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Abstract
The aim of this article is to introduce a hybrid approach, namely optimal multiple kernel–support vector regression (OMK–

SVR) for time series data prediction and to analyze and compare its performances against those of support vector

regression with a single RBF kernel (RBF-SVR), gene expression programming (GEP) and extreme learning machine

(ELM) on the financial series formed by the monthly and weekly values of Bursa Malaysia KLCI Index, monthly values of

Dow Jones Industrial Average Index (DJIA) and New York Stock Exchange. Our method provides an optimal multiple

kernel and optimal parameters in Support Vector Regression, improving the accuracy of prediction. The proposed approach

is structured on two levels. The macro-level uses a breeder genetic algorithm for choosing the optimal multiple kernel and

the SVR optimal parameters. The fitness function of each chromosome is computed in the micro-level using a SVR

algorithm. The regression model based on the optimal multiple kernel and optimal parameters is then validated and used

for forecasting. The experimental results prove that OMK–SVR performs better than GEP, RBF-SVR and ELM for

predicting the future behavior of the study series. A sensitivity study with respect to the number of kernels from the

multiple kernel used by OMK–SVR and with respect to the ratio between training and testing data sets was conducted.

Keywords Prediction methods � Support vector regression � Evolutionary computation � Financial forecasting �
Genetic algorithms

1 Introduction

Time series modeling and prediction are active topics of

research in many areas like meteorology, ecology, finance,

signal processing, dynamical systems and statistics. A time

series is composed by a finite set of elements observed

sequentially over time. The problem of time series pre-

diction consists on finding a function f which predicts

future values, xtþp of the data series fxtgNt¼1 using past

values Xt ¼ ðxt; xt�s; . . .; xt�ðd�1ÞsÞ where s is the time

delay, d is the embedding dimension or the time window

and p is the prediction horizon. Consequently, the predicted

value is given by xtþp ¼ f ðXtÞ. In general, statistical pre-

diction methods [1] cannot capture the nonlinearity of data.

Therefore, other nonlinear methods like artificial neural

networks (ANNs) [2], support vector regression (SVR)

[3–5], gene expression programming (GEP) [6], extreme

learning machine (ELM) [7, 8], etc., are being used.

Another problem facing the time series forecast is that

the prediction model depends on the data type. Thus, the

choice of the methods for forecasting a specific type of data

is a problem that is worth to be studied.

Forecasting financial time series is a challenging prob-

lem, since the financial environment is continuously

changing and the market efficiency strongly influences the

predictability. Consequently, different studies regarding the

prediction of financial time series are specifically oriented

toward different markets: US [9–12], Malaysian [12, 13],

Asian [10, 11, 14], Indian [15, 16], European [17, 18], etc.

The methods employed evolved from classical statistic

ones like exponential smoothing, autoregressive moving

average (ARMA) or nonlinear threshold models to modern,
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heuristic ones based on artificial intelligence (AI) and

evolutionary computing (EC) techniques. Artificial neural

networks are widely used for financial predictions

[13, 19, 20]. The most common ANN algorithm is the back

propagation algorithm (BP), but other types of ANN like

layer recurrent network (LRN), radial basis network

(RBN), generalized regression neural networks were also

designed and evaluated in terms of efficiency for financial

forecasting [19, 21].

The design of an efficient ANN based on trial basis

functions faces the difficulty in selecting a large number of

parameters. The unwanted overfitting phenomenon often

reduces the generalization capacity of an ANN. Therefore,

hybrid solutions appeared in order to circumvent these

drawbacks. Hybridization with ARMA-type models

[12, 22, 23], evolutionary computation techniques like

evolutionary programming [24], genetic algorithms

[17, 25, 26] or particle swarm optimization techniques [9],

improved the ANN prediction performances. Recently, an

algorithm for single-hidden layer feedforward neural net-

work, namely extreme learning machine (ELM), has been

proposed in order to overcome the overfitting problems and

to increase the generalization performance of back propa-

gation algorithm [6].

A hybrid ARMA–gene expression programming

(ARMA–GEP) was used [12] to capture both linear and

nonlinear patterns from financial time series. In recent

years, many studies focused on designing financial time

series forecasting models based on support vector machines

(SVMs) [11, 14–16, 18, 27–29]. The comparison between

BP and SVM [14] proves that with few exceptions, SVM

methods outperform the BP, due to their capability of

handling nonlinear data easily. Even better results were

obtained using hybrid methods combining SVM with

classical statistical methods, ANN or artificial intelligence

techniques.

The behavior of forecasting methods depends on the

stock market indices chosen for prediction, on the stock

markets’ characteristics as well as the noise level of the

available data.

The aim of this article is to introduce a new approach,

namely optimal multiple kernel—support vector regression

(OMK–SVR), for time series forecasting and to validate it

on financial time series forecasting. The proposed approach

is based on multiple SVR kernels built and optimized using

hybrid methods. The multiple kernels are able to model

both the linear and nonlinear parts of a time series being

very suitable for financial time series modeling and pre-

diction. Our hybrid method also allows the automatic

choice of the optimal parameters for the SVR model. We

test our method against Bursa Malaysia KLCI Index

(KLSE), Dow Jones Industrial Average Index (DJIA) and

New York Stock Exchange (NYSE). We compare our

method with other forecasting approaches for financial data

series (RBF-SVR: SVR with a single RBF kernel, GEP:

gene expression programming and ELM: extreme learning

machine) in terms of accuracy.

The rest of this paper is organized as follows. Section 2

aims to present the elements of the SVR model necessary

to develop our approach. In Sect. 3, we present the pro-

posed OMK–SVR method. In Sect. 4, we report and dis-

cuss the experimental results. Comparative studies of

performances between the OMK–SVR approach and other

methods, based on different performance metrics (mean

square error, mean absolute error, correlation actual vs.

predicted) showed that the OMK–SVR method outper-

forms RBF-SVR, GEP and ELM. A sensitivity study of the

model parameters is conducted with respect to the value n,

the number of single kernels from the multiple kernel and

with respect to the ratio between training and testing data

sets. Conclusions and further directions of study are for-

mulated in Sect. 5.

2 Support vector regression

SVR is a version of a SVM for regression [3, 4, 22, 30, 31].

SVRs are supervised learning methods. They use a set of

training data instances T ¼ fðxi; yiÞ xij 2 X � Rd; yi 2
R; i ¼ 1; . . .; ng defined by their attributes vector xi and

their target value yi, in order to produce a model f, which

predicts the target values for instances where only features

xj are known. The model is evaluated using a test set of

data. The accuracy of the model is defined using an error

metric like mean squared error (MSE), root mean squared

error (RMSE), mean absolute error (MAE), mean absolute

percentage error (MAPE). For more details on error met-

rics, see Table 1 from Sect. 4.1.4.

In the linear case, the model is given by

f ðxÞ ¼ w; xh i þ b, where w 2 Rd is the weight vector, x 2
X; b 2 R is a bias and �; �h i denote the inner product in the

input space X. The prediction functions produced by SVR

are extended on a subset of support vectors,

S � X; Sj j ¼ s� n:

SVR minimizes the generalized error, implementing the

structural risk minimization principle. The generalized

error bound is expressed by means of the regularized risk

functional, obtained as a combination between the empir-

ical risk functional and a regularization term that controls

the complexity of the hypothesis space [3, 32].

The SVR aims to find a function f that minimizes the

regularized risk, 1
2

wk k2þ C
Pn

i¼1 Lðyi; f ðxiÞÞ where Lð�; �Þ
is a e- insensitive loss function [3, 31], C[ 0 is regular-

ization constant and �k k is the L2-norm. The function

f has at most e deviation from the target values yi for all the

training data, being at the same time, as flat as possible.
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The problem formulation is given by:

min
1

2
wk k2þC

Xn

i¼1

ðni þ n�i Þ
( )

subject to the constraints:

yi � w; xih i � b� eþ ni
w; xih i þ b� yi � eþ n�i
ni; n

�
i � 0

8
><

>:

The slack variables n; n� were introduced to take into

account the possibility of an infeasible convex optimization

problem. The two parameters, C and e, control the SVR

behavior, and their choice is very important [3, 11, 28]. The

parameter e controls the width of the e-tube and therefore

the number of support vectors. It was proved in [3] that

there is a linear dependency between the noise level and

the optimal e parameter for SVR. The constant C[ 0

determines the tradeoff between the flatness of f and the

admitted deviation of the errors from the e-tube. In many

cases, these two parameters are chosen using iterative

search grid or improved search grid methods or they are

adjusted based on experience and experimental results [33].

In the linear case, the expression of f using the so-called

Support Vector Expansion is [3, 4, 31, 32]:

f ðxÞ ¼
Xs

i¼1

ai xi; xh i þ b ð1Þ

The function f is expressed in terms of Lagrange multi-

pliers ai and the instances xi, i = 1,…,s representing the

support vectors. These vectors are characterized by non-

zero values of Lagrange multipliers.

The nonlinear regression problems are reduced to lin-

ear ones in a higher dimensional feature space by using a

mapping U. It is not necessary to explicitly know the

feature mapping U, but it can be implicitly defined by the

kernel function Kðu; vÞ : X � X ! R, having the property

that Kðu; vÞ ¼ hUðuÞ;UðvÞi where h�,�i is the inner pro-

duct in the higher dimensional feature space UðXÞ. This

implicit representation is known as ‘‘the kernel trick’’.

Using the kernel function, the expansion of f may be

written as:

f ðxÞ ¼
Xs

i¼1

aiK xi; xð Þ þ b ð2Þ

A kernel function must satisfy the Mercer’s conditions

[3], that is, it has to be a continuous, symmetric, positive

and semi-definite function. The most common kernel

functions are:

Polynomial of degree d : K xi; xj
� �

¼ xi; xj
� �

þ r
� �d ð3Þ

Radial Basis Function RBFð Þ : K xi; xj
� �

¼ exp �c xi � xj
�
�

�
�2

� �
ð4Þ

Sigmoid: K xi; xj
� �

¼ tanh c xi; xj
� �

þ 1
� �

ð5Þ

Other functions satisfying Mercer’s theorem can be also

used [3, 11, 28, 34, 35]. There are no general criteria to

choose a particular kernel. Standard SVRs use a single

kernel, and the prediction requires the choice of kernel

parameters. The choice of kernel parameters is a difficult

task and strongly depends of the field the data come from.

In many cases, parameters are tuned by hand based on

experience and taking into account experimental results

[11, 28]. Recently, there have been many attempts to

develop hybrid methods based on genetic algorithms or

other EC techniques to automate the SVM kernel param-

eters choice. Usually, the choice of the kernel is made in an

empirical way [11, 28]. The results obtained in the SVM

classifiers prove that multiple kernels are able to provide

better prediction models for real complex problems

[35, 36].

Concluding to achieve satisfactory SVR-based predic-

tions, a good choice of various parameters is crucial: C and

e parameters from the SVR model, kernels’ type and ker-

nels’ parameters. Moreover, single kernels are not appro-

priate for solving complex real-world prediction problems.

In this article, we introduce a new hybrid method for

building optimal multiple SVR kernels and for the auto-

matic selection of optimal SVR model parameters. Our

proposed method, namely optimal multiple kernel—sup-

port vector regression (OMK–SVR), uses an evolutionary

technique based on a breeder genetic algorithm for the

choice of an optimal multiple kernel and of the SVR

parameters C and e. The results obtained on financial time

series show the superior efficiency of the method compared

to existing approaches (e.g., RBF-SVR, GEP and ELM).

3 Optimal multiple kernel–support vector
regression (OMK–SVR)

3.1 General presentation

In [35], we developed a general framework for building

SVM optimal multiple kernels. The methods derived from

this general framework are hybrid methods proving real

advantages in classification of nonlinear data and over-

coming the difficulties related to the strong dependence of

SVM performances on the type of data. In this paper, we

extend the principle from [35] for designing optimal mul-

tiple SVR kernels for financial time series forecasting. We

propose a regression method based on SVR, namely

Optimal Multiple Kernel–support vector regression
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(OMK–SVR). The main characteristic of the OMK–SVR

approach is the use of optimal multiple kernels. Multiple

kernels can be obtained by using single kernels and the set

of operations (?, *, exp) which preserve Mercer’s condi-

tions [37]. The design of an optimal multiple kernel

requires the choice of the single kernels, the operations

between the kernels and the parameters defining the single

kernels. To optimize the parameters of the multiple kernel

and of the SVR, we propose a hybrid method structured on

two levels: micro-level and macro-level. In the macro-

level, we generate multiple kernels and choose both the

optimal kernel and the optimal SVR parameters using a

breeder genetic algorithm. In the genetic algorithm, every

chromosome encodes the expression of a multiple kernel.

The quality of chromosomes (fitness function) is computed

in the micro-level, using a SVR algorithm acting on a

particular set of data. The fitness function is defined using a

precision metric for the SVR prediction accuracy. For more

details about the fitness function, see Sect. 3.3.

3.2 Multiple kernel formal representation

A tree structure is used to formally represent the multiple

kernel. The terminal nodes contain single kernels while the

intermediate ones contain operations from the set of

admissible operations (?, 9 , exp). An intermediate node

containing the operation exp will have only one descen-

dent, more precisely, the left one.

In Fig. 1, a multiple kernel composed by four single

kernels and three operations from the set of admissible

operations is represented. Consequently, the multiple ker-

nel will be of the form:

K ¼ K1 op1 K2ð Þop3 K3 op2 K4ð Þ:

We note that it is possible that the optimal multiple kernel

be a combination of single kernels of the same type.

However, as it can be seen in Sect. 4.2.1, the model gen-

erated by the OMK–SVR with all single kernels are of RBF

type is different from the model generated by a SVR with

only one RBF kernel, even if the parameters of this single

kernel are optimized.

3.3 The macro-level

In the macro-level, the optimal multiple kernel is built

using a hybrid procedure. The number n of single kernels

that compose the multiple kernel is an input data of this

level. It is considered arbitrary but fixed, and it is not

subject to optimization on the macro-level. The aim of this

level is to choose the types of the single kernels, their

parameters, the operations used to obtain the multiple

kernel and the SVR parameters C and e in order to mini-

mize the prediction error. We implemented the macro-level

using a breeder genetic algorithm. Genetic algorithms are

well-known meta-heuristic search algorithms solving

complicated practical optimization problems [38]. In

breeder genetic algorithms, the solutions (chromosomes)

are represented as vectors of real numbers [39], enabling

better modeling of real-world problems and offering

advantages in optimization of regression models [40]. In

our approach, the aim of the breeder genetic algorithm is to

find new values for the parameters of the multiple kernel

and also for the parameters used by the SVR algorithm, in

order to reach a better prediction. For each single kernel,

we will store the operators, the kernel’s type, single kernels

parameters and the parameters of the e SVR in the chro-

mosome. The parameters of the single kernel j are denoted

by dj and rj in the case of a polynomial kernel and cj in the

case of RBF and sigmoidal kernels. The parameters of the

SVR are C and p where p represents the e from the loss

function of a SVR. Each parameter is encoded through a

gene, using a variable of type real. Therefore, the number

of chromosome genes encoding the multiple kernel

depends on the number of the single kernels used.

Proposition 1 The number of the genes from a chromo-

some encoding a multiple kernel obtained from a complete

tree structure composed of n = 2k single kernels is

5 9 2k ? 1, for k C 0.

Proof A complete tree with 2k leaves has k intermediary

levels, corresponding to 1 ? 2 ? ��� ? 2k-1 = 2k - 1

intermediary nodes. Therefore, we will have 2k - 1 genes

for encoding the operations between single kernels. For

encoding the kernels type and parameters, we need 4 9 2k

genes and two genes are necessary for encoding the SVR

parameters C and p. h

In the case of four single kernels, the chromosome

which encodes the multiple kernel has 21 genes and its

structure is given in Fig. 2.

Fig. 1 General representation of multiple kernel Fig. 2 Chromosome structure for n = 4 single kernels
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Both the operators op i, i 2 f1; 2; 3g, and the single

kernels types tj; j 2 f1; 2; 3; 4g, are mapped to the set {1,

2, 3} using, respectively, the one to one functions {? , 9 ,

exp} ? {1, 2, 3} and {Pol, RBF, SIG} ? {1, 2, 3}, for

j [ 1, …, 4. Thus, a chromosome is an array of real values

with length 21.

In the case of eight single kernels, the chromosome has

41 genes.

In the limit case k = 0, the multiple kernel reduces to a

single kernel and the chromosome has genes encoding the

kernel type, the parameters d and r—in the case of a

polynomial kernel—and c—in the case of RBF and

sigmoidal kernels, and the SVR model parameters C and p.

In a breeder genetic algorithm, the populations are

evolved using specific mutation and crossover operations

[39, 40]. A truncated selection is used. The new generation

is created using only the T% best individuals of the initial

population of chromosomes. T is a constant of the

algorithm. According to [39], T must be chosen between

50 and 10% and typically T = 40% gives better results.

Two individuals from this truncated population are

randomly selected and mated using the crossover operator

until a new population of individuals is obtained. With a

small probability, a mutation operator is then applied to the

offspring. The best chromosome (evaluated through the

fitness function) remains in the population from one

generation to another. The number of the population

individuals does not change.

The breeder crossover operator combines two chromo-

somes x = {x1,…, xn} and y = {y1..., yn}, with xi, yi [ R into

a new chromosome z = {z1,…, zn} with zi ¼ xi þ aiðyi � xiÞ,
i = 1,…, n and ai is a random variable uniformly distributed

on [- d, 1 ? d]. The value of d depends on the problem to be

solved and typically is situated in the interval [0, 0.5].

A value xi is selected with a small probability pm for

mutation. The probability of mutation is typically chosen

as pm= 1/n. The mutation changes the value xi according to

the rule xi ¼ xi þ siriai, with si 2 f�1; 1g randomly uni-

form. ri ¼ r � Dxik k; r 2 ½0:1; 0:5	; xi 2 Dxi ; Dxik k is the

length of the domain where is situated xi and ai ¼ 2�k�a

with a 2 ½0:1; 0:5	 randomly uniform and k is the mutation

precision (number of bytes used to represent a number in

the machine where the breeder algorithm is executed).

3.4 The micro-level

The fitness function for the chromosomes generated in the

macro-level is computed in the micro-level. The data is

divided into two subsets: the training subset and the test

subset. The training subset is used in the micro-level for

obtaining the regression models and for computing the

values of the fitness function for each chromosome, while

the test subset is used for evaluation of the optimal

regression model provided by the breeder genetic algo-

rithm in the macro-level.

In the micro-level, for any chromosome there is a SVR

training—prediction session. The fitness function is the

Mean Squared Error (MSE) of the prediction provided by

the regression model generated through training, using

multiple kernel and SVR parameters encoded in each

chromosome. Let us consider that the set on which we

make the evaluation of MSE consists of n data. Let us

denote by fpigni¼1 the values of the data predicted from the

SVR whose kernel structure and parameters are encoded in

the chromosome ck and with faigni¼1 the real values of data.

Then, the fitness function is given by:

f ðckÞ ¼
1

n

Xn

i¼1

pi � aið Þ2 ð6Þ

The fitness function can be computed using k-fold cross-

validation or using the all training subsets (see more details

about computation of fitness function in Sect. 4.1.3).

3.5 Model evaluation

At the end of the breeder genetic algorithm, the best

chromosome gives the optimal form of the multiple kernel

which will be evaluated on the validation subset of data in

order to validate the model. After the validation, if the

model accuracy is satisfactory, it can be used for fore-

casting. The model performance is evaluated using differ-

ent metrics (see Sect. 4.2 for more details about the

performance metrics).

3.6 Implementation details

For implementation, we used object oriented programming

in the JAVA language. We started from the implementation

of the e-SVR given in the LIBSVM—Library for support

vector machines [41], we adapted and enhanced it taking

into account the particularities of OMK–SVR approach.

To implement a custom multiple kernel, we started from

the JAVA classes implemented in [41] and modified them

according to our representation of the multiple kernel. The

classes svm_parameter, svm_predict, svm_model, svm_-

train and Kernel must be adapted to our particular model.

In the class svm_train, we added a new version for set_-

parameters method in order to pass additional parameters

through the extended svm_parameter object to the new

version of the svm_train method of the class svm. The class

svm_predict was extended with a new predict method

having as parameters the values extracted from a chro-

mosome in order to build the multiple kernel. The Kernel

class is modified to accomplish the kernel substitution. A
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method for computing the hybrid multiple kernels is nec-

essary. We built a new method, namely k_function, for the

computation of the single kernels which are then combined

using the operations given in the model of the chromo-

some. In the genetic algorithm, the operations and all

parameters assigned to a multiple kernel (type of the single

kernels and all other parameters) are obtained from a

chromosome, which is then evaluated using the result of

the modified predict method.

Two other methods of the class svm_train, namely

do_cross_validation and run, were adapted to use the error

from a training based on tenfold cross-validation as fitness

function value in the genetic algorithm.

4 Experimental results and sensitivity study

In this section, we report the results from the experiments

conducted for financial time series forcasting using the

proposed method, OMK–SVR. Two experiments were

conducted. The first one focuses on the evaluation of

OMK–SVR performances, and comparison with other

forecasting methods (GEP, RBF-SVR, ELM). The goal of

the second experiment is to provide a study on parameter

sensitivity of the OMV–SVR.

Taking into account the conclusions from [39], in all

experiments, in the breeder genetic algorithm from the

macro-level of OMK–SVR, we chose the following values

for the parameters: T = 40%, d = 0.5, the probability of

mutation pm = 0.8, r = 0.5 and k = 8.

Our experiments were performed on a Intel(R), Cor-

e(TM) i7-5500U CPU @ 2.400 GHz, with 8.00 GB RAM

and a 64-bit Operating System.

Financial time series forecasting was performed on the

time series of the monthly and weekly KLSE (Bursa

Malaysia KLCI) Index, the monthly DJIA (Dow Jones

Industrial Average) index and weekly NYSE (New York

Stock Exchange). The data for the stock market prediction

have been downloaded from finance.yahoo.com. For each

experiment, we provide a detailed description of the input

data in the corresponding subsection.

4.1 Experiment 1

4.1.1 Goal and motivation

In order to evaluate the performance of the proposed

OMK–SVR approach, we carried out comparisons with

other representative prediction methods: SVR with RBF

single kernel (RBF-SVR), gene expression programming

(GEP) [12, 42] and extreme learning machine (ELM)

[7, 8]. The following reasons led to the choice of these

methods for comparisons.

Studies on parameter sensitivity of support vector

regression [43] revealed the superior forecasting perfor-

mance of the RBF kernel against other single kernels. The

comparison of OMK–SVR performances with those of

RBF-SVR could emphasize the contribution of the multiple

kernel in the OMK–SVR model, even if all the single

kernels in the OMK–SVR multiple kernel are of RBF type.

The OMK–SVR approach is a hybrid method using EC

techniques. GEP also belongs to the field of EC, being

automatic model induction techniques.

ELM is a quite recent non-iterative algorithm for single-

hidden layer feedforward neural networks. It has good

generalization performances and is significantly faster than

the BP algorithm. The performances of ELM are dependent

on the number of nodes from the hidden layer. Comparison

between ELM and SVR with parameters tuned by hand

reveals a better behavior of ELM. Therefore, a comparison

between OMK–SVR and ELM in term of accuracy is of

interest.

4.1.2 Datasets

Experiment 1 is divided into three sub-experiments deno-

ted by Experiment 1a, Experiment 1b and Experiment 1c.

In Experiment 1a, we used KLSE monthly data between

December 1993 and March 2015 (256 values) and KLSE

weekly data between 03.12.1993 and 16.03.2015 (1106

values). In Experiment 1b, we used DJIA monthly data

between January 1985 and March 2015 (368 values). In

Experiment 1c, we used NYSE weekly data between

December 1965 and March 2018 (2764 values).

In all these experiments, the dataset was split between

training and testing sets of data. The reported values from

Sect. 4.1.5 use a 95–5% ratio. The influence of the ratio

between training and testing data on the prediction per-

formances is studied in Sect. 4.2, proving that the 95–5%

ratio gives the best results from the set of ratios {95/5,

80/20, 70/30}.

According to [41, 43, 44], for computational reasons and

to speed up the training process, all the data from a given

time series were scaled to the interval [0, 1]. High attribute

values might lead to numerical problems. Moreover, scal-

ing avoids the domination of the attributes in greater

numeric ranges against those in smaller numeric ranges. It

is important to use the same scaling method for training

and testing data.

4.1.3 Setting for OMK–SVR

The optimal values for the parameters of the SVR multiple

kernel, the SVR constant C and the tube size p were

obtained using the hybrid method that are presented in

Sect. 3. The types of single kernels used in the building
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process of the multiple kernel are denoted by {1, 2, 3} (i.e.

{Poly, RBF, Sig}). In order to speed up the method, we

determined, using a rough grid search, maximal intervals

for the parameters C, p and c (for the RBF and sigmoid

single kernels). According to the studies about the SVM

with RBF parameters [44, 45], the parameters were forced

to lie in the following intervals: C [ [0.01, 1500],

p [ [0.0008, 0.003], c [ [0.01, 500].

The characteristics of the macro- and micro-levels of our

hybrid method were the following:

a. At the macro-level, the choice of parameters from the

specified intervals was done by the breeder genetic

algorithm. The dimension of population was 100, and

the number of generations was 300.

b. At the micro-level, the algorithm computes the fitness

function for any chromosome (multiple kernel), on the

training set of data. Two different methods were

applied:

I. Using tenfold cross-validation in the SVR train-

ing—prediction session for any chromosome.

The fitness function is the error returned by the

run method from the class svm_train.

II. Without tenfold cross-validation in the SVR

training—prediction session for any chromo-

some. The fitness function is the error returned

by the new predicts method from the class

svm_predict. The predict method has as input the

parameters of the multiple kernel encoded within

the chromosome and makes use of the model

constructed in the training session.

We remark that in our experiments, there was no sig-

nificant difference between the results obtained by apply-

ing the OMK–SVR algorithm using tenfold cross-

validation in the SVR trainingprediction session for any

chromosome or without it. The use of tenfold cross-vali-

dation increases the execution time and requires an addi-

tional step of generating the prediction model to be used in

the validation phase.

We used four single kernels for building the multiple

kernel. The sensitivity study made in Sect. 4.2 shows that

four single kernels are a reasonable choice to provide

enough complexity to the generated model and to avoid

overfitting.

For the KLSE monthly series, the automatic choice of

optimal multiple kernel and SVR parameters in the OMK–

SVR approach have given: operators in multiple kernel {2,

2, 2}, single kernels types {2, 2, 2, 2}, single kernels

parameters c [ {337.428826, 448.9518, 362.14396,

424.6855}; C = 814.5280 and p = 0.0021. The optimal

multiple kernel is described by the formula

(RBF1 9 RBF2) 9 (RBF3 9 RBF4).

For the KLSE weekly series, the automatic choice of

optimal multiple kernel and SVR parameters in the OMK–

SVR approach have given: operators in multiple kernel {2,

1, 2}, single kernels types {2, 2, 2, 2}. The optimal mul-

tiple kernel is described by the formula (RBF1 9

RBF2) 9 (RBF3 ? RBF4), having the parameter c of the

single kernels {461.821680, 461854667, 194.0081,

498.8080}, C = 1185.993122 and p = 0.001841.

For DJIA monthly series, the automatic choice of the

optimal multiple kernel and SVR parameters in OMK–

SVR approach provided: operators in multiple kernel {2, 2,

2}, single kernels types {2, 2, 2, 2}, single kernels

parameters c [ {417.024452, 176.148546, 482.860743,

474.415528}; C = 1454.673004 and p = 0.0009. The

optimal multiple kernel is described by the formula

(RBF1 9 RBF2) 9 (RBF3 9 RBF4).

For the NYSE weekly series, the automatic choice of

optimal multiple kernel and SVR parameters in the OMK–

SVR approach have given: operators in multiple kernel {2,

2, 2}, single kernels types {2, 2, 2, 2}. The optimal mul-

tiple kernel is described by the formula (RBF1 9

RBF2) 9 (RBF3 9 RBF4), having the parameter c of the

single kernels {419.2128, 396.383, 422.5353, 388.0306},

C = 769.124 and p = 0.001813.

The fact that the optimized multiple kernel is composed

for all the datasets only by RBF single kernels confirms the

results from the empirical sensitive study on the type of

single SVR kernels [43]. The empirical sensitivity study on

the type of single SVR kernels [43] found that polynomial

kernels show consistently an inferior performance. Another

drawback of the polynomial kernels is the greater number

of hyperparameters compared to RBF and sigmoid kernels.

The selection of good parameters for the sigmoid kernel is

more difficult than for the RBF kernel, due to the fact that

the positive semi-definite condition for the kernel might not

be satisfied for some values of the parameter c [29, 43].

The selection of the RBF kernel by the breeder genetic

algorithm confirms the results of previous empirical sen-

sitivity studies on the kernel type in the SVR approach. The

breeder algorithm avoids the selection of polynomial and

sigmoid single kernels if the stopping criteria (number of

generations or time) are large enough.

4.1.4 Settings for the alternative methods used
for comparison

The parameters’ choice in RBF-SVR is based on a grid

search procedure [42, 45]. For the KLSE monthly dataset, the

parameters of RBF-SVR areC = 965.887505; c = 0.773866

and p = 0.001. For the KLSE weekly dataset, the RBF-SVR

is defined by C = 2718.74877, c = 0.0393 and p = 0.001.

For the NYSE weekly dataset, the RBF-SVR is defined by

C = 2928.66286, c = 0.24516649 and p = 0.001.
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To employ GEP, the operator rates were used at stan-

dard values as proposed in the literature [46–48]. We note

that in GEP the number of genes in a chromosome was

four, the gene head length was eight, the maximum number

of generations was 2000, the number of generations with-

out improvement was 1000, and the linking function was

addition. The time delay was s [ {1,…,5}, and the number

of independent runs was 100, for each s. We report the best

solution model identified over all runs that was obtained for

s = 1.

ELM was carried out in Java. A number of 30 runs have

been conducted, and the average results were reported. We

used the sigmoid function as activation function. The

number of nodes in the hidden layer was set using a grid

search in the interval [100, 11000] such that the root mean

square error (RMSE) on the training data set to be mini-

mized. The expression of RMSE is given in Table 1. We

used 9000 nodes in the hidden layer for the KLSE monthly

series, 1000 nodes for the KLSE weekly series, 10000 for

DJIA monthly series and 300 for NYSE weekly data series.

4.1.5 Model validation

The prediction models obtained using OMK–SVR, and the

alternative methods are used for forecasting the next values

from the financial series. Then, the predicted data are

mapped back in the original domain of the data. The model

validation is performed using different performance (error)

metrics. Four error metrics were computed in this study.

These are: the root mean squared error (RMSE), the mean

absolute error (MAE), the mean absolute percentage error

(MAPE) and the correlation coefficient between actual and

predicted data rap. We note that instead of RMSE, we could

use MSE (MSE = RMSE2). Their formulas are given in

Table 1. The computation of the metrics values was per-

formed in R. The prediction performance can be influenced

by the error metrics [43]. MAE is an easy inter-

pretable error measure, often used in time series prediction.

RMSE and MSE are commonly used in forecasting. They

give more weight to large errors than MAE. MAPE is a

unit-free measure, showing the percentage error. The

correlation coefficient between the real and predicted data

measures the quality of fitting between the data predicted

from the model and the actual data.

4.1.6 Experiment 1a: results and discussion

The experimental results obtained for KLSE monthly series

are presented in Table 2 and those for KLSE weekly series

are given in Table 3. The bold values in the next

tables represent the best values obtained for a given metric

using different techniques.

Analyzing the results for monthly series (Table 2), we

see that the OMK–SVR method outperforms all the other

approaches taken into account both on training and vali-

dation datasets for monthly series. The performances of

RBF-SVR and GEP are substantially the same. ELM gave

better results on the validation data set than on the training

data set. Compared to RBF-SVR and GEP, the accuracy of

ELM is worse on the training data series but is much better

for the validation data sets. These results show that indeed

the ELM can overcome the overfitting drawbacks of neural

networks. However, OMK–SVR outperforms ELM both in

training and validation datasets for the monthly series. The

RMSE ratio between ELM and OMK–SVR is 3.0165 for

the training set and 2.7438 for the validation set of data.

The results in terms of RMSE, MAE and MAPE are quite

similar. The results of all methods are comparable in terms

of rap for the training set of data, but for the validation set

the OMK–SVR approach is far superior.

To illustrate the OMK–SVR behavior, in Fig. 3, we

present the chart of true and approximated monthly scaled

data, in the training and validation process. The method

performs well in both cases.

For weekly series (Table 3), the results of all methods

for training data are comparable in terms of rap. For the

training set of data, RBF-SVR and GEP gave better results

on the training datasets with respect to RMSE and MAE,

but on the validation set OMK–SVR gave the best results.

With respect to MAPE, the best results on the training and

validation sets for the monthly and weekly series have been

obtained by using OMK–SVR.

Table 1 Performance metrics for model validation and their formulas

Metrics Formula Notations

RMSE (root mean square error)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðpi � aiÞ2

q
pi—predicted data

ai—observed (actual) data

n—number of data

ma—mean of observed data

mp—mean of predicted data

MAE (mean absolute error) 1
n

Pn
i¼1 jai � pij

MAPE (mean absolute percentage error) 1
n

Pn

i¼1

jai�pij
ai

rap (correlation actual vs. predicted)
Pn

i¼1
ðpi�mpÞðai�maÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðpi�mpÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðai�maÞ2

p
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This aspect is very important, because MAPE is an

indicator widely used in statistics for testing the prediction

accuracy of a forecasting method. The closer MAPE is to

zero, the better the prediction. ELM performs worse on the

training set of data, but outperforms RBF-SVR and GEP on

validation data. The experiments performed for monthly

and weekly data series showed that the OMK–SVR algo-

rithm learns well the data and predicts very well the values

for a horizon of 7 months, and respectively, 9 weeks,

which is a quite good forecasting period for a financial

index. From the point of view of finance, when dealing

with the stock market, the prediction of the indices on a

short period is very important since trading the futures is

done many times in real time.

4.1.7 Experiment 1b: results and discussion

The experimental results obtained for the DJIA monthly

series are presented in Table 4. Analyzing the results from

Table 4, we get similar conclusions as for Experiment 1a.

The OMK–SVR method outperforms RBF-SVR and GEP

both on training and validation datasets for the DJIA

monthly series. The performances of RBF-SVR and GEP

are essentially the same. Both algorithms perform well

enough on the training set, as we can see from the high

values of the correlation coefficient, close to 1. They have

far worse results on the validation data, showing that their

prediction power is low. ELM has better results on the

validation data than on the training data. ELM outperforms

RBF-SVR and GEP on validation dataset, but has far worse

results than OMK–SVR.

To illustrate the OMK–SVR behavior on DJIA monthly

series, in Fig. 4, we present the chart of real and predicted

scaled data, in the training and validation process. The

method performs well in both cases.

4.1.8 Experiment 1c: results and discussion

The experimental results obtained for the NYSE weekly

series are presented in Table 5.

Analyzing the results from Table 5, we get quite similar

conclusions as for the KLSE weekly data series. The results

of all methods, in terms of rap, are comparable for training

data. On the training set of data, GEP gave better results

with respect to RMSE and MAE, but on the validation set

OMK–SVR gave the best results. With respect to MAPE,

the best results on the training and validation sets have

been obtained by using OMK–SVR. This is important

because MAPE is an important indicator for testing the

prediction accuracy of a forecasting method.

As in the previous experiments, ELM performs worse on

the training set of data but outperforms RBF-SVR and GEP

on validation dataset, with respect to all metrics taken into

account. The worse results on the validation data set are

given by RBF-SVR. This proves that single kernels are not

always able to model complex data series.

4.2 Experiment 2: sensitivity study

The goal of this experiment is to provide a sensitivity

analysis of the proposed method, OMK–SVR. We inves-

tigate the forecasting performance of alternative parameter

setups. The parameters involved in the OMK–SVR

approach can be grouped into two categories as they are

automatically obtained in the hybrid procedure specific to

the method or are independent of it. To the first category

belong, the type of single kernels composing the multiple

kernel, the hyperparameters of the single kernels (d and

r for a polynomial kernel and c for RBF and sigmoidal

kernel) and the parameters C and e of the SVR. The

parameters that are not automatically selected are the

number of the single kernels composing the multiple kernel

and the ratio between the training and testing data. A

Table 2 Comparative performances results for KLSE monthly

OMK–SVR RBF-SVR GEP ELM

Training

rap 0.992 0.970 0.970 0.928

RMSE 44.084 61.344 61.343 132.979

MAE 29.345 44.868 45.465 99.779

MAPE 0.035 5.341 5.393 0.116

Validation

rap 0.916 - 0.832 - 0.919 - 0.193

RMSE 49.309 301.557 388.576 51.599

MAE 39.232 258.542 328.562 41.840

MAPE 0.022 14.695 18.630 0.0232

Table 3 Comparative performances results for KLSE weekly

OMK–SVR RBF-SVR GEP ELM

Training

rap 0.993 0.994 0.994 0.905244

RMSE 42.519 26.193 26.198 200.7746

MAE 29.427 18.676 18.712 162.3963

MAPE 0.033 2.163 2.162 0.162569

Validation

rap 0.911 0.877 - 0.906 - 0.23284

RMSE 23.472 208.786 274.046 61.82019

MAE 20.212 172.460 227.528 51.63312

MAPE 0.011 9.800 12.918 0.029452
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sensitivity study can only be performed on these last

parameters. We keep one of these parameters constant and

analyze the influence of the other parameter on the pre-

diction performance. The results are reported for the DJIA

monthly series between January 1985 and March 2015.

4.2.1 Sensitivity study on the number of single kernels

We keep the ratio between the training and testing data sets

constant and equal to 95/5 and modify the number of the

single kernels from the multiple kernel. We compared the

results obtained for OMK–SVR with multiple kernels

composed by four, eight and one kernels. The OMK–SVR

with one kernel uses the automatic parameter selection

based on the breeder algorithm, whereas the RBF-SVR

uses a grid search procedure in order to determine suit-

able parameters. We emphasize that in the OMK–SVR

with one single kernel, the kernel type is automatically

selected in the breeder algorithm. The characteristics of the

multiple kernels are given in Table 6.

We use the one to one mappings between the kernel

types {Pol, RBF, Sigmoid} and the set {1,2,3}, and

respectively, between the set of operations {?,9, exp} and

{1, 2, 3}. Consequently, the optimal multiple kernel in the

case of n = 4 is given by (RBF0 9 RBF1) 9 (RBF2 9

RBF3). In the case of n = 8, the optimal multiple kernel is

described by the formula [(K0 op0 K1) op4 (K2 op1 K3)]

op6 [(K4 op2 K5) op5 (K6 op3 K7)] = [(RBF0 9

RBF1) ? (RBF2 9 RBF3)] 9 [(RBF4 9 RBF5) 9 (

RBF6 ? RBF7)]. The results are presented in Table 7.

Analyzing the results from Table 7, one can see that in

case of training data, the quality of precision in terms of the

correlation coefficient is slightly lower in the case of n = 1,

showing that more than one kernel is necessary in order to

obtain a sufficiently complex model, capable to fit the real-

world data. The other error metrics show a better behavior

of the multiple kernel with n = 8 in the case of training

data. The more complex model obtained for n = 8 fits

better the training data. The results obtained for the testing

data reveals better performances for the multiple kernel

with n = 4 in terms of all error metrics and model fitting.

Using only a single kernel does not give enough prediction

power to the model, but increasing the number of single

kernels too much leads to overfitting. A larger value of

n also results in higher computational effort. Therefore, we

consider that the value n = 4 is a reasonable choice for the

number of kernels in the multiple kernel.

Fig. 3 Behavior of OMK–SVR on training and validation datasets for KLSE monthly series with scaled data

Table 4 Comparative performances results for DJIA monthly

OMK–SVR RBF-SVR GEP ELM

Training

rap 0.997 0.979 0.979 0.981

RMSE 293.930 552.319 550.190 812.662

MAE 178.653 239.821 241.386 599.547

MAPE 0.024 5.380 5.324 0.098

Validation

rap 0.937 0.000 0.000 0.735

RMSE 178.067 4181.013 6066.596 1051.338

MAE 132.977 3798.146 5520.890 1001.461

MAPE 0.007 27.577 39.957 0.058
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The last column from Table 7 gives the results obtained

using a single RBF kernel with parameters obtained in a

grid search selection, as shown in Sect. 4.2. The experi-

mental results show that the hybrid optimization algorithm

from OMK–SVR, based on breeder genetic algorithm,

gives better performances than RBF-SVR both in training

and testing stages. The differences are more significant for

the testing dataset proving the better prediction capability

of the model with automatic optimization of the kernel and

SVR parameters.

All the parameters from the first group of parameters

specified in Sect. 4.3 are optimized together in the hybrid

optimization algorithm from OMK–SVR. Consequently, a

sensitive analysis on these parameters is not necessary.

4.2.2 Sensitivity study on the ratio between training
and testing data sets

We keep the number of single kernels from the multiple

kernel constant (we set n = 4) and consider different values

for the ratio between the training and testing datasets: 95/5,

80/20 and 70/30. The results are reported in Table 8.

The correlation between the actual and predicted values

is close to 1 for both training and validation, for all sce-

narios, showing that the models are adequate. The use of

rap as quality index is not enough since it does not provide

information about the estimation errors in the models.

Therefore, its significance must be interpreted together

with other indicators, as RMSE, MAE or MAPE.

MAE is built on the absolute values of the differences

between the predicted and recorded values, so it is more

clinching point of view of ‘‘closeness’’ of the values to

each other. Therefore, smaller the MAE is, better the model

is. In our experiments, the smallest MAE corresponds to

95/5 ratio, which is 1.13 times smaller than that for 80/20

ratio and 1.23 times smaller than for 70/30 ratio, for the

training set. For the validation set, MAE and 1.48 times

smaller than that for 80/20 ratio and 1.90 times smaller

than for 70/30 ratio.

Since for computing RMSE, the quadratic estimation

errors are considered, the values of RMSE are bigger than

those of MAE. Even for the training set, RMSE corre-

sponding to 95/5 ratio is only 1.09 and 1.14 times smaller

than those for 80/20 ratio and 70/30 ratio, respectively, the

differences increase for the validation sets, being,

Fig. 4 Behavior of OMK–SVR on training and validation datasets for DJIA monthly series with scaled data

Table 5 Comparative performances results for NYSE weekly

OMK–SVR RBF-SVR GEP ELM

Training

rap 0.998 0.992 0.998 0.983

RMSE 213.278 225.438 115.846 691.83

MAE 118.878 128.76 60.181 458.145

MAPE 0.033 0.136 0.038 0.185

Validation

rap 2 0.642 0 0 - 0.0402

RMSE 408.016 2006.44 743.22 408.719

MAE 375.782 1966.66 611.016 381.061

MAPE 0.029 0.155 0.047 0.0318
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respectively, 1.38 (for 80/20 ratio) and 1.71 times bigger

(for 70/30 ratio).

By definition, MAPE is built using the absolute values

of the ratios between the errors and the recorded values, so

for a good model that value should be very close to zero.

This is the case for all the experiments that we are ana-

lyzing. Even for the training sets, the values of MAPE do

not differ significantly, and for the validation sets, MAPE

corresponding to 95/5 ratio is 1.57 and two times smaller

than that computed for the ratio 80/20 and 70/30,

respectively.

Therefore, we can conclude that the ratio 95/5 gives the

best results in our experiments.

Table 6 Characteristics of multiple kernels from OMK–SVR

Number of single kernels n Types of single kernels Operations Kernel no. Parameter c of the kernel C P

4 (2,2,2,2) (2,2,2) K0 417.024452 1454.673004 0.000945

K1 176.148546

K2 482.860743

K3 474.415528

8 (2,2,2,2,2,2,2,2) (2,2,2,1,1,2,2) K0 485.486404 1044.728796 0.001239

K1 111.135712

K2 414.700210

K3 498.165030

K4 492.884978

K5 457.300188

K6 348.401522

K7 271.064743

1 2 –

499.778996

1458.811092 0.002165

Table 7 Comparative performances for different numbers of single

kernels

OMK–SVR

four kernels

OMK–SVR

eight kernels

OMK–SVR

one kernel

RBF-SVR

Training

rap 0.997 0.997 0.996 0.979

RMSE 293.930 279.029 348.938 552.319

MAE 178.653 168.082 230.486 239.821

MAPE 0.024 0.023 0.032 5.380

Testing

rap 0.937 0.904 0.932 0.000

RMSE 178.067 288.472 237.137 4181.013

MAE 132.977 228.039 185.357 3798.146

MAPE 0.007 0.013 0.010 27.577

Table 8 Comparative

performances for different ratios

between training and testing

data sets

OMK –SVR four kernels

95/5

OMK–SVR four kernels

80/20

OMK–SVR four kernels

70/30

Training

rap 0.997 0.996 0.994

RMSE 293.930 319.763 334.205

MAE 178.653 202.008 219.945

MAPE 0.024 0.023 0.023

Validation

rap 0.937 0.933 0.930

RMSE 178.067 246.456 305.054

MAE 132.977 197.161 252.168

MAPE 0.007 0.011 0.014
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5 Conclusions and future work

A new method for the prediction of financial time series

has been introduced in this article. The new approach,

OMK–SVR, was tested on many financial time series,

providing more accurate predictions than RBF-SVR, GEP

and ELM, in terms of many error metrics.

The superior efficiency of the method is given by the use

of an optimal multiple kernel. One of the main contribu-

tions of this article is the idea of simultaneous optimization

of the multiple kernels and the SVR parameters using a

breeder genetic algorithm. The breeder genetic algorithm

uses the same number of genes to represent each parame-

ter: one gene storing a real-type value. Thus, it overcomes

the drawbacks of classical genetic algorithms that require a

different number of genes to represent different parameters

[35]. The OMK–SVR algorithm simultaneously optimizes

the most important parameters of the method: the type and

the parameters of the simple kernels composing the mul-

tiple kernels, the operations used for building the multiple

kernels and the parameters C and e of the SVR model.

We conducted a sensitivity study with respect to the

other two parameters that are not automatically optimized:

the number of single kernels that compose the multiple

kernel and the ratio between the training and testing data.

The experiments demonstrated the superior forecasting

performance of multiple kernels composed by n = 4 single

kernels. Increasing this number leads to overfitting and

more computational effort, while decreasing it results in a

not sufficiently complex model and low prediction power.

The ratio 95/5 between training and testing data has given

the best results.

All the experiments were conducted on real data. For

validation of our proposed method, we used real financial

weekly and monthly data series from markets with differ-

ent behaviors (Bursa Malaysia KLSE, Jones Industrial

Average Index DJIA and New York Stock Exchange

NYSE). These are major indices used on the financial

markets, whose predictions are important for international

financial markets. We point out that even if the series have

different behaviors, our algorithm performs better than the

competitors. It is important since, in the known literature,

the algorithms are generally tested only on the same type of

financial series.

For future research, we intend to validate the results of

the sensitivity analysis of the OMK–SVR reported in this

article on other financial series.

In the training stage (with or without cross-validation),

the algorithm uses the mean squared error as fitness func-

tion. We shall analyze the influence of others fitness

functions on the prediction accuracy.
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