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Abstract
Generative adversarial networks have received a remarkable success in many computer vision applications for their ability

to learn from complex data distribution. In particular, they are capable to generate realistic images from latent space with a

simple and intuitive structure. The main focus of existing models has been improving the performance; however, there is a

little attention to make a robust model. In this paper, we investigate solutions to the super-resolution problems—in

particular perceptual quality—by proposing a robust GAN. The proposed model unlike the standard GAN employs two

generators and two discriminators in which, a discriminator determines that the samples are from real data or generated

one, while another discriminator acts as classifier to return the wrong samples to its corresponding generators. Generators

learn a mixture of many distributions from prior to the complex distribution. This new methodology is trained with the

feature matching loss and allows us to return the wrong samples to the corresponding generators, in order to regenerate the

real-look samples. Experimental results in various datasets show the superiority of the proposed model compared to the

state of the art methods.
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1 Introduction

Image super-resolution is a technique that attracts much

attention and progress in recent years. Despite the great

progress and achievements, still, there is no unique solution

exists, in particular for high magnification ratios. Each

pixel loss which used by the existence approaches does not

properly capture perceptual variances between output and

input images [1, 2]. Thus, for the high upscaling factor (i.e.,

scale factor 4 or more), it is difficult to recover the high

frequencies details in the images. Generative adversarial

network (GANs) is a conglomerate of deep learning and

generative model that is proposed by Goodfellow et al. [3].

GANs models are known to produce realistic samples from

latent space in a simple manner. In their original setting,

they employ two neural networks based on adversarial

training in a minimax game. Generator G is trained to

produce fake samples from a noise space, whereas the

discriminator learns how to make difference between fake

(generated samples) and real (true data) samples. Since the

advent of GANs, many works have been appeared which

using GANs in different computer vision applications in

particular, simulating complex data distributions such as

images, videos and texts [4–6]. However, they suffer from

a major problem of perceptual quality and also are extre-

mely difficult to train. Given this, limits the GANs appli-

cability, and recently some attempts have been appeared

based on joint supports of the data distribution and using

hierarchical models in contrast to the original GAN which

is a direct model. In this paper, we propose a novel model

that generalizing the GAN framework to multiple genera-

tors and discriminators, in terms of stabilizing the training

process as well as improving sample diversity. Borrowing
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from GMAN [7, 8], we propose to employ two generators

with two discriminators, which are based on an image-to-

image model. The proposed architecture termed as Dual-

GAN, is shown in Fig. 1. Similar to the regular GAN, the

objective of the generators is to increase the mistake of the

discriminator. Moreover, unlike the other GAN variations

that use multi-generators in their structure, our proposed

model simultaneously trains both the generators and the

data distribution will be obtained from the mixture of their

induced distributions. In terms of the fact, multiple gen-

erators may affect the trivial solution, in which all the

generators attempt to generate similar sample images.

Based on this observation, we address this problem by

designing two discriminators in our architecture; such that,

one of them determines the real or fake samples while

another one acts as classifier in order to identify the related

generators that generated the wrong samples. We prove

that, our model is able to effectively learn complex data

distribution, in order to generate real-look samples and

could significantly improve the image’s quality even at the

highest scale factor �8. The main objective of this paper

lies on: (i) propose a new variation generative adversarial

model to train a couple of generators and discriminators

with enforcing a better Jensen–Shannon (JS) divergence

among the generators; (ii) optimizing objective function

toward minimizing the JS divergence between the mixture

of data distributions and the real data distribution by using

feature matching loss; (iii) a comprehensive evaluation on

real-world datasets in order to prove the effectiveness of

our model with respect to other variation of GANs. The

paper including introduction consists of six main sections.

In next section, we review and summarize the GAN-based

models. Sections 3 and 4, present the proposed architecture

with the mixture generator-discriminator extension to the

GAN framework. Section 5 contains the experimental

results and related discussions. Finally, Sect. 6 concludes

the paper. It is worth to mention that, throughout the paper,

we use the following notations for sake of brevity; ILR

(low-resolution image) and ISR(super-resolution image).

2 Related works

There was a drastic growth for generative models in the last

few years. Substantial methods have been proposed to

address the image super-resolution problems [9–13]. The

main concept of generator adversarial network (GAN) [3]

states an adversarial game between two networks: D-dis-

criminator network and G-generator network. The gener-

ator draws the synthetic images from the noise input, and

the discriminator receives input from the real and the

synthetic samples and determines whether is it fake (gen-

erated by generator) or from the real image.

Moreover, GAN alternatively optimizes the generator

and discriminator using stochastic gradient-based learning.

However, training of GAN suffers from the main problems,

as mode collapse and difficulties in the implementation and

unstable results [4, 12, 14]. In the standard GAN, there is

no way to control what to be generated, since there is no

information for the learning generators. However, [15]

proposed a new method in order to define more condition

for the generator so that the generated image can be

x1 x2

F(x1, x2)

Fake

Real G1
…
Gk

G1 G2

D1 D2

…...

Z (noise)

Fig. 1 DualGAN consists of a pairs of generators and discriminators:

G1;G2 and D1;D2. The generative model with a couple generators

trains for generating realistic artificial images and the discriminative

model with a couple discriminators, along with determining whether

an image is real or fake, it also identifies the related generators that

generate the wrong samples. We use the weight-sharing constraint for

all layers of the generative models, g1 and g2. We also use the

weights-sharing constraint for the last layer of the discriminative

model, d1 and d2. The ‘‘weight-sharing constraint’’ permits the

proposed model how to learn a joint data distribution of images and

also reduces the model parameters at the optimal level
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designed with desired target. Most GAN-based methods

follow same structure and using a generator and a dis-

criminator in their model with a minor variation. Some of

the most realist GAN variations in this categories are:

InfoGAN [16], DCGAN [13], WGAN [17], ImprovedGAN

[14] and DGAN [8]. These methods in fact are straight-

forward to design and implementation. Recent attempts to

improve the GANs results and solve the training issues are

by training additional generators and discriminators.

D2GAN [18] is a new approach which uses two discrimi-

nator in its architecture to find a rational distribution across

the data by minimizing the KL (Kullback–Leibler) and the

reverse KL divergence. Another framework is proposed by

Durugkar et al. [7], which uses several discriminators to

improve the generator learning. Recently, Arora et al. [19]

proposed MIX ? GAN approach which is another direc-

tion of GAN. The method is based on training several

generators and discriminators with different parameters.

However, this method is computationally expensive to

train, due to lack of parameter sharing and there is no

mechanism to enforce the divergence between generators.

Tolstikhin et al. [20] proposed a new variation of GAN,

termed as AdaGAN, to introduce a robust reweighting

scheme for preparing a training data for GAN. Another

model in what we follow is MAD-GAN that is proposed by

Ghosh et al. [21]. It trains multiple generators with a multi-

class discriminator. Their model is designed to improve the

objective function of discriminator to push multiple gen-

erators toward generating diverse modes. Reed et al. [5]

also proposed a GAN-based method which is able to

generate 642 images and can barely generate intense object

details. Accordingly, StackGAN [6] is proposed to stack

two GANs in order to improve the [5] by generating 2562

images. SS-GAN [22] is another method which comprises

two GANs that, one is used for generating a surface normal

map, and another GAN takes input from the generated

samples and noise z and then produce an output image. In

[23], the author presents LR-GAN method which learns to

generate image foreground and background by using dif-

ferent generators and a single discriminator. The authors

experimentally proved that by separating the generation of

foreground and background image content, they can pro-

duce sharper images. Some other researchers believe that,

instead of using different generators that perform sepa-

rately to produce different task, the models can use mul-

tiple generators with similar structures wherein each

generators refine the details of the results from the previous

generator. Then, the last generator will be generating the

final result. When using this strategy, the model can share

the weights and parameters among generators, and it helps

to smooth the training process. LAPGAN [24] is another

method that uses multiple generators to generate images

from coarse to fine using Laplacian pyramid [25]. Both

generators have the same structure; each generator takes a

noise vector as input, and then, output will be a generated

image. The only difference in the structures of these gen-

erators is the size of input and output dimension. With

respect to the existing GAN-based image super-resolution

techniques, that have achieved a successful progress,

however, there are still some unsolved problems such as

training instability and high-resolution generation [8, 26].

In terms of the fact, in this paper, we want to introduce a

new mode of GANs to significantly use the potential

advantages of generators and discriminators. The motiva-

tion of the proposed model is to jointly produce multiple

samples, and it would increase the chance of sharing more

details with model distributions. Multiple generators focus

to complete the missing details for producing the higher

resolution images. Multiple discriminators allow the model

to accurately classify the generated samples and stabilize

the model training in the best possible way. In addition, it is

easy to see that the training difficulty will be decreased in

the proposed methodology.

3 Dual generative adversarial network

The standard GAN involves two networks in its structure:

G-generative and D-discriminative; which are simultane-

ously trained. Let X and Z be the true variable and latent

variables. The generative model uses data distribution;

pG x; zð Þ ¼ pG zð ÞpG x zjð Þ to generate samples. If Gi; i 2 Sf g,

where Gi is a function, the generator defines a distribution

DGi
from Gaussian distribution and generate h, then apply

the Gi on the generated h and achieve x ¼ Gi hð Þ. Similarly,

for the discriminator model Dj; j 2 �S
� �

, where Dj is a

function from binary space [0, 1]. Training the discrimi-

nator enforces the output to get high value 1 when x is from

distribution Dtrue and a low value 0 when x is from the

distribution DGi
. The GAN framework with a G and a D

can be jointly trained as [3]:

min
g

max
d

V d; gð Þ ¼ Ex� Dtrue
� log d xð Þ½ �

þ Ez� pz � log 1 � d g zð Þð Þð Þ½ � ð1Þ

Practically, the above equation will be solved by the

following material:

htþ1
d ¼ htd � atrhdV dt; gtð Þ; and

htþ1
g ¼ htg þ atrhdV dtþ1; gt

� � ð2Þ

where hd, hg are the discriminator and generator parame-

ters, a indicates the learning rate and t is number of iter-

ation. The proposed DualGAN is illustrated in Fig. 1; our

contribution in generative model is to use mixture of many

distributions which is available in the training space,
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instead of one. The proposed model consists of two gen-

erators G1;G2 and two discriminators D1;Dc such as, one

of the discriminator acts as multi-class classifier. A high-

resolution image IHR 2 ½0; 1�x�h�c
is downsampled to a

low-resolution image by: ILR ¼ d̂ IHRð Þ 2 ½0; 1�x�h�c
, based

on, the width, height and color channel, (x� h� c).

3.1 Generative models

Let X1;X2 be the generated images from G1 and G2 by

using x1 � px1
, x2 � px2

distributions, respectively. We

denote the distribution of the generators as, pg1;pg2
and both

the generators using multilayer perceptrons [27]:

g1 zð Þ ¼ gm1 gm�1
1 ð. . .g2

1 g1
1 zð ÞÞ

� �� �
and for

g2 zð Þ ¼ gn2 gn�1
2 ð. . .g2

2 g1
2 zð ÞÞ

� �� �
;

ð3Þ

where m and n indicate the number of layers in two gen-

erators g1; g2 with the condition m ¼ or 6¼ n. Each gener-

ator has a single distribution, and two generators together

induce a mixture distribution from both; we term it as PMG,

and its corresponding coefficient can be as p ¼ p1; p2½ �. As

the objective of generator is to minimize the JS divergence

between the mixtures of generated data distribution and the

true data distribution and maximize the JS divergence

among two generators. The generative models gradually

decode information from more abstract to more complex

details. Note that, this learning process is opposed to the

discriminator. In this process hg1
¼ hg2

, that means, we

force the generators to have identical structures and share

the weights. However, in the discriminative network, only

the last layers of discriminators share the weights. In fact,

the generators use the shared high-level representation for

fooling the discriminator. Salimans et al. [14] proposed an

approach for semi-supervised classification by using GAN

model, termed as SSL-GAN. In their work, the discrimi-

nator is considered as multi-class classifier and improved

the GAN convergence by optimizing the generator using

feature matching loss. Here, inspired from the same work

[14], we used feature matching loss in order to train the

mixture data distribution in the generators.

LF xð Þ ¼ min
hg1;hg2

Ex� pdata xð Þ f xð Þ½ � � Ex� p zð Þ½f G z; hGð Þð Þ� ð4Þ

The feature matching loss function is used to allow the

generators to control the mixture data distribution which on

one hand has support which does not overlap with high-

density areas of the real data, but still close to the data

distribution [28]. Experimentally, we observed that when

the generative model is trained with a feature matching

loss, Eq. 4 is able to generate samples from mixture data

distribution that fall onto the data manifold and has an

impressive ability to generate high-quality samples.

3.2 Discriminative model

Let d1; d2 be the discriminators of our proposed model, in

which d1 determines the real or fake samples, and another

one acts as classifier to classify that, the samples are form

which generators. Two discriminators will be defined as:

d1 x1ð Þ ¼ dt1 dt�1
1 ð. . .d2

1 d1
1 x1ð ÞÞ

� �� �
and d2 x2ð Þ

¼ dq2 dq�1
2 ð. . .d2

2 d1
2 x2ð ÞÞ

� �� �
; ð5Þ

where t, q are the number of layers in the d1 and d2 dis-

criminators. d1 Maps the input to a probability scores and

then estimates the output as fake or real samples. In the

next step, the output will be transferred to the d2 in order to

find the related generators and return the wrong samples to

its corresponding. We force both the discriminators to have

the same layers in their architecture to prevent the mode

collapse problem, and this is achieved by sharing the

weights at the last layers as: hd1
¼ hd2

. Moreover, this

weight-sharing helps to reduce the number of parameters in

the discriminative models. Therefore, the proposed

framework will be formulated as:

maxG1;G2
minD1;D2

Vðd1; d2; g1; g2Þ for both the generators

hg1
¼ hg2

and similarly, for the discriminators hld1
¼ hld1

which is having shared weights in the last layers, and then

the function V (.) will be as:

Ex1 � px1
� log d1 x1ð Þ½ � þ Ez� pz � logð1 � d1 g1 zð Þð Þ½ Þ�

þ Ex2 � px2
� log d2 x2ð Þ½ � þ Ez� pz � log 1 � d2 g2 zð Þð Þð Þ½ �

ð6Þ

The generative models G with two generators work for

synthesizing images with a mixture distribution for con-

fusing the discriminative models. Accordingly, the dis-

criminative model D, receive the input from G and real

data distribution, tries to classify them as the training data

distribution or generated data distribution and also, identify

the generators that generated the wrong images. The col-

laboration between the generators in the generative model

and discriminators in the discriminative models is based on

the weight-sharing constraint. Our proposed model will be

trained by backpropagation [3] with alternating gradient

update steps [14].

4 Model training

Learning proposed model relies on samples which are

trained from the joint data distributions. Weight-sharing

constraints are an important factor in our contribution,

which can enable the networks to control their common

information and improve the training performance. More-

over, the sharing weight constraint allows the model to
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minimize the number of parameters and degrade the

complexity to the original GAN. In our proposed model, all

the generators are part of deep convolutional neural net-

works which can share the weights in all layers excluding

the input layer. The input layer maps the noise z to the first

hidden layer activation h. In the other side, the discrimi-

nators also employ a convolutional neural network and

shares parameters in all layers except for the last layer. The

generators used a sequence of upsampling layers which let

us to add more details to generate a high-resolution image.

However, only downsampling block is used for the dis-

criminators. For generators G1;G2 with their mixture

weights Multi pð Þ, the optimal discriminators D̂1; D̂2 yield

the following equations:

D̂1 ¼ a� ptrue data xð Þ
pG Mixð Þ ;

D̂2 ¼ b� pG Mixð Þ
P2

j¼1 ppGj
ðMixÞ

; where

pG Mixð Þ ¼
X2

j¼1

pðpGj
xð ÞÞ

ð7Þ

In fact, it can be seen that D̂2 is a general case of D̂1

which classifies the wrong samples into their corresponding

generators. Based on these observations, we reformulate

the objective function for the generative model as:

LSG ¼ Ex� ptrue data
log

ptrue data xð Þ
pG1

xð Þ þ pG2
xð Þ

� 	

þ Ex� pG xð Þ log
pG xð Þ

pG1
xð Þ þ pG2

xð Þ

� 	

� b
X2

k¼1

pEx� pGk xð Þ½log
ppGk

xð Þ
P2

j¼1 ppGj
xð Þ

" #

� ð8Þ

As the original GAN, the objective of generators is to

minimize JS divergence between the data distributions

while maximize it between the generators [14]. We verify

the maximal loss function by setting D1 ¼ D2 ¼
0; aptrue data xð Þ

D1
� pG xð Þ; and

bpG xð Þ
D2

� ptrue data xð Þ ¼ 0. Note that,

the discriminator d1 takes input from G and determines

whether the samples are fake or real data. Next, the fake

samples are taken as input by discriminator d2 in order to

indicate the corresponding generator that generated the

fake samples. The first discriminator is binary valued;

however, the second discriminator acts as multi-class-

classifier (depends on the number of generators, i.e., in this

paper, both the discriminators have binary values, since we

have only two generators in our model).

4.1 Implementation details

In the proposed model, to design the generators, we fol-

lowed [27] and use the fractional length convolutional (FL-

CONV) instead of standard CONV layer. Each FCONV

layer followed by batch normalization and the parameter-

ized rectified linear unit (PReLU) process [29], except the

output layer, which uses feature matching loss (Eq. 4) in

order to generate a desired pixel range values. However,

the discriminators of our model are based on the standard

convolutional layer (CONV) except the last layers which

are based on fully connection layers (FC). We observed

that leaky rectified linear unit (LReLU) [30] works better

rather than ReLU, especially for the diverse samples which

are produced by multiple generators. We also applied batch

normalization in every layer, except the output layer of the

discriminators which uses sigmoid units. The generators

consist of ‘‘six’’ fractional convolutional layers while the

discriminators have six convolutional layer plus two fully

connection layers. The generators and discriminators are

parameterized by #G; #D, respectively. The input layer for

generator Gk is parameterized by the mapping f#G zð Þ that

maps the sampled noise z to the first hidden layer activation

h. TensorFlow [31] is used to implement our model, Adam

optimizer [32] and momentum set to 0.0002 [32] and 0.5,

respectively, also weights initialized from an isotropic

Gaussian, l (0, 0.01) and zero biases. The details of the

networks are given in Tables 1 and 2. In addition, it is

worth to mention that, we implemented the proposed model

in a system with following features, Intel i7-6850 K CPU

with a 64 GB RAM and an NVIDIA GTX Geforce 1080 Ti

GPU and the operating system is Ubuntu 16.04.

5 Experimental evaluation

We conduct a series of experiments to evaluate the pro-

posed model and compare it with other related approaches.

In fact, we want to visualize and evaluate the learning

behavior of our model using two generators and demon-

strate its stability and efficacy based on different datasets.

The experiments are conducted on three widely used

datasets: BSD-100, DIV2 K and CIFAR. Results and

evaluations on these dataset show that our model is able to

generate more faithful and more diverse samples than the

baselines. We compared our proposed DualGAN with

some alternative approaches. We select the baselines from

CNN-based methods such as, SRCNN [11], VDSR [33],

LapSRN [34] and also several known variation of GAN

including, DCGAN [13], ProGAN [35], BEGAN [36],

GOGAN [37], Unrolled GAN [38], GMAN [7], MAGAN
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[39], ACGAN [15], COGAN [27], D2GAN [18] and

InfoGAN [16].

For re-implementing the baselines, we followed their

source codes with the same setting as ours. From results, it

is observed that, the CNN-based methods despite preserv-

ing sharp edges, they produces blurry textures, and the

perceptual quality of GAN-based methods is better, even

they could improve the high frequency details. In addition,

we used two well-known image quality metrics: peak sig-

nal-to-noise ratio (PSNR) and structural similarity values

(SSIM) [26]. The results are given in Tables 3, 4 , 5 and

Figs. 2, 3, 4, 5 and 6.

5.1 Results and comparisons

In order to demonstrate the effectiveness of our model,

extensive qualitative and quantitative performance are

prepared. We also train our model with different scaling

factors: 4�f g; 6�f g and 8�f g between low- and high-res-

olution images. We used the source codes of various algo-

rithms to evaluate the runtime on the same machine which

is used to implement our model. Figure 2 shows an over-

view of twelve methods including the current prominent

works in GAN and CNN in terms of PSNR on DIV2 K

datasets which is well-suited for visual comparison, and it

contains the images with sharps edges and textured regions.

From the results, it observes that the GAN-based methods

have a good performance on edge reconstruction; however,

Table 1 Designed generative

model in DualGAN. FL-CONV

indicates the fractional length

convolutional; BN is the batch

normalization, and PReLU

represents the parametric

rectified linear units

Layer G1 G2

1 FL-CONV, (1024,K4x4,S1), BN, PReLU FL-CONV, (1024,K4x4,S1), BN, PReLU

2 FL-CONV,(512,K3x3,S2), BN, PReLU FL-CONV, (512,K3x3,S2), BN, PReLU

3 FL-CONV,(256,K3x3,S2), BN, PReLU FL-CONV, (256,K3x3,S2), BN, PReLU

4 FL-CONV,(128,K3x3,S2), BN, PReLU FL-CONV, (128,K3x3,S2), BN, PReLU

5 FL-CONV,(64,K3x3,S2), BN, PReLU FL-CONV, (64,K3x3,S2), BN, PReLU

6 FL-CONV,(32,K3x3,S2), BN, PReLU FL-CONV, (32,K3x3,S2), BN, PReLU

7 FL-CONV,(3,K3x3,S1), LF FL-CONV, (3,K3x3,S1), LF

Table 2 Designed

discriminative model in

DualGAN. Conv indicate the

convolutional layer; BN is the

batch normalization, and

LReLU represents the leaky

rectified linear units

Layer D1 D2

1 CONV,(32,K5x5,S2), BN, LReLU CONV,(32,K5x5,S2), BN, LReLU

2 CONV,(64,K5x5,S2), BN, LReLU CONV,(64,K5x5,S2), BN, LReLU

3 CONV,(128,K5x5,S2), BN, LReLU CONV,(128,K5x5,S2), BN, LReLU

4 CONV,(256,K3x3,S2), BN, LReLU CONV,(256,K3x3,S2), BN, LReLU

5 CONV,(512,K3x3,S2), BN, LReLU CONV,(512,K3x3,S2), BN, LReLU

6 CONV,(1024,K3x3,S2), BN, LReLU CONV,(1024,K3x3,S2), BN, LReLU

7 FC, Sigmoid FC, Sigmoid

Table 3 Average PSNR/SSIM for BSD-100 dataset

Methods PSNR (69) SSIM (69) PSNR (89) SSIM (89)

SRDenseNet 27.17 0.7851 26.03 0.7843

VDSR 28.49 0.8358 25.11 0.8097

LapSRN 23.42 0.6957 22.10 0.6701

DRNN 19.98 0.7791 18.52 0.6128

DCGAN 25.71 0.8529 24.09 0.8619

GP-GAN 29.98 0.8917 27.06 0.8595

D2GAN 29.06 0.9096 27.17 0.8876

SRGAN 27.81 0.8852 21.07 0.8067

DualGAN 29.62 0.9107 27.85 0.8911

The baselines are selected from GAN- and CNN-based methods such as: SRDenseNet [41], VDSR [33], LapSR [34], DRNN [42], DCGAN [13],

GP-GAN [43], D2GAN [18], SRGAN [4] and our DualGAN model. The highest measures are (PSNR [dB], SSIM) in bold; the second highest is

in italics. [6 9 and 8 9 scale factor]
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Table 4 Average PSNR/SSIM for CIFAR-10 dataset

Methods PSNR (69) SSIM (69) PSNR (89) SSIM (89)

SRDenseNet 24.97 0.7160 20.11 0.7002

VDSR 27.34 0.8123 25.53 0.7891

LapSRN 23.99 0.7604 20.49 0.6326

DRNN 20.81 0.6129 19.63 0.6892

DCGAN 29.52 0.8699 24.65 0.8384

GP-GAN 28.83 0.8709 20.06 0.8295

D2GAN 26.96 0.8546 25.03 0.8576

SRGAN 26.39 0.7961 23.87 0.7249

DualGAN 30.17 0.9044 25.87 0.8611

The highest measures are (PSNR [dB], SSIM) in bold the second highest is in italics. [6 9 and 8 9 scale factor]

Table 5 Average PSNR/SSIM for DIV2 K dataset

Methods PSNR (69) SSIM (69) PSNR (89) SSIM (89)

SRDenseNet 28.93 0.8913 25.43 0.7976

VDSR 26.23 0.8502 24.59 0.8004

LapSRN 23.42 0.6957 22.10 0.6701

DRNN 21.56 0.6735 21.09 0.6537

DCGAN 27.09 0.8627 25.64 0.7789

GP-GAN 25.83 0.7981 25.06 0.8495

D2GAN 27.96 0.8707 24.17 0.7876

SRGAN 29.18 0.8835 26.09 0.8596

DualGAN 29.34 0.8901 26.85 0.8711

The highest measures are (PSNR [dB], SSIM) in bold; the second highest is in italics [6 9 and 8 9 scale factor]

Ours D2GAN ProGAN UR-DGAN GMANDCGAN BEGANInfoGAN GoGAN Johnson et al.CoGAN ACGANOurs Ours MAGAN

Fig. 2 Visual comparison of SR results at scaling factor 8. The top

images are the ground truth images. We used several baselines as

D2GAN [18], ProGAN [35], UR-DGAN [38], DCGAN [13], CoGAN

[27], InfoGAN [16], BEGAN [36], GMAN [7], ACGAN [15],

GoGAN [37], Johnson et al. [40], MAGAN [39] and our DualGAN.

However, D2GAN and SFT-GAN are capable of generating richer

and visual texture in comparing with other methods. Our model yields

the better results comparing others. (Zoom in for best review)
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they suffer from blur region. Even the state of the art

D2GAN [18], GoGAN [37] and DCGAN [13] does not

provide clean and sharp details at the high scaling factors.

While the proposed model with respect to the baselines is

able to produce the sharper edges and exhibits an accept-

able results at the high scaling factors. The second best

results are for ACGAN [15] and BEGAN [36], while the

worse visualization results are for DCGAN [40]. Note that,

Fig. 3 Visual comparison for 4 9 SR, based on different GAN structures
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D2GAN
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R
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B
)
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Fig. 4 Comparison of PSNR

and SSIM values on the CIFAR-

10 dataset using three different

network structures: DCGAN

[13], D2GAN [18] and our

proposed DualGAN. The result

is evaluated at 49

Fig. 5 (Left) Convergence of different methods for 49 super reso-

lutions. We set the size of input images to 128 9 128 for all methods

and the results evaluated on CIFAR-10 dataset. The baselines are:

SRCNN [11], FSRCNN [45], VDSR [33], DRNN [42], SFT-GAN

[44], RDN [46], SRDenseNet [41], SCN [10] MemNet [47], LapSRN

[34], GAN [3], SRGAN [4], ProGAN [35], DCGAN [13], GP-GAN

[43], InfroGAN [16], Johnson et al. [40], D2GAN [18] and proposed

DualGAN. The GAN-based methods are indicated by red, while,

CNN-based methods are indicated by blue. (Right), the trade-off

between runtime and upscaling scales
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the results of Fig. 2 are evaluated at 8 9 scaling factor.

Similarly, we show visual comparison of GAN variations

for 4 9 in Fig. 3. It clearly observes that our method

accurately reconstructs the fine lines and grid patterns.

Next, we show the quantitative results in Table 3-5, on

4 9 and 8 9 factors. We compared our model to several

GAN- and CNN-based models, such as: SRDenseNet [41],

VDSR [33], LapSR [34], DRNN [42], DCGAN [13], GP-

GAN [43], D2GAN [18], SRGAN [4]. We evaluated the

results on three datasets: BSD-100, CIFAR-10 and

DIV2 K. The evaluation metrics are PSNR and SSIM. Our

model performs favorably against the current approaches

and having comparable results with GMAN [7] and

StackGAN [6]. Based on BSD-100 dataset, the best results

belong to GP-GAN, D2GAN and ours, at 8 scaling factor.

For the CIFAR-10 dataset, at 4 scaling factor, the best

results correspond to GP-GAN and DCGAN, while at the 8

scaling factor, D2GAN performs better than other base-

lines. Similarly, the results based on DIV2 K dataset imply

that, at 4 scaling factor, SRGAN and SRDenseNet, per-

forms better than other baselines in terms of PSNR and

SSIM, while, at the 8 scaling factor, only SRGAN has a

pleasant result. In sum, the methods based on GAN outpace

CNN-based methods. Therefore, we can conclude that

GAN-based methods are well-suited methods in image

super-resolution.

In addition, to validate the effectiveness of our model

comparing to other approaches, we plot the convergence

curve in terms of PSNR and SSIM on the CIFAR-10 dataset.

The results are given in Fig. 4. The results convey that our

model requires less iteration to achieve a good result and

also have a robust performance comparing to the DCGAN

and D2GAN. However, state of the art D2GAN [18] does not

provide a stable performance and needs more iteration to

achieve comparable performance with DCGAN [13].

Execution time: we evaluated the trade-offs between the

runtime and performance of PSNR on the CIFAR-10

dataset for different scaling factors. Results are plotted in

Fig. 5. We evaluated the results with the same machine

which we tested our model. Figure 5a, shows the perfor-

mance of PSNR versus runtime for 4 scaling factors. The

CNN-based methods are drawn with the blue color, and the

GNN-based methods are presented with the red color (in

order to make it clearer). Figure 5b, shows the perfor-

mance of PSNR with different scaling factors. From the

results, it observes that the speed of our model is faster than

all the existing methods and has a competitive performance

with SFT-GAN [44], GMAN [7] and InfoGAN [16].

Quality of the generated images: another experiments

are designed to show the quality of the generated images by

our model against state of the art methods in Fig. 6. We

selected two practically well-suited images from DIV2 K

dataset for a visual comparison since they contain sharp

and smooth edges. The results convey that the proposed

model clearly provides better results in comparison with

the others and is able to correctly reconstruct the fine

structures, grid patterns and the dark spots in the image

Fig. 6 Image quality improvement and comparing with other tech-

niques at 4 9 SR. The first image in both the samples is the ground

truth data; next is the proposed DualGAN. The baselines are DCGAN

[13], Johnson et al. [40], LapSRN [34], MemNet [47], Original GAN

[3], SRGAN [4] and ProGAN [35]. The results convey that our model

is able to generate the sharper images with respect to the other

baselines. However, LapSRN has a worse performance and could not

discover the high frequencies details properly. ProGAN and DCGAN

are the second best results in order to generate the sharper and clean

images
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backgrounds. The experiments proved our claim regarding

the performance of the proposed DualGAN model.

6 Conclusion

In this paper, we propose a simple and effective frame-

work, DualGAN, for fast and accurate image super reso-

lution. The proposed model consists of two generators and

discriminators which additionally extended to the GAN

framework. The generators used mixture data distribution

in order to generate a realistic image and the discriminators

designed to accurately classify the inputs and also identify

the generators that generated the wrong samples. We

showed the effectiveness of our proposed model in com-

parison with the other variation of GAN-based methods.

Our model not only has a simple implementation but also

presents superior results. Using multi-generators with a

mixture data distribution optimizes the networks and helps

to smooth the training process. The main aspects of this

work are to balance the network with a couple of genera-

tors-discriminators; proposing mixture data distribution

and also train the generators with feature matching loss,

which can reduce the network parameters and speed up the

training. With this proposed methodology, we believe that

the results are more stable and efficient rather than other

popular generative models. In addition, for the future

direction, we would like to estimate the number of gener-

ators and discriminators needed for a particular dataset.
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