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Abstract
In this paper, we have proposed a multi-objective mathematical model for the humanitarian supply chain design problem

that minimizes: (1) total number of the injured not transferred to hospitals and total number of the homeless not evacuated

from the affected area, and (2) total unmet relief commodity needs. In this model, such parameters as the demand and travel

time have been considered as uncertain and two discrete robust counterpart models (with ‘‘ellipsoidal’’ and ‘‘box and

polyhedral’’ uncertainty sets) have been developed to model uncertainties. Results found from Tehran Case Study have

revealed that the one with the ‘‘box and polyhedral’’ uncertainty set performs better than the ‘‘ellipsoidal’’ set.

Keywords Disaster response � Humanitarian supply chain network design � Multi-objective � Robust optimization

1 Introduction

Annually, people all over the world suffer from enormous

life/financial losses due to such natural/unnatural (man-

made) disasters as earthquakes, floods, tsunamis, terrorist

attacks, and so on [1]. In recent years, much attention has

been paid to disasters [2], but considering the progress in

the science and technology, man has not yet been able to

foresee and prevent them [3]. Materials commonly and

mostly used in disasters include pharmaceuticals, canned

food, water bottles, and tents [4]. In a disaster, rapid

resource distribution is quite necessary for the minimiza-

tion of the damage and fatalities. Since time and resources

are limited, the relief logistics will decide on the allocation

of time, budget, and other resources [5]. In a disaster, relief

commodities are quite vital to reduce fatalities. Generally,

very serious challenges of the crisis management include

relief and logistic, reducing financial costs, and decreasing

fatalities [6]. The main objective of the relief logistics is to

set up shelters to help the victims and the disaster-affected

people in the shortest possible time [7]. After a disaster,

shelters and hospitals are appropriate places for taking care

of the injured and the homeless to stay protected from

different viruses, cold weather, and so on. The purposeful

transferring of the affected people to these places can

considerably reduce the fatalities. Since disasters are

uncertain and unpredictable, flexibility in logistic activities

is of the utmost importance. In a disaster, considering such

issues as the uncertain demands, facilities capacities (to be

used in the distribution process), transfer capacity, and the

available resources is quite important for the decision

makers [8]. The obvious problem in effective pre-disaster

planning is the uncertainty about the disaster itself because

the information about it is scarce [9]. It can be stated that

before a disaster, there are no certainties about its occur-

rence, severity, and losses, and this is why the post-disaster

relief logistics planning is usually associated with disorder

and perturbation. Under such circumstances, the robust

optimization (RO) has proven to be a very powerful tool to

model uncertainties.
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Although researches about the relief supply chain are

not numerous, they can still be classified into two groups

one of which has focused on evacuation planning and the

other on the relief logistics; hence, their main differences

lie in ‘‘man’’ and ‘‘commodity.’’ In one, the main goal is to

evacuate people from the affected area, but in the other, it

is logistic/commodity delivery.

1.1 Evacuation planning

In these problems, a large number of people reside in

accident-prone areas and the aim is to evacuate and send

them to safe places. For this purpose, people should usually

cover a distance to reach the nearest evacuation station

where vehicles are ready to move them. Some examples of

such researches are as follows:

An et al. [10] have presented a model to locate evacu-

ation transportation facilities under disruption conditions in

order to plan the evacuation of a large number of people

residing at accident-prone places. The objective of the

research is to minimize the costs of the facility setup,

transfer, and transportation through a preplanned evacuat-

ing facility disruption risk model. Guan [11] has proposed a

model for locating emergency facilities to rescue people in

accident-prone areas; the main objective is to minimize the

average costs of facility setup and travel time. The travel

time between distribution centers and demand points is

uncertain, and the use of the stochastic programming

approach has been made. Kulshrstha et al. [12] have pre-

sented a model for locating evacuation facilities and allo-

cating buses under uncertain demand conditions. The

objective of this paper is to minimize the total shipping

time. Its demand is uncertain, and the uncertainty modeling

has been done using the RO [13] approach. Gama et al.

[14] have proposed a multi-period model of locating–al-

locating shelters for the evacuation of the people experi-

encing flood and storm. The primary concern of this

research is to minimize the total transportation time, and it

uses a heuristic approach to solve the proposed model.

1.2 Relief commodity delivery

The humanitarian supply chain consists of several main

layers wherein the accident-prone areas that need emer-

gency services are specified. The goals are to locate centers

for the distribution of relief commodities, store pre-disaster

supplies, and manage their distribution in post-disaster

situations. Examples of such researches are as follows:

Using goal programming, Zhan and Liu [15] have

developed a multi-objective model for relief logistics under

uncertain conditions. The goal of the model is to minimize

unmet demand with bi-objective programming: One

objective function minimizes the expected service time,

and the other minimizes the unmet demand. The demand

and the maximum suppliers’ capacities are uncertain and

are considered as discrete scenarios. Bozorgi-Amiri et al.

[16] developed a modified particle swarm optimization

model for relief logistics under uncertainty wherein the

demand, suppliers’ capacities, and the costs of transporta-

tion and purchasing are assumed uncertain and the objec-

tive function is to minimize the total costs. In this problem,

the objective is to locate the pre-disaster relief commodity

distribution centers for the distribution of the commodities

in the affected areas after the disaster. Murali et al. [17]

have proposed a model for locating facilities to respond to

natural disasters under uncertain demand conditions; the

objective is to maximize the number of people who need

service and to deal with uncertainties, the authors have

used the chance constraint stochastic programming.

Bozorgi-Amiri et al. [18] have presented a robust multi-

objective model for the relief logistics planning under

uncertainties; one objective function minimizes the total

costs, and the other establishes justice in the distribution of

relief goods. This paper uses the RO approach with such

uncertain parameters as the demand, transfer costs, and

supply preparation costs. Zhang and Jiang [19] have pro-

posed a bi-objective robust optimization model for the

planning of pharmaceutical services in emergency condi-

tions. One objective function minimizes the total costs, and

the other minimizes the response time. Here, the focus is

mostly on locating the emergency facilities and regions are

allocated to emergency centers. Deng and Yang [20] have

developed a mathematical model for the transportation

planning for the emergency operations management. The

model objective is to minimize the transportation and

inventory costs, and its total demand is uncertain. Rezaei

Malek and Tavakoli-Moghadam [21] have developed a bi-

objective RO [22] model for the logistic revival plan

wherein one objective function minimizes the service time

and the other minimizes the costs. The shipping time (from

the warehouses to the demand points), demand, and the

warehouses’ remaining capacities are considered uncertain.

Bozorgi-Amiri and Khorsi [23] have presented a dynamic

multi-objective model for the locating and routing of the

logistic facilities under uncertain conditions. One objective

function, in this 3-objective model, minimizes the maxi-

mum shortages, one minimizes the total travel time, and

the third minimizes the total costs. Such parameters as the

commodity purchase prices, shipping costs, demand for

vital supplies, and the capacities of the suppliers and dis-

tribution centers are uncertain and are considered as dis-

crete scenarios. Garrido et al. [24] have developed a model

for the emergency planning of flood and storm with the

stochastic programming approach. Its objective is to min-

imize transportation costs with uncertain demand. Zokaee

et al. [25] have developed a RO [26] model for the design
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of the humanitarian supply chain consisting of three levels

of suppliers, distribution centers, and affected areas; the

objective of the model is to minimize total costs. Paul and

Wang [27] have presented a robust location–allocation

model for earthquake response under uncertain conditions.

The objective function is to minimize total social costs. It

has an uncertain casualty of severity level at demand node

and transportation times which are considered as different

scenarios. Jha et al. [28] have developed a multi-objective

programming for humanitarian relief supply chain. This

paper model is a humanitarian relief chain that includes a

relief goods supply chain and an evacuation chain in case

of a natural disaster. The objective functions are presented

in the following: 1—demand satisfaction in relief chain,

2—demand satisfaction in evacuation chain, and 3—esti-

mating/minimizing overall logistics cost. A multi-objective

genetic algorithm, NSGA-II, is used to get dataset includ-

ing Pareto solution. In Vahdani et al. [29], a multi-objec-

tive optimization model has been provided based on the

travel time and total cost and reliability of the routes. In

this model (during) the earthquake response activities, the

damaged roads can be repaired. The relief supply chain

comprises a set of distribution centers and affected areas.

1.3 The paper novelties

A literature review of the humanitarian supply chain in

recent years reveals that the evacuation of the people

(homeless and injured) from the affected area has not been

dealt with properly; most papers have addressed only the

delivery of the relief commodities in such areas and the

number of papers dealing simultaneously with the distri-

bution of the relief goods and evacuation of the people

from these areas is not many. In an earthquake, some

people need relief supplies, injuries of some are more

severe and they should be immediately transferred to

emergency centers, and those who are not injured should be

sent to safe areas to be protected from the subsequent

tremors, wildlife, and contagious diseases. Therefore, the

need for a plan that can, at the same time, organize the

distribution of the relief supplies, send the injured people to

emergency centers, and evacuate homeless people to

shelters is highly felt. In most studies regarding modeling,

the use of the scenario-based programming has been made

to deal with uncertainties in disasters and accidents, while

in the real world, appropriate historical data are not

available based on which scenarios can be defined; the

distribution function of the random variable is also

unknown [30]. Additionally, data uncertainty is assumed

discrete in the scenario-based approach, while in reality it

is continuous. Another weak point of the scenario-based

approach is the challenge in defining and generating the

scenarios [18]; the solution found under certain conditions

may not be feasible for other observations and scenarios

[30]. Assuming different scenarios are generated, the next

problem will be solving them; when the number of sce-

narios is more and the problem size is large, the solution

time will face a serious challenge [4]. Therefore, the reason

for choosing a RO [26, 31, 32] to develop a novel math-

ematical model is based on the real-world assumptions and

conditions. To model uncertainties, scenarios are modeled

based on an observed example. What distinguishes this

research from other similar ones is the simultaneous con-

sideration of the distribution of relief goods, transferring

injured people to hospitals, and evacuating the homeless

people into shelters; the planning is multi-period and

considers the means of transportation as well. To be as

close to the real world as possible and face uncertainties,

the use of two types of RO approaches has been made: box

and polyhedral [26] and ellipsoidal [31] uncertainty sets.

This programming is bi-objective: One minimizes the

number of injured and homeless people of the affected area

sent to the emergency centers and shelters, and the other

minimizes the shortage of the relief supplies, emergency

centers, and shelters. The main contributions of this paper

can be given as follows:

• Developing a robust multi-objective model in the

disaster relief supply chain;

• Developing and comparing two RO models in the relief

supply chain;

• Comparing robust models with maximum constraint

violation probability;

• Simultaneous addressing of evacuating, transferring the

injured, and delivering commodities;

• The proposed model is applied on a real-world case

study of disaster relief;

The rest of the paper is organized as follows. The con-

cerned problem is defined in Sect. 2, and the proposed

mathematical model for humanitarian relief chain network

design is presented in Sect. 3. The robust counterpart

models based on ‘‘box and polyhedral’’ and ‘‘ellipsoidal’’

uncertainty sets are elaborated in Sect. 4, and the employed

solution method is presented in Sect. 5. Finally, an illus-

trative example and concluding remarks and some possible

future works are presented in Sects. 6 and 7, respectively.

2 Problem description

Suppose the relief supply chain (Fig. 1) consists of four

levels including distribution centers, shelters, affected

areas, and hospitals. In an earthquake, successive tremors

are most likely; if some buildings remain partially

undamaged in the first hit, they may get totally destroyed in

the next tremors. Therefore, evacuation of the people from
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such places will become a very serious issue. Meanwhile,

some people may be injured and need to be sent to emer-

gency centers and hospitals for revival and more medica-

tion. In the proposed model, we have considered some

relief–rescue revival centers and some evacuation shelters

so that immediately after the disaster the injured may be

sent to hospitals and the unhurt can be transferred to

shelters. In a disaster, the unhurt are willing to help their

relatives and other people and, for this purpose, they would

require relief commodities (first aid supplies, water, food,

etc.), and those who have been sent to hospitals and shel-

ters would be in need of pharmaceuticals, drinks, and food

stuff; hence, each level requires relief commodities. Here,

there are some different capacity distribution centers that

provide service to send relief commodities to each of these

points [33].

In an earthquake, some of these service centers may be

destroyed, and since no exact information is available

about the earthquake intensity, we cannot specify the

remaining capacities after it hits. To make sure not to miss

some potential of the relief chain in a disaster, hospitals,

shelters, and distribution centers are considered outside the

disaster-prone areas. Under such circumstances, the service

time (commodity distribution, people transportation, etc.)

may be prolonged; if this service time exceeds a specified

limit, the provided service may totally lose its desirability.

This is why a maximum coverage time is considered for

every service so that we may not face such adverse

conditions.

The main assumptions of the relief supply chain design

problem are as follows:

1. The planning horizon has three periods (3 9 24);

2. The number of candidate points for setting up distri-

bution centers and shelters is known;

3. Capacities of the distribution centers, hospitals, and

shelters are limited;

4. Three relief commodities (drinking water, food stuff,

and pharmaceuticals) are distributed;

5. The number of the affected and homeless people, relief

commodity demand, and the travel time between all

nodes are considered uncertain;

6. The service time is not to exceed a specified amount;

7. The distribution centers can be established at only one

level (large, medium, or small);

8. The number and capacities of the transportation

vehicles are limited;

9. The planning budget is limited;

Considering the above assumptions, we have developed

a bi-objective relief optimization model that minimizes, as

its first objective, the number of people who have not been

sent to the hospitals and shelters and, as its second objec-

tive, the total shortages of the relief commodities through

making such decisions as locating shelters and distribution

centers, determining the capacity level of the distribution

centers, determining the number of people sent to hospitals

and shelters, determining the flow of the relief commodities

from distribution centers to the affected area, hospitals, and

shelters, and dispatching transportation vehicles.

Fig. 1 Network structure of the relief supply chain
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3 Model formulation

3.1 Indices and sets

t Planning horizon

i Set of the affected points

j Set of the candidate locations for setting up distribution

centers

p Set of the shelters

k Set of the relief commodities

l Set of the distribution centers

v Set of the transportation vehicles

h Set of the losses and injuries

3.2 Parameters

fpp Fixed cost of setting up a shelter at location p

fjjl Fixed cost of setting up a distribution center with

capacity l at location j

dihi Number of injured people type h available at

affected area i

dhi Number of people at the affected area i that are to

be evacuated

dkkit Demand for the relief commodity type k at the

affected area i at time t

dskst Demand for the relief commodity type k at the

hospital s at time t

Cis Capacity of the hospital s for the injured people

Cwv Weight capacity of the vehicle type v

Cvv Volume capacity of the vehicle type v

Civv Capacity of the vehicle type v for shipping injured

people

Chv Capacity of the vehicle type v for evacuating the

homeless people

Capl Capacity of distribution center level l

Cpsp Capacity of shelter p

dtvis Travel time of vehicle v between the affected area

i and the hospital s

dtvip Travel time of vehicle v between the affected area

i and the shelter p

dtvjs Travel time of vehicle v between the distribution

center j and the hospital s

dtvjp Travel time of vehicle v between the distribution

center j and the shelter p

dtvji Travel time of vehicle v between the distribution

center j and the affected area i

Wtk Weight of one unit relief commodity type k

Vlk Volume of one unit relief commodity type k

nkk Number of the relief commodity type k required per

person in a shelter

Ajv Number of the vehicle type v available at the

distribution center j when the planning horizon

begins

Biv Number of the vehicle type v available at the

affected area i at the beginning of the planning

horizon

Bo Maximum accessible budget

Tc Coverage time

Mbig A very big positive number

3.3 Variables

yp A binary variable to set up a shelter at location p

yli A binary variable to set up a distribution center

with capacity l at the location j

xkjst No. of the relief commodity type k sent from the

distribution center j to the hospital s at time t

xkjpt No. of the relief commodity type k sent from the

distribution center j to the shelter p at time t

xkjit No. of the commodity type k sent from the

distribution center j to the affected area i at time t

Nihist No. of injured people type h sent from the

affected area i to the hospital s at time t

Nhipt No. of people sent from the affected area i to the

shelter p at time t

Nvhipvt No. of the vehicle type v sent from the affected

area i to the shelter p at time t

Nviisvt No. of the vehicle type v sent from the affected

area i to the hospital s at time t

Nvkjpvt No. of the vehicle type v sent from the

distribution center j to the shelter p at time t

Nvjijivt No. of the vehicle type v sent from the

distribution center j to the affected area i at time t

Nvjsjsvt No. of the vehicle type v sent from the

distribution center j to the hospital s at time t

dvkpt Demand for the relief commodity type k in the

shelter p at time t

avivt No. of the vehicle type v available at the affected

area i at time t

3.4 Objective functions and constraints

The proposed mathematical model for humanitarian relief

chain network design (HRCND) is as follows:

HRCND:

Min z1 ¼
X

h

X

i

dihi �
X

s

X

t

Nihist

 !

þ
X

s

dhi �
X

p

X

t

Nhipt

 !
ð1Þ
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Min z2 ¼
X

k

X

i

X

t

dkkit �
X

j

xkjit

 !

þ
X

k

X

s

X

t

dskst �
X

j

xkjst

 !

þ
X

k

X

p

X

t

dvkpt �
X

j

xkjpt

 !
ð2Þ

subject to
X

p

fpyp þ
X

j

X

l

fjlyjl �Bo ð3Þ

X

l

ylj � 1 8j 2 J ð4Þ

X

i

X

t

Nhipt �Cpsp � yp 8p 2 P ð5Þ

X

i

X

t

X

h

Nihist �Cis 8s 2 S ð6Þ

X

i

Nhiptnkk ¼ dvkpt 8k 2 K; p 2 P; t 2 K ð7Þ

X

k

X

p

X

t

xkjpt þ
X

k

X

s

X

t

xkjst

þ
X

k

X

i

X

t

xkjit �
X

l

Capl:yjl

8j 2 J

ð8Þ

X

P

X

t

Nhipt � dhi 8i 2 I ð9Þ

X

s

X

t

Nihist � dihi 8h 2 H; i 2 I ð10Þ

X

j

xkjit � dkkit 8k 2 K; i 2 I; t 2 T ð11Þ

X

j

xkjst � dskst 8k 2 K; s 2 S; t 2 T ð12Þ

X

j

xkjpt � dvkpt 8k 2 K; p 2 P; t 2 T ð13Þ

X

k

wtkxkjpt �
X

v

Cwv:Nvkjpvt 8j 2 J; p 2 P; t 2 T ð14Þ

X

k

Vlkxkjpt �
X

v

Cvv:Nvkjpvt 8j 2 J; p 2 P; t 2 T ð15Þ

X

k

wtkxkjst �
X

v

CwvNvjsjsvt 8j 2 J; s 2 S; t 2 T ð16Þ

X

k

Vlk:xkjst �
X

v

CvvNvjsjsvt 8j 2 J; s 2 S; t 2 T ð17Þ

X

k

wtkxkjit �
X

v

CwvNvjijivt 8j 2 J; i 2 I; t 2 T ð18Þ

X

k

Vlkxkjit �
X

v

CvvNvjijivt 8j 2 J; i 2 I; t 2 T ð19Þ

X

h

Nihist �
X

v

CivvNviisvt 8i 2 I; s 2 S; t 2 T ð20Þ

Nhipt �
X

v

ChvvNvhipvt 8i 2 I; p 2 P; t 2 T ð21Þ

Nvkjpvt �Mbigyp 8j 2 J; p 2 P; v 2 V ; t 2 T ð22Þ

Nvkjpvt �
X

l

Mbigyjl 8j 2 J; p 2 P; v 2 V ; t 2 T ð23Þ

Nvjijivt �
X

l

Mbigyjl 8j 2 J; i 2 I; v 2 V ; t 2 T ð24Þ

Nvjsjsvt �
X

l

Mbigyjl 8j 2 J; p 2 P; v 2 V; t 2 T ð25Þ

dtvisNviisvt � tc 8i 2 I; s 2 S; v 2 V; t 2 T ð26Þ
dtvipNvhipvt � tc 8i 2 I; s 2 S; v 2 V; t 2 T ð27Þ

dtvjsNvjsjsvt � tc 8j 2 J; s 2 S; v 2 V; t 2 T ð28Þ

dtvjpNvkjpvt � tc 8j 2 J; p 2 P; v 2 V; t 2 T ð29Þ

dtvjiNvjijivt � tc 8j 2 J; i 2 I; v 2 V ; t 2 T ð30Þ
X

p

X

t

Nvkjpvt þ
X

i

X

t

Nvjijivt þ
X

s

X

t

Nvjsjsvt �Ajv

8j 2 J; v 2 V

ð31Þ

avivt ¼ avivt�1 þ
X

j

Nvjijivt �
X

p

Nvhipvt �
X

s

Nviisvt8i

2 I; v 2 V; t 2 T

ð32Þ
aviv0 ¼ Biv 8i 2 I; v 2 V ð33Þ

yp; ylj 2 0; 1f gxkjpt; xkjst; xkjit; dvkpt;NihistNhipt;
NvhipvtNviisvt;Nvkjpvt;Nvjijivt;Nvjsjsvt; avivt � 0; and int

ð34Þ

In the above model, the first objective function (1) mini-

mizes the total number of people who have not been sent to

hospitals and shelters, while the second objective function

(2) minimizes the total shortages of the relief commodities

in the affected area, hospitals, and shelters. Constraint (3)

ensures that the setup fixed costs may not exceed the

available budget. Constraint (4) specifies the setup capacity

of each distribution center. Constraint (5) keeps the number

of the people sent to a shelter below its capacity. Constraint

(6) limits a hospital capacity for the injured people. Con-

straint (7) limits the shelter demand for relief commodities.

Constraint (8) ensures that the total relief commodities sent

from a distribution center to other nodes should be less than

their capacities. Constraints (9 and 10) ensure that the total

number of people sent to hospitals and shelters should not

exceed the population of the affected area. Constraints (11–

13) ensure that the total number of relief commodities sent

from a distribution center to other nodes should not exceed
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their demands. Constraints (14–19) deal with the vehicles’

weights and volumes limitations. Constraints (20 and 21)

show a vehicle’s human capacity. Constraint (22) ensures

that sending people to a shelter is possible only if it already

exists. Constraints (23–25) ensure that the relief com-

modity flow from a distribution center to other nodes is

possible only if they already exist. Constraints (26–30)

ensure that the time of each service should not exceed the

maximum coverage time Constraint (31) ensures that the

number of vehicles dispatched from distribution centers to

affected areas, hospitals, and shelters cannot be more than

the total number of the available vehicles. Constraints (32

and 33) balance the vehicles in the affected area. And,

finally, constraint (34) specifies the sign of each variable.

4 The proposed robust model

The concept of the RO was first introduced by Soyster [32],

who assumed that all uncertainty data assume values in a

closed interval and, with this assumption, he determined

these values so that the worst possible state may be

imposed on the model; if the model is feasible with this

logic, then it is so in realization. Although Soyster’s logic

solved the problem of the parameters’ stochasticity to some

extent, it was far from reality because the probability that

all the parameters may be in their worst possible state

simultaneously is almost nil. To control the conservatism

degree appropriately and create more conformity between

the RO and reality, many researchers developed their

models on this basis. To start their works, Ben-Tal and

Nemirovski [31] assumed an ellipsoidal set formation for

the uncertainty data, but Bertsimas and Sim’s [26]

assumption was a counterpart ‘‘box and polyhedral’’ set.

These sets show that all the parameters cannot be in their

worst possible states simultaneously.

These two approaches have been proposed against

Soyster’s traditional model and may yield different results.

The goal is to compare them in disaster conditions and see

which one, under similar situations, yields better results so

that the decision maker can perform better under such

circumstances.

4.1 Robust optimization with ellipsoidal
uncertainty set

This modeling was first introduced by Ben-Tal and

Nemirovski [31]. Consider the following mathematical

model:

RO : min z ¼
P
j

cjxj

Subject toP
j

~aijxj � bi

ð35Þ

where the uncertain vector (~aij) assumes value in the

interval [�aij þ âij and �aij � âij] (�aij) is the nominal value of

the uncertain parameter, and (âij) is the perturbation vector.

Considering the ellipsoidal uncertainty set, the robust

counterpart of Ben-Tal and Nemirovski’s model is shown

as follows:

min z ¼
P
j

cjxj

Subject toP
j

aijxj þ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2Ji

â2
ijx

2
i

r
� bi

ð36Þ

where (X) corresponds to the conservatism degree of the

ellipsoidal uncertainty set. For instance, consider the first

part of the objective function (1), constraints (9 and 26), in

problem (HRCND):

Min z ð37Þ

Subject to

X

h

X

i

dihi �
X

s

X

t

Nihist

 !
� z ð38Þ

X

P

X

t

Nhipt � dhi 8i 2 I ð39Þ

dtvisNviisvt � tc 8i 2 I; s 2 S; v 2 V ; t 2 T ð40Þ

Making use of the auxiliary variables khi and ki, the above

model can be rewritten as follows:

Min z ð41Þ

Subject to
X

h

X

i

dihikhi �
X

h

X

i

X

s

X

t

Nihist þ z ð42Þ

kidhi � �
X

p

X

t

Nhipt 8i 2 I ð43Þ

dtvisNviisvt � tc 8i 2 I; s 2 S; v 2 V; t 2 T ð44Þ

The robust counterpart of the above model is as follows:

Min z ð45Þ

Subject to
X

h

X

i

dihikhi

þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h2HO

X

i2IO

bdi2hik2
hi

s
�
X

h

X

i

X

s

X

t

Nihist þ z ð46Þ
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dhiki þ X
ffiffiffiffiffiffiffiffiffiffiffiffi
cdh2

i k
2
i

q
� �

X

p

X

t

Nhipt 8i 2 I ð47Þ

dtvisNviisvt þ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bdt2

vipNvi
2
isvt

q
� tc

8i 2 I; s 2 S; v 2 V ; t 2 T
ð48Þ

Now, substituting the values of the auxiliary variables

(khi ¼ 1 and ki ¼ �1), we will get:

Min z ð49Þ

Subject to

X

h

X

i

dihi þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h2HO

X

i2IO

bdi2hi
s

�
X

h

X

i

X

s

X

t

Nihist þ z

ð50Þ
X

p

X

t

Nhipt � dhi � Xcdhi 8i 2 I ð51Þ

dtvisNviisvt þ X bdtvisNviisvt � tc 8i 2 I; s 2 S; v 2 V ; t 2 T

ð52Þ

We can see that the nonlinear model with the ellipsoidal

uncertainty set has turned into a linear programming.

Finally, the robust counterpart of the multi-objective relief

problem with ellipsoidal uncertainty set (RCRES) is shown

as follows:

RCRES:

Min z1 ð53Þ
Min z2 ð54Þ

Subject toConstrains (3–8) (13–25) and (31–34)

X

h

X

i

dihi þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h2HO

X

i2IO

cdh2
hi

s
�
X

h

X

i

X

s

X

t

Nihist

þ
X

i

dii þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i2IO

cdh2
i

s
�
X

i

X

p

X

t

Nhipt � z1

ð55Þ
X

k

X

i

X

t

dkkit þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k2Ko

X

i2Io

X

t2To

cdk2
kit

s

�
X

k

X

j

X

i

X

t

xkjit þ
X

k

X

s

X

t

dskst

þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k2Ko

X

s2So

X

t2To

bds2
kst

s
�
X

k

X

j

X

s

X

t

xkjst

þ
X

k

X

p

X

t

dvkpt �
X

j

xkjpt

 !
� z2 ð56Þ

X

p

X

t

Nhipt � dhi � Xcdhi 8i 2 I ð57Þ

X

s

X

t

Nihist � dihi � X bdihi 8h 2 H; i 2 I ð58Þ

X

j

xkjit � dkkit � Xcdkkit 8k 2 K; i 2 I; t 2 T ð59Þ

X

j

xkjst � dskst þ X bdskst 8k 2 K; s 2 S; t 2 T ð60Þ

dtvisNviisvt þ X bdtvisNviisvt � tc

8i 2 I; s 2 S; v 2 V ; t 2 T
ð61Þ

dtvjsNvjsjsvt þ X bdtvjsNvjsjsvt � tc

8j 2 J; s 2 S; v 2 V ; t 2 T
ð62Þ

dtvjpNvkjpvt þ X bdtvjpNvkjpvt � tc

8j 2 J; p 2 P; v 2 V ; t 2 T
ð63Þ

dtvipNvhipvt þ X bdtvipNvhipvt � tc

8p 2 P; i 2 I; v 2 V ; t 2 T
ð64Þ

dtvisNvjivt þ X bdtvijNvjijivt � tc

8j 2 J; i 2 I; v 2 V ; t 2 T
ð65Þ

4.2 Robust optimization with box
and polyhedral uncertainty sets

This modeling was first introduced by Bertsimas and Sim

[26]. In this modeling, it is assumed that some stochastic

data are influenced by uncertainty and they assume value in

their worst possible state.

Considering linear programming (RO), the robust

counterpart of this model with box and polyhedral uncer-

tainty sets is as follows:

min z ¼
P
j

cjxj

Subject to
P
j

�aijxj þ maxfsi[ tif gjsi�Ji; sij j¼ Ci½ �;ti2Jinsig

f
P
j2si

âijjxjj þ Ci � bCicð Þâiti xitij jg� bi

ð66Þ

where (Ji) is an integer, is the total number of uncertain

parameters available in constraint i, and (Ci) is the uncer-

tainty robustness budget (Ci ¼ 0; Jij j½ �). To turn the above

problem into a single optimization problem, the protection

function against uncertainty b (x, Ci) is introduced as

follows:
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b x;Cið Þ ¼

max
fsi[ tif gjsi�Ji; sij j¼dCi t;ti2Jinsig

X

j2si
âijjxjj þ Ci � dCitð Þâiti xitij j

( )

ð67Þ

The protection function optimization problem is equivalent

to the following problem:

Max
P
j2Ji

âijzijjxjj

Subject toP
j

zij �Ci

0� zij �

ð68Þ

The dual of the above problem is written as follows:

Min Cipi þ
P
j2Ji

qij

Subject to

pi þ qij � âijjxjj 8i 2 I; j 2 Ji
pi; qij � 0

ð69Þ

qij and pi are the dual variables. Consequently, the robust

counterpart of problem (RO) is written as follows:

min z ¼
P
j

cjxj
P
j

aijxj þ Cipi þ
P
j2Ji

qij � bi

pi þ qij � âijuj

�uj � xj � uj

pi; qij; uj � 0

ð70Þ

Finally, the robust counterpart of the multi-objective relief

problem with box and polyhedral uncertainty sets

(RCRBPS) is shown as follows:

RCRBPS:

Min z1 ð71Þ
Min z2 ð72Þ

Subject to

Constrains (3–5) (8–13) and (31–34)

X

h

X

i

dihi �
X

s

X

t

Nihist

 !
þ
X

h2Ho

X

i2Io
qdihi þ Pdi

o C
di
o

þ
X

s

dhi �
X

p

X

t

Nhipt

 !
þ
X

i2Io
qdhi þ Pdh

o Cdh
o � z1

ð73Þ

X

k

X

i

X

t

dkkit �
X

j

xkjit

 !
þ
X

k2Ko

X

i2Io

X

t2TO
qdkkit þ Pdk

o Cdk
o

þ
X

k

X

s

X

t

dskst �
X

j

xkjst

 !
þ
X

k2Ko

X

s2So

X

t2To
qdskst

þ Pds
o C

ds
o þ

X

k

X

p

X

t

dvkpt �
X

j

xkjpt

 !
� z

ð74Þ
X

P

X

t

Nhipt � dhi � Cdh
i
cdhi 8i 2 I ð75Þ

X

s

X

t

Nihist � dihi � Cdh
hi
bdihi 8h 2 H; i 2 I ð76Þ

X

j

xkjit � dkkit � Cdk
kit
cdkkit 8k 2 K; i 2 I; t 2 T ð77Þ

X

j

xkjst � dskst þ Cds
kst
bdskst 8k 2 K; s 2 S; t 2 T ð78Þ

dtvisNviisvt þ qtvisvis þ Ptvis
vis C

tvis
vis � tc

8i 2 I; s 2 S; v 2 V ; t 2 T
ð79Þ

dtvipNvhipvt þ q
tvip
vip þ P

tvip
vip C

tvip
vip � tc

8i 2 I; p 2 P; v 2 V ; t 2 T
ð80Þ

dtvjsNvjsjsvt þ q
tvjs
vjs þ P

tvjs
vjs C

tvjs
vjs � tc

8j 2 J; s 2 S; v 2 V ; t 2 T
ð81Þ

dtvjiNvjijivt þ q
tvji
vji þ P

tvji
vji C

tvji
vji � tc

8j 2 J; i 2 I; v 2 V ; t 2 T
ð82Þ

qdihi þ Pdi
o � bdihi 8h 2 H; i 2 I ð83Þ

qdhi þ Pdh
o �cdhi 8i 2 I ð84Þ

qdkkit þ Pdk
o �cdkkit 8k 2 K; i 2 I; t 2 T ð85Þ

qdskst þ Pds
o �cdkkst 8k 2 K; s 2 S; t 2 T ð86Þ

qtvisvis þ Ptvis
vis � bdtvisNviisvt 8v 2 v; i 2 I; s 2 S; t 2 T

ð87Þ

q
tvip
vip þ P

tvip
vip � bdtvipNvhipvt 8i 2 I; p 2 P; v 2 V; t 2 T

ð88Þ

q
tvjs
vjs þ P

tvjs
vjs � bdtvjsNvjsjsvt 8j 2 J; s 2 S; v 2 V ; t 2 T

ð89Þ

q
tvjp
vjp þ P

tvjp
vjp � bdtvjpNvkjpvt 8j 2 J; p 2 P; v 2 V; t 2 T

ð90Þ

q
tvji
vji þ P

tvji
vji � bdtvjiNvjijivt 8j 2 J; i 2 I; v 2 V ; t 2 T

ð91Þ
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qdihi; P
di
o ; q

dh
i ; Pdh

o ; qdkkit; P
dk
o ; qdskst; P

ds
o ; q

ds
kst; P

ds
o ; q

tvis
vis ;

Ptvis
vis ; q

tvip
vip ; P

tvip
vip ; q

tvjs
vjs ; P

tvjs
vjs ; q

tvjp
vjp ; P

tvjp
vjp ; q

tvji
vji ; P

tvji
vji � 0

ð92Þ

In mathematical model (RCRBPS), there is only one

uncertain parameter in the set of constraints (75–82). The

maximum value of the robustness budget of these con-

straints is 1 and its minimum is 0. We determine a total

robustness budget for a specified datum (e.g., dkkit) and

consider the share of each constraint in the total budget

equal. In other words, we consider the parameter uncer-

tainty of these constraints column-wise instead of row-wise

[25]; this will facilitate the work and simplify the compu-

tations. Therefore, constraints (75–82) of model (RCRBPS)

are extended as follows:

X

P

X

t

Nhipt � dhi �
Cdh
O

I
cdhi 8i 2 I ð93Þ

X

s

X

t

Nihist � dihi �
Cdh
O

H:I
bdihi 8h 2 H; i 2 I ð94Þ

X

j

xkjit � dkkit �
Cdk
O

K:I:T
cdkkit 8k 2 K; i 2 I; t 2 T ð95Þ

dtvisNviisvt þ qtvisvis þ Ptvis
vis

Ctvis

V:I:S
� tc

8i 2 I; s 2 S; v 2 V ; t 2 T
ð96Þ

dtvipNvhipvt þ q
tvip
vip þ P

tvip
vip

Ctvip

V:I:P
� tc

8i 2 I; p 2 P; v 2 V; t 2 T
ð97Þ

dtvjsNvjsjsvt þ q
tvjs
vjs þ P

tvjs
vjs

Ctvjs

V :J:S
� tc

8j 2 J; s 2 S; v 2 V ; t 2 T
ð98Þ

dtvjpNvkjpvt þ q
tvjp
vjp þ P

tvjp
vjp

Ctvjp

V :J:P
� tc

8j 2 J; p 2 P; v 2 V ; t 2 T
ð99Þ

4.3 Maximum probability of constraint violation
in the robust optimization

Consider the following uncertain constraint:
X

j

~aijx
�
j � bi 8i 2 I ð100Þ

As we know, the left-side coefficients (~aij) are uncertain.

RO is more after the solution robustness of constraint (100)

under realization; therefore, it is possible to establish a

relationship between the degree of conservatism and the

probability of constraint violation. Ben-Tal and

Nemirovski [34] have shown the maximum probability of

constraint (100) violation as follows:

Pr
X

j

~aijx
�
j � bi

 !
� e �X2

ið Þ 8i 2 I ð101Þ

Although the above relation is to find the maximum

probability of the constraint violation of the RO with box

and polyhedral uncertainty sets, it is true for the RO with

ellipsoidal uncertainty set as well [35].

Bertsimas and Sim [26], have introduced the maximum

probability of constraint (100) violation with box and

polyhedral uncertainty sets as follows:

Pr
X

j

~aijx
�
j � bi

 !
� 1 � U

Ci � 1ffiffiffiffiffiffi
jJij

p
 !

ð102Þ

In constraint (102), U Ci�1ffiffiffiffi
jJij

p
� �

is the cumulative probability

of the normal distribution function.

To compare the performances of models (RCRES) and

(RCRBPS) against uncertainty, the probabilities of the

constraint violation are assumed equal and the conser-

vatism degree is calculated for each model and compared

under similar conditions.

5 Solution procedure

In the related literature, the extensive use of the multi-

objective optimization problems has been made [36–38]. In

this paper, we have used the Lexicographic Weighted

Tchebycheff (LWT) method where every objective is first

optimized individually and then a new objective is defined

which is after minimizing the maximum weight deviation

of each objective function from its optimum value [39].

Consider a multi-objective model with n variables and m

objective functions as follows:

LWT : Min HðxÞ ¼ fh1ðxÞ; h2ðxÞ; h3ðxÞ; . . .; hmðxÞg
Subject to

x 2 Xh

ð103Þ

where ðxf � xÞx is the set of the feasible solutions, H(x) is

the set of the decision variables in the decision space x :

x ¼ x1; x2; x3; . . .; xn½ � and the solution space

z : z ¼ z1; z2; z3; . . .; zm½ �.
First, the optimum value of each objective function is

found as follows:

z�i ¼ Minfhiðxjx 2 xhÞg � ei ð104Þ

where ei is a very small positive value. The multi-objective

model LWT is turned into a single objective model

(namely LWTS) as follows:
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LWTS : Min a
S:t
a� ki hi xð Þ � z�i

� �

Xm

i¼1

ki ¼ 1 0� ki � 1; x 2 xh

ð105Þ

where (ki) is the importance of each objective function.

Problem LWTS minimizes the maximum weight devi-

ation of each objective function from its optimum value

and may produce weak Pareto optimum solutions. There-

fore, some of the solutions may dominate the weak Pareto

solutions for the elimination of which we can use the model

as follows if we define xw as the Pareto optimum solution

of model LWTS:

Min
Pm

i¼1

hi xð Þ � z�i
� �

Subject to

x 2 xw

ð106Þ

6 Case study

Tehran, with a population of more than 8 million, is the

largest metropolitan city in Iran. With this population,

many people may face irrecoverable difficulties in case of

an earthquake. Tehran is an earthquake-prone city because

of its famous faults (Rey, Mosha, North Tehran, etc.).

6.1 Case description

Figure 2 shows that there are relatively many faults in the

northern part of Tehran meaning that the first five districts

(out of 22) are among the high-risk places. Therefore, the

centers of these five districts have been considered as the

affected areas. As shown in Fig. 3, the hospitals and the

candidate locations to set up shelters and distribution

centers are outside the affected areas.

The main sources of data for this case study are the

reports provided by this region’s disaster management

experts, the Red Crescent Society, Japan International

Cooperation Agency, and online available data on popu-

lation and available resources. The data helped us calculate

the location of the affected area, the number of injured

people, the number of relief commodities, transportation

times between all nodes of the network and the costs

parameters, and the number and capacities of distribution

centers, shelters, hospitals, and vehicles.

Each distribution center can be large, medium, or small,

and the relief commodities stored in them include water,

food, and pharmaceuticals. Capacities and setup costs of

each type are shown in Table 1.

In this issue, there are five candidate locations to set up

the distribution centers; the districts addresses and the

candidate locations are shown in Table 2.

There are six different capacity hospitals at different

locations, the names and capacities of which are shown in

Table 3.

There are five candidate locations to set up shelters with

different capacities; their brief information is provided in

Table 4.

Tables 5 and 6 show the transportation vehicles’ fea-

tures and the weight/volume of every 1000 units of the

relief commodities, respectively.

And, finally, Table 7 shows the uncertainty interval for

every stochastic parameter.

As mentioned before, hospitals, shelters, and distribu-

tion centers are located outside the affected areas to make

most of their capacities and capabilities because if they are

inside, some of them may get totally destroyed and some

Fig. 2 Map of Tehran faults
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may lose their efficiencies in case an earthquake or other

disasters occur.

7 Results

As discussed in the earlier sections, the goal is a compar-

ison between the optimization models (RCRES) and

(RCRBPS) to see which one performs better in facing

uncertainties. But, establishing a direct relationship

between these models’ conservatism degree is not an easy

task, and for us in order to do it, we use another trick. If we

take the probabilities of all the constraints violations of

both models equal, we will be able to calculate their

robustness budgets. For this purpose and to do the sensi-

tivity analyses and models tests, we have considered five

levels (0.1, 0.15, 0.2, 0.25, and 0.3) for the maximum

probabilities of constraints violations and three levels (5,

10, and 15%) for the deviation of the uncertainty data from

the nominal data. We have already pointed out that there

are five affected areas, six hospitals, five candidate loca-

tions (to set up shelters), and five candidate locations (to set

up distribution centers). Also, there are three types of

transportation vehicles, two types of injured people, and

three periods in the planning horizon. Problems (RCRES)

and (RCRBPS) and also the deterministic problem

(HRCND) have been solved using nominal data, DELL

Laptop (core i5 and RAM4), GAMS Optimization

Fig. 3 Affected areas, hospitals,

candidate locations to set up

shelters and distribution centers

Table 1 The capacity level of distribution centers and their setup

costs

Size Fix cost (103 $) Capacity (103 unit)

Small 50 10

Medium 80 16

Large 120 24

Table 2 Candidate locations for

distribution centers
Number Address Region of Tehran

1 Highway intersection of Ayatollah Hakim and Kordestan 6

2 Shahid Sayyad Shirazi Highway 7

3 Highway intersection of Imam Ali and Western Janbazan 8

4 Ayatollah Saeedi Highway 9

5 Allameh Jafari Highway 22
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Software (Ver. 24.0.1), and CPLEX Powerful Solver. Five

different weight sets (k1 and k2) have been considered for

the objective functions.

By reducing the maximum probabilities of the con-

straints violations, we make the conditions more severe for

the mathematical model; it means that if this maximum is

reduced in each step, the conservatism budgets (X and C)

will increase and, as we know, the optimum solution can

suffer with this increase. Again, if the maximum deviation

from the nominal data is increased, the conditions will get

more difficult for modeling and, under such circumstances,

the optimum solution may get worse. The summary of the

results found from the solution of models (HRCND),

(RCRES), and (RCRBPS) is provided in Tables 8, 9, 10,

11, 12, 13. As shown, the objective function has improved

in each step by increasing the maximum probabilities of the

constraints violations (which reduces the conservatism

degree) and keeping the deviations from the nominal data

constant.

In Tables 8, 9, 10, 11, 12, 13, zi* is the optimum value

of the ith objective function when the problem is single

objective and (zi
-) is the worst value of the ith objective

function when the problem is single objective (with another

objective function). By ‘‘weight,’’ we mean the importance

given to the first and second objective functions [(k1) and

(k2), respectively] in multi-objective cases (k1, k2 B 1, and

k1? k2 = 1). Also, (a) is the value of the objective function

of the multi-objective programming when importance k1 is

Table 3 Locations and capacities of hospitals

Number Name of hospitals Capacity (unit) Region of Tehran

1 Kasra 300 6

2 Imam Khomeini 1200 6

3 Mostafa Khomeini 300 7

4 Imam Hossein 614 7

5 Arad 145 7

6 Azadi 300 10

Table 4 Candidate locations for shelters

Number Address Capacity (103

person)

Fix cost (103

$)

Region of

Tehran

1 Highway intersection of Resalat and Africa 60 1200 6

2 Highway intersection of Ayatollah Ghodousi and Shahid Sayyad Shirazi

Highway

70 1350 7

3 Shahid Hasan Bagheri Highway 74 1600 8

4 Azadi Square 73 1500 9

5 Yadegar Imam 72 1400 10

Table 5 Capacities of vehicles

Type Weight capacity (ton) Volume capacity (m3) Injure capacity (person) Homeless capacity (person)

V1 28 38 70 80

V2 18 12 20 26

V3 3.8 6 10 17

Table 6 Weight and volume of the relief commodities

Type Weight (ton) Volume (m3)

Water (103 unit) 5 4.5

Food (103 unit) 3 2.5

Drug (103 unit) 2 6

Table 7 The sources of random generation of the nominal data

Parameter Corresponding random distribution

dhi (person) Uniform (17,000,17,600)

dihi (person) Uniform (5500,6000)

dkkit (unit) Uniform (7000,8000)

dskst (unit) Uniform (800,900)

dtvis (minute) Uniform (16,20)

dtvjp (minute) Uniform (16,20)

dtvjs (minute) Uniform (16,20)

dtvjp (minute) Uniform (16,20)

dtvji (minute) Uniform (16,20)
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given to the first objective function (z1) and k2 is given to

the second objective function (z2). MPCV and DFNV

stand, respectively, for ‘‘Maximum Probability of Con-

straint Violation’’ and ‘‘Deviation from Nominal Value.’’

For instance, Fig. 4 is drawn for the first objective

function (z1) of the deterministic model, robust ellipsoidal

model, and robust box and polyhedral models and Fig. 5 is

prepared for the second objective function (z2) for 5%

deviation from the nominal data for all levels of the

maximum probabilities of constraints violations. We can

see that an increase in the maximum probability has

improved the first and second objective functions in each

step. It is worth mentioning that the worst case for robust

models has occurred at 0.1 and 15%, respectively, for

maximum probability of constraint violation and deviation

of the stochastic data from the nominal data; this is the

highest conservatism degree among all degrees introduced.

Both robust models have been worse, in all cases, than the

deterministic model. To achieve solution robustness, the

robust modeling is after optimization under bad conditions

(considering a specified conservatism degree) in such a

way that the mathematical model will stay feasible under

realization.

Objective functions values have been worse compared

with those of the deterministic model.

Moreover, with an increase in the deviation from the

nominal data, the optimum values of the objective func-

tions of the robust models have become worse in each step.

Table 8 Results from the deterministic model tests with the nominal

data

Z1
* = 3386 a Z2

- = 496,588 Weights

2459 7221 269,980 k1 = 0.3, k2 = 0.7

25,310 8769 274,280 k1 = 0.4, k2 = 0.6

22,873 9744 279,152 k1 = 0.5, k2 = 0.5

20,089 10,022 284,720 k1 = 0.6, k2 = 0.4

16,877 9444 291,144 k1 = 0.7, k2 = 0.3

z1
- = 35,476 z2

* = 259,664

Table 9 Results from two

uncertainty sets tests with a

maximum constraint violation

probability of (0.1)

Ellipsoidal uncertainty set Box and polyhedral uncertainty sets Weights

Z1
* = 4998 a Z2

- = 502,584 Z1
* = 6313 a Z2

- = 508,039

MPCV = 0.1, DFNV = 5%

29,071 7221 275,977 28,836 6756 271,600 k1 = 0.3, k2 = 0.7

26,921 8769 280,276 26,824 8204 275,622 k1 = 0.4, k2 = 0.6

24,485 9744 285,148 24,545 9116 280,180 k1 = 0.5, k2 = 0.5

21,702 10,022 290,715 21,941 9376 285,390 k1 = 0.6, k2 = 0.4

18,489 9444 297,140 18,935 8835 291,400 k1 = 0.7, k2 = 0.3

z1
- = 37,088 z2

* = 265,660 z1
- = 36,535 z2

* = 261,948

Z1
* = 6610 a Z2

- = 508,580 Z1
* = 9237 a Z2

- = 519,502 Weights

MPCV = 0.1, DFNV = 10%

30,683 7222 281,972 30,211 6292 273,220 k1 = 0.3, k2 = 0.7

28,534 8769 286,270 28,338 7640 276,966 k1 = 0.4, k2 = 0.6

26,097 9744 291,144 26,216 8489 281,211 k1 = 0.5, k2 = 0.5

23,313 10,022 296,712 23,791 8732 286,062 k1 = 0.6, k2 = 0.4

20,101 9444 303,136 20,992 8228 291,660 k1 = 0.7, k2 = 0.3

z1
- = 38,700 z2

* = 271,656 z1
- = 37,594 z2

* = 264,232

Z1
* = 8222 a Z2

- = 514,576 Z1
* = 12,164 a Z2

- = 530,957 Weights

MPCV = 0.1, DFNV = 15%

32,295 7222 287,968 31,588 5827 274,840 k1 = 0.3, k2 = 0.7

30,146 8769 292,266 29,855 7076 278,310 k1 = 0.4, k2 = 0.6

27,709 9744 297,140 27,888 7862 282,240 k1 = 0.5, k2 = 0.5

24,925 10,022 302,708 25,643 8087 286,734 k1 = 0.6, k2 = 0.4

21,713 9444 309,132 23,050 7620 291,916 k1 = 0.7, k2 = 0.3

z1
- = 40,312 z2

* = 277,652 z1
- = 38,653 z2

* = 266,516
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For example, the values of the first and the second objec-

tive functions (z1 and z2, respectively) are drawn in Figs. 6

and 7, respectively, considering 0.1 for the maximum

probability of constraint violation with deviations of 5, 10,

and 15% from the nominal data.

We can see that with an increase in the deviation from

the nominal data, the optimum values of the objective

functions have obtained worse in each step. If the uncer-

tainty interval is increased, we expect that the optimum

value of the objective function has obtained worse in each

step. In other levels of the maximum probability of con-

straint violation and deviation of the uncertainty data from

the nominal data, the trend has been the same and the

results have conformed to our expectations.

In optimization, if the first objective function (z1) gets a

100% importance (k1 = 1), the optimum value of the

objective function of the robust model will perform better

with ellipsoidal set than box and polyhedral model, but if

k1\ 1, sometimes the solution optimality is displaced

among the ellipsoidal, box, and polyhedral models. If the

100% importance (k2 = 1) is given to the second objective

function (z2), the robust model with the ellipsoidal set will

perform worse than the box and polyhedral models. Solu-

tions of the robust models have been calculated in (75)

cases (5 levels of maximum probability of constraint vio-

lation, 3 levels of deviation from nominal data, and 5

weight sets) without giving the 100% importance to one

objective function (k1\ 1, k2\ 1, and k1 ? k2 = 1). If we

count the number of the cases where the value of (z1) in the

robust model with box and polyhedral uncertainty sets has

become better than that with the ellipsoidal set, in (56)

cases the robust model with box and polyhedral uncertainty

sets has performed better. If the same comparison is made

for (z2), again the robust model with box and polyhedral

uncertainty sets has outperformed in (74) cases. Therefore,

the point average of the robust model with box and poly-

Table 10 Results from two

uncertainty sets tests with a

maximum constraint violation

probability of (0.15)

Ellipsoidal uncertainty set Box and polyhedral uncertainty sets Weights

Z1
* = 4847 a Z2

- = 502,023 Z1
* = 5906 a Z2

- = 509,095

MPCV = 0.15, DFNV = 5%

28,920 7222 275,415 28,647 6822 271,350 k1 = 0.3, k2 = 0.7

26,771 8769 279,713 26,615 8283 275,410 k1 = 0.4, k2 = 0.6

24,335 9744 284,585 24,314 9204 280,012 k1 = 0.5, k2 = 0.5

21,551 10,022 290,153 21,685 9467 285,272 k1 = 0.6, k2 = 0.4

18,338 9444 296,579 18,650 8920 291,340 k1 = 0.7, k2 = 0.3

z1
- = 36,937 z2

* = 265,099 z1
- = 36,386 z2

* = 261,604

Z1
* = 6309 a Z2

-=507,459 Z1
* = 8424 a Z2

-=521,610

MPCV = 0.15, DFNV = 10%

30,382 7221 280,851 29,832 6422 272,720 k1 = 0.3, k2 = 0.7

28,233 8769 285,149 27,921 7798 276,543 k1 = 0.4, k2 = 0.6

25,797 9744 290,021 25,754 8665 280,875 k1 = 0.5, k2 = 0.5

23,013 10,022 295,589 23,279 8912 285,827 k1 = 0.6, k2 = 0.4

19,800 9444 302,015 20,422 8398 291,540 k1 = 0.7, k2 = 0.3

z1
* = 6309 a z2

- = 507,459 z1
* = 8424 a z2

- = 521,610

Z1
* = 7770 a Z2

- = 512,895 Z1
* = 10,944 a Z2

- = 534,121

MPCV = 0.15, DFNV = 15%

31,843 7222 286,287 31,020 6022 274,089 k1 = 0.3, k2 = 0.7

29,693 8769 290,587 29,227 7313 277,674 k1 = 0.4, k2 = 0.6

27,257 9744 295,459 27,196 8126 281,737 k1 = 0.5, k2 = 0.5

24,473 10,022 301,027 24,874 8358 286,380 k1 = 0.6, k2 = 0.4

21,261 9444 307,451 22,195 7875 291,738 k1 = 0.7, k2 = 0.3

z1
- = 39,860 z2

* = 275,971 z1
- = 38,207 z2

* = 265,485
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hedral uncertainty sets has been better compared to that

with the ellipsoidal set.

Since RO approaches based on the box and polyhedral

and ellipsoidal uncertainty sets are quite different, their

direct comparison is very difficult. If the MPCV is con-

sidered equal in both methods and appropriate robustness

budgets are calculated from relations (101) and (102), their

comparison will be possible under such similar conditions;

this comparison method has been used in the proposed

model. As explained in the paper (page 25 Paragraph 1), if

robust models are solved with a single objective, the

ellipsoidal uncertainty set will perform better than the box

and polyhedral uncertainty set (as regards the first objective

function), but as regards the second objective function, it is

vice versa. If robust models are solved with multi-objective

approaches considering weight (importance) for the

objective functions, the box and polyhedral uncertainty set

will perform better than the ellipsoidal uncertainty set.

Therefore, on average, the robust method based on the box

uncertainty set performs better than the ellipsoidal uncer-

tainty set.

Strong Pareto solutions have been produced at all levels

of the maximum probability of constraint violation and

different percentages of deviation from the nominal data.

For instance, Pareto (Fig. 8) has been drawn for models

(RCRES), (RCRBPS), and (HRCND) at the maximum

probability of constraint violation of 0.2 and 10% deviation

from the nominal data. The vertical axis of the Pareto

figure shows the value of (z1), and the horizontal axis

shows that of (z2). When Pareto solutions are reported, one

solution set should not dominate another one at the same

level considering a known conservatism degree. Decision

makers decide based on the importance they attach to each

objective function. With a decrease in (z1), (z2) increases in

each step; the same is true for (z2) as well. When the Pareto

figure gets closer to the horizontal axis, it means that (z1)

Table 11 Results from two

uncertainty sets tests with a

maximum constraint violation

probability of (0.2)

Ellipsoidal uncertainty set Box and polyhedral uncertainty sets Weights

Z1
* = 4734 a Z2

- = 501,603 Z1
* = 5567 a Z2

- = 509,971

MPCV = 0.2, DFNV 5%

28,807 7222 274,995 28,487 6876 271,139 k1 = 0.3, k2 = 0.7

26,658 8769 279,293 26,441 8349 275,232 k1 = 0.4, k2 = 0.6

24,221 9744 284,167 24,121 9277 279,870 k1 = 0.5, k2 = 0.5

21,437 10,022 289,735 21,471 9542 285,172 k1 = 0.6, k2 = 0.4

18,225 9444 296,159 18,412 8991 291,288 k1 = 0.7, k2 = 0.3

z1
- = 36,824 z2

* = 264,679 z1
- = 36,262 z2

* = 261,316

Z1
* = 6083 a Z2

- = 506,618 Z1
* = 7746 a Z2

- = 523,362

MPCV = 0.2, DFNV = 10%

30,156 7221 280,010 29,516 6531 272,299 k1 = 0.3, k2 = 0.7

28,006 8769 284,310 27,571 7930 276,186 k1 = 0.4, k2 = 0.6

25,570 9744 289,182 25,368 8811 280,591 k1 = 0.5, k2 = 0.5

23,600 10,510 295,574 22,851 9063 285,627 k1 = 0.6, k2 = 0.4

19,574 9444 301,174 19,947 8540 291,436 k1 = 0.7, k2 = 0.3

z1
- = 38,173 z2

* = 269,694 z1
- = 37,048 z2

* = 262,969

Z1
* = 7431 a Z2

- = 511,634 Z1
* = 9926 a Z2

- = 536,753

MPCV = 0.2, DFNV = 15%

31,504 7221 285,026 30,543 6185 273,458 k1 = 0.3, k2 = 0.7

29,354 8769 289,326 28,703 7510 277,140 k1 = 0.4, k2 = 0.6

26,918 9744 294,198 26,616 8345 281,312 k1 = 0.5, k2 = 0.5

25,101 10,775 301,649 24,232 8583 286,081 k1 = 0.6, k2 = 0.4

20,922 9444 306,190 21,481 8088 291,584 k1 = 0.7, k2 = 0.3

z1
- = 39,521 z2

* = 274,710 z1
- = 37,834 z2

* = 264,622
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has been more important than (z2). Similarly, when it gets

nearer to the vertical axis, (z2) has been more important.

Uniform slope of Fig. 8 is an indication that strong Pareto

solutions have been produced.

Figure 8 shows Pareto diagrams of deterministic and

robust models at a maximum constraint violation proba-

bility of 0.2 and a 10% deviation from the nominal data.

8 Conclusions

Considering the importance of transferring the injured/

homeless people and distributing relief commodities in

earthquakes, a bi-objective rescue–relief model under

uncertainty has been developed. The first objective mini-

mizes the total number of the injured/homeless people who

have not been transferred from the affected area, and the

second objective is after minimizing the total shortages of

the relief commodities. To model uncertainty, two

approaches have been developed: (1) RO with ellipsoidal

uncertainty set and (2) RO with box and polyhedral

uncertainty sets. To do sensitivity analyses and compare

deterministic and robust models, the use of Tehran Case

Study has been made. The results obtained from solving the

deterministic and robust models show that the robust

models resulted in more conservative solutions in all cases.

Also, by comparing the two proposed robust models, it can

be concluded that using the box and polyhedral uncertainty

sets results in a better performance than the ellipsoidal

uncertainty set.

Finally, suggestions for future studies are: (1) Routing

can be added to commodity distribution and injured/

homeless transfer, (2) using exact and meta-heuristic

algorithms for large-scale problems, and (3) using other

uncertainty sets such as box–ellipsoidal and ellipsoidal–

Table 12 Results from two

uncertainty sets tests with a

maximum constraint violation

probability of (0.25)

Ellipsoidal uncertainty set Box and polyhedral uncertainty sets Weights

Z1
* = 4636 a Z2

- = 501,239 Z1
* = 5288 a Z2

- = 510,691

MPCV = 0.25, DFNV = 5%

28,709 7221 274,631 28,356 6920 270,959 k1 = 0.3, k2 = 0.7

26,559 8769 278,931 26,297 8403 275,079 k1 = 0.4, k2 = 0.6

24,123 9744 283,803 23,962 9337 279,747 k1 = 0.5, k2 = 0.5

22,302 10,599 290,814 21,295 9604 285,083 k1 = 0.6, k2 = 0.4

18,127 9444 295,795 18,216 9049 291,239 k1 = 0.7, k2 = 0.3

z1
- = 36,726 z2

* = 264,315 z1
- = 36,159 z2

* = 261,073

Z1
* = 5887 a Z2

- = 505,890 Z1
* = 7188 a Z2

- = 524,802

MPCV = 0.25, DFNV = 10%

29,960 7221 279,282 29,253 6619 271,938 k1 = 0.3, k2 = 0.7

27,810 8769 283,582 27,283 8038 275,879 k1 = 0.4, k2 = 0.6

25,374 9744 288,454 25,050 8931 280,344 k1 = 0.5, k2 = 0.5

22,590 10,022 294,022 22,499 9186 285,448 k1 = 0.6, k2 = 0.4

19,378 9444 300,446 19,554 8656 291,336 k1 = 0.7, k2 = 0.3

z1
- = 37,977 z2

* = 268,966 z1
- = 36,843 z2

* = 262,482

Z1
* = 7137 a Z2

- = 510,541 Z1
* = 9089 a Z2

- = 538,913

MPCV = 0.25, DFNV = 15%

31,210 7221 283,933 30,151 6318 272,918 k1 = 0.3, k2 = 0.7

29,060 8769 288,233 28,271 7672 276,679 k1 = 0.4, k2 = 0.6

26,624 9744 293,105 26,139 8525 280,941 k1 = 0.5, k2 = 0.5

23,840 10,022 298,673 23,704 8768 285,813 k1 = 0.6, k2 = 0.4

20,628 9444 305,097 20,893 8262 291,434 k1 = 0.7, k2 = 0.3

z1
- = 39,227 z2

* = 273,617 z1
- = 37,527 z2

* = 263,891
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Table 13 Results from two

uncertainty sets tests with a

maximum constraint violation

probability of (0.3)

Ellipsoidal uncertainty set Box and polyhedral uncertainty sets Weights

Z1
* = 4553 a Z2

- = 500,931 Z1
* = 5029 a Z2

- = 511,355

MPCV = 0.3, DFNV = 5%

28,626 7221 274,324 28,234 6961 270,800 k1 = 0.3, k2 = 0.7

26,476 8769 278,623 26,162 8453 274,944 k1 = 0.4, k2 = 0.6

24,040 9744 283,495 23,814 9392 279,640 k1 = 0.5, k2 = 0.5

21,256 10,022 289,063 21,131 9660 285,007 k1 = 0.6, k2 = 0.4

18,044 9444 295,487 18,034 9103 291,200 k1 = 0.7, k2 = 0.3

z1
* = 4553 z2

- = 264,114 z1
- = 5029 a z2

* = 260,631

Z1
* = 5721 a Z2

- = 505,274 Z1
* = 6671 a Z2

- = 36,656

MPCV = 0.3, DFNV = 10%

29,794 7221 278,667 29,011 6701 271,620 k1 = 0.3, k2 = 0.7

27,644 8769 282,966 27,015 8137 275,609 k1 = 0.4, k2 = 0.6

25,208 9744 287,838 24,755 9042 280,130 k1 = 0.5, k2 = 0.5

22,424 10,022 293,406 22,171 9300 285,296 k1 = 0.6, k2 = 0.4

19,212 9444 299,830 19,191 8763 291,258 k1 = 0.7, k2 = 0.3

z1
- = 37,811 z2

* = 268,350 z1
- = 526,130 z2

* = 262,046

Z1
* = 6889 a Z2

- = 509,617 Z1
* = 8315 a Z2

- = 540,897

MPCV = 0.3, DFNV = 15%

30,962 7221 283,009 29,786 6441 272,440 k1 = 0.3, k2 = 0.7

28,812 8769 287,309 27,869 7821 276,274 k1 = 0.4, k2 = 0.6

26,376 9744 292,181 25,696 8690 280,619 k1 = 0.5, k2 = 0.5

24,559 10,602 299,198 23,213 8938 285,585 k1 = 0.6, k2 = 0.4

20,380 9444 304,173 20,348 8423 291,315 k1 = 0.7, k2 = 0.3

z1
- = 38,979 z2

* = 272,693 z1
- = 37,246 z2

* = 263,238

Fig. 4 First objective function

with respect to the maximum

constraint violation probability

with 5% deviation from the

nominal data
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Fig. 6 First objective function

with respect to the uncertainty

data deviation from the nominal

data and the maximum

constraint violation probability

of 0.1

Fig. 7 Second objective

function with respect to the

stochastic data deviation from

the nominal data and the

maximum constraint violation

probability of 0.1

Fig. 5 Second objective

function with respect to the

maximum constraint violation

probability with 5% deviation

from the nominal data
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polyhedral to see which RO model with uncertainty sets

outperforms the other alternatives.
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