
torque Speed

Fig. 4 Traffic-in-the-loop

powertrain simulation platform
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min
w

jjHw� Yjj2; ð8Þ

where H ¼ ½hðx1Þ; . . .; hðxNÞ�, hð�Þ ¼ ½h1ð�Þ; . . .; hjð�Þ; . . .;
hnhð�Þ�

T
, and Y ¼ ½y1; . . .; yN �. hjð�Þ is the activation func-

tion (or the feature mapping function). Note that the sig-

moidal function is chosen to give a nonlinear mapping in

this research. Then the smallest norm least squares solution

of w� to the above linear system can be expressed as

follows,

w� ¼ HyY; ð9Þ

where Hy is the Moore–Penrose pseudoinverse of matrix

H.

Till now, the basic ELM is introduced and it can be

employed for one-step-ahead prediction. In this study, the

multi-step-ahead prediction is also investigated for pre-

dicting the driver demand of future horizons.

Recursive of one-step-ahead predictions with an artifi-

cial neural network (ANN) is a classical method for multi-

step-ahead prediction [30]. However, the accuracy of the

ANN model may be seriously compromised when it is used

recursively. In [30], the authors suggest that their proposed

chained neural network (CNN) model performs better than

the classical recursive method. By chaining a group of

networks, the networks gradually take the prediction of

their predecessors in the chain as an extra input. Along this

line, a multiple neural network (MNN) model which

includes a group of neural networks is proposed in [31]. All

component neural networks work together, and each makes

predictions at a different length of step ahead. The authors

suggest that a MNN performs better than a single ANN for

the multi-step-ahead prediction.

By making use of the chained structure, a CELM model

that is composed of a series of ELM models is developed,

as shown in Fig. 7. The CELM model for h-step-ahead

prediction is composed of h one-step-ahead ELM predic-

tion models: ELM#1, ELM#2; . . .;ELM#h. The CELM

starts with ELM#1 which takes the time series of x (xk
means the kth step) as input and produces a one-step-ahead

prediction, ŷkþ1. The prediction ŷkþ1 is then inserted into

the next prediction model, ELM#2, to perform the pre-

diction of the subsequent step until one reaches the pre-

diction horizon, h. The dimension of input of each

sequential ELM gradually grows by adding the output of

previous ELM model. When training the CELM model

using a data set, h different ELM models should be trained

successively. Each ELM model in the chain is trained in

Eq. (9).

…

…
…

:

Input layer Feature mapping layer Output layer

Input weights Output weights

Fig. 6 A general model structure

ELM-based 
algorithm

Energy management
strategy

Accelerator/Brake
pedal

ECU
Traffic monitor system

V2V information

V2I information

e m ig

Ego vehicle (HEV) Preceding vehicle

dr
^

dr

v

Traffic light

Fig. 5 Framework of the

scheme for energy management
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3.2 One-step-ahead prediction

In this paper, one-step-ahead predictor for driver torque

demand could be obtained with utilization of V2I and V2V

information. This predictor is based on ELM learning

algorithm, and the structure of one-step-ahead predictor is

depicted in Fig. 8. There are four input vectors at the kth

step, including constant variables uc;k, torque demand

variables us;k, traffic light variables ul;k, and distance to

intersection variables us;k. Detail meanings of variables in

each vector are given in Table 1. The output of the ELM-

based predictor is driver torque demand at the k þ 1th step.

3.3 Multi-step-ahead prediction

For purpose of multi-step optimization problem, improved

fuel economy would be obtained if a multi-step-ahead

driver torque demand were from the k þ 1th step to the

k þ Nth step. In this subsection, a multi-step-ahead torque

predictor is developed. The predictor is composed of a

series of one-step-ahead predictors proposed in Sect. 4.2.

The structure of this multi-step-ahead torque predictor is

shown in Fig. 9. In this chained structure predictor, con-

stant variables in uc;k are also used for the k þ 2th- and

k þ 3th-step predictors. However, as can be seen in

Fig. 10a, the elements of us;i ði ¼ k þ 1; k þ 2Þ for the

k þ 2th-step and the k þ 3th-step predictors increase with

the addition of output of predictors in the k þ 1th step and

the k þ 2th step, respectively. Solid balls in Fig. 10a rep-

resent elements of us;i ði ¼ k � 2; k � 1; k; k þ 1; k þ 2Þ,
the black ones denote the obtained signals of ego vehicle,

and the blue, green and yellow ones are the predicted

signals. The detail of us;i ði ¼ k þ 1; k þ 2Þ is expressed by

us;kþ1 ¼ ½sdrðk�2Þ; sdrðk�1Þ; sdrðkÞ; ŝdrðkþ1Þ�T

us;kþ2 ¼ ½sdrðk�2Þ; sdrðk�1Þ; sdrðkÞ; ŝdrðkþ1Þ; ŝdrðkþ2Þ�T

(

ð10Þ

If the destination is given, a proper driving route of ego

vehicle can be determined. Then, the future traffic light

information at each intersection in this route consists of

remaind timing and phase, can be pre-known and supplied

to ego vehicle through V2I technology. Traffic light signals

of phase ls and remaind timing lt are depicted in Fig. 10b.

Thus, the elements in traffic light vector ul;i ði ¼ k; k þ
1; k þ 2Þ are updated with credible values of traffic light

information at the next intersection for sub-predictor in

Fig. 9. Moreover, the elements in distance to intersection

vector us;i ði ¼ k; k þ 1; k þ 2Þ are also updated since ego

vehicle is nearer to intersection in the future steps as shown

in Fig. 10c. To calculate the distance s to the next inter-

section of ego vehicle, vehicle speeds at the k þ 1th step

and the k þ 1th step are assumed to be equal to that at the

kth step. Then, the distances s can be obtained as follows,

siþ1 ¼ si þ vk � Dt; i ¼ k; k þ 1; ð11Þ

where Dt denotes the sampling period, and

vk ¼ vkþ1 ¼ vkþ2.

…

…

…

…

… …

……

Fig. 7 Structure of a chained

ELM for h-step-ahead
prediction

…

…

Fig. 8 Structure of one-step-ahead prediction of driver torque demand
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…

…

…

…

…

…

Fig.10(c)

Fig.10(c)

Fig.10(b)

Fig.10(b)

Fig. 9 Structure of multi-step-ahead prediction of driver torque demand

Table 1 Meaning of inputs and

output signals for one-step-

ahead driver torque demand

predictor

Signal Vector Variable Description Category

Input us sdrðkÞ Driver torque demand at k step Ego

sdrðk�1Þ Driver torque demand at k � 1 step Ego

sdrðk�2Þ Driver torque demand at k � 2 step Ego

uc ag Gas pedal at k step Ego

aag Gas pedal rate at k step Ego

ab Braking pedal at k step Ego

aab Braking pedal rate at k step Ego

vp Preceding vehicle speed at k step V2V

avp Preceding vehicle acceleration at k step V2V

sh Headway at k step V2V

av Ego vehicle acceleration at k step Ego

s Driving and braking torque at k step Ego

ul ls Next intersection traffic light phase at k step V2I

lt Next intersection traffic light timing at k step V2I

us sl Distance to next intersection at k step V2I

v Ego vehicle speed at k step Ego

Output ŝdrðkþ1Þ Driver torque demand at k þ 1 step Ego
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4 Optimal energy management strategy

The optimization algorithms for solving the proposed

optimal energy management problem that is formulated by

Eqs. (4), (5) and (6) are introduced in this section.

First, for the cost function (4), an analytical expression

for the fuel mass flow rate _mf is obtained as polynomial

with respect to the variables se and xe by identification

with the engine map data shown in Fig. 3a:

_mf ¼ Mf ðse;xeÞ: ð12Þ

Furthermore, the instantaneous electricity consumption can

be calculated according to the battery SoC by

_me ¼ �UoQb
_SoC;

with _SoC ¼ �Uo þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

o � 4Rbðsmxm � Ploss
m ðsm;xmÞÞ

p
2QbRb

;

ð13Þ

where Uo, Qb and Rb denote the open circuit voltage, the

maximum charge capacity and the internal resistance of the

battery, respectively, and Ploss
m denotes the operating point-

dependent power losses of the motor, which is identified

with the motor map data shown in Fig. 3b. Then, the fol-

lowing problem formulation with two specific cases is

presented.

Furthermore, as mentioned in Sect. 2, the design vari-

ables for the energy optimization are the command values

ðse; sm; igÞ. However, it can be observed that the condition

(5) implies that dealing with the energy management

problem can take the engine operating point ðse;xeÞ as the
design variables equivalently. In this case, the optimal

commands of sm and ig can be calculated according to the

two relations and with the vehicle speed value as shown in

Fig. 11.

Consider that the road slop h ¼ 0, and the operating

mode decision is according to the following switching

condition,

HEV mode; Pdr ¼ 1

Rtire

sdrv

� �
�P0

dr

EV mode; others;

8<
: ð14Þ

where P0
dr is a constant. Then, during the HEV mode, the

considered optimization problem characterized by Eqs. (4),

(5) and (6) can be reformulated as the following con-

strained nonlinear optimWith the one-step-aheadization

problem:

min
½se;xe�T

J ¼
Z tþT

t

cf
qf

Mf ðseðsÞ;xeðsÞÞ þ ce _meðŝdrðsÞ;xeðsÞ; vðsÞÞ
� �

ds

subject to : M _vðsÞ ¼
gf ŝdrðsÞ
Rtire

� FðvðsÞÞ

seðsÞxeðsÞ�P0
dr

xeminðvðsÞÞ�xeðsÞ�xemaxðvðsÞÞ

seðsÞ� semaxðxeðsÞÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15Þ

where the variables with subscripts min and max denote the

corresponding minimum and maximum, respectively.

Here, the maximum engine torque semax is an identified

polynomial function associated with the engine speed

shown in Fig. 3, and for the motor, suppose that the

maximum torque limitation is restricted outside the opti-

mization block.

k k+1 k+2 k+3

1ks
2ks

3ks

tl

sl

t

t
(b)

(c)

k k+1 k+2k-1k-2 k+3 t
(a)

Fig. 10 Illustration for multi-

step-ahead prediction of driver

torque demand
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Finally, note that the formulation of the problem (15) is

difficult to be solved and applied in real time directly. In

order to facilitate solving the problem and combine the

predicted ŝdrðkÞ, the cost function of problem (15) is con-

verted to the discrete type as

min
½se;xe�

XN
l¼1

cf
qf

Mf ðseðkþlÞ;xeðkþlÞÞ
�

þ ce _meðŝdrðkþlÞ;xeðkþlÞ; vkþlÞ
�
Dt;

ð16Þ

where N ¼ T=Dt. Moreover, the powertrain dynamics (1)

is discretized by approximating the vehicle acceleration

with forward difference, then, obtain that

M
v ~kþ1 � v ~k

dt
¼

gf sdrð ~kÞ
Rtire

� Fðv ~kÞ; ð17Þ

where dt ¼ 0:001 is a selected constant. Furthermore,

suppose that sdrð ~kþiÞ ¼ sdrðkÞ (i ¼ 0; . . .; n� 1), then, obtain

that

vkþ1 ¼ vk þ ~f ðsdrðkÞ; vkÞ;
with ~f ðsdrðkÞ; vkÞ

¼
Xn
i¼1

dt
M

gf
Rtire

sdrðkÞ � Fðv ~kþi�1Þ
� �

; v ~k ¼ vk;

ð18Þ

where n ¼ Dt=dt.

4.1 One-step optimization

With the one-step-ahead torque demand prediction ŝdrðkÞ in
Sect. 3.2, an instantaneous optimization design problem is

solved first. The objective is that at the time instant k,

decide the optimal operating point at the next time step,

i.e., ðseðkþ1Þ;xeðkþ1ÞÞ. In this case, take the discretized cost

function (16) and the vehicle speed Eq. (18) into account,

and let Ukþ1 ¼ ½seðkþ1Þ;xeðkþ1Þ�T , the formulation of prob-

lem (15) can be represented by the following one,

min
Ukþ1

JðUkþ1Þ

subject to : GðUkþ1Þ� 0

(
ð19Þ

with

JðUkþ1Þ ¼
cf
qf

Mf ðseðkþ1Þ;xeðkþ1ÞÞ
�

þ ce _meðŝdrðkþ1Þ;xeðkþ1Þ; vkþ1Þ
�
Dt;

GðUkþ1Þ ¼

seðkþ1Þxeðkþ1Þ � P0
dr

xeðkþ1Þ � xeminðvkþ1Þ
�xeðkþ1Þ þ xemaxðvkþ1Þ
� seðkþ1Þ þ semaxðxeðkþ1ÞÞ

2
6664

3
7775:

It can be found that for the above optimization problem

(19), the required value vkþ1 can be obtained by Eq. (18),

and the value ŝdrðkþ1Þ can be generated by the ELM-based

algorithm shown in Fig. 8. Then, the sequential quadratic

programming (SQP) algorithm is applied to solve the

instantaneous nonlinear optimization problem described by

(19).

Let DUkþ1 ¼ U�
kþ1 � Ukþ1, then, the above problem

(19) is solved by using the iterative method as the

flowchart shown in Fig. 12, where imax denotes the maxi-

mum iterative steps taken as the termination condition and

r denotes the corresponding Jacobi matrix. At each time

step Dt, the driver torque demands ŝdrðkþ1Þ and vkþ1 are

calculated with the data vk, sdrðkÞ and ŝdrðkÞ, and the SQP

algorithm is repeated.

4.2 Multi-step optimization

Note that the instantaneous optimization is limited by a

really short preview for the driver demand. In this part, the

above one-step-ahead optimization strategy is extended to

the case of a multi-step-ahead optimization. The multi-

step-ahead strategy actually provides a real-time receding

horizon optimization procedure. Specifically, the aim is

that at time step Dt, determine the optimal solution

U�
kþ1 ¼ ½seðkþ1Þ;xeðkþ1Þ; . . .; seðkþNÞ;xeðkþNÞ�T such that

U�
kþ1 ¼ argmin

Ukþ1

XN
l¼1

cf
qf

Mf ðseðkþlÞ;xeðkþlÞÞ
�

þ ce _meðŝdrðkþlÞ;xeðkþlÞ; vkþlÞ
�
Dt:

ð20Þ

Then only the first two values ðseðkþ1Þ;xeðkþ1ÞÞ of U�
kþ1 are

applied as the designed values.

The optimal series design variable U�
kþ1 can be obtained

by solving the following nonlinear optimization problem

which is a direct extension of the instantaneous optimiza-

tion problem (19) by using the multi-shooting technology,

that is

min
Ukþ1

JMðUkþ1Þ

subject to : GMðUkþ1Þ� 0

(
ð21Þ

Fig. 11 Block diagram of the optimization design problem
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with

JMðUkþ1Þ ¼
XN
l¼1

cf
qf

Mf ðseðkþlÞ;xeðkþlÞÞ
�

þ ce _meðŝdrðkþlÞ;xeðkþlÞ; vkþlÞ
#
Dt;

GMðUkþ1Þ ¼

seðkþ1Þxeðkþ1Þ � P0
dr

xeðkþ1Þ � xeminðvkþ1Þ
�xeðkþ1Þ þ xemaxðvkþ1Þ
� seðkþ1Þ þ semaxðxeðkþ1ÞÞ

..

.

seðkþNÞxeðkþNÞ � P0
dr

xeðkþNÞ � xeminðvkþNÞ
�xeðkþNÞ þ xemaxðvkþNÞ
� seðkþNÞ þ semaxðxeðkþNÞÞ

2
666666666666666664

3
777777777777777775

:

It is clear that the above problem can also be solved by

applying the SQP algorithm shown in the flowchart of

Fig. 12 directly. However, to obtain U�
kþ1 over the pre-

diction horizon, the vkþl and ŝdrðkþlÞ, (l ¼ 1; . . .;N) need to

be known in advance. On the basis of the proposed CELM-

based multi-step-ahead driver demand prediction in

Sect. 3.3 and with the Eq. (18), the ahead values can be

calculated by

vkþl ¼ vkþl�1 þ ~f ðŝdrðkþl�1Þ; vkþl�1Þ; l ¼ 2; . . .;N ð22Þ

5 Simulation validation

5.1 Simulation setup

The evaluation of the driver torque demand prediction

algorithms and the proposed energy management strategies

are conducted by using the TILP powertrain simulation

platform shown in Fig. 4. Figure 13 shows the graphical

user interface (GUI) of the platform. In this simulation

platform, there are powertrain models. Since it focuses on

traffic flow and infrastructure emulation with simplified

vehicle model, the structure amount and modeling accu-

racy are not enough for powertrain dynamic reflection and

optimization strategy design. A solution to overcome this

problem is to replace the existing powertrain system by a

specific one built through mathematical modeling. The key

of this solution is as shown in Fig. 14, where MCU and

CCU denote the motor control unit and the clutch control

unit, respectively. The powertrain structure of selected

vehicle in traffic simulation platform is a traditional

engine-propelling vehicle with a CVT.

It can be noted from Figs. 4 and 14 that the considered

parallel HEV powertrain model is built with MATLAB/

Simulink. Using signals from CarMaker, the torque com-

mands of the engine and motor, and the clutch state and

gear ratio, can be determined by the designed energy

management strategy, and the output torque of parallel

HEV powertrain is given back to CarMaker to propel the

ego vehicle. Moreover, the V2V and V2I information can

be transmitted into Simulink for the torque demand pre-

diction. On the one hand, for the integration of co-simu-

lation platforms, the different dimensions between vehicle

model in traffic simulator and specify powertrain model

should be managed, and the rotational inertias of different

equipments should be considered during integration. More

details on the integration process are referred to the work

[32]. It should be noted that the powertrain performance

will influence the ego vehicle dynamics and the sur-

rounding vehicles will also be influenced by the ego

vehicle sequently. Furthermore, reflection of the ego

vehicle driver to real-time traffic scenario will affect the

powertrain dynamics. Specially, the employed HEV pow-

ertrain model is based on automotive industry background

structure and parameters for accurate simulation

performance.

Fig. 12 Flowchart of SQP algorithm
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A real-world emulated traffic road situation is built in

the simulation platform. The road map is as given in

Fig. 15. The length of the simulation route is 4.1588 km.

There are 6 traffic lights at the intersections. Traffic light

time duration of green, yellow and red is set as 30 s, 3 s

and 15 s, respectively. The locations of the departure,

destination and intersections are also given in Fig. 15.

Traffic densities of Link 1 (L1)–Link 6 (L6) are set as 30%,

Fig. 13 Graphical User Interface (GUI) of traffic powertrain simulation platform

 Parallel
Powertrain 

System

Energy 
Management

Strategy
MCU Motor

CCU Clutch

Traffic 
Scenario

Driver ECU CVT

MATLAB/Simulink

CarMaker
IPG

Engine

Tire

Tire

Acc.&
Brake

V2V  V2I

Powertrain
Output 
Torque

Powertrain model substituted by virtual hybrid system

ISG

ECU Engine

Fig. 14 Main idea of replacement of powertrain model by specified HEV structure
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25%, 25%, 20%, 10% and 10%, respectively. Even with

same traffic density in each link, the vehicle amounts are

always not constant after different traffic scenarios gener-

ation. In this case, the speeds of ego vehicle and other

traffic participants are also different. Therefore, different

driving cases can be obtained for both of data training and

simulation validation.

5.2 Driver torque demand prediction
performance

With the above simulation setup, the current states of ego

vehicle and real-time information of V2V and V2I listed in

Table 1 are available in the co-simulation platform.

A CELM is trained to predict the driver torque demand

over a specific temporal horizon (one or several steps).

Prediction results are presented as follows.

Over the route shown in Fig. 15, traffic lights, traffic

speed, vehicle density as well as other parameters such as

driving style and speed limit, etc. are set up. Then, 30

groups of vehicle speed scenarios simulated on the route

are collected, where 20 groups are used to train the CELM

prediction model and the remainders are used to validate

the model. It should be noted that the sampling time of the

collected data is Dt ¼ 0:2 s. To illustrate the sources of

data collection, Fig. 16 shows a part of the ego vehicle

speed and preceding vehicle speed that are six of the col-

lected 30 group scenarios. It can be observed from Fig. 16

that due to the stochastic driving environment, the vehicle

speed scenario is not deterministic even on the same urban

route. The diversity of the collected scenarios is beneficial

to the robustness of the CELM prediction model.

A CELM model (see Fig. 9) is constructed for three-

step-ahead prediction, i.e., prediction over 0.2 s, 0.4 s and

0.6 s horizons. The size of the hidden layer of each ELM

model is set to 500. The inputs and outputs are described in

Table 1. To show the accuracy of the CELM prediction

model, driver torque demand prediction results over the

1st, 2nd, and 3rd steps for one test scenario are presented in

Fig. 17. It can be observed that the predicted torque

demand of the 1st step ŝdrðkþ1Þ is closed to the real value

sdrðkþ1Þ; however, the prediction of the 3rd step ŝdrðkþ1Þ has

big difference to the real vale when the torque demand has

fast changes. Figure 18 shows the difference of each pre-

dicted value to the counterpart real value of the three steps,

respectively. From the data shown in Fig. 18, we can

observe that the 1st step can achieve almost unbiased

estimation, and the variance increases gradually as the step

increases. Furthermore, to evaluate the prediction accuracy

specifically, the root-mean-square error (RMSE) as for-

mulated in Eq. (23) is calculated with respect to the 10

scenarios used for the validation of the CLEM prediction

model, i.e.,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i¼1

ðsdrðiÞ � ŝdrðiÞÞ2
vuut ; ð23Þ

where I is the number of samples. The RMSE for the 1st,

2nd, and 3rd steps of the 10 test scenarios is presented in

Fig. 19. It can be seen that the RMSE increases along with

more prediction steps, and the minimum RMSE can

achieve 100, 150 and 160 for the three steps, respectively.

However, although RMSE exists, the prediction can reflect

the consistent pattern of stop, brake and acceleration.

5.3 Optimization performance

According to the optimization design, the potential of fuel

economy and the cost efficiency (¥/MJ) of the energy

generated by both of the fuel and electricity are the con-

cerned evaluation indexes. In order to evaluate the per-

formance of the ELM-based optimization strategies

Start

End

denotes Traffic Light Position

#L1 #L2

#L3

#L6

#L5

#L4

Fig. 15 Traffic scenario map
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quantitatively, the proposed optimization algorithms are

compared to two counterpart algorithms in which the tor-

que demand is considered to be a constant over the pre-

diction horizon, specifically, ŝdrðkþ1Þ ¼ sdrðkÞ in the one-

step-ahead instantaneous optimization strategy and

ŝdrðkþiÞ ¼ sdrðkÞ ði ¼ 1; 2; 3Þ in the three-step-ahead reced-

ing horizon optimization strategy, respectively.

The main parameters of the powertrain system are listed

in Table 2. The parameters of the battery are Qb ¼ 23:275

(kWh), Uo ¼ 247 (V) and Rb ¼ 0:13 ðXÞ. P0
dr ¼ 6 (kW),

and the limit engine speed is set as

xemin;max ¼ igmin;maxi0v=Rtire. The maximum iterative steps

is set as imax ¼ 3 and validation tests demonstrate that the

value for imax is enough for real-time computation in

solving the proposed two problems. On the other hand, it

should be noted that the two parameters cf and ce which are

actually weighting factors in the cost function (4) account

for the solution of the proposed energy management
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Fig. 16 A part of collected

vehicle speed scenarios for

training and validation: six of

the 30 groups
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problems. With a fixed cf , a smaller ce means less elec-

tricity will be consumed while more fuel should be used.

For the validation tests, three cases regarding the cost

function are considered: no.1 (cf ¼ 150, ce ¼ 38); no.2

(cf ¼ 150, ce ¼ 41); no.3 (cf ¼ 150, ce ¼ 45).

Figures 20 and 21 show the plots with respect to the

one-step-ahead strategy and the three-step-ahead strategy,

respectively, including the curves of the vehicle speed, the

driver torque demand, the torques and speeds of the engine

and motor, respectively, and the fuel mass flow rate and

battery SoC. Note that as an illustration, only the plots of

case no. 2 are shown. The curves of the engine se and xe

show that the real-time optimal solutions are obtained with

that the inequality constraint conditions of the problem (15)

are satisfied. Moreover, it can be observed from the torque

and speed of the engine and motor that during the vehicle

accelerations that require high demand torque, both of the

engine and motor can operate at high effective zone to

provide driving power. Besides the acceleration, it can be

noted from the curves se versus sm that when the vehicle

operates at relatively constant speed higher than 60 km/h

(such as the time period 57–70 s), the engine provides

driving power while the motor works as generater to charge

the battery as can be seen from the SoC curve. This result

indicates the influence of the weighting factors cf and ce to
the solution of the proposed optimization problems.

Table 3 provides the results in terms of the fuel cost, the

electricity cost and the cost efficiency of the powertrain

system with using the one-step-ahead prediction ŝdrðkþ1Þ
and without using the prediction. Table 4 provides the

corresponding results of the case with using the three-step-

ahead prediction. The results in the two tables indicate that

the fuel cost increases while the electricity cost reduces as

the parameter ce increases. Meanwhile, it can be observed
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Fig. 19 Relationship between

prediction step and prediction

error of 10 different scenarios

Table 2 Main parameters of the HEV model

Parameters Values

Vehicle mass M 1138 (kg)

Wheel radius Rtire 0.3015 (m)

Air density q 1.2 (kg/m3)

Front area A 2.239 (m2)

Drag coefficient Cd 0.32

Rolling resistance lr 0.022

Differential efficiency gf 0.98

Final differential ratio i0 3.95

Maximum gear ratio igmax 3.5

Minimum gear ratio igmin 0.65
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that both of the two proposed strategies improve the fuel

economy. Moreover, using multi-step-ahead torque

demand prediction produces more fuel economy and clear

cost efficiency improvement. However, it can be found that

using one-step-ahead prediction, the cost efficiency has

little improvement. These results imply that the cost effi-

ciency can benefit from a longer prediction horizon for the

driver torque demand and multi-step-ahead receding hori-

zon optimization possesses advantage of taking more cor-

relation V2V and V2I information data into the energy

management.

5.4 Discussion

The evaluation results on both of the ELM-based torque

demand prediction and energy optimization algorithm

imply the following significance of the proposed energy

management strategies for HEVs. First, a novel torque

demand prediction method is proposed in the sense of CV-

based framework rather than the normal prediction with the

history demand data of the ego vehicle [12, 13]. The

essential feature of the proposed energy management

strategy is that a receding horizon torque demand predic-

tion method is constructed by using 16 input variables of

instantaneous V2V and V2I information to deal with

energy efficiency optimization during transient vehicle

operations. This feature distinguishes our scheme from the

trip-oriented predictions of vehicle velocity or energy

demand for dealing with battery management [12, 18, 19].

Compared to the approaches based on Markov-chain and

Neural network [6, 14, 15, 17], the proposed prediction

with ELM algorithms has the advantage on generalization

Fig. 20 Simulation result with one-step-ahead prediction for torque demand: cf ¼ 150, ce ¼ 41
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to adaptive real-world driving data. On the other hand, note

that the proposed optimization strategy considers the driver

behavior influence by taking both of the accelerator and

brake pedal variations as inputs. Driver behavior influence

is considerable to the energy efficiency optimization during

the transient vehicle operations.

6 Conclusion

For HEVs, compared with route-dependent optimal energy

management approaches, which are obtained by solving

off-line optimization problem subject to the whole power

demand or vehicle speed profile along the route, real-time

optimization must be realized targeting the future driver

Fig. 21 Simulation result with three-step-ahead prediction for torque demand: cf ¼ 150, ce ¼ 41

Table 3 Result with one-step-ahead torque demand prediction

Cases With predicted ŝdrðkþ1Þ ŝdrðkþ1Þ ¼ sdrðkÞ Fuel

economy

(%)

Efficiency

improvement

(%)Fuel/(L) Electricity/(kWh) Efficiency/(¥/MJ) Fuel/(L) Electricity/(kWh) Efficiency/(¥/MJ)

No. 1 1.0137 1.1296 13.1449 1.0154 1.1225 13.1346 þ 0.17 � 0.08

No. 2 1.0385 1.0258 13.1913 1.0412 1.0169 13.1735 þ 0.26 � 0.14

No. 3 1.0959 0.9148 12.8154 1.0990 0.9133 12.8055 þ 0.28 � 0.08
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power demand that cannot be known previously. A key to

break through the challenging is the prediction of the

unknown route or the non-occurred power demand. This

paper focuses on investigating the issue of predictive

optimal energy management problem in the HEV energy

management design. As the first contribution, ELM-based

and chained ELM algorithms for driver torque demand

prediction are constructed, and for the algorithm, not only

the past behavior of the driver is used to take the regressive

effort into account but also the V2V and V2I information is

taken as input. Under an automotive industry-used TILP

powertrain simulation platform, demonstrated case studies

show the prediction effort. The second contribution of this

work is to propose a prediction-based optimal energy

management strategy that combines with the ELM-based

prediction. The optimization problem is formulated with

the cost function concerning the total energy consumption

for receding horizon minimization. Simulation results show

that applying multi-step prediction receives better energy

economy than using one-step-ahead prediction. Moreover,

the potential of further energy saving is shown by the real-

time receding horizon optimization integrated with the

learning-based prediction. Most advantage of the proposed

strategy is to deal with the optimization without any future

trip knowledge. Finally, note that improving the prediction

precision when the demand has fast variations needs fur-

ther investigations by updating the proposed ELM-based

algorithm. From the viewpoint of practice, the develop-

ment of prediction-based energy management schemes that

guarantee the co-optimization between transient energy

efficiency and long-term energy management for HEVs is

significant and is also the further investigation work.
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