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Abstract
Knowledge of groundwater level is very important in studies dealing with utilization and management of groundwater

supply. Earlier studies have reported that ELM performs better than SVM for groundwater level prediction. This has been

verified by comparing the prediction of groundwater levels at six locations in the district of Vizianagaram, Andhra Pradesh,

using ANN, GP, SVM and ELM. Based on the comparison, it is observed that the performance of ELM is the best

compared to other models. ELM is capable of predicting the nonlinear behavior of the groundwater levels. SVM performs

better than GP and ANN. The performance of GP and ANN is analogous. Furthermore, an attempt has been made to

enhance the performance of SVM by using SVM hybrid models such as SVM-QPSO and SVM-RBF, and the same has

been compared with SVM and ELM. Results indicate that the performance of SVM-QPSO is far better compared to the

performance of SVM and SVM-RBF. Moreover, performance of ELM is observed to be the best, but on some occasions,

SVM-QPSO performs on par with ELM.

Keywords Forecasting � Groundwater level � Artificial neural network � Support vector machine � Genetic programming �
Extreme learning machine

1 Introduction

Groundwater is a precious water resource on earth

excluding the polar ice caps and glaciers [32]. From the

perspective of utilization, groundwater is utilized mainly

for irrigation, which accounts for 80%. Besides agriculture,

groundwater is used for drinking water supply, domestic

and industrial uses, etc. In order to effectively utilize the

ground water resources, it is mandatory to predict the

groundwater level. The groundwater level is subjected to

variations resulting from differences in the recharge and

release of groundwater, streamflow variations, tidal effects,

meteorological impacts and also global climatic changes

[48]. Computational modeling of flow and transport has

become an important technique to understand the

hydrology of the aquifers and other related aspects of the

subsurface media [3, 22]. The drawbacks with the usage of

such numerical models are difficulty in conversion of the

physical processes into mathematical formulation and lack

of sufficient data. To overcome these difficulties and

shortcomings, artificial intelligence techniques have been

proposed over the last two decades.

Artificial neural network (ANN) has been widely used in

the past for prediction of groundwater levels [1, 7, 9–11,

14, 18, 23, 26, 29, 36, 54]. Coulibaly et al. [9], Mao et al.

[26] and Coppola et al. [6] applied ANN to predict

groundwater levels under variable weather conditions,

whereas Daliakopoulos et al. [10], Lallahem et al. [23],

Coppola et al. [7, 8] and Feng et al. [14] observed in par-

ticular for the effects of pumping. Affandi and Watanabe

[1] used ANN to forecast groundwater level fluctuations

using time-lagged water levels as input. Jalalkamali and

Jalalkamali [18] improved the ANN method by incorpo-

rating a genetic algorithm to overcome partly the well-

known problem with traditional ANN optimization of

finding a global minimum of the error cost function. Ty

et al. [49] predicted the groundwater level under different

impact factors using ANN for the Tra Noc industrial zone

in the Can Tho city of Vietnam for the period of
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2000–2015. Kaya et al. [19] predicted the groundwater

level for the Reyhanli region of Turkey using ANN and

M5Tree models. They reported that the performance of the

ANN and M5Tree models was found to be very close to

each other. Wunsch et al. [52] used nonlinear autoregres-

sive networks with exogenous inputs (NARX) to obtain the

groundwater level forecasts for several wells in southwest

Germany. They found that NARX is outstanding in pre-

dicting the groundwater level for very small set of inputs

for the three aquifer types. Kouziokas et al. [20] investi-

gated the application of multilayer feed-forward network

models for forecasting groundwater levels in the region of

Montgomery country in Pennsylvania and found that the

multilayer feed-forward network shows good accuracy in

predicting the groundwater levels. Lee et al. [24] used

artificial neural network models for groundwater level

forecasting with input variables composed of one natural

factor and two anthropogenic factors in Yangpyeong

riverside, South Korea.

Recently, genetic programming (GP) has gained

importance and has been successfully used in many water

management problems. Fallah-Mehdipour et al. [13]

investigated the capability of an adaptive neural fuzzy

inference system (ANFIS) and genetic programming (GP)

artificial intelligence tools to predict and simulate

groundwater levels in three observation wells in the Karaj

plain of Iran. Sivapragasam et al. [39] analyzed the suit-

ability of using GP modeling for groundwater level pre-

diction. Researchers have concluded that GP simulated

equations decrease the computational effort by using

common simulation packages that can yield results with

acceptable accuracy [13, 31, 34].

The basis for the support vector machines (SVM) was

developed by Vapnik [50]. The solution provided by SVM

is always unique and global as its implementation requires

the solution of a convex quadratic constrained optimization

problem [35]. Asefa et al. [4] used SVM for developing

long-term groundwater head monitoring networks. Yoon

et al. [55] compared ANN and SVM methods to predict the

groundwater levels. Moreover, Shiri et al. [38] investigated

the abilities of different data mining techniques including

SVM for groundwater level forecasting. Tapak et al. [47]

predicted the groundwater level of Hamadan–Bahar plain,

west of Iran, using support vector machines. Mirzavand

et al. [27] compared the abilities of two different data-

driven methods, support vector regression (SVR) and an

adaptive neuro-fuzzy inference system (ANFIS) in esti-

mating the monthly groundwater level fluctuations in the

Kashan plain, Isfahan province of Iran, using the inputs of

stream flow, evaporation, spring discharge, aquifer dis-

charge and rainfall. Although SVM has been successful in

prediction, the output of SVM depends on the choice of the

suitable kernel function and its parameters that are being

adopted. Sattari et al. [33] predicted the monthly ground-

water level in Ardebil plain using support vector regression

(SVR) and M5 tree model based on the data collected

during the period of 1997–2013 from 24 piezometers. They

found that both the models performed well in predicting the

groundwater level and the results obtained from the M5

decision tree model were straightforward and easy to

interpret compared to the SVR results. Tang et al. [46]

adopted a two phase data-driven framework to model the

time series groundwater level with spatial–temporal anal-

ysis and least-square support vector machine (LS-SVM),

and the LS-SVM model was found to outperform other

machine learning models. Guzman et al. [15] compared the

prediction capabilities of NARX and SVR trained with a

radial basis function (RBF) algorithm for an irrigation well

located in a highly productive agricultural region in the

southeastern USA. They found that the SVR has a better

modeling performance for both the seasons considered for

their study.

Huang et al. [16] proposed a novel data-driven algo-

rithm for a single layer feed-forward neural network pop-

ularly known as the extreme learning machine (ELM). The

ELM reduces the computational time required for training

a neural network. Moreover, since ELM simplifies the

entire learning process, it yields faster learning with good

generalization performance [25, 28, 37]. Nurhayati et al.

[30] used extreme learning machine (ELM) to predict the

groundwater level on tidal lowlands for the purpose of

reclamation. Yadav et al. [53] have conducted a compar-

ative study between SVM and ELM for the prediction of

groundwater level. They have concluded that the perfor-

mance of the ELM method is better than the performance

of SVM for groundwater level forecasting. Alizamir et al.

[2] investigated the ability of ELM model in modeling the

groundwater level fluctuations using hydro-climatic data

obtained for Hormozgan province in southern Iran. They

found ELM model performance to be superior compared to

the ANN and RBF models in modeling the 1-, 2- and 3-

month ahead groundwater level.

Literature indicates that ELM performs better than SVM

for groundwater level forecasting. In an attempt to improve

the performance of SVM, the hybrid SVM models, namely

SVM-PSO (support vector machine-quantum-behaved parti-

cle swarm optimization) and SVM-RBF (support vector

machine-radial basis function), are being employed in this

study to forecast the groundwater levels in the districts of

Vizianagaram, Andhra Pradesh. Hybrid SVM models have

been used in the past by various researchers. Sudheer and

Mathur [44] used particle swarm optimization (PSO) to

determine the optimal parameters of SVM. They applied the

SVM-PSO model for estimating the groundwater level of

Rentachintala region of Andhra Pradesh in India and con-

cluded that the performance of SVM-PSO was better
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compared to autoregressive moving average (ARMA), ANN

and ANFIS. Balavalikar et al. [5] used PSO-based ANN

for forecasting the groundwater level of Udupi district. The

monthly variations in groundwater level and rainfall data in

three observation wells located in Brahmavar, Kundapur

and Hebri were investigated and examined for 2000–2013.

They concluded that PSO-ANN-based hybrid model gave a

better accuracy than ANN alone. Sudheer et al. [43]

adopted SVM-QPSO to estimate the groundwater level of

Rentachintala region and found that SVM-QPSO performs

far better compared to ANN in terms of accuracy and

reliability. Moreover, Sudheer et al. [45] have employed

SVM-QPSO for streamflow forecasting and have reported

that SVM-QPSO performs much better compared to SVM-

PSO, and thus, SVM-QPSO has been considered in this

study instead of SVM-PSO. Sreedevi et al. [41] used SVM-

RBF to predict the groundwater levels at Maheshwaram

watershed, Hyderabad, Andhra Pradesh. Although SVM-

Fig. 1 Map of Vizianagaram district
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QPSO and SVM-RBF models have been used in the past,

the efficiency of these hybrid models in comparison with

ELM for groundwater level prediction has not yet been

explored. The objective of this study is to evaluate the

efficiency of the SVM hybrid models in comparison with

ELM for the prediction of the groundwater levels in

Vizianagaram district, Andhra Pradesh, India. This paper is

sub-divided into several sections: (1) description of the

study area, (2) brief explanation of the various soft com-

puting techniques adopted in this study, (3) comparison of

ANN, GP, SVM and ELM, and (4) comparison of SVM

hybrid models with ELM.

Table 2 Number of training and validation data sets used in training the models

Models % of data used

for training

% of data used

for testing

No of training

sets

Number of

testing sets

ANN 70 30 50 22

GP 70 30 50 22

SVM 70 30 50 22

ELM 70 30 50 22

Table 3 Performance indices for groundwater level using ANN, GP, SVM and ELM for Cheepurupalli

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

1 Cheepurupalli ANN 0.969 0.947 0.898 0.671 41.79

GP 0.972 0.947 0.897 0.674 41.45

SVM 0.969 0.948 0.898 0.735 27.07

ELM 0.594 0.981 0.961 0.419 12.15

Table 4 Performance indices

for groundwater level using

ANN, GP, SVM and ELM for

Gantyada

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

2 Gantyada ANN 0.568 0.897 0.805 0.432 19.15

GP 0.568 0.897 0.805 0.433 19.26

SVM 0.558 0.904 0.817 0.457 20.06

ELM 0.511 0.920 0.848 0.400 17.69

Table 5 Performance indices

for groundwater level using

ANN, GP, SVM and ELM for

Garugubilli

S. no. Location Soft computing technique RMSE (m) r R2 MAE (m) MAPE (%)

3 Garugubilli ANN 0.593 0.943 0.889 0.448 28.38

GP 0.593 0.943 0.889 0.448 28.43

SVM 0.588 0.944 0.891 0.451 27.98

ELM 0.537 0.953 0.909 0.431 30.45

Table 1 Geographical details of

the selected stations
S. no. Location Latitude (�N) Longitude (�E) Elevation (m)

1 Cheepurupalli 18.30 83.56 110

2 Gantyada 18.14 83.20 72

3 Garugubilli 18.71 83.49 132

4 Jiyyammavalasa 18.78 83.60 121

5 Pachipenta 18.28 83.07 219

6 Vizianagaram 18.12 83.42 66
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Table 8 Performance indices for groundwater level using ANN, GP, SVM and ELM for Vizianagaram

S. no. Location Soft computing technique RMSE (m) r R2 MAE (m) MAPE (%)

6 Vizianagaram ANN 0.299 0.945 0.894 0.227 11.61

GP 0.301 0.944 0.891 0.247 14.16

SVM 0.298 0.945 0.893 0.231 16.76

ELM 0.277 0.953 0.907 0.212 13.87
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Fig. 2 Groundwater level prediction at Cheepurupalli using a ANN, b GP, c SVM and d ELM

Table 6 Performance indices for groundwater level using ANN, GP, SVM and ELM for Jiyyammavalasa

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

4 Jiyyammavalasa ANN 0.510 0.936 0.877 0.389 8.22

GP 0.510 0.936 0.877 0.391 8.38

SVM 0.465 0.947 0.898 0.371 9.13

ELM 0.349 0.971 0.942 0.278 6.08

Table 7 Performance indices

for groundwater level using

ANN, GP, SVM and ELM for

Pachipenta

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

5 Pachipenta ANN 0.666 0.957 0.915 0.473 32.11

GP 0.667 0.956 0.915 0.471 31.26

SVM 0.654 0.958 0.918 0.486 37.14

ELM 0.583 0.966 0.934 0.429 13.26
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Fig. 3 Groundwater level prediction at Gantyada using a ANN, b GP, c SVM and d ELM
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Fig. 4 Groundwater level prediction at Garugubilli using a ANN, b GP, c SVM and d ELM
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2 Study area

Vizianagaram district is a northern coastal district of

Andhra Pradesh, India. The district is bounded on the east

by the district of Srikakulam, southwest by the district of

Visakhapatnam, southeast by the Bay of Bengal and

northwest by the state of Odisha. The climate of this dis-

trict is characterized by high humidity nearly all round the

year with oppressive summer and good seasonal rainfall.

The summer season from March to May is followed by

South West monsoon season, which continues up to

September. October and November constitute the retreating

monsoon season. December to February is the season for

fine weather. The climate of the hilly regions of the district

received heavier rainfall and cooler than the plains. The

district receives the benefit of both South West and North

East monsoons. Figure 1 illustrates the topographical map

of the Vizianagaram district. The six stations from which

groundwater level data have been collected are highlighted

in Fig. 1 for easy identification. Table 1 summarizes the

geographical description of these stations.

The monthly groundwater level data were collected

from six locations, namely Cheepurupalli, Gantyada,

Garugubilli, Jiyyammavalasa, Pachipenta and Viziana-

garam for the period of 2007–2012.

3 Materials and methods

In the present study, the groundwater level in the six

chosen stations has been predicted using four soft com-

puting tools, namely ANN, GP, SVM, ELM, SVM-QPSO

and SVM-RBF. The brief description of each soft com-

puting method is given below.

3.1 Artificial neural network (ANN)

ANN is being used for prediction in a wide range of fields

as a multilayer feed-forward network with backpropagation

learning algorithm. A typical neural network consists of

three layers: an input layer, a hidden layer and an output

layer. Each layer is made up of a number of neurons. The

number of neurons in the hidden layer is not fixed. When

the number of neurons in the hidden layer is very high, the

computational time for training the network is quite long

[12, 40]. Therefore, the number of neurons in the hidden
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Fig. 5 Groundwater level prediction at Jiyyammavalasa using a ANN, b GP, c SVM and d ELM
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layer is arrived at by a trial and error procedure and the best

model that is capable training the given input data is

considered. The model with the best results is chosen as the

final ANN model.

3.2 Genetic programming (GP)

Genetic programming is very much similar to genetic

algorithm (GA), an evolutionary algorithm based on the

Darwin’s theory of natural selection and survival of the

fittest. But, GP is different in the sense that it operates on

parse trees, rather than on bit strings as in GA, to

approximate the equation that best describes how the out-

put is related to the input. The algorithm considers an

initial population of random generated equations, derived

from a random combination of input variables, random

numbers and functions. The selection of the function has to

be done appropriately to ensure the comprehension of the

process. The population of the possible solutions is

dependent on an evolutionary process, and then, the ‘fit-

ness’ of the evolved problems is evaluated. Fitness is a

measure of how well they solve the problem. The programs

that best fit the data are selected from the initial population.

These programs then exchange a part of the information

between them to produce better programs through the

process known as ‘crossover’ followed by ‘mutation,’

which is random changing of programs to create new

programs [21]. The user must decide the values of the GP

parameters before applying the algorithm to model the

data, namely the population size, number of generations,

crossover probability, mutation probability, etc. Only the

programs that best fitted the given data are considered,

while the less fitted ones are discarded. This evolutionary

process is repeated over successive generations and is

driven toward finding symbolic expressions that describe

the data.

3.3 Support vector machine (SVM)

The SVM equations are formulated as per Vapnik’s theory

[50, 51], that if {(I1, T1), … (IN, TN)} are assumed as the

given training data sets, where Ik [ Rn refers to the space of

input variable, Tk [ R refers to the space of the target value,

and N represents the length of the training data. The linear

regression of SVM is estimated by solving the equation

given below:
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Fig. 6 Groundwater level prediction at Pachipenta using a ANN, b GP, c SVM and d ELM
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Fig. 7 Groundwater level prediction at Vizianagaram using a ANN, b GP, c SVM and d ELM

Table 9 Performance indices for groundwater level using SVM, SVM-QPSO, SVM-RBF and ELM for Cheepurupalli

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

1 Cheepurupalli SVM 0.969 0.948 0.898 0.735 27.07

SVM-QPSO 0.836 0.961 0.924 0.544 23.39

SVM-RBF 0.901 0.955 0.911 0.608 30.39

ELM 0.594 0.981 0.961 0.419 12.15

Table 10 Performance indices

for groundwater level using

SVM, SVM-QPSO, SVM-RBF

and ELM for Gantyada

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

2 Gantyada SVM 0.558 0.904 0.817 0.457 20.06

SVM-QPSO 0.553 0.906 0.821 0.452 19.95

SVM-RBF 0.553 0.906 0.820 0.451 19.89

ELM 0.511 0.920 0.848 0.400 17.69
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Minimize
1

2
wk k2þC

XN

k¼0

nþ n�ð Þ ð1Þ

Subject to the conditions

Tk � w; Ikh i � b� ek þ n ð2Þ
w; Ikh i þ b� w; Ikh i � b� ek þ n� ð3Þ
nkn

�
k � 0; k ¼ 1; . . .;N ð4Þ

where w is the weight vector, b is a bias, C represents the

regularization constant, e is the error tolerance range of the
function, and n, n* are the slack variables.

3.4 SVM-RBF

The Gaussian RBF kernel is the most successful kernel and

has been widely used in many problems. It uses the

Euclidean distance between two points in the original space

to find the correlation in the augmented space [42].

K x; yð Þ ¼ expð�c x� yk k2Þ ð5Þ

3.5 SVM-QPSO

In quantum physics, the state of a particle with momentum

and energy can be depicted by its wave function w (x,t). As

per QPSO theory, each particle is in a quantum state and is

formulated by its wave function w (x,t) instead of the

position and velocity described by PSO. According to the

statistical significance of the wave function, the probability

of a particle’s appearing in a certain position can be

obtained from the probability density function w x; tð Þj j2.
The probability distribution function of the particle’s

position can be calculated through the probability density

Table 11 Performance indices

for groundwater level using

SVM, SVM-QPSO, SVM-RBF

and ELM for Garugubilli

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

3 Garugubilli SVM 0.588 0.944 0.891 0.451 27.98

SVM-QPSO 0.569 0.948 0.898 0.434 27.87

SVM-RBF 0.582 0.945 0.893 0.449 30.58

ELM 0.537 0.953 0.909 0.431 30.45

Table 12 Performance indices

for groundwater level using

SVM, SVM-QPSO, SVM-RBF

and ELM for Jiyyammavalasa

S.

no.

Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

4 Jiyyammavalasa SVM 0.465 0.947 0.898 0.371 9.13

SVM-QPSO 0.362 0.972 0.945 0.261 5.72

SVM-RBF 0.392 0.963 0.927 0.312 7.58

ELM 0.349 0.971 0.942 0.278 6.08

Table 13 Performance indices

for groundwater level using

SVM, SVM-QPSO, SVM-RBF

and ELM for Pachipenta

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

5 Pachipenta SVM 0.654 0.958 0.918 0.486 37.14

SVM-QPSO 0.591 0.967 0.935 0.462 8.16

SVM-RBF 0.646 0.959 0.919 0.481 9.09

ELM 0.583 0.966 0.934 0.429 13.26

Table 14 Performance indices for groundwater level using SVM, SVM-QPSO, SVM-RBF and ELM for Vizianagaram

S. no. Location Soft computing

technique

RMSE (m) r R2 MAE (m) MAPE (%)

6 Vizianagaram SVM 0.298 0.945 0.893 0.231 16.76

SVM-QPSO 0.289 0.949 0.900 0.223 15.34

SVM-RBF 0.291 0.947 0.898 0.224 13.66

ELM 0.277 0.953 0.907 0.212 13.87
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function. By employing the Monte Carlo method, the

particle’s position is updated as per the equation given

below:

Xtþ!
ij ¼ ptij � 0:5Ltij: ln 1=utij

� �
ð6Þ

where utij is a random number uniformly distributed in

(0,1): ptij is the local attractor and defined as

ptij ¼ ut
ijP

t
ij � 1� ut

ij

� �
:Pt

gj ð7Þ

where ut
ij is a random number uniformly distributed in

(0,1), Pt
gj is the global best position. The parameter Ltij is

evaluated by

Ltij ¼ 2:b: ptij � Xt
ij

���
��� ð8Þ

where b is called the contraction–expansion coefficient

which can be tuned to control the convergence speed of the

algorithms. Then, we get the position update equation as

Xtþ!
ij ¼ ptij � b: ptij � Xt

ij

���
���: ln 1=utij

� �
ð9Þ

The PSO algorithm with position update equation

(Eq. 9) is called as the quantum delta-potential-well-based

PSO (QDPSO) algorithm. Keeping in view the vital posi-

tion of L for convergence rate and performance of the

algorithm, an improvement was proposed to evaluate

parameters L. As per this algorithm, the mean best position

(mbest) is defined as the center of pbest positions of the

swarm.

mbestt ¼ mbestt1;mbest
t
2; . . .;mbest

t
D

¼ 1

M

XM

i¼1

Pt
i1;

1

M

XM

i¼1

Pt
i2;

1

M

XM

i¼1

Pt
i3; . . .;

1

M

XM

i¼1

Pt
ij; . . .;

1

M

XM

i¼1

Pt
iD

 !

ð10Þ

where M is the population size and Pi is the personal best

position of particle i. Further, parameter L is given by

Ltij ¼ 2:b: mbesttij � Xt
ij

���
��� ð11Þ
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Hence, the particle’s position is updated according to the

following equation:

Xtþ!
ij ¼ ptij � b: mbesttij � Xt

ij

���
���: ln 1=utij

� �
ð12Þ

The PSO algorithm with Eq. (12) is called as the

quantum-behaved particle swarm optimization (QPSO).

The most commonly used control strategy of b is to ini-

tially setting it to 1 and reducing it linearly to 0.5.

3.6 Extreme learning machine (ELM)

ELM is a three-layered structure algorithm. In the ELM

structure, the input weight (connection between the input

and hidden) and the bias values (in the hidden layer) are

randomly generated. ELM analytically calculates the out-

put weight matrix between hidden layers and output layers

through a simple generalized inverse operation of the

hidden layer output matrix. ELM can be formulated as a

function with L hidden nodes and N training samples as

follows:

XL

i¼1

wig Win ið Þ; bi; xj
� �

¼
XL

i¼1

wig Win ið Þ:xj þ bi
� �

¼ yj;

j ¼ 1; . . .N

ð13Þ

where xj [ Rn is the input vector, Win(i) [ Rn is the input

weight vector,Win(i)�xj represents the inner product ofWin(i)

and xj, bi [ Rn represents the bias of the ith hidden node,

g(.) denotes the approximation function (sigmoid), wi [ Rn

is the output weight matrix, and yj [ R denotes the simu-

lated output of ELM. In the ELM algorithm, the input

weight and bias are randomly chosen at the initial stage. If

the ELM model with L hidden nodes is able to learn these

N training samples with no residuals, then w can be pre-

dicted, such that [17]:

XL

i¼1

wig Win ið Þ:xj þ bi
� �

¼ tj; j ¼ 1; . . .;N ð14Þ

where tj represents the target output. The above equation

can be further expressed as

Aw ¼ T ð15Þ
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Fig. 9 Groundwater level prediction at Gantyada using a SVM, b SVM-QPSO, c ELM and d SVM-RBF
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where T = [t1, … tN]
T is the target vector. The random

selection of Win(i) and bi converts the above equation into a

linear parameter system such that the minimum norm least-

squares solution of the linear parameter system can be

further written as

w = A ϯ T ð16Þ

where is the Moore–Penrose generalized inverse of the

hidden layer output matrix A. In practice, is calculated

using the singular value decomposition (SVD), and then,

the nonzero singular values construct the output weights.

However, when L and N are large, the computational

complexity of the SVD decomposition impacts the learning

speed of the ELM immensely.

3.7 Model performance evaluation

The following statistical indicators were selected in the

performance evaluation of ANN, GP, SVM and ELM

models:

1. Root-mean-square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Pi � Oið Þ2

n

s

ð17Þ

2. Pearson correlation coefficient

r ¼
n
Pn

i¼1 OiPi

� �
�
Pn

i¼1 Oi

� �
:
Pn

i¼1 Pi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1 O
2
i �

Pn
i¼1 Oi

� �2� �
: n
Pn

i¼1 P
2
i �

Pn
i¼1 Pi

� �2� �r

ð18Þ

3. Coefficient of determination (R2)

R2 ¼
Pn

i¼1 Oi � Oi
� �

: Pi � Pi
� �� 	2

Pn
i¼1 Oi � Oi
� �

:
Pn

i¼1 Pi � Pi
� � ð19Þ

4. Mean absolute error (MAE)

MAE ¼ 1

n

Xn

i¼1

Pi � Oij j ð20Þ
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Fig. 10 Groundwater level prediction at Garugubilli using a SVM, b SVM-QPSO, c ELM and d SVM-RBF
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5. Mean absolute percentage error (MAPE)

MAPE ¼ 100%

n

Xn

i¼1

Oi � Pi

Oi

����

���� ð21Þ

where n is the total number of test data, Oi and Pi are the

observed and predicted groundwater level values.

The summary of the usage of data and the bifurcation of

the available data into training and testing sets is provided

in Table 2.

4 Results and discussion

In this study, the groundwater level at six locations in the

Vizianagaram district of Andhra Pradesh, India, has been

predicted using different soft computing models.

4.1 Comparison of ANN, GP, SVM and ELM

The performance indices of the groundwater level using

ANN, GP, SVM and ELM for the six locations are pro-

vided in Tables 3, 4, 5, 6, 7 and 8.

From Tables 3, 4, 5, 6, 7 and 8, it is observed that ELM

has the least RMSE values of 0.594, 0.511, 0.537, 0.349,

0.583 and 0.277 for Cheepurupalli, Gantyada, Garugubilli,

Jiyyammavalasa, Pachipenta and Vizianagaram, compared

to SVM, GP and ANN models. ELM has produced the

highest correlation coefficient of 0.981, 0.92, 0.953, 0.971,

0.966 and 0.953 compared to other methods for all the six

locations. SVM has performed better compared to GP and

ANN models. The performance of GP and ANN is very

much similar. The MAPE is the least for ELM model for

all the locations in this study, except at Garugubilli. The

observed and predicted results obtained using ANN, GP,

SVM and ELM have been plotted for each location

(Figs. 2, 3, 4, 5, 6, 7) in the form of scatter plots.
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Fig. 11 Groundwater level prediction at Jiyyammavalasa using a SVM, b SVM-QPSO, c ELM and d SVM-RBF
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From the above Figs. 2, 3, 4, 5, 6 and 7, it is observed

that the value of R2 is highest for ELM model. The

predicted values are lying much closer to the measured

values in the ELM model, whereas in the other models,

the predicted values are scattered. This shows that the

groundwater level values have been more accurately

predicted by the ELM model, while there are cases of

under and over prediction in the other models. The GP

and ANN model performance is quite similar to each

other. The results also indicate the ELM model is cap-

able of predicting the nonlinear behavior of the

groundwater levels at various sites. This is the main

advantage of using soft computing tools compared to

traditional prediction models. The results obtained this

study are in corroboration with the conclusions of Yadav

et al. [53] that ELM performs better than SVM. We have

also found that SVM performs better compared to GP

and ANN. Moreover, GP and ANN prediction perfor-

mance is similar.

4.2 Comparison of SVM hybrid models with ELM

The performance indices of the groundwater level using

SVM, SVM-QPSO, SVM-RBF and ELM for the six

locations are provided in Tables 9, 10, 11, 12, 13 and 14.

From Tables 9, 10, 11, 12, 13 and 14; it is observed that

SVM-QPSO performance is far better when compared to

SVM and SVM-RBF in terms of the RMSE values. This is

in corroboration with Sudheer et al. [45]. Even though its

performance is exceptional when compared to SVM and

SVM-RBF, it is marginally under par when compared to

ELM in predicting the groundwater levels at different

locations in the district. ELM has the least RMSE values of

0.594, 0.511, 0.537, 0.349, 0.583 and 0.277 for Cheepu-

rupalli, Gantyada, Garugubilli, Jiyyammavalasa, Pachi-

penta and Vizianagaram. Based on MAPE, SVM-QPSO

has performed marginally better in predicting the ground-

water levels at Garugubilli, Jiyyammavalasa and Pachi-

penta. Therefore, ELM cannot be always considered

superior when compared to SVM-QPSO. The observed and

predicted results obtained using SVM-QPSO, SVM-RBF,
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SVM and ELM has been plotted for each location (Figs. 8,

9, 10, 11, 12, 13).

From the above Figs. 8, 9, 10, 11, 12 and 13, it is

observed that the value of R2 is highest for ELM model

except at Garugubilli, Jiyyammavalasa and Pachipenta

where the R2 values of SVM-QPSO are on par with the R2

values of ELM. The predicted values are lying much closer

to the measured values in the ELM and SVM-QPSO

models unlike other models. This shows that ELM and

SVM-QPSO have the capability of predicting the ground-

water levels quite accurately compared to other models

considered in this study. Thus, ELM and SVM-QPSO

models will enable the hydrologists to predict the

groundwater level in the future based on the observations

recorded in the past.

5 Conclusions

Groundwater level prediction is mandatory to understand

and resolve various water management issues. In this

study, groundwater level has been predicted for six

locations in the Vizianagaram district of the state of

Andhra Pradesh, India, using six soft computing tools,

namely ANN, GP, SVM, ELM, SVM-QPSO and SVM-

RBF. Five different statistical indicators have been used

for the comparison of the models, namely RMSE, r, R2,

MAE and MAPE. In the first phase of this study, only

ANN, GP, SVM and ELM were compared. The perfor-

mance of ELM is found to be the best compared SVM,

ANN and GP models as RMSE is the least for the ELM

model. SVM performed better than GP and ANN. The

performance of GP and ANN is similar. The second phase

of this study is aimed at improving the performance of

SVM by using hybrid SVM models, namely SVM-QPSO

and SVM-RBF. The performance of SVM-QPSO is found

to far better when compared to SVM and SVM-RBF.

Moreover, the RMSE values have been found to be the

least for ELM compared to other models. On the basis of

MAPE, SVM-QPSO is found to perform on par with

ELM in predicting the groundwater level for some loca-

tions in this study.
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