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Abstract
Sound is a ubiquitous natural phenomenon that contains a wealth of information that constantly enhances our under-

standing of the objective world. With the continuous development of computer network technology and communication

technology, audio information has become a very important part. Audio is a non-semantic symbolic representation and an

unstructured binary stream. Because the audio itself lacks the description of content semantics and structured organization,

it brings great difficulty to the audio classification work. The research of digital audio classification will become more and

more important with the increasing number of digital audio resources in the network. Digital audio classification tech-

nology is the key technology to solve this problem. It is the key to solve the problem of audio structure and extract audio

structured information and content semantics. It is a research hot spot in the field of audio analysis. It has important

application value in many fields, such as audio retrieval, video summary and auxiliary video analysis. This paper studies

the structure of audio, the analysis and extraction of audio features, the digital audio classifier based on support vector

machines (SVM) and the audio segmentation technology based on BCI. SVM is an important achievement of machine

learning research in recent years. As a new machine learning method, SVM can solve practical problems such as small

sample, nonlinearity and high dimension, so it has become a new research hot spot after the study of neural network.

Experiments show that the SVM-based audio classification algorithm has good classification effect, and the smoothed

audio segmentation results are more accurate. With the further development of the research, the research results will be

well applied in practice.
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1 Introduction

Today’s human society has entered the era of digitaliza-

tion. With the continuous development of computer tech-

nology, network technology and communication

technology, multimedia information such as images, video

and audio have gradually become the main form of infor-

mation media in the field of information processing.

Among them, audio has a very important position. Audio is

an important part of multimedia. Compared with images

and video, audio not only has distinctive features, but also

has a small amount of audio data and fast processing speed,

which has attracted people’s attention. There are many

forms of audio expression, which meet people’s needs in

life, work, entertainment, etc. The audio data resources on

the Internet continue to grow at an unparalleled speed. If

people want to quickly and efficiently obtain and process

the effective information they need from the massive audio

data on the Internet, it is a good and convenient way to
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analyze, classify and retrieve the data. How to effectively

organize and manage these audio resources making it easy

for people to find the required audio clips has become an

urgent need.

Now, research on audio classification problems has

more than just classification of music and speech. The

categories of classifications will change with people’s

needs, facilitating people’s work and life. In general, the

most basic objects of audio classification are voice, music

and mute, further divided into five categories: pure voice,

music, ambient sound, voice with background sound and

mute. Audio classification is the basis of audio information

deep processing, the core technology of audio structure and

an important means to extract audio structure and content

semantics. It actually divides the audio data into different

categories according to the perceived characteristics or the

content of the expression and can also play an important

role in voice retrieval, content-based audio segmentation

and audio supervision. On the one hand, it can be used as

an initialization process for continuous speech recognition,

which can prohibit non-voice streams in the audio stream

from entering the speech recognizer, improve the accuracy

of speech recognition and shorten the recognition time. On

the other hand, it is also the first step in the classification of

music types. For a given piece of audio, we can classify

and segment it by audio classification. After the judgment,

different processing is performed for different types of

audio data for the judgment result. This can reduce the

processing time and space consumption and can also

improve the processing accuracy. At present, research in

this field mainly focuses on three aspects: audio feature

analysis and extraction, classifier design and implementa-

tion and audio segmentation methods.

The classification of audio can be said to be a process of

pattern recognition. Its research focus usually includes two

basic aspects: audio feature analysis and extraction, design

and implementation of classifier. The essence of audio

classification is actually the pattern recognition process,

which mainly achieves the following: (1) Pretreatment.

Before processing the audio file, we need to preprocess it,

which is to divide the audio stream into smaller units.

Audio files are classified by classifying these shorter length

audio units. The preprocessing of the audio signal includes

pre-emphasis, framing and windowing. (2) Extract audio

features for classification. The selection and extraction of

features are the most important part of the pattern recog-

nition system, and of course the most important part of

audio classification. (3) Feature screening. Multi-class

audio classification, multi-level two classification, in order

to better distinguish the two types of audio data of each

level, the feature selection method will be used to select the

feature set that is most suitable for each level classification.

(4) Select the classifier. Using machine learning to

automatically classify audio signals not only reduces

manpower, but also reduces time and efficiency. The

implementation of commonly used audio classifiers is

mainly divided into two categories: threshold-based and

statistical-based models.

In the field of audio classification, the early implemen-

tation of the classifier implementation method is based on

thresholds. This classification method requires a large

amount of training data, and since the thresholds selected

in different applications are generally different, it is not

universal, and the threshold judgment method can only

realize the classification on the audio coarse level (such as

classification music, mute, voice, etc.), and it cannot realize

the fine classification of audio data (such as recognition of

applause, shouting, explosion sound). Therefore, in order to

overcome these shortcomings, people proposed audio

classification based on statistical models. There is no

threshold in this classification method, which is a classifi-

cation model obtained through data training on the basis of

statistical theory. It not only recognizes audio data on the

coarse level, but also recognizes fine-level audio data.

Many researchers have done a lot of work in this field

and proposed different audio features and classification

methods. There are two main problems: First, most of these

studies use relatively simple features, and the classification

problem is also relatively simple, usually only the classi-

fication of speech and music. The classification accuracy is

satisfactory in simple classification, but if the classification

object is increased, such as adding environmental sounds,

non-pure speech or taking smaller windows, only simple

features are used for classification, and the precision is very

low. Second, the conventional audio classification algo-

rithm mainly adopts a rule-based classification algorithm,

that is, determines the category to which the audio belongs

according to one or several audio features and their

threshold values. However, this method has some short-

comings. For example, the decision rules and classification

order are not necessarily optimal; the upper layer decision

errors will accumulate to the next layer and form a

‘‘snowball’’ effect; the classification error is large and

requires human test analysis, in particular, the determina-

tion of the threshold. Therefore, rule-based classification

algorithms are difficult to meet different applications under

different conditions.

In the statistical model, there are also the distinction

between the supervised model and the unsupervised model.

In the early days, people often used supervised data anal-

ysis and classification methods, such as support vector

machine (SVM). SVM is a new machine learning method

based on statistical learning theory [1, 2], which is suit-

able for processing classification and reflects the differ-

ences between categories to a greater extent. The SVM

method fully demonstrates its effectiveness in many
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applications. However, the effectiveness of the SVM

method has a strong dependence on the quality and quan-

tity of training data. A good classifier determines a high

classification accuracy, and a classifier adapted to the target

according to the classification target of the classified audio

data contributes to an improvement in the classification

accuracy. The statistical model has very good ability to

simulate the spatial distribution of features of sound and

has good robustness. Therefore, in recent years, support

vector machine (SVM) has been widely used in audio

classification.

Audio segmentation, also known as hopping point

detection, as the name implies, is to find the hopping point

in the audio sequence to be tested by some means. So what

kind of point is called a jump point? In general, when the

human ear receives a continuous stream of audio signals,

different signals give different senses. From a perceptual

point of view, when the human ear feels a signal change,

this point is called a jump point, also called a dividing

point. From a signal perspective, this change can be

referred to as a change in the auditory characteristic, as a

certain characteristic of the corresponding signal must

change with this change. The process of segmenting out

audio segments of varying lengths is known as audio

segmentation.

In the current multimedia information processing, audio

occupies a very important position, but due to the charac-

teristics of the media source itself and the constraints of the

prior art, the further analysis and utilization of the audio

information is limited. The audio classification and seg-

mentation technology can solve this problem well, pro-

viding a solid foundation for audio structuring and deep

analysis and utilization of audio information.

2 Proposed method

2.1 Audio signal preprocessing

The audio signal preprocessing is divided into two steps:

Firstly, the original audio signal is preprocessed and the

main purpose is to unify the audio format, perform pre-

emphasis, divide the audio signal into audio segments and

perform windowing and framing for each audio segment;

Secondly, the extracted audio frames and audio segments

are extracted, and the extracted features are merged. The

main purpose is to obtain the final required audio feature

vectors. Preprocessing raw audio data, including pre-em-

phasis, segmentation and windowing.

(1) Pre-emphasis processing

Combined with the human ear hearing mechanism, the

audio frequency range that can be heard by the human ear

is 60 Hz–20 kHz. When audio signal processing is per-

formed, the audio signal is pre-emphasized, and its purpose

is to eliminate low-frequency interference, especially

50 Hz or 60 Hz power–frequency interference. Pre-em-

phasis is generally implemented by digitizing the audio

signal with a pre-emphasis digital filter, which is typically

a first-order high-pass digital filter:

HðzÞ ¼ 1� lz�1 ð1Þ

In terms of time domain, if the processed signal is y(n),

then y(n) can be expressed as:

yðnÞ ¼ xðnÞ � l � xðn� 1Þ ð2Þ

In the formula, the pre-weighting coefficient l is taken

as [0.97, 0.98].

Where x(n) is the original signal sequence and y(n) is the

pre-emphasized sequence.

The first-order high-pass digital filter, as shown in

Fig. 1.

By pre-emphasis processing, the effect of sharp noise

can be reduced, and the high-frequency portion of the

signal can be boosted, which makes the spectrum of the

signal flat, and the pre-emphasis coefficient is usually about

0.97 or 0.98. The signal that is pre-emphasized by the filter

needs to be normalized.

(2) Windowed framing

After the pre-emphasis digital filtering process is per-

formed, the windowing and framing processing is per-

formed next. The audio signal characteristics change very

slowly over a short period of time, so the extracted audio

features remain stable during this slow transition. Thus,

when processing an audio signal, the discrete audio signal

is first divided into a unit of length for processing; that is,

the discrete audio sample points are divided into audio

frames. This method is a signal ‘‘short-time’’ processing

method. Generally, a ‘‘short-time’’ audio frame has dura-

tion of about several to several tens of milliseconds.

According to the length of the divided audio unit, we can

divide the audio unit into audio frame, audio clip, audio

shot, audio high-level semantic unit. Although the framing

can adopt the method of continuous segmentation, the

method of overlapping segments is generally adopted, in

order to make a smooth transition between frames and

frames and maintain its continuity. The overlapping portion

of the previous frame and the next frame is called frame

shift, and the frame shift is often taken as half of the frame

Fig. 1 Schematic diagram of the pre-emphasis filter
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length. Framing is implemented by weighting a finite

length window that can be multiplied by y(n) with a certain

window function w(n) to form a windowed audio signal

yw(n) = w(n) * y(n). The signal in the time domain is

multiplied, which is equivalent to the convolution calcu-

lation in the frequency domain. Therefore, the windowing

calculation can also be expressed as follows:

Yw ejx
� �

¼ 1

2p

Zp

�p

Y ejh
� �

W ejðx�hÞ
� �

dh ð3Þ

where Y and W represent the spectrum, respectively.

It can be seen that the window function w(n) not only

affects the waveform of the original signal in the time

domain, but also affects the shape of its frequency domain.

The two most commonly used window functions are the

rectangular window and the Hamming window.

Rectangular window: wðnÞ ¼ 1: 0� n�ðn� 1Þ
0: n ¼ else

�

ð4Þ

Hamming window:

wðnÞ ¼ 0:54� 0:46 cos 2pn=ðN � 1Þ½ �; 0� nðn� 1Þ
0; n ¼ else

�

ð5Þ

The choice of the shape and length of the window

function w(n) has a great influence on the characteristics of

the short-term analysis parameters. Therefore, an appro-

priate window should be selected to make the short-term

parameters better reflect the characteristic changes of the

speech signal. The rectangular window has better spectral

smoothness, but the high-frequency component is lost, the

waveform detail is lost, and the rectangular window will

cause leakage. The Hamming window can effectively

overcome the leakage (Gibbs) phenomenon and has the

widest application range. If the window length N is large, it

is equivalent to a very narrow low pass filter. When the

audio signal passes, the high-frequency portion reflecting

the waveform details is hindered, and its short-time energy

changes little with time. This does not truly reflect the

amplitude variation of the speech signal. Conversely, if

N is too small, the passband of the filter becomes wider,

and the short-term energy changes sharply with time, and a

smooth energy function cannot be obtained. Therefore, the

length of the window should be chosen appropriately,

generally with a duration of 15–30 ms. After the above

processing, the audio signal has been divided into short-

time signals of a frame-by-frame plus window function,

and then, each short-term audio frame is regarded as a

smooth random signal, and the digital signal technology is

used to extract the audio characteristic parameters.

2.2 Audio feature analysis extraction

Audio signals contain a wealth of information, and there

are many interfering signals and redundant information.

How to extract the most representative information of the

audio signal in the audio signal is crucial for audio clas-

sification. Audio features are the basis of audio classifica-

tion, and the extracted audio features are to reflect the

salient features of the audio to the greatest extent possible.

At the same time, the impact on the environment should

reflect good robustness, while eliminating the signal char-

acteristics that cause recognition ambiguity [3]. The

parameters extracted by the feature are used as input to the

classification processing method in the form of vectors.

Therefore, the independence between vector parameters

should be considered, and the computational complexity

should be minimized while ensuring the accuracy of the

results. It has the characteristics of including as much

information as possible, but the amount of data is as small

as possible. Feature extraction of audio can be based on

feature analysis and extraction of audio frames and feature

analysis and extraction based on audio segments. The

characteristics of the audio frame are analyzed by the audio

frame, and the feature analysis and extraction of the audio

segment is based on the characteristic parameters of the

audio frame. The characteristics of audio include three

aspects: time Domain features, frequency domain features

and perceptual features.

(1) Time Domain Features: There are two aspects of

time domain features. The main indicators we use in

audio frames are short-time energy and zero-crossing

rate. The indicators used in the audio segment are

mainly three indicators: mute ratio, low frequency

energy ratio and high zero-crossing ratio.

(2) Frequency Domain Features There are two aspects

to obtaining frequency domain features after Fourier

transform. The indicators used in audio frames are

frequency domain energy, sub-band energy distribu-

tion, frequency centroid, bandwidth, pitch frequency,

MFCC coefficient (Mel-frequency cepstrum coeffi-

cients). In the audio segment, we use indicators such

as sub-band energy ratio mean, spectrum centroid

mean, bandwidth mean, spectrum transition and

MFCC coefficient mean.

(3) Perceptual Features: Perceptual Features mainly

have pitch in audio frame features, and the main

features in audio segment are basic audio frequency

standard deviation [4]. In this paper, the acoustic

characteristics do not reflect the class characteristics

of the audio well in the operation process, so we will

not adopt it.
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2.2.1 Audio time domain feature analysis and extraction

The audio time domain feature refers to a vector parameter

representing a time domain feature extracted by analyzing

an audio signal in units of frames on a time domain

waveform.

Zero-crossing rate (ZCR) refers to the ratio of the

number of points where the signal values of two adjacent

sampling points in the discrete points of the audio signal

are different from each other to the number of all sampling

points in a frame. The zero-crossing rate [5] shows the

frequency of signal zero crossings, and the zero-crossing

rate is also a common audio feature.

ZCR ¼ 1

2ðN � 1Þ
XN�1

m¼1

sgn½xðmþ 1Þ� � sgn½xðmÞ�j j ð6Þ

x(m) is the processed discrete audio signal.

Short-term average energy Short-term average energy is

one of the commonly used audio characteristic parameters.

It is a relatively intuitive feature that reflects the change of

audio energy, which is directly related to the selection of

window length N. If the value of N is too long, the change

of the whole energy is relatively smooth while the differ-

ence is not reflected, but a window that is too narrow does

not have a smooth energy function. Therefore, the choice

of window is more important. In this paper, the Hamming

window is chosen to have a good balance between the two.

The short-term average energy can be calculated using the

formula as shown in (7):

Em ¼ 1

N

X

m

½xðnÞwðn� mÞ�2 ð7Þ

where x(n) represents the nth signal value in the mth frame

of the audio signal, and w(n) is the window function pre-

viously described in the text. The short-time energy can be

set to a threshold, and below the threshold, it can be judged

as silent, so the short-time energy is mainly used to

determine whether the audio signal is muted. The short-

term energy rate can be used to judge whether the audio

signal is a voice, music and noise category.

2.2.2 Audio frequency domain feature analysis
and extraction

The frame is the smallest unit of the audio signal we pro-

cess, calculates the feature value of each frame and then

calculates the feature value at the slice level. There are

usually several typical audio features at the frame level.

(1) The MFCC coefficient: Mel-frequency cepstral coef-

ficient [6] is an acoustic feature derived from the

human auditory mechanism. Humans follow an

approximate linear relationship to the perception of

the sound frequency range below 1000 Hz. The

perception of the sound frequency range above

1000 Hz does not follow a linear relationship, but

follows an approximate linear relationship on the

logarithmic frequency coordinates. The Mel scale

describes the nonlinear characteristics of the human

ear’s perception of frequency. The MFCC is a

cepstrum parameter extracted in the Mel-scale fre-

quency domain. This feature has a high recognition

rate and good noise robustness.

The MFCC is derived from the research results of two

auditory systems [7]. Firstly, human perception of a single

tone is approximately proportional to the logarithm of the

pitch frequency. The so-called Mel-frequency scale, whose

value generally corresponds to the actual frequency loga-

rithmic distribution relationship. In the Mel-frequency

domain, people’s perception of tones is linear. The rela-

tionship between the Mel frequency and the actual fre-

quency can be approximated by the following formula:

Melðf Þ ¼ 2595 log 1þ f

700

� �
ð8Þ

Secondly, when two tones with similar frequencies are

emitted at the same time, one can only hear one tone.

Critical bandwidth refers to such a bandwidth boundary

that makes the subjective feeling abrupt. When the fre-

quency difference between the two tones is less than the

critical bandwidth, the person will hear the two tones as

one, which is called the shielding effect. The critical

bandwidth calculation formula is as follows:

BWc ¼ 25þ 75 1þ 1:4 1þ fc

700

� �2
" #0:69

ð9Þ

where f c is the center frequency.

Therefore, a critical band filter bank can be constructed

to mimic the perceptual characteristics of the human ear.

The Mel frequency cepstral coefficient [8] (MFCC) is

calculated by using the filter bank method in the spectrum.

The audio frequency is divided into a series of triangular

filter sequences. This set of filters is of equal bandwidth at

the Mel coordinates of the frequency.

(2) The frequency domain energy: the frequency domain

energy formula is as follows:

E ¼ log

Z x0

0

FðxÞj j2dx
� �

ð10Þ

where FðxÞ is the FFT transform coefficient of the

frame, and x0 is half of the sampling frequency. The

frequency domain energy E is used to determine the

silence frame. If the frequency domain energy of a
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certain frame is less than the threshold, the frame is

marked as a silence frame, otherwise it is a non-

silence frame.

(3) The sub-band energy ratio divides the frequency

domain into four sub-bands, which are ½0; x0

8
�,

½x0

8
; x0

4
�, ½x0

4
; x0

2
�, ½x0

2
;x0�, and calculate the distribu-

tion of energy of each sub-band. The calculation

formula is as shown in Eq. (11):

D ¼ 1

E

Z Hj

Lj

jFðxÞj2dx ð11Þ

where Lj and Hj are the upper and lower boundary

frequencies of the sub-bands. Different types of

audio have different energy distributions in each sub-

band interval. The frequency domain energy of

music is relatively evenly distributed in each sub-

band interval. In speech, energy is mainly concen-

trated in the 0th sub-band, about 80% or more.

(4) Zero-crossing rate, in the case of discrete-time

signals, adjacent samples with different algebraic

symbols are said to have zero crossings. The zero-

crossing rate is a speed that describes zero crossing

and is a simple measure of the amount of signal

frequency. The formula is given by Eq. (12):

ZCR ¼ 1

2ðN � 1Þ
XN�1

m¼1

sgn½xðmþ 1Þ� � sgn½xðmÞ�j j

ð12Þ

where xðmÞ is the discrete audio signal. ZCR is a

more common audio feature.

(5) Frequency centroid: the brightness of a frame is

measured by the frequency centroid in a frame, and

the calculation method is as shown in Eq. (13):

FC ¼
Rx0

0
xjFðxÞj2dx

Rx0

0
jFðxÞj2dx

ð13Þ

(6) Bandwidth: bandwidth is an indicator of the fre-

quency range of the audio. Calculate as in Eq. (14):

BW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRx0

0
ðx� FCÞ2jFðxÞj2dx
Rx0

0
jFðxÞj2dx

vuut ð14Þ

(7) The pitch frequency: The pitch frequency is a unit

that measures the pitch. Pitch period detection

methods can be broadly divided into three categories:

time domain methods, frequency domain methods,

and methods for summing the time domain and

frequency domain characteristics of signals. In

general, the pitch period is estimated using a simpler

peak clipping algorithm for the center clipping short-

term autocorrelation function. The principle of the

autocorrelation method is that the short-time auto-

correlation function of speech has a large peak at an

integral multiple of the pitch period, and the pitch

period can be estimated as long as the position of the

largest peak point is found. The steps for calculating

the pitch period are as follows:

(a) Preprocessing: The center clipping function (15) is

used to clip the audio to reduce the effect of the

formant. The clipping threshold L is determined by

the peak amplitude of the speech signal, generally

taking 60–70% of the maximum signal amplitude.

yðnÞ ¼ CðxðnÞÞ ¼
xðnÞ � L; xðnÞ[ L

0; jxðnÞj� L

xðnÞ þ L; xðnÞ\L

8
<

:
ð15Þ

(b) Computation of yðnÞ and y0ðnÞ cross-correlation: In

order to overcome the problem of large amount of

short-term autocorrelation calculation, the autocorre-

lation of yðnÞ after the center clipping of Eq. (15) is

replaced by the cross-correlation of two signals. One

signal is only yðnÞ, and the other signal is three-level

quantization of yðnÞ only to produce y0ðnÞ, namely

y0ðnÞ ¼ CðxðnÞÞ ¼
1; yðnÞ[ 0

0; yðnÞ ¼ 0

�1; yðnÞ\0

8
<

:
ð16Þ

Calculate cross-correlation using the following

formula:

RðkÞ ¼
XN�1�k

n¼0

yðnÞy0ðnþ kÞ ð17Þ

(c) Find the pitch period: Select the maximum value of

RðkÞ, which is recorded as Rmax. If Rmax\c�Rð0Þ (c is
the threshold), it is judged as unvoiced, so that its

pitch period is 0; otherwise, the pitch period is the

value of k when RðkÞ is the maximum value Rmax,

namely

Np ¼ argmaxRðkÞ
k1� k� k2

ð18Þ

(d) Post-processing: Some scattered pitch periods devi-

ate significantly from the pitch period trajectory due

to the presence of sound interference, bias in the

pitch period estimation, etc. For the accuracy and

convenience of post-processing, the median filtering

technique is generally used to smooth the original
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curve. Median filtering is a nonlinear process. It uses

a sliding window to select a piece of data from the

data sequence and then replaces the data with the

median value of the data. As the window continually

slides along the data sequence, it constantly draws a

median value, which is the result of the filtering.

2.2.3 Feature analysis and extraction based on audio
segments

The audio segment is larger than the audio frame unit. One

audio segment generally contains several audio frames. Its

characteristic source is to statistically divide the audio

frames. The general calculation method is to calculate their

mean, variance and standard deviation for the audio frames

contained in the audio segment. The main audio segment

features used in this chapter are

(1) The mute ratio sets a threshold in the frequency

domain energy. When the energy of the sample

frame is less than this threshold, we call the frame a

silence frame, otherwise it is a non-silence frame.

Based on the audio segment, the proportion of the

mute frame is the mute ratio, which can be expressed

by the following formula (19).

r ¼ M

N
ð19Þ

The parameter M represents the number of silence

frames in the audio segment, and the parameter N

represents the number of all audio frames contained

in the audio segment.

(2) The sub-band energy ratio mean: Sub-band energy

ratio mean [9] is the audio segment feature calcu-

lated by the sub-band energy ratio parameter, that is,

the average value of the energy ratio of each frame

sub-band in an audio segment. This feature is widely

used in the research of signals.

(3) The bandwidth mean and the spectral centroid mean:

bandwidth mean are the average of the bandwidth of

each frame in the audio segment, and the average

value of the spectrum centroid is the average of the

audio brightness of each frame in the audio segment.

(4) The high zero-crossing ratio: The zero-crossing rate

of speech is higher than the music. If a threshold is

set, the proportion of audio frames in the audio

segment that exceeds this threshold can be calcu-

lated. This ratio is called the high zero-crossing ratio

(high ZCR ratio). The threshold is generally 1.5

times the average of the zero-crossing rate in the

audio segment. The calculation formula of its

eigenvalue is as shown in (20):

HZCRR ¼ 1

2N

XN�1

n¼0

sgnðZCRðnÞ � 1:5avZCRÞ þ 1½ �

ð20Þ

The parameter N represents the total number of

audio frames in the audio segment, and ZCR(n) rep-

resents the zero-crossing rate of the nth frame in the

audio segment.

(5) The low frequency energy ratio sets an energy

threshold in an audio segment. Below this energy is

called the low frequency energy frame. The ratio of

the low frequency energy frame in an audio segment

can be calculated. This ratio is called the low

frequency energy ratio, referred to as LRER [10], is

obtained by the following formula (21).

LFER ¼ 1

2N

XN�1

n¼0

½sgnð0:5avE � EðnÞ þ 1Þ� ð21Þ

The parameter N is the total number of audio

frames in the audio segment, and E(n) represents the

frequency domain energy of the nth frame in the

audio segment. The threshold in the formula is 0.5

times the average value of the energy in each frame

in the audio segment.

(6) The spectral transition spectrum transition is used to

describe an average parameter of the spectral differ-

ence of each adjacent audio frame in an audio

segment. The calculation formula is as shown in

(22):

SF ¼ 1

ðN � 1Þ � K

XN�1

n�1

XK�1

K�1

log DFTðnþ 1; kÞj jð Þ � log DFTðn; kÞj jð Þj j2
ð22Þ

(7) Base audio rate standard variance: In an audio

segment, the pitch frequency of each frame is first

calculated, and then their standard deviation is

calculated using these pitch frequency parameters,

which is a feature used to describe the range of the

pitch frequency.

(8) The constituent vector set of the feature vector set is

divided into two parts, a 24-dimensional MFCC

vector, and an 11-dimensional feature vector

extracted by the audio segment. Because the differ-

ence between the feature vectors is relatively large, it

needs to be normalized. However, after the normal-

ization of the MFCC vector set, the experimental

results are not improved well. Therefore, only the
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segment features are normalized and processed. As

shown in (23):

x0i ¼ ðxi � liÞ=bi ð23Þ

Parameter xi needs to be normalized input feature

vector, li is mean, bi is variance, and x0i is the feature

obtained after normalization.

2.3 Audio classification method

Audio classification technology is essentially a pattern

recognition technology [11]. The statistical learning

method has the advantages of a solid theoretical foundation

and a simple implementation mechanism and thus is

adopted by most current audio classification systems. The

statistical learning method requires a batch of training

samples with category markers to be given in advance, and

the classifier is generated through guided learning training,

and then the samples to be classified of the test sample set

are tested to measure the classification performance. Typ-

ical audio classification methods include minimum dis-

tance method [12], support vector machine, neural network

[13], hidden Markov model [14] and decision tree [15].

2.3.1 SVM-based classification algorithm

Support vector machine (SVM) is a machine learning

method based on VC dimension theory and structural risk

minimization proposed by Cortes and Vapik [16] in 1995,

and its performance is very good. It solves small samples

and nonlinearities. And high-dimensional pattern recogni-

tion and other issues can show its own unique advantages.

Simply put, the purpose of the support vector machine

approach is to find an optimal classification hyperplane that

can completely separate the two types of data at maximum

intervals. SVM can have a good learning effect regardless

of the two-category or multi-classification problem. The

SVM method was originally used to solve the two-category

problem. The basic principles in the second classification

are explained in detail below (Fig. 2).

The training sample set is X ¼ fx1 � � � xng;X 2 Rd. The

corresponding category is labeled fy1 � � � yng; yi 2 f1;�1g.
Let the dimension of the training sample feature vector be

d and the number of samples be n.

(1) Linear support vector machine

For linearly separable problems, the dichotomous problem

can construct a classification hyperplane so that positive

and negative samples can be completely separated. As

shown in Fig. 3. The solid sample points on the left rep-

resent positive samples, and the hollow sample points on

the right represent negative samples. There are several

classification planes between H1 and H2, all of which are

able to completely separate the positive and negative

samples. If one of the classification faces can not only

completely separate the positive and negative samples, but

also maximize the geometric spacing, then this classifica-

tion line is called the optimal classification hyperplane. The

so-called geometric spacing is the distance between H1 and

H2. H is the classification plane, and H1 and H2 are straight

lines parallel to H and simultaneously passing through the

two types of samples closest to the distance H. The sample

points that happen to fall on H1 and H2 are the support

vectors we are talking about. It is these support vectors that

together build the optimal classification hyperplane.

Assume that the linear discriminant function is

gðxÞ ¼ wxþ b. By normalization, fx1 � � � xng satisfies

gðxÞ� 1, and at this time, the classification interval is

2ljjwjj.
yi½wxi þ b� � 1� 0; i ¼ 1; . . .; n ð24Þ

When the formula (23) is established, this classifier can

correctly label all samples. Obviously, maximizing the

classification interval is actually minimizing jjwjj. There-
fore, the optimal classification hyperplane should both

satisfy Eq. (24) and minimize jjwjj. The support vector

machine is a sample of the formula (25). In summary, the

problem of solving the optimal classification hyperplane is

equivalent to the following constraint optimization

problem:

min jjwjj2=2
s:t: yi½wxi þ b� � 1� 0; i ¼ 1; . . .; n

ð25Þ

In this way, the solution of SVM is finally transformed

into solving the quadratic programming problem, so theo-

retically the solution of SVM is the globally unique optimal

solution. First, construct a Lagrangian function:

M arg in ¼ 2ljjwjj

Lðw; a; bÞ ¼ 1

2
jjwjj2 �

Xn

i¼1

aiyiðxi � wþ bÞ

þ
Xn

i¼1

ai; ai � 0; i ¼ 1; 2; . . .; n

ð26Þ

In the formula, ai is the Lagrangian factor, and then we,

respectively, differentiate the w and b in the above formula

and make them equal to 0, and get w ¼
P

i aiyixi andP
i aiyi ¼ 0 to convert the original optimization problem

into a dual problem:
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max WðaÞ ¼
Xn

i¼1

ai �
1

2

Xn

i;j¼1

yiyjaiajðxi � xjÞ

s:t:
Xn

i¼1

yiai ¼ 0 ai � 0; i ¼ 1; 2; 3; . . .; n

ð27Þ

Solving the above formula can obtain the corresponding

ai value of each sample, and the obtained solution is the

optimal solution of the optimization problem. Only the

samples corresponding to ai that are not 0 are support

vectors. Usually only a small part of the samples have ai
not 0. The final classification function discriminant is as

follows:

f ðxÞ ¼ sgn
Xn

i¼1

a�i yiðxi � xÞ þ b

" #

ð28Þ

b ¼ 1

2

Xn

i¼1

aiyixi � xr þ
Xn

i¼1

aiyixi � xs

" #

ð29Þ

The b calculated by the above formula is the skew

amount. When a�i in the formula is not 0, xr and xs repre-

sent any pair of support vectors in the two types of samples.

In reality, it is often because of the influence of noise

that the classification samples cannot be separated linearly,

and thus an uncorrected classification hyperplane cannot be

obtained. The noise here can be considered as the rightmost

black point in Fig. 4. It is obviously a sample of the neg-

ative class. This strange sample makes the linearly sepa-

rable problem linear and inseparable. Usually this kind of

problem is called ‘‘Approximate linear separability.’’ For

this kind of problem, our usual treatment method is that the

sample point is originally the user who accidentally mis-

labeled the sample, which is interference, noise, and should

be ignored. But its existence does cause the problem to be

unsolvable, so for this situation, we deal with a method that

allows a small number of sample points to the distance of

the classification hyperplane which does not have to meet

the original requirements. That is to say, we originally

require that all sample points to the classification

Fig. 2 Mel-scale filter bank

Fig. 3 Support vector machine (SVM) schematic

Fig. 4 Singularity
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hyperplane should be at least greater than 1 interval. Now

add fault tolerance and allow a hard threshold to be added

to a hard variable, which allows some sample points to fall

within the geometric interval, the expression becomes the

following form:

yi wxi þ b½ � � 1� ni
ni � 0; i ¼ 1; . . .; n

ð30Þ

The slack variable is nonnegative; that is, the final result

is that the sample interval is allowed to be smaller than 1.

When the interval between the sample points is calculated

to be less than 1, it means that the classifier gives up the

exact classification of these singular points. Although this

itself will cause some loss to the classifier, it also allows

the classified hyperplane to be moved to these sample

points without being affected by these few sample points,

resulting in a larger geometric spacing. So there is a need

for multiple weightings between the two.

Knowing that jjwjj2 is the objective function, expecting

its value to be as small as possible, so the loss should be an

amount that makes jjwjj2 larger. There are usually two

ways to measure loss, the first is a second-order soft-in-

terval classifier:

Xn

i¼1

n2i ð31Þ

The other is a first-order soft-interval classifier:

Xn

i¼1

ni ð32Þ

Adding a loss to the objective function requires a pen-

alty factor, so the original optimization problem can be

written as follows:

min
1

2
jjwjj2 þ C

Xn

i¼1

ni

s:t: yi wxi þ b½ � � 1� ni ; n� 0 i ¼ 1; 2; 3; . . .; n

ð33Þ

(2) Nonlinear support vector machine

The basic principles of the support vector machine in

solving the linear separability problem and the ‘‘approxi-

mate linear separability problem’’ are introduced. But in

the real world, many times, in the original low-dimensional

sample space, the sample is extremely inseparable. No

matter how to find the classification hyperplane, there are

always many singular points that do not meet the require-

ments. At this time, it is necessary to map the linearly

inseparable sample data in the low-dimensional space to

the high-dimensional space. Although the mapping is not

completely linearly separable after the mapping, it is at

least ‘‘approximate linear separable.’’ Then with the slack

variable to deal with a small number of singular points, you

can achieve very good results. Mapping a sample from a

low-dimensional space to a high-dimensional space needs

to be implemented by means of a kernel function, so that

the kernel function is:

Kðxi; xjÞ ¼ UðxiÞ � UðxjÞ ð34Þ

The kernel function itself must satisfy the Mercer con-

dition. Its basic function is to input the vector in two low-

dimensional spaces and then calculate the vector inner

product value of a transformed high-dimensional space. So

the original problem can be converted into the following

form:

max WðaÞ ¼
Xn

i¼1

ai �
1

2

Xn

i;j¼1

yiyjaiajKðxi � xjÞ

s:t:
Xn

i¼1

yiai ¼ 0 0� ai �C ; i ¼ 1; 2; 3; . . .; n

ð35Þ

The discriminant function becomes

f ðxÞ ¼ sgn
Xn

i¼1

a�i yiKðxi � xÞ þ b

" #

ð36Þ

b ¼ 1

2

Xn

i¼1

aiyiKðxi � xrÞ þ
Xn

i¼1

aiyiKðxi � xsÞ
" #

ð37Þ

(3) Introduction to the kernel function

The kernel function makes the support vector machine

perform well when dealing with nonlinear separable

problems. The nonlinear classifiers constructed by different

kernel functions are also different. When dealing with

practical problems, there is currently no guiding principle

for the selection of kernel functions. More needs to be

verified by experiments to select the best kernel function.

Commonly used kernel functions are as follows:

(a) Linear kernel function:

Kðx; xiÞ ¼ ðxi � xÞ ð38Þ

(b) Polynomial kernel function [17]:

Kðx; xiÞ ¼ pðxi � xÞ þ s½ �q ð39Þ

(c) Sigmoid kernel function [18]:
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Kðx; xiÞ ¼ tan hðlðxi � xÞ þ cÞ ð40Þ

(d) Radial kernel function [19]:

Kðx; xiÞ ¼ exp �c x� xij j2
� �

ð41Þ

The most widely used of the above kernel functions is

the radial basis kernel function, which has a wide con-

vergence domain and is suitable for various situations such

as low dimensional, high dimensional, small sample and

large sample. The best performing radial basis kernel

function is also selected for audio classification. The value

of c is 8.

2.3.2 SVM multi-classification method

In recent years, SVM multi-class classification algorithms

proposed by researchers at home and abroad can be

roughly divided into two categories: One is to expand the

basic two types of SVM into multi-class classification

SVM, and this kind of method solves the optimization

problem. There are a lot of variables used in the process, so

it is not practical because the computational complexity is

too high. The other is to gradually transform the multi-class

classification problem into two types of classification

problems, that is, to form a multi-class classifier with

multiple two-class classification SVM. At present, such

methods are widely used, and there are two commonly used

classification strategies: One Against One [20] strategy and

One Against All [21] strategy.

(1) One-on-one strategy. This strategy was proposed by

Knerr et al. in 1990. The main idea is to construct a

classification hyperplane for any two categories

when classifying and to separate the N categories.

To classify N categories using this strategy, a total of

N * (N-1)/2 two-class SVM classifiers are required.

Then, according to this two-category combination,

the classifier training of each two-category classifi-

cation problem is performed. In the process of

identification, each test sample is separately input

into the N * (N-1)/2 two-classifiers, and the

classification result obtained by each classifier is

voted to obtain the category with the most votes. The

final classification result of the sample, this strategy

is called the ‘‘voting method.’’

(2) One-to-many strategy. This method was proposed by

Bottou et al. in 1994. The main idea is when

classifying, for the multi-classification problem of

N categories of training samples, first construct a

classification hyperplane between the ith class and

other N-1 classes. Thus, the algorithm constructs a

total of N two types of SVM classifiers. When the ith

classifier is trained, the sample of the ith category is

? 1, and the sample points of the other classes are

-1 to perform the training of the two-category

classification problem. In the identification process,

each sample to be identified will enter the trained

N classifiers, respectively, and the output values

obtained by each classifier are compared to obtain

the classification result. The one-to-many strategy

requires each classifier to output a probability value

of a certain class belonging to the classifier discrim-

inant category, and then all the output probability

values are compared, and the class of the classifier

with the highest probability is taken as the class of

the sample. The output of the support vector machine

is a specific classification, and there is no probability

value output. Therefore, when applying the one-to-

many strategy, we do not find the discriminant

category of the SVM, but find the probability output

of the SVM. Through this calculation process, each

sample has a probability value in each classification,

indicating the probability that the sample belongs to

a certain classification. Finally, the classifier with the

largest output probability value is selected, and the

category represented by ? 1 is the final classification

result of the sample to be identified. The one-to-

many strategy is simple, effective and has a short

training time. It is more suitable for large-scale data

classification than one-to-one strategy.

2.4 Audio segmentation technology

The purpose of audio segmentation is to use a computer

program to intelligently segment the audio stream into

segments of different lengths and properties, freeing the

time, labor and capital costs of manual segmentation. The

so-called uniformity means that the characteristic param-

eters of the audio segment are the same or similar whether

in the time domain or the frequency domain.

2.5 Audio segmentation algorithm based on BIC
theory

Audio segmentation based on Bayesian information crite-

rion (BIC) [22] is a widely used method. The BIC criterion

generally detects whether a model conforms to the BIC

criterion by the difference between the maximum likeli-

hood value of the sample and the complexity of the model.

The complexity of the model usually refers to the param-

eters of the model. In recent years, due to its superior

performance, it has been introduced into audio segmenta-

tion and clustering problems. Suppose X ¼
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xi : i ¼ 1; 2; . . .;Nf g is a piece of audio sequence to be

tested, N is the signal length, M ¼ fmi : 1; 2; . . .;Kg is the

candidate model parameter, LðX;MÞ is the maximum

likelihood function of sample data X in model M, and m is

the number of parameters of model M, then the BIC cri-

terion is defined as shown in Eq. (42):

BICðMÞ ¼ ln LðX;MÞ � 1

2
� k � m � lnðNÞ ð42Þ

where k is the penalty factor [23], usually taken as 1.

Suppose the signal X satisfies the multivariate Gaussian

distribution, and it has a window length signal

Y ¼ fy1; y2; . . .; yng, where n is the window length. In order

to detect whether there is a split point in Y, it is necessary to

detect every point ið0\i\nÞ in Y. Suppose that Y is

divided into two parts by point i: Y1 ¼ fy1; y2; . . .yig and

Y2 ¼ fyiþ1; yiþ2; . . .yng, and hypotheses H0 and H1 are

made on Y, which means that there is no dividing point in Y

and there is a dividing point in Y, and the mathematical

description is as shown in formula (43):

H0 : Y 	Nðl;RÞ
H1 : Y1 	Nðl1;R1Þ; Y2 	Nðl2;R2Þ

ð43Þ

The corresponding maximum likelihood ratio can be

described as shown in Eq. (44):

RðiÞ ¼ n � ln jRj � n1 � ln jR1j � n2 � ln jR2j ð44Þ

where l; l1; l2 are the average values of Y ; Y1; Y2,

respectively, and R;R1;R2 are corresponding covariance

matrices, and n; n1; n2 are corresponding signal lengths.

Compare the H0 and H1 models and define the differ-

ence between their BIC values as shown in Eq. (45):

DBIC ¼ BICðH1Þ � BICðH0Þ ¼ RðiÞ � kp ð45Þ

where p ¼ 1=2� ðd þ 1=2� ðd þ 1ÞÞ lnðnÞ, d is the

dimensions of the sample space. If the weighted variance

set of the candidate segmentation points of all sequences is

greater than 0, it means that there is a segmentation point in

Y, and the assumption H1 is true. The condition description

is as shown in Eq. (46):

fmaxDBICðiÞg[ 0 ð46Þ

When formula (45) is satisfied, there is a split point in Y,

and the moment at which the split point is located can be

described as shown in Eq. (47):

t̂ ¼ argmaxDBICðiÞ ð47Þ

If the formula (46) is not satisfied, then it is assumed that

H0 is established; that is, there is no division point in Y, and

a new window Y is formed by amplifying n to perform BIC

detection again. For a single split point and multiple split

points, Chen proposed their own solutions [24], which is

better for short-term clips with more transitions. However,

if the column to be tested is too long and the segmentation

point cannot be detected for a long time, it will undoubt-

edly increase the amount of calculation. In addition, this

method is prone to cumulative errors. If the wrong seg-

mentation point appears before, this error will continue and

it will not be corrected later.

2.5.1 Improved BIC audio segmentation algorithm

Although there are various defects in BIC-based audio

segmentation, its advantages cannot be ignored. It is only

necessary to slightly modify various inadequacies to ensure

the robustness of the algorithm. The following is a

description of some of the higher recognition improve-

ments that have been made by later researchers to address

these shortcomings.

A large part of the error accumulation and calculation of

the traditional BIC method is due to the increase in the

window length, so later researchers proposed a more

intuitive improvement method, which is based on the fixed

window length sliding mode. For each detected BIC win-

dow, the initial window length is constant. If a split point is

detected, slide a certain length to the next window. If the

split point is not detected, the window length is also

increased, but when the window length is increased to a

certain extent, the split point is still not detected and then

the window keeps the current window length and slides

forward until the split point is found to restore the initial

window length. Even if the split point is detected, the

window length is not increased and it is directly swung

backward.

3 Experiments

The experimental test audio data are manually classified

into silent/noise, pure speech, mixed voice, music, envi-

ronmental sound, etc., and is used as a mixture of training

samples and test samples.

There are many audio formats, such as wav, mp3, midi.

The channels are divided into mono-, dual- and multi-

channel. The sampling rate is 44.1 kHz, 32 kHz, 16 kHz,

8 kHz, and the precision is 32 bit, 16 bit and 8 bit. The

audio is normalized before the audio experiment, the

sampling frequency is 44.1 kHz, the quantization precision

is 16 bits, and the audio files are unified to wav, and the

uni-channel data are taken for analysis. Audio is divided

into clip sequence number is 3600, after manual classifi-

cation, mute clip760, noise clip630, music clip570, pure

voice clip530, voice clip560 with background sound,

ambient sound clip550.
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4 Discussion

4.1 Classification of mute and noise

Quiet and noise use a rule-based classification method. The

experimental design is as follows: Mute and noise domain

values are judged for all samples, the correct classification

number is recorded, the number of misclassifications (the

number of clips that are not muted but judged to be mute)

is calculated, and the classification accuracy is calculated.

The experimental results are as follows (Table 1).

For other categories, the audio size is obviously differ-

ent, so the recognition accuracy is high. The misclassifi-

cation is mainly due to the fact that in a clip, it contains

mute and other audio categories, so the energy average

may be relatively small. The method of reducing the

energy threshold is solved. The accuracy of recognition for

noise is 85.87%. The reason for the analysis is that the

noise sources appearing in different audio categories are

not the same, so the time–frequency characteristics of the

noise are also different. The single threshold is used to

judge the lack of universality. Therefore, the accuracy of

noise judgment in the test is not high, and the false positive

rate is high. The environmental sound with small change in

energy spectrum is easily misjudged as noise.

4.2 Classification of each audio category

SVM-based classifiers are used to classify pure speech/

background sounds and music/environmental sounds.

Three trials are performed for each classification

(Tables 2, 3).

It can be seen from the experiment that the classification

accuracy of the support vector machine classifier is very

high, the average classification accuracy of pure speech and

background sound is 91.28%, and the average classification

accuracy of music and environmental sound is also

90.77%. It can be seen from the experimental data that the

proposed support vector machine classifier has better

classification effect and accuracy for audio classification

work (Table 4).

4.3 Traditional DBIC segmentation method
and improved DBIC segmentation method

The experiment uses the traditional segmentation method

and improved segmentation method, respectively. In order

to compare the accuracy of the improved segmentation

method with the traditional segmentation method, the

rationality of the proposed traditional segmentation crite-

rion and the effectiveness of the improved segmentation

method are verified. The classification results were seg-

mented using traditional segmentation methods and

improved segmentation methods.

The traditional DBIC segmentation method is equivalent

to the improved DBIC segmentation method, and the

number of segmentation results detected is significantly

more than the improved method. The reason for the anal-

ysis is that the traditional method only smoothes the clas-

sification result and then directly combines the same

category of audio to obtain the segmentation result. The

interaction between adjacent segments is not considered,

and the overall optimization of the segmentation is

neglected. It is equivalent to relaxing the constraints of the

audio lens segmentation, which will improve the accuracy

rate, will inevitably lead to an increase in misclassification,

resulting in a larger number of detected audio shots. The

improved method transforms the segmentation problem

into an optimization problem solution. It is a dynamic

method, which fully considers the interaction between

segments and the overall optimization of segmentation, so

the number of false positives is significantly reduced, and

Table 1 Noise/silent classification results

Number of correct

classification

Number of

misclassifications

Classification

accuracy (%)

Noise 541 127 85.87

Mute 709 23 93.28

Table 2 Voice-sorted results with pure voice/background sound

Pure speech classification accuracy

(%)

Speech classification accuracy with background

sound (%)

Average classification accuracy

(%)

Experiment

1

92.76 89.32 91.04

Experiment

2

91.89 89.03 90.46

Experiment

3

94.52 90.17 92.34

Average 93.05 89.50 91.28
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the accuracy is also slightly improved. The results reflect

that the actual efficiency of the optimized method is sig-

nificantly higher than the traditional method.

5 Conclusions

Audio classification is the basis of audio information deep

processing, the core technology of audio structure, and an

important means to extract audio structure and content

semantics. It actually divides the audio data into different

categories according to the perceived characteristics or the

content of the expression, which can play an important role

in content-based video segmentation, voice retrieval and

audio supervision. Audio classification is also one of the

key technologies for audio information processing, audio

information retrieval and data management. Although

audio classification does not have a long history,

researchers have conducted more detailed research in this

area, which not only makes the knowledge in this field

become a complete system, but also promotes the devel-

opment of audio information processing technology to a

certain extent. In essence, the classification of audio data

can be said to be a process of pattern recognition. Its

research focus usually includes two basic aspects of audio

feature analysis and extraction and the design and imple-

mentation of classifiers. An SVM-based audio classifica-

tion algorithm that classifies audio into six categories:

mute, noise, music, background sound, pure speech and

speech with background sound. On the basis of classifica-

tion, a smoothing criterion is proposed, and the classifica-

tion result is smoothed, and finally the audio stream is

segmented by audio category. The experimental results

show that the SVM-based classification algorithm has a

good classification effect and high classification accuracy.

The smoothing processing further improves the

classification accuracy, reduces the misclassification rate,

and the segmentation result is more accurate.
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