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Abstract
Understanding the pattern of financial activities and predicting their development and changes are research hotspots in

academic and financial circles. Because financial data contain complex, incomplete and fuzzy information, predicting their

development trends is an extremely difficult challenge. Fluctuations in financial data depend on a myriad of correlated

constantly changing factors. Therefore, predicting and analysing financial data are a nonlinear, time-dependent problem.

Deep neural networks (DNNs) combine the advantages of deep learning (DL) and neural networks and can be used to solve

nonlinear problems more satisfactorily compared to conventional machine learning algorithms. In this paper, financial

product price data are treated as a one-dimensional series generated by the projection of a chaotic system composed of

multiple factors into the time dimension, and the price series is reconstructed using the time series phase-space recon-

struction (PSR) method. A DNN-based prediction model is designed based on the PSR method and a long- and short-term

memory networks (LSTMs) for DL and used to predict stock prices. The proposed and some other prediction models are

used to predict multiple stock indices for different periods. A comparison of the results shows that the proposed prediction

model has higher prediction accuracy.

Keywords Financial data prediction · Neural networks · Deep learning · Phase-space reconstruction

1 Introduction

In recent years, financial activities have been increasingly

growing in number with rapid economic development, and

their variation trend has also become increasingly complex.

Understanding the pattern of financial activities and pre-

dicting their development and changes are focuses of

research in academic and financial circles. An approximate

prediction of financial data using one or a series of methods

can help understand the development of and changes in the

financial market at the macroscopic level and provide a

basis for investors and for-profit organizations to make

trade decisions and plans at the microscopic level, thereby

allowing them to maximize profits. Because financial data

contain complex, incomplete and fuzzy information, pre-

dicting their development trend is an extremely difficult

challenge [1, 2].

Before the emergence of efficient machine learning

algorithms, researchers in China and elsewhere generally

used various statistical and econometric methods to build

prediction models for research. Conventional statistical and

econometric models require linear models and cannot be

used to predict and analyse financial products before

transforming nonlinear models to linear models. As an

important branch of machine learning algorithms, neural

networks (NNs) have the following advantages compared

to conventional statistical methods: they are numeric, data-

driven and adaptive. Therefore, NNs have a higher capacity

to analyse inaccurate and noisy data and have been

extensively used to predict time series. By design, the

newly emerged deep learning (DL) algorithms can be

trained with massive volumes of nonlinear data and used to

construct deep NNs (DNNs) with multiple hidden layers

and capture more abstract nonlinear relationships between

data. Compared to conventional machine learning
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algorithms, these DL algorithms can be used to solve

nonlinear problems more satisfactorily [3].

In 1988, White predicted the changes in daily stock

returns of IBM using NNs [4]. Zhang combined an auto-

regressive integrated moving average (ARIMA) model

with an artificial NN (ANN) to predict time series and

conducted a comparative study. The results showed that the

ANN was more advantageous in analysing and processing

nonlinear data [5]. In 2009, Vanstone and Finnie [6] pro-

posed an NN-based empirical methodology for designing

automated trade systems based on ANNs. Jasemi et al. [7]

studied the information hidden in Japanese stock candle-

stick charts using a multi-layer perception (MLP) model.

Ticknor proposed a stock index price prediction model that

uses a Bayesian network and determined its effectiveness

based on the data for Microsoft Corp. and Goldman Sachs

Group Inc. stocks [8]. Wang [9] proposed a stochastic time

effective function NN and combined it with principal

component analysis to predict the prices of multiple secu-

rities. Xiong et al. predicted the linear pattern of a time

series using an ARIMA model, estimated the nonlinear

residual of the time series using an NN model and com-

bined the results to form the final prediction for the time

series. They examined the effectiveness of the hybrid

prediction model through simulations based on a RMB

exchange rate series [10]. Based on the theory for the

relationship between volume and price, Wu et al. [11]

performed an empirical study on the relationship between

volume and price in China’s stock market using the

exponential generalized auto-regressive conditional model

and a backpropagation NN. Li [12] predicted error series

using empirical mode decomposition in conjunction with a

support vector machine (SVM).

The primary objective of DL is to obtain highly robust

feature sets from complex real-world data and, on this

basis, acquire highly correlated information. Deep nonlin-

ear topologies of DNNs can be built by stacking the hidden

layers of the used nonlinear activation functions and used

to analyse and model data with complex structures. Com-

pared to conventional shallow NNs, DNNs can better

represent complex high-dimensional functions, such as

highly varying functions [13]. In addition, the data pro-

cessing capacity of computer chips has improved dramat-

ically. In particular, graphic processing units are highly

suitable for deep model training. Moreover, increasingly

many research results have been achieved in the related

fields, such as machine learning and information and signal

processing. Furthermore, relevant techniques for storing

large datasets have also improved. These allow DL algo-

rithms to fit highly nonlinear functions better and undergo

rapid popularization and development. Today, DL has

achieved marked results in the classification, speech

recognition and computer vision fields. Shen et al.

constructed a deep belief network using a continuous

restricted Boltzmann machine and combined it with the

conjugate gradient method to predict exchange rates.

Through a comparison, they found that the DL network

structure was superior to conventional feedforward NNs

[14]. Ding et al. predicted the changes in stock index prices

from an event-driven perspective. They constructed a

prediction model using a convolutional NN and used it to

measure the short- and long-term effects of events on the

changes in stock prices. The accuracy of their method was

6% higher than that of a conventional method for the stocks

in the Standard and Poor’s (S&P) 500 [15]. Zhao et al. [16]

constructed a prediction model using a de-noising auto-

encoder and performed multiple sets of experiments based

on datasets extended using the bagging method. They also

used the prediction model to predict oil prices. Krauss et al.

studied the application of several integrated methods,

including DNNs, gradient boosted regression trees and

random forests, in statistical arbitrage. In addition, they

also proposed an equal-weighted integrated model based

on multiple models and, with it, achieved excess earnings

in the S&P 500 [17]. In recent years, there are some

researches on the prediction of stock price by deep learning

method [18–20].

2 Financial data prediction and DNNs

2.1 Financial data prediction

Financial data, particularly stock index data, often treated

as a time series affected by multiple variable factors. These

factors can generally be classified into two types: macro-

scopic variables, which affect the market on a long-term

scale (e.g. economic policies or national gross domestic

product), and microscopic variables, which affect the

market on a microscopic scale (e.g. random events, irra-

tional emotional fluctuations of investors and market

rumours). By analysing macroscopic and microscopic

factors, decisions can be made for the financial market,

which is a dynamic system with constantly changing fac-

tors. However, because these factors often change, it can be

considered that they are affected by an unknown system. It

is nearly impossible to collect all the macroscopic and

microscopic variables and determine the extents of their

influence. Therefore, financial time series prediction is

often viewed as one of the main difficult research areas in

the literature relating to time series and machine learning.

The first step of financial time series analysis is to

observe financial time series data. Commonly observed

financial variables include price (stock price, stock index,

exchange rate and futures price), return (stock return, stock

index return, interest rate and futures return), fluctuation,
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trade volume and companies’ financial variables (bond

issuance and hedging tools). Because the rate of return is

unaffected by the scale of investment and, as a

stable series, exhibits excellent statistical properties, it is

often used as a measure of trading experiments.

Assuming Pt is the asset price at time t, a single-period

simple gross return will be earned if one asset is held

between time t � 1 and time t when dividends and dividend

returns are not considered in formula (1):

1þRt ¼ Pt

Pt�1

or Pt ¼ Ptð1þ RtÞ ð1Þ

The corresponding single-period simple return is given

as formula (2):

Rt ¼ Pt

Pt�1

� 1 ¼ Pt � Pt�1

Pt�1

ð2Þ

Compared to ordinary time series, financial time series

also have some unique statistical properties, including the

following:

Outliers A financial time series can be easily

affected by macroscopic factors (e.g.

human and policy factors) and contains

data that differ relatively significantly from

the original data

Trend A mid-/long-term upward or downward

trend can be observed from a financial time

series in any observation dimension

Mean

reversion

A financial time series has a tendency to

revert to its mean level

Fluctuation

focus

Large fluctuations are often closely

followed by large fluctuations, whereas

small fluctuations are often closely

followed by small fluctuations

2.2 DNNs

NNs are an important area of the machine learning field

and are a type of data-driven algorithm. They are adaptive,

have a relatively strong capacity to approximate nonlinear

functions and can be used to satisfactorily predict nonlin-

ear, time-varying data. However, NNs often rely heavily on

the feature attributes of the input data. Sparse input features

and missing data will likely result in under-fitted predic-

tions. If the input features are highly correlated and there

are more feature attributes than samples, there will be an

extended model training process and a risk of over-fitting.

ANNs are the precursor of DNNs, which currently are a

focus of research in the machine learning field. DNNs

differ from conventional ANNs in two main areas. (1) Most

DNNs consist of multiple hidden layers or multi-stage

nonlinear information processing processes. (2)

Continuous, deeper and more abstract hidden layers are

constructed using supervised methods or non-supervised

feature representation methods. By incorporating knowl-

edge and advanced technologies of many fields, DL has

evolved into an enormous branch in the technical field and

system structure of machine learning. However, the basic

feature of DL is still to build multi-layer models for pro-

cessing nonlinear information. Based on the model struc-

ture, the employed technique and the scene of application,

DL is approximately categorized into two types, namely

unsupervised (semi-supervised) learning and supervised

learning. Of supervised and unsupervised learning models,

supervised DL models are more efficient in the training and

testing processes, have more flexible frameworks and are

more suitable for the end-to-end learning process of com-

plex systems compared to conventional dichotomous

models. In contrast, unsupervised DL models, particularly

probabilistic production models, are easier to understand

and can be more easily embedded with field knowledge,

combined with other models and used to address uncertain

problems. Nonetheless, it is often difficult to use unsu-

pervised DL models to process the reasoning and learning

of complex systems. Figure 1 shows the approximate cat-

egorization of DL model structures.

3 DNN-based stock price prediction method

3.1 Description of problem

A characteristic of the price time series for most financial

products is that they can be treated as data series that

change continuously within the trade range. However,

because there are certain time intervals within the trade

range, all financial time series cannot be treated as com-

pletely continuous data. In addition, generally, there is a

relatively significant difference in trends between series

observed in different intervals. Here, stock index data are

taken as an example. A long-term upward trend is observed

in a seasonal interval. However, in this long-term period,

the mid- and short-term trends observed in daily or hourly

intervals may fluctuate or even be downward during many

stages. To reduce the number of factors affecting the

experiments and ensure consistency in the comparison

experiments and considering China’s T?1 trading system,

stock price data are selected as the main study object in the

experiments conducted in this study and trading days are

used as observation intervals. A discrete stock index price

series is recorded: y1; y2; . . .; yt; . . .; yn. Thus, when pre-

dicting a financial time series, all the historical data are

known at time t and used for searching for a nonlinear

process that emulates price changes. A prediction model is

constructed and used to predict yt, as indicated in formula
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(3). The ultimate goal is to select a suitable model and

optimal parameters based on the observed time series data

to approximate the process f .

yt � sðtÞ ¼ f ðyt�d; yt�d�1; . . .; yt�d�nþ1Þ þ wðtÞ ð3Þ
where d is the duration of the delay, n is the time span that

requires consideration and wðtÞ is the noise in the data

observed at time t.

To more clearly describe the analysis and prediction of

stock index price series, the process of building a stock

index price prediction model is abstracted into three stages,

namely data analysis and processing, prediction model

building and experimental result prediction and evaluation,

as shown in Fig. 2. The first stage involves pre-processing

processes (e.g. data acquisition and de-noising), phase-

space reconstruction (PSR) and data structuring processes

(e.g. label defining and test set partitioning) and eventually

produces an input dataset and an output dataset effectively

applicable to the prediction model. At the second stage, a

prediction model is built using various machine learning

methods. In addition, reasonable model parameters are

selected, and the model is adjusted and optimized. Fur-

thermore, prediction is performed using the model based on

the generated input and output data. At the third stage,

evaluation metrics for prediction results are defined, and

the results obtained using the prediction model are

Fig. 1 Schematic diagram of the

categorization of DL model

structures

Fig. 2 Framework of the stock index price series prediction process
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subjected to multi-dimensional analysis. The evaluation

results are presented in the form of charts.

3.2 PSR of price data

It has been only several decades since most financial

products that focus on stock indices were created. The

number of time series data points generated with trading

days as observation intervals is basically within several

thousands and slightly smaller than those in the datasets in

other machine learning fields. When the dataset contains

insufficient data, a model trained using a machine learning

method is often over-fitted. In this study, regarding the data

volume, data are folded and replicated multiple times using

the common sliding window method. Regarding the

dimensionality, price data are extended dimensionally

through PSR. At time t, a known time series ½yt ¼ xðtÞ; t ¼
1; . . .; n� that the undergone PSR, which can be expressed

as formula (4):

XðnÞ ¼ xðnÞ; xðnþ sÞ; . . .; xðnþ ðm� 1Þ � sÞ ð4Þ
The series consisting of the reconstructed data is given

as formula (5):

Xð1Þ ¼ xð1Þ; xð1þ sÞ; . . .; xð1þ ðm� 1Þ � sÞ
Xð2Þ ¼ xð2Þ; xð2þ sÞ; . . .; xð2þ ðm� 1Þ � sÞ

..

.

XðMÞ ¼ Xðt � ðm� 1Þ � sÞ ¼ ½xðt � ðm� 1Þ � sÞ;
xðt � ðm� 2Þ � sÞ; . . .; xðt þ ðm� mÞ � sÞ�

8>>>>><
>>>>>:

ð5Þ

where s is the delay interval, which allows the two

observation data xðtÞ and xðt þ sÞ at the endpoints of s to

be independent of one another to some extent but not

completely uncorrelated and m is the embedding dimension

of the generated series. Reasonably extending the embed-

ding dimension can increase the analytical potential of a

dynamic system structure.

In this study, s and m are calculated using the mutual

information method and an improved Cao false nearest

neighbour method, respectively. PSR is performed after s
and m are determined. The reconstructed data are denoted

by XðtÞ. The input and output of the supervised learning

model are then defined as follows: the input is the k number

of reconstructed data points before time t:

XðiÞ; i ¼ t � k; t � k þ 1; . . .; t � 1:, and the output is the

reconstructed data at time t: XðtÞ. In the last step of the

experiment, the data of the last dimension xðt � ðm� 1ÞsÞ
of the predicted reconstructed data XðtÞ are used as the

predicted price series, which is subsequently evaluated by

comparison with the actual price data.

3.3 DNN-based prediction model

Recurrent NNs (RNNs) [21] achieve explicit modelling of

time through self-connection of the hidden layers and

record long-term information by improving the nodes in

the hidden layers. RNNs have achieved marked results in

natural language processing and audio frequency analysis.

In conventional RNNs, there are links between the nodes in

the hidden layers. Owing to these recurrent feedback links,

network models have a memory ability. Thus, RNNs can

model information on a time scale. The duration of infor-

mation transfer can be treated as the model depth. How-

ever, earlier RNNs are unable to model information with a

long time span and can lead to a vanishing gradient prob-

lem when used to build large time scale models. By opti-

mizing the nodes, deep RNNs are able to efficiently model

on a time scale and prevent the occurrence of a vanishing

gradient problem.

RNN models that use long- and short-term memory

(LSTM) nodes are effective and expandable when used to

address a number of problems involving series data. These

models are for general use and effective in capturing long-

term time-dependent information and have achieved

exceptional results in handwriting recognition, concise

natural language translation and audio frequency data

analysis. An LSTM [22] node consists of so-called

dynamic gate structures, including input, forget and output

gate structures, as shown in Fig. 3.

In addition, an LSTM node structure also contains a

recurrent logic structure, which is referred to as nerve cell

and used to record node information.

An LSTM node is described below:

1. Input data weight: Wi, Wf, Wc, Wo.

2. Recurrent data weight: Ri, Rf, Rc, Ro.

3. Peephole weight: V ∈ ℝN.
4. Offset: bi, bf, bc, bo ∈ ℝN.
5. xt; yt are the input and output of the node at time t,

respectively.

6. ft is the output of the forget gate at time t, which is

expressed as formula (6):

ft ¼ rðWf xt þ Rf ht�1 þ bf Þ ð6Þ
7. it is the output of the input gate at time t, which is

expressed as formula (7):

it ¼ rðWixt þ Riht�1 þ biÞ ð7Þ
8. ~Ct; Ct is the input and cell structure of the node at

time t, respectively, which are expressed as formulas

(8) and (9):

~C ¼ tanhðWcxt þ Rcht�1 þ bcÞ ð8Þ
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Ct ¼ it � ~Ct þ ft � Ct�1 ð9Þ
9. Ot is the output of the output gate, which is

expressed as formula (10):

ot ¼ rðWoxt þ Roht�1 þ boÞ ð10Þ
10. The final output ht of the node is expressed as

formula (11):

h ¼ ot � tanhðctÞ ð11Þ

In an LSTM nerve cell model, the input gate determines

how much information can be added to the nerve cell, and

the output gate determines how much information can be

output after processing. Evidently, the forget gate deter-

mines how much of the output of the previous moment will

be retained for calculation in the subsequent moment. Due

to their unique node structure, when used to model series

data, LSTM NNs are able to capture mid- and long-term

data and will not cause a time scale gradient vanishing

problem, unlike earlier RNNs.

The model established in this study is a multi-hidden

layer LSTM network structure consisting of LSTM nodes

with an m-dimensional vector that has undergone PSR at

time t, XðtÞ, as the input and the reconstructed vector at

time t þ 1, Xðt þ 1Þ, as the output. Figure 4 shows the

established DNN-based model.

The input and output layers each contain an m number

of nodes, corresponding to the reconstructed actual time

series data at time t and the reconstructed predicted time

series data at time t?1, respectively. The hidden layers

consist of multiple LSTM node layers and are connected

with one another the same manner as the hidden layers of

RNNs mentioned earlier. Hidden layer architectures are

mostly designed based on experience in previous studies.

Hence, to reduce the number of comparison parameters in

the experiment, all the hidden layers of the model are set to

contain the same number of nodes. Thus, the model con-

tains L hidden layers, each of which contains K LSTM

nodes. An optimal combination of L and K is selected by

traversing the grid in the experiment.

In addition, the final output is the reconstructed data on

day t?1, which differs from normal regression experi-

ments, which have only one output. Therefore, the last loss

function of the model is corrected: the mean of the squares

of the differences between any two dimensions is used as

the loss function. Formula (12) describes the loss function

of each training sample:

Loss ðX tþ 1ð Þ; f ðXðtÞÞ ¼ 1

m

Xm
d¼0

ðx0ðtþ d � sÞ�xðtþ d � sÞÞ2

ð12Þ

3.4 Evaluation metrics for prediction results

As mentioned previously, the final model established in the

experiment is an m-dimensional vector that has undergone

PSR. To compare with other time series analysis methods

and prediction models and ensure that the experimental

results are normative, the final experimental results are

calculated using the price data. In other words, the data of

the last dimension of the reconstructed vector,

x0ðt þ ðm� 1Þ � sÞ, are used as the final predicted values.

To effectively evaluate the established prediction model,

the predicted price data are analysed using four metrics

from prediction accuracy and error perspectives based on

the actual price data.

Directional accuracy (DA) is expressed as formula (13):

DA ¼ 1

n

Xn
i ¼ 1

at; when at ¼ 1; if ðtrend0 ¼ trendÞ
0; otherwise

�

ð13Þ
where trend’ is the predicted trend and trend is the actual

trend. Because noise is removed from the stock index data

using the wavelet de-noising technique, the obtained price

series contains identical values for consecutive days. Thus,

the trend at time t is defined as formula (14):

Fig. 3 Structural diagram of an LSTM neural node
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trendt ¼
0; yt � yt�1\0

1; yt � yt�1 [ 0

trendt�1; yt � yt�1 ¼ 0

8<
: ð14Þ

Mean root square error (MRSE) is expressed as formula

(15):

MRSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xt

t¼1

ðyt � y0tÞ2
s

ð15Þ

Mean absolute per cent error (MAPE) is expressed as

formula (16):

MAPE ¼ 1

n

Xn
t ¼ 1

yt � y0t
yt

����
���� ð16Þ

Pearson correlation coefficient (CORR) is expressed as

formula (17):

R ¼
Pn

t¼1 ðyt � �ytÞðy0t � �y0tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðyt � �ytÞ2ðy0t � �y0tÞ2

q ð17Þ

where yt is the actual price and y′t is the predicted price.

The prediction accuracy of the model is used as the main

analytical metric for evaluating its prediction capacity,

which is a direct estimate of the trend in the financial data.

The higher DA is, the higher the prediction capacity of the

model is. MRSE, MAPE and CORR are used to evaluate

the closeness of the predicted price data to the actual price

data. The lower MRSE and MAPE are and the closer

CORR is to 1, the more reliable the prediction results

produced by the model are.

4 Experimental results and analysis

4.1 Description of the experimental data

Stock market index data were selected as experimental data

based on the following several factors: high accessibility,

stable market performance and relatively high analytical

significance. Data for six stock indices for various market

environments, namely the S&P 500, the Dow Jones

industrial average (DJIA), the Nikkei 225 (N 225), the

Hang Seng index (HSI), the China Securities index 300

(CSI 300) and the ChiNext index, were obtained from

Yahoo Finance (finance.yahoo.com), TuShare financial

data interface (tushare.org) and relevant organizations. The

analytical data are the closing prices for each trading day.

Table 1 presents a description of the selected data.

In this study, three sets of experiments were performed

on the time series data for the six stock indices with an aim

to establish a reasonable model structure and the effec-

tiveness of the proposed PSR-DNN-combined approach in

Fig. 4 Structural diagram of the

DNN-based LSTM price

prediction model
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analysing and predicting financial time series was

examined.

4.2 PSR analysis of various stock indices

Before establishing a prediction model, τ and m were first

determined for each stock index using the PSR method, as

shown in Figs. 5, 6, 7, 8, 9 and 10.

As shown in the mutual information delay variation

chart and m discriminant chart for each stock index, there

was no significant difference in τ and m between the stock

indices. For mutual information, its first and second mini-

mum values were reached at τ of 3 and 6, respectively, for

all the stock indices. For m, its value basically approached

and reached the extreme value at the fifth and sixth times,

respectively, and the values at the fifth and sixth times were

basically close.

Based on the above description of the experiment, the

PSR parameters for all the stock index price data were set

as follows: τ = 3, and m = 5. The reconstructed series of a

known price series ½yt ¼ xðtÞ; t ¼ 1; 2; . . .; n� is as

follows:

XðtÞ ¼ xðtÞ; xðt þ 3Þ; . . .; xðt þ 5:3Þ;
t ¼ 1; 2; . . .; n� 6

ð18Þ

To demonstrate the effectiveness of the PSR method, a

comparison experiment was performed on the subsequently

adjusted and optimized LSTM prediction model. Table 2

summarizes the experimental results (the mean of each

evaluation metric for each stock index obtained from

multiple sets of experiments based on the data for a 6-year

period).

The experimental results show a relatively significant

difference in prediction accuracy for the S&P 500 and the

ChiNext index: the prediction accuracy for these two

indices was, on average, over 3% higher when the PSR

method was used than when the PSR method was not used.

For other stock indices, the prediction accuracy was

approximately 1% higher when the PSR method was used

than when the PSR method was not used. Overall, although

the use of the PSR method will decrease the goodness of fit

between the predicted and actual values, more attention is

paid to increasing the prediction accuracy in practical

application. The results also show that the MRSE and

R were within their respective acceptable ranges. Thus, it

can be concluded that the use of the PSR method can help

improve the model’s prediction performance.

4.3 Analysis of the DNN structure

The three main parameters of the established DNN-based

prediction model, namely the number of hidden layers, the

number of LSTM nodes in the hidden layers and the acti-

vation function of the LSTM output, were determined

through an experiment. Other hyperparameters were simi-

larly set based on the grid searching method and the rele-

vant literature [18, 19] as follows: time step, 10; initial

learning rate, 0.001; the initial weights follow the normal

distribution pattern; probability for preservation of nodes,

0.4; and number of iterations, 5000. To facilitate better

observation and comparison of the experimental results,

PSR, de-noising and normalization were first performed in

the model parameter experiment. In addition, relatively fine

experimental data were selected: 500 sets of data for the

S&P 500 for a nearly 2-year (January 4, 2010 to February

3, 2012) period.

First, the number of LSTM nodes in the hidden layers

was analysed through an experiment under the following

conditions: number of hidden layers, 3, and activation

function of the output, hyperbolic tangent (tanh) function.

Table 3 and Fig. 11 present the experimental results for the

test set.

The experimental results demonstrate that there was no

significant difference between the graphs plotted by the

established single-LSTM hidden layer models with various

numbers of nodes. The data in Table 3 indicate that the

model prediction accuracy changed with the number of

nodes in the hidden layers. Relatively excellent results

were obtained when the number of nodes in the hidden

layers was set to 20, 32 or 48. Thus, the number of nodes in

the hidden layers of the subsequent experimental model

was set to 32.

Table 1 Statistics of closing

prices of each stock index

selected for the experiment

Index S&P500 DJIA Nikkei 225 HSI CSI300 ChiNext

Begin date 20080102 20080102 20080104 20080102 20080102 20100602

End date 20171229 20171229 20171229 20171229 20171229 20171229

Mean 1613.20 14474.31 13548.91 22008.99 3020.05 1484.27

Median 1461.12 13552.44 13345.03 22340.84 3025.96 1359.32

Max 2690.16 24837.51 22939.18 30003.49 5731.76 3982.25

Min 676.53 6547.05 7054.98 11015.84 1627.76 593.66

Std. 482.49 3905.66 4171.40 3086.08 685.12 652.63

Samples 2518 2518 2449 2465 2434 1844
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Fig. 5 τ and m discriminant charts for the S&P 500

Fig. 6 τ and m discriminant charts for the DJIA

Fig. 7 τ and m discriminant charts for the N 225
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Fig. 8 τ and m discriminant charts for the HSI

Fig. 9 τ and m discriminant charts for the CSI 300

Fig. 10 τ and m discriminant charts for the ChiNext index
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After the number of LSTM nodes in the hidden layers

was determined, the number of hidden layers was deter-

mined through an experiment. Models established in most

of the relevant studies (including those on RNNs) do not

contain too many hidden layers. Thus, the experimental

range for the number of hidden layers was set to [1, 8].

Table 4 and Fig. 12 present the experimental results.

The experimental results show that as the number of

hidden layers increased, data fluctuations occurred in

greater intervals and became smoother. There was a rela-

tively large difference between the predicted and actual

values. Considering the very small number of sample sets

used as training data, it is prudent to establish a model with

not too many layers to prevent over-fitting. As demon-

strated by the experimental results, the best prediction

results were achieved with three hidden layers.

After obtaining a deep RNN network with three hidden

layers, each of which contains 32 nodes, the activation

function of the final output gate of each LSTM node was

determined through an experiment. The tanh and linear

rectification (ReLU) functions were selected. Table 5 and

Fig. 13 present the experimental results.

Clearly, the fitted predicted values for the intervals with

relatively significant fluctuations obtained when the ReLU

function was selected as the activation function of the

output gate of each LSTM node were inferior to those

obtained when the tanh function was selected as the acti-

vation function.

4.4 Performance analysis of the prediction
model

To determine the effectiveness of the established model in

predicting financial data, multiple prediction models were

used to predict the data for the six stock indices for various

market environments. Table 6 summarizes the description

of the comparison experimental models. To facilitate

analysis and evaluation, the experimental results were

consolidated by year and are presented in Figs. 14, 15, 16,

17, 18 and 19 and Tables 7, 8, 9, 10, 11 and 12.

To facilitate observation, the figures show the data for

2016, including the actual data and the data predicted by

various prediction models. Each dataset contains approxi-

mately 235 data points. Although there are some slight

differences between the curves produced by the models for

different stock indices, common findings are described

below:

Regarding the goodness of fit to the series, the deep

LSTM network model was superior to the SVM and deep

MLP models.

The sections of the curves produced by the deep LSTM

network model and the deep MLP model for small fluc-

tuations in the stock indices were softer, whereas the cor-

responding results predicted by the support vector

regression (SVR) and ARIMA methods were basically

identical to those of the previous day. Tables 7, 8, 9, 10, 11

and 12 summarize the experimental data in more detail.

The following can be found from the experimental data:

(1) The maximum prediction accuracy of the LSTM

model reached 62.87% (for the S&P 500 for 2012).

(2) There were some differences in prediction results

between different stock indices and between differ-

ent periods. On average, the predication accuracy for

the S&P 500 was the highest, whereas the prediction

accuracy for the ChiNext index was the lowest.

(3) Based on MRSE, MAPE and CORR, the goodness of

fit of the results produced by the deep LSTM

network model was slightly lower than that of the

Table 2 Comparison of experimental results obtained when the PSR

method was used and was not used

Index Using PSR DA (%) MRSE MPAE (%) R

S&P500 Yes 59.50 6.47*1e−2 0.87 0.93

No 55.17 3.38*1e−2 0.63 0.95

DJIA Yes 57.71 6.84*1e−2 0.49 0.97

No 56.45 5.23*1e−2 0.67 0.97

Nikkei225 Yes 55.92 1.283*1e−1 1.95 0.92

No 53.35 6.56*1e−2 0.81 0.97

HSI Yes 57.36 4.86*1e−2 0.71 0.97

No 56.55 4.311e−2 0.59 0.97

CSI300 Yes 56.67 3.46*1e−2 0.80 0.96

No 54.94 3.46*1e−2 0.75 0.95

ChiNext Yes 57.23 2.129*1e−1 3.98 0.93

No 54.42 1.115*1e−1 2.52 0.94

Table 3 Results of the comparison experiment on the number of

nodes in the hidden layers of the model

Number of node DA MRSE MPAE R

15 58.0% 3.96*1e−2 1.02*1e−3 0.969

18 60.0% 4.04*1e−2 2.06*1e−3 0.968

20 61.9% 4.00*1e−2 2.98*1e−3 0.969

24 61.2% 3.88*1e−2 1.22*1e−3 0.969

28 57.4% 3.98*1e−2 1.86*1e−3 0.968

32 63.8% 4.21*1e−2 2.81*1e−3 0.968

36 59.4% 3.93*1e−2 1.98*1e−3 0.969

40 58.1% 4.25*1e−2 3.67*1e−3 0.967

48 62.6% 4.25*1e−2 3.67*1e−3 0.968

56 61.9% 4.78*1e−2 5.2*1e−3 0.964

Neural Computing and Applications (2020) 32:1609–1628 1619

123



results produced by the ARIMA method but higher

than those of the results produced by the SVR and

MLP models.

(4) Based on DA, the prediction accuracy of the LSTM

model for the price series (average: 56.85%) was

much higher than that of the ARIMA model and 3–

5% higher than those of the SVR and MLP models.

The prediction model was established in this study based

only on the historical price data without considering

macroscopic factors (e.g. relevant policies, market system

and investor psychology). The S&P 500 is an index for a

developed market in which investors are more rational and

policies are sounder; consequently, its price fluctuations are

more in line with the market rules. The average prediction

accuracy for the ChiNext index was the lowest. However,

of all the stock indices, the ChiNext index is the youngest

(inaugurated in October 2009). ChiNext is a second-tier

stock market, which can be seen as a low-entry-require-

ment, high-risk and stringently regulated stock market. As

a result, the ChiNext index is more easily affected by

macroscopic factors, such as policy control, industrial

changes and investor psychology. These factors cannot be

determined based on price data alone. Nevertheless, the

DNN-based prediction model was still able to achieve

relatively high prediction accuracy for some time intervals.

(a) (b)

(d)(c)

Fig. 11 Comparison of partial results of the experiment on the number of nodes in the hidden layers

Table 4 Results of the comparison experiment on the number of

hidden layers

Number of layer DA MRSE MPAE R

1 57.4% 4.69*1e−2 3.09*1e−3 0.952

2 60.0% 4.08*1e−2 2.06*1e−3 0.968

3 63.8% 4.35*1e−2 2.11*1e−3 0.964

4 58.9% 7.48*1e−2 6.21*1e−3 0.929

5 56.7% 9.18*1e−2 1.03*1e−2 0.925

6 54.2% 1.08*1e−1 8.81*1e−3 0.882

7 53.2% 1.26*1e−2 8.36*1e−3 0.821

8 52.2% 1.71*1e−2 4.98*1e−3 0.704
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Thus, the errors in the above-mentioned experimental

results are within the acceptable range and are in basic

agreement with the estimation. The deep LSTM network

prediction model that uses the PSR method for price series

analysis can relatively accurately predict financial data.

(a) (b)

(d)(c)

Fig. 12 Comparison of the results of the experiment on the number of hidden layers

Table 5 Experimental results obtained when different activation

functions of the output gate were selected

Activate function DA MRSE MPAE R

Tanh 61.2% 4.35*1e−2 2.11*1e−3 0.964

Relu 58.0% 1.34*1e−1 1.06*1e−2 0.856

(a) (b)

Fig. 13 Comparison of the experimental results for the functions of the output gate of each LSTM node
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Table 6 Description of the prediction models selected for comparison

Model name PSR Pre-processing Hyper parameters

Deep long–short-term memory network (LSTMs) Delay: 3

Embedded dimension:

5

Wavelet de-noising,

normalization

Hidden layers: 3

Nodes of each layer: 32

Time steps: 5,

Dropout: 0.6

Deep multi-layer perception (MLP) Delay: 3

Embedded dimension:

5

Wavelet de-noising,

normalization

Hidden layers: 7层

Nodes of layers:

[64, 64, 32, 32, 16, 16, 16]

Dropout: 0.4

Support vector regression (SVR) No Normalization Cost: 100.

Gamma: 10.0

Auto-regressive integrated moving

average (ARIMA)

No No Auto-regressive p: 6

Integrated d: 0

Moving average q: 2

Fig. 14 Comparison of the results produced by various prediction models for the S&P 500

Fig. 15 Comparison of the results produced by various prediction models for the DJIA
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Fig. 16 Comparison of the results produced by various prediction models for the N 225

Fig. 17 Comparison of the results produced by various prediction models for the HSI

Fig. 18 Comparison of the results produced by various prediction models for the CSI 300
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5 Conclusions

In this paper, a prediction model is proposed for financial

price data, which are non-stationary and relatively noisy

time series, through three process steps, namely time series

data processing, network model building and result eval-

uation and analysis. The PSR method for time series

analysis is combined with a DNN-based LSTM network

model. Data de-noising and normalization are performed at

the pre-processing stage. In addition, data structuring is

also achieved by partitioning using a time window.

Subsequently, a DNN-based model is designed and opti-

mized by selecting an optimum activation function and

optimization method. Ultimately, four metrics are used to

evaluate the effectiveness of the model. Finally, various

prediction methods, including the conventional ARIMA

linear analytical method, the conventional SVR machine

learning method, a deep MLP model, a deep LSTM model

involving no PSR process and the deep LSTM combined

with PSR, are compared. The comparison of the prediction

results for various stock indices for various periods

demonstrates that the established DNN-based prediction

Fig. 19 Comparison of the results produced by various prediction models for the ChiNext index

Table 7 Comparison of the

results produced by the

prediction models for the S&P

500

Years 2010 2011 2012 2013 2014 2015 2016 2017 Average

Evaluating indicator Direction accuracy (DA) %

ARIMA 51.77 52.33 49.19 50.41 54.35 48.39 51.54 51.36 51.16

SVR 56.08 55.46 57.44 53.24 52.18 53.06 56.72 55.08 54.90

MLP 59.02 55.81 59.09 55.08 53.28 52.87 53.39 47.06 54.45

LSTM 62.76 57.08 62.87 60.18 49.37 55.65 62.39 54.31 58.07

Evaluating indicator Mean root square error (RMSE) 1.0*1e−2

ARIMA 5.38 5.12 4.19 3.56 3.47 4.60 5.73 4.22 4.53

SVR 6.93 7.88 6.07 14.20 8.86 5.44 6.99 17.66 10.50

MLP 2.87 4.46 3.20 16.87 3.70 3.97 5.68 3.07 5.48

LSTM 2.55 3.84 5.91 8.23 15.41 11.88 8.29 7.22 7.92

Evaluating indicator Mean absolute error per cent (MAPE) %

ARIMA 2.14 0.07 0.03 0.14 0.08 0.01 0.03 0.11 0.33

SVR 1.07 1.73 1.10 3.08 1.73 0.73 0.29 3.56 1.66

MLP 1.09 0.05 0.15 3.11 0.24 0.25 0.32 0.23 0.68

LSTM 0.60 0.02 0.81 1.41 4.02 2.44 0.30 0.79 1.30

Evaluating indicator Correlation coefficient (CORR)

ARIMA 0.95 0.95 0.96 0.99 0.97 0.92 0.98 0.96 0.96

SVR 0.96 0.92 0.97 0.96 0.92 0.91 0.99 0.95 0.95

MLP 0.98 0.95 0.97 0.87 0.98 0.92 0.99 0.98 0.96

LSTM 0.97 0.96 0.94 0.98 0.86 0.88 0.98 0.97 0.94
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Table 8 Comparison of the

results produced by the

prediction models for the DJIA

Years 2010 2011 2012 2013 2014 2015 2016 2017 Average

Evaluating indicator Direction accuracy (DA) %

ARIMA 50.81 52.46 52.44 52.46 49.56 49.77 53.44 47.54 51.06

SVR 51.61 53.11 47.56 52.05 51.41 53.44 46.31 52.28 50.97

MLP 57.38 55.51 59.09 51.69 50.41 54.92 57.20 51.26 54.68

LSTM 61.51 57.52 56.12 58.41 57.32 56.07 61.06 54.31 57.79

Evaluating indicator Mean root square error (RMSE) 1.0*1e−2

ARIMA 3.78 4.93 3.89 3.58 3.68 5.15 5.24 4.52 4.35

SVR 7.65 4.21 9.88 10.01 5.21 7.82 8.34 11.54 8.08

MLP 2.35 3.86 3.44 2.82 4.64 6.05 7.31 15.60 5.76

LSTM 2.00 3.59 4.27 5.29 3.39 3.75 5.95 18.77 5.88

Evaluating indicator Mean absolute error per cent (MAPE) %

ARIMA 0.98 0.12 0.05 0.09 0.02 0.02 0.08 0.06 0.18

SVR 1.10 0.82 1.57 2.54 0.36 1.21 1.01 1.35 1.25

MLP 0.58 0.55 0.38 0.32 0.24 0.52 0.22 1.94 0.59

LSTM 0.26 0.08 0.63 0.76 0.26 0.08 0.24 2.28 0.57

Evaluating indicator Correlation coefficient (CORR)

ARIMA 0.95 0.94 0.94 0.98 0.97 0.95 0.99 0.96 0.96

SVR 0.95 0.92 0.92 0.88 0.91 0.93 0.89 0.94 0.92

MLP 0.97 0.96 0.96 0.99 0.97 0.93 0.98 0.98 0.97

LSTM 0.98 0.96 0.95 0.99 0.98 0.96 0.99 0.98 0.97

Table 9 Comparison of the

results produced by the

prediction models for the N 225

Year 2010 2011 2012 2013 2014 2015 2016 2017 Average

Evaluating indicator Direction accuracy (DA) %

ARIMA 51.46 46.41 52.05 51.47 49.58 52.08 50.62 46.20 49.98

SVR 46.44 51.90 51.23 47.30 53.08 52.15 51.87 47.83 50.23

MLP 53.19 53.71 58.33 56.12 52.44 53.41 49.37 50.28 53.36

LSTM 56.28 57.32 54.66 54.50 59.09 56.32 51.93 54.24 55.54

Evaluating indicator Mean root square error (RMSE) 1.0*1e−2

ARIMA 2.77 5.53 3.25 5.36 3.23 4.48 4.24 2.54 3.93

SVR 3.56 19.84 3.79 19.62 5.21 7.82 4.56 4.43 8.60

MLP 2.40 35.76 3.70 7.92 4.64 6.05 4.66 2.25 8.42

LSTM 2.04 7.87 3.66 13.23 6.43 4.91 3.99 2.63 5.60

Evaluating indicator Mean absolute error per cent (MAPE) %

ARIMA 0.49 0.07 0.07 0.04 0.13 0.11 0.04 0.07 0.13

SVR 1.04 2.64 0.24 3.06 0.36 1.21 0.04 1.10 1.21

MLP 0.62 6.69 0.09 1.10 0.24 0.52 0.31 0.04 1.20

LSTM 0.11 0.92 0.23 2.39 1.18 1.08 0.29 0.43 0.83

Evaluating indicator Correlation coefficient (CORR)

ARIMA 0.98 0.98 0.98 0.99 0.98 0.97 0.95 0.95 0.97

SVR 0.97 0.78 0.98 0.89 0.91 0.93 0.95 0.95 0.92

MLP 0.98 0.59 0.98 0.99 0.97 0.93 0.94 0.95 0.92

LSTM 0.98 0.97 0.98 0.90 0.97 0.96 0.96 0.96 0.96
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Table 10 Comparison of the

results produced by the

prediction models for the HSI

Year 2010 2011 2012 2013 2014 2015 2016 2017 Average

Evaluating indicator Direction accuracy (DA) %

ARIMA 49.80 48.32 46.69 50.83 52.30 49.79 49.79 47.06 49.32

SVR 52.48 48.74 46.28 51.67 49.37 55.44 53.24 51.76 51.12

MLP 54.36 58.70 55.88 52.54 60.61 53.14 50.22 56.89 55.29

LSTM 59.49 59.46 59.40 50.00 54.71 49.79 61.54 59.88 56.78

Evaluating indicator Mean root square error (RMSE) 1.0*1e−2

ARIMA 1.94 4.12 2.60 2.93 3.67 4.75 2.94 1.82 3.10

SVR 7.86 8.52 4.04 4.30 8.22 6.07 14.20 4.62 7.23

MLP 1.80 4.61 2.37 4.01 3.71 4.83 14.62 5.55 7.23

LSTM 3.75 5.53 2.29 3.07 5.04 6.68 13.77 1.85 5.25

Evaluating indicator Mean absolute error per cent (MAPE) %

ARIMA 0.03 0.10 0.07 0.02 0.01 0.03 0.00 0.11 0.05

SVR 1.74 1.37 1.12 0.61 0.96 1.10 3.08 1.58 1.45

MLP 0.29 0.02 0.06 0.71 0.07 0.10 2.53 1.86 0.71

LSTM 0.59 0.23 0.01 0.08 0.33 0.44 1.95 0.26 0.48

Evaluating indicator Correlation coefficient (CORR)

ARIMA 0.98 0.99 0.98 0.97 0.97 0.99 0.99 0.99 0.98

SVR 0.93 0.93 0.97 0.94 0.92 0.97 0.96 0.99 0.95

MLP 0.98 0.99 0.98 0.97 0.98 0.99 0.81 0.99 0.96

LSTM 0.97 0.98 0.98 0.97 0.97 0.99 0.82 0.99 0.96

Table 11 Comparison of the

results produced by the

prediction models for the CSI

300

Year 2010 2011 2012 2013 2014 2015 2016 2017 Average

Evaluating indicator Direction accuracy (DA) %

ARIMA 48.74 50.00 49.79 55.98 48.52 51.67 47.50 51.28 50.44

SVR 49.16 46.19 48.12 55.13 47.68 53.24 47.08 53.85 50.06

MLP 54.27 53.95 54.47 53.04 56.77 54.24 47.03 53.72 53.44

LSTM 58.70 57.27 55.84 54.87 54.75 56.44 50.86 60.33 56.13

Evaluating indicator Mean root square error (RMSE) 1.0*1e−2

ARIMA 2.27 3.00 2.94 4.41 5.77 15.93 1.62 1.08 4.63

SVR 3.57 9.54 17.47 4.78 15.75 4.62 2.22 2.68 7.58

MLP 2.28 6.89 11.22 3.90 7.42 12.08 1.54 2.47 7.23

LSTM 1.94 5.77 8.11 3.92 18.23 5.34 2.22 1.84 5.92

Evaluating indicator Mean absolute error per cent (MAPE) %

ARIMA 0.12 0.18 0.02 0.04 0.20 0.04 0.11 0.07 0.10

SVR 1.50 0.64 1.36 0.62 1.46 1.13 1.26 1.42 1.17

MLP 0.65 0.55 3.31 0.14 0.26 1.78 0.67 1.03 1.05

LSTM 0.21 0.81 1.63 0.04 2.18 0.79 1.25 0.52 0.93

Evaluating indicator Correlation coefficient (CORR)

ARIMA 0.98 0.99 0.98 0.97 0.99 0.98 0.94 0.99 0.98

SVR 0.93 0.93 0.92 0.97 0.88 0.97 0.91 0.98 0.94

MLP 0.98 0.97 0.86 0.97 0.99 0.98 0.94 0.99 0.96

LSTM 0.99 0.98 0.90 0.97 0.86 0.95 0.90 0.99 0.94
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model displays a higher prediction capacity than the other

models.
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