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Abstract
In this paper, an online adaptive optimal control problem of a class of continuous-time Markov jump linear systems

(MJLSs) is investigated by using a parallel reinforcement learning (RL) algorithm with completely unknown dynamics.

Before collecting and learning the subsystems information of states and inputs, the exploration noise is firstly added to

describe the actual control input. Then, a novel parallel RL algorithm is used to parallelly compute the corresponding

N coupled algebraic Riccati equations by online learning. By this algorithm, we will not need to know the dynamic

information of the MJLSs. The convergence of the proposed algorithm is also proved. Finally, the effectiveness and

applicability of this novel algorithm is illustrated by two simulation examples.

Keywords Markov jump linear systems (MJLSs) � Adaptive optimal control � Online � Reinforcement learning (RL) �
Coupled algebraic Riccati equations (AREs)

1 Introduction

Markov jump linear systems (MJLSs), firstly proposed by

Krasovskii and Lidskii [1] in 1961, can be considered as a

kind of multi-model stochastic systems. In MJLSs, it

contains two mechanisms, i.e., the modes and the states.

The modes are jumping dynamics, modeled by finite-state

Markov chains. The states are continuous or discrete,

modeled by a set of differential or difference equations.

With the development of control science and stochastic

theory, MJLSs have been widely concerned and many

research results are available, such as stochastic stability

and stabilizability [2–4], controllability [5–9] and robust

estimation and filtering [10–12].

In recent years, the adaptive optimal control problem

has become a focused issue in controllers design and many

related works have been published. For example, the

authors in [13] studied the adaptive surface optimal control

methods for strict-feedback systems. Then, the observer-

based adaptive fuzzy control law was proposed for non-

linear nonstrict-feedback systems [14]. A general method

to solve the optimal control problem related to the related

algebraic Riccati equations (AREs) was studied in [15]. In

[16], Kleinman considered an offline iterative technique to

solve the AREs. In [17, 18], the iterative algorithm and the

temporal difference method were, respectively, proposed to

solve the discrete-time coupled AREs. To get the solutions

of a set of coupled AREs for MJLSs, a Lyapunov iteration

method [19] was derived. For more related researches, we

can refer to [20–24]. However, all these algorithms are
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offline and have limitations to implement when the system

dynamics are unknown.

Reinforcement learning (RL) and approximate/adaptive

dynamic programming (ADP) algorithms are widely

applied to solve the optimal control problems [25–28].

Moreover, we can use RL and ADP algorithm to obtain the

optimal controller solutions through online learning. In

[29], an online feedback control scheme is designed for

linear systems by applying RL and ADP method. Then, it

was developed to solve the zero-sum differential game

[30]. In [31, 32], an adaptive policy iteration algorithm is

considered for continuous-time and discrete-time nonlinear

systems, respectively. Then, the reinforcement Q-learning

for optimal tracking control problem was studied for linear

discrete-time systems with unknown dynamics [33] and

nonlinear discrete-time systems with unknown nonaffine

dead-zone input [34]. Applying the H! state feedback

scheme, an online policy update algorithm was proposed

[35]. For more results on this studying, we refer readers to

[36–44].

It is worth pointing out the relevant methods related to

RL and ADP are mostly used to solve the optimal con-

troller design problems for general linear/nonlinear

dynamics. Due to the complexity of MJLSs which contain

states and modes, the mode-based switching subsystems

have coupling relationships. Obviously, the RL and ADP

algorithms proposed above can not directly solve the

adaptive optimal control problems of MJLSs. To study the

online control problem for MJLSs, the authors in [45]

considered an online adaptive optimal control scheme by

applying a novel policy iteration algorithm. Then, the rel-

evant results were developed to the Itô stochastic systems

[46] and the H! optimal problem [47] of MJLSs. But in

these results, we must partially know the system dynamics.

Therefore, these published results can be considered as

partial model-free ones.

In this paper, we propose a novel parallel RL algorithm

to solve the optimal control problem of MJLSs with

completely unknown dynamics. This algorithm is based on

the subsystem transformation technique and the parallel RL

algorithm. The subsystem transformation technique is used

to obtain the N AREs. Then, we can parallelly solve the

corresponding N AREs by collecting and learning the

subsystems information of states and inputs. Comparing

with the published results in [45, 46], we will not use the

system dynamics in this paper and the exploration noise is

added to describe the actual control input. Moreover, the

solutions can be conducted directly in one step by repeated

iteration and computation without using policy evaluation

and improvement. It is clear that the iterative algorithm in

this paper can be effective to study the online optimal

control problems for MJLSs. The convergence has also

been proved. In order to demonstrate the effectiveness of

the designed method, two simulation examples are given at

last.

The main contributions of this paper can be concluded

as:

1. A novel parallel RL algorithm with completely

unknown dynamic information is first proposed to

solve the optimal control problem of MJLSs;

2. To deal with the jumping modes, we use the subsystem

transformation technique to decompose the MJLSs.

3. Compared with the results in [19], we apply the online

collecting and learning the subsystems information of

states and inputs to obtain the dynamics information.

Then, we optimize and update the iterative results to

obtain the optimal control policy. The designed PI

algorithm is online and does not require the dynamic

information of the MJLSs.

This paper contains the following five sections. The

problem formulation and preliminaries are introduced in

Sect. 2. The novel parallel iteration algorithm is proposed

in Sect. 3.1, and the online implementation of the algorithm

is given in Sect. 3.2; Sect. 3.3 gives the convergence proof

of the designed algorithm. Two simulation examples are

shown in Sect. 4. A conclusion is given in Sect. 5.

Notations Throughout this paper, <n is used to denote an n-

dimensional real matrix; kðAÞ denotes the eigenvalue of A;
rankðAÞ denotes the rank of A; Zþ denotes a non-negative–

positive integer set; Ef � g shows the mathematical

expectation of stochastic processes or vectors; �k k repre-

sents the Euclidean norm; � is used to represent the Kro-

necker product which has the following properties: (1)

ðA� BÞT ¼ AT � BT, (2) xTPx ¼ ðxT � xTÞvec ðPÞ. For a

matrix A 2 <n�n, we denote vec ðAÞ ¼½aT1 ; aT2 ; . . .; aTn �
T
,

where ai 2 <n is the ith column of A.

2 Backgrounds and preliminaries

2.1 Problem description

Consider a class of continuous-time Markov jump linear

systems (MJLSs) described by:

_xðtÞ ¼ AðrðtÞÞxðtÞ þ BðrðtÞÞuðtÞ
xð0Þ ¼ x0; rð0Þ ¼ r0; t ¼ 0

�
ð1Þ

with the infinite horizon performance index:

J xðtÞð Þ ¼ E

Z 1

0

xTðtÞQixðtÞ þ uTðtÞRiuðtÞ
� �

dt
��t ¼ 0; x0; r0

� �

ð2Þ
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where xðtÞ 2 <n is the system state with the initial value x0;

uðtÞ 2 <m is the control input; AðrðtÞÞ, BðrðtÞÞ are the

coefficient matrices, QðrðtÞÞ and RðrðtÞÞ are the weight

matrices which are mode-dependent and positive-definite;

the pair ðAðrðtÞÞ; Q1=2ðrðtÞÞÞ is supposed to be observable;
rðtÞ is a continuous-time and discrete-state right continuous

Markov stochastic process which represents the system

mode and takes on values in a discrete set

M ¼ 1; 2; . . . ; Nf g; r0 represents the initial mode. Here,

MJLSs (1) is assumed to be stochastically stabilizable.

For MJLSs (1), the transition probabilities of each mode

satisfy:

Pr rðt þ DtÞ ¼ j rðtÞ ¼ ijf g ¼
pijDt þ oðDtÞ j 6¼ i

1þ piiDt þ oðDtÞ j ¼ i

(

ð3Þ

where i; j 2 M, Dt[ 0 and limDt!0
oðDtÞ
Dt ¼ 0; pij � 0 ði 6¼

jÞ represents the transition rate from mode i to mode j at

time t ! t þ Dt and has pii ¼ �
P

i6¼j pij. For simplicity,

when rðtÞ ¼ i, AðrðtÞÞ, BðrðtÞÞ, QðrðtÞÞ, RðrðtÞÞ can be

labeled as Ai, Bi, Qi, Ri, respectively.

For a given feedback control policy uðtÞ ¼ �KixðtÞ, we
define the following cost function as:

VðxðtÞÞ ¼ E

Z 1

t

xTðtÞQixðtÞ þ uTðtÞRiuðtÞ
� �

dt
�� t; xðtÞ; rðtÞ

� �

ð4Þ

The optimal control problem for MJLSs (1) is to find a

mode-dependent admissible feedback control policy, which

minimizes the performance index, i.e.

V�ðxðtÞ ¼ min
uðtÞ

J xðtÞð Þ

¼ min
uðtÞ

E

Z 1

0

xTðtÞQixðtÞ þ uTðtÞRiuðtÞ
� �

dt
�� t ¼ 0; x0; r0

� �

ð5Þ

Then, the cost function (4) can be denoted as

VðxðtÞÞ ¼ xTi; tPixi; t, where xi; t is the state of the ith jump

mode; Pi is a positive-definite and mode-dependent matrix

which can be obtained through solving the following

coupled algebraic Riccati equations (AREs):

ÂT
i Pi þ PiÂi þ Qi þ

XN
j¼1;i6¼j

pijPj � PiBiR
�1
i BT

i Pi ¼ 0 ð6Þ

where Âi ¼ Ai þ pii
2
I. Then, the optimal feedback control

policy can be determined by:

uðtÞ ¼ �KixðtÞ ¼ �R�1
i BT

i PixðtÞ: ð7Þ

Definition 1 MJLSs (1) is stochastically stable (SS), if for

any initial conditions x0 and r0, the following formula is

satisfied:

lim
t!1

E xðtÞk k2¼ 0: ð8Þ

Inspired by [48], according to the subsystem transfor-

mation technique, we can re-write MJLSs (1) as the fol-

lowing N re-constructed subsystems:

_xi; t ¼ Âixi; t þ Biui; t

xið0Þ ¼ xi;0; t0 ¼ 0

(
: ð9Þ

In order to guarantee the stabilizability of the N re-

constructed subsystems in Eq. (9) by the optimal feedback

control policy (7), the triples ðAi; Bi;
ffiffiffiffiffi
Qi

p
Þ are assumed to

be stabilizable-detectable [19].

2.2 An offline parallel policy iteration algorithm
(OPPIA)

According to the assumptions mentioned above, the exact

solution P�
i of the positive-definite and mode-dependent

matrix Pi can be obtained by solving AREs (6). Notice that

AREs (6) is a set of nonlinear algebraic equations and it is

difficult to be solved directly, especially for large dimen-

sional matrices. To tackle this problem, some algorithms

have been proposed by Kleinman [16] and Gajic and Borno

[19]. For MJLSs (1), we give the following Lemma 1.

Lemma 1 [19] For each subsystems, we give an initial

stabilizable value Kið0Þ. The solutions of the following

decoupled algebraic Lyapunov equations are equivalent to

the solutions of AREs (6).

ðÂi � BiKiðkÞÞTPiðkþ1Þ þ Piðkþ1ÞðÂi � BiKiðkÞÞ
¼ �QiðkÞ � PiðkÞBiR

�1
i BT

i PiðkÞ
ð10Þ

In order to solve the N parallel decoupled algebraic

Lyapunov equations in (10), we give the following Algo-

rithm 1.

Remark 1 Due to the fact that MJLSs (1) can be

decomposed into N independent subsystems, the solutions

can be obtained by parallel solving N decoupled algebraic

Lyapunov linear equations. Thus, the solutions to the N

parallel nonlinear AREs (6) are numerically approximated.

By Algorithm 1, the exact solutions of P�
i can be obtained

while k ! 1. Notice that the method in Algorithm 1 is

offline and the knowledge of the dynamics Ai, Bi are all

needed.
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3 Main results

In this part, we will propose a parallel reinforcement

learning (RL) algorithm to design the feedback control

policy for MJLSs (1). This is a novel online learning

strategy which will not require the knowledge of the

coefficient matrices, i.e., Ai and Bi. For each solution step,

we can solve N parallel decoupled algebraic Lyapunov

equations in (10). In the end, the convergence of this new

algorithm is also proved.

3.1 A parallel RL algorithm with completely
unknown dynamics

For the offline Algorithm 1, the N subsystems dynamics are

required to solve the decoupled algebraic Lyapunov

equations in (10). For practical applications, this algorithm

will be difficult to achieve if we do not know the exact

knowledge in advance. To overcome these weaknesses, a

new online parallel RL algorithm is developed to study the

optimal solutions of MJLSs with completely unknown

dynamics. For the ith subsystem, the unique symmetric

positive-definite solutions of PiðkÞ and the state feedback

gains KiðkÞ ð8k 2 ZþÞ should satisfy Eqs. (10), (11).

Recalling to Eq. (9), we rewrite the system state equa-

tion as:

_xi; t ¼ �AiðkÞxi;t þ Biðui;t þ KiðkÞxi;tÞ
xið0Þ ¼ xi;0; t0 ¼ 0

(
ð12Þ

where �Ai ¼ Âi � BiKiðkÞ and the pairs ðÂi; BiÞ are

stabilizable.

Then, the novel algorithm is given as follows:

Notice that the N subsystems in Eq. (9) are recon-

structed into N new continuous-time subsystems in

Eq. (12). Next, we will give an online implementation of

the parallel RL algorithm to solve Eq. (13). In Eq. (12), Ai

and pii are embedded in the reconstructed subsystem states;

Bi is embedded in the reconstructed subsystem control

inputs, which can be measured online. For real-time

learning of the information of xi; t and ui; t , we can choose

ui; t ¼ �KiðkÞxi; t þ ei as a true control input, where ei is an

additional exploration noise.

Remark 2 Solving Eq. (13), we can get a series of solu-

tions, where PiðkÞ, KiðkÞ satisfy (10), (11), xi; t is the solution

of Eq. (12) with the arbitrary control input ui; t. This fact

enables us to choose ui; t ¼ �KiðkÞxi; t þ ei as a real input

signal for learning. Obviously, this operation will not affect

the convergence of the learning process.

Remark 3 In Algorithm 2, we choose an exploration noise

and assume that it is a nonzero measurable bounded signal.

In fact, the choice of the exploration noise will not affect

the algorithm. We add the exploration noise as an excita-

tion signal to satisfy the persistence of the excitation con-

ditions. For convenience, we always choose the

exponentially decreasing probing noise and the sum of

sinusoidal signals as the exploration noise.

Remark 4 In Eq. (13), the subsystems internal dynamics

information is not needed, i.e., the dynamic matrices of Ai,

Bi are all not included. In order to solve Eq. (13) by the

online RL algorithm, we should continuously sample the

states and the inputs information online from the N sub-

systems at each iteration step. In fact, the dynamics

14314 Neural Computing and Applications (2020) 32:14311–14320
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information is already included in the sample information.

Therefore, the online Algorithm 2 did not require the

dynamics information, i.e., Algorithm 2 as a completely

model-free algorithm.

3.2 Online implementation of the novel parallel
RL algorithm

To find a set of pairs ðPiðkÞ; Kiðkþ1ÞÞ which satisfy

Eqs. (10), (11), the novel online parallel RL implement

approach is derived. It observes that the dynamics matrices

Ai, Bi and the transfer matrix element pii are not included in
Algorithm 2. According to the Kronecker product repre-

sentation, the left side of Eq. (13) can be rewritten as:

xTi; tþTPiðkÞxi; tþT � xTi; tPiðkÞxi; t

¼ �PT
iðkÞ xTi; tþT � xTi; tþT � xTi; t � xTi; t

h i
¼ �PT

iðkÞdix
ð14Þ

where �PiðkÞ is a set of positive-definite and mode-dependent

matrices; �Pi is a column vector-valued matrix whose

internal elements are produced by Pi and can be given as:

�Pi ¼ ½pi11; 2pi12; . . .; 2pi1n; pi22; 2pi23; . . .; pinn�T;
ð15Þ

xT
i
� xT

i
¼ ½x2i1; xi1xi2; . . .; xi1xin; x2i2; xi2xi3; . . .xi2xin; . . .; x2in�

T:

ð16Þ

Using the similar method as Eq. (14), we have:

xTi; t
�QiðkÞ xi; t ¼ ðxTi; t � xTi; tÞ vec ð �QiðkÞÞ ð17Þ

where �QiðkÞ ¼ QiðkÞ þ KT
iðkÞRiKiðkÞ. Then, the right side of

Eq. (13) can be rewritten as:

ðui; t þ KiðkÞxi; tÞTRiKiðkþ1Þxi; t

¼ ½ðxTi; t � xTi; tÞðIn � KT
iðkÞRiÞ

þ ðxTi; t � uTi; tÞðIn � RiÞ� vecðKiðkþ1ÞÞ:
ð18Þ

Meanwhile, we define the following operators:

Iixx ¼

R t1
t0
xTi; s � xTi; sdsR t2

t1
xTi; s � xTi; sds

..

.
R tl
tl�1

xTi; s � xTi; sds

2
66664

3
77775; ð19Þ

Iixu ¼

R t1
t0
xTi; s � uTi; sdsR t2

t1
xTi; s � uTi; sds

..

.
R tl
tl�1

xTi; s � uTi; sds

2
66664

3
77775: ð20Þ

Thus, Eq. (13) can be described as:

HiðkÞ
�PiðkÞ

vecðKiðkþ1Þ

� 	
¼ NiðkÞ ð21Þ

where HiðkÞ 2 <l�½1
2
nðnþ1Þþmn�, NiðkÞ 2 <l and they can be

described as:

HiðkÞ ¼ dixx �2 ½IixxðIn � KT
iðkÞRiÞ þ IixuðIn � RiÞ�

h i
;

ð22Þ

NiðkÞ ¼ �Iixxvecð �QiðkÞÞ: ð23Þ

For Eq. (21), if HiðkÞ has full column rank, the least-

squares solutions of Eq. (13) can be solved by:

�PiðkÞ
vecðKiðkþ1Þ

� 	
¼ ðHT

iðkÞHiðkÞÞ�1HT
iðkÞNiðkÞ ð24Þ

By formula (24), we can obtain PiðkÞ and Kiðkþ1Þ. To

compute the matrices of Iixx and Iixu, we can use
nðnþ1Þ

2
þ

nm integrators to collect the information of the states and

the control inputs of each subsystems. In order to guarantee

that Algorithm 2 can be online implemented at each step,

HiðkÞ is required to have full column rank for all k 2 Zþ,

i.e., there is an integer l0 [ 0, for 8l[ l0, the following

condition holds:

rank Iixx; Iixu½ �ð Þ ¼ nðnþ 1Þ
2

þ nm: ð25Þ

3.3 The convergence proof

In order to prove the convergence of Algorithm 2, we

establish the following Theorem 1.

Theorem 1 For the novel parallel RL Algorithm 2, we

give a stabilizable value Kið0Þ, where 8i 2 M and assume

that HiðkÞ has the full column rank; then the solutions of

Eq. (13) satisfy Eqs. (10), (11).

Proof Give a stabilizable value Kið0Þ, i.e., Ai � BiKið0Þ is a

Hurwitz. According to Algorithm 1, the exact solutions

P�
i ¼ limk!1 PiðkÞ can be obtained by the decoupled alge-

braic Lyapunov equations in (10), and the feedback gain

K�
i ¼ limk!1 KiðkÞ can be uniquely determined by

Eq. (11). For 8t[ 0, we choose the cost function as

VðxðtÞÞ ¼ xTi; tPixi; t. Then, for the new re-constructed ith N

independent subsystems in Eq. (12) and along the solutions

of (12) by (10) and (11), the following is satisfied:
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xTi; tþTPiðkÞxi; tþT � xTi; tPiðkÞxi; t

¼
Z tþT

t

xTi; sð �AT
i PiðkÞ þ PiðkÞ �AiÞxi; s

h
þ2ðui; s þ KiðkÞxi; sÞTBT

i PiðkÞ

i
ds

¼ �
Z tþT

t

xTi; s
�QiðkÞxi; sdsþ

Z tþT

t

2ðui; s þ KiðkÞxi; sÞTRiKiðkþ1Þxi; sds

ð26Þ

Since HiðkÞ has full column rank, the least-squares

solutions in Eq. (24) is an online implement of Eq. (13).

Therefore, the solutions of Eq. (13) are equivalent to the

iteration solutions of Eqs. (10) and (11). The proof is

completed.

The flowchart of Algorithm 2 is given in Fig. 1.

Remark 5 By the online implementation in Algorithm 2,

we can see the differences between the offline Algorithm 1

and the online Algorithm 2. In Algorithm 1, we apply the

offline iterative algorithm to solve the Riccati functions and

equations directly, while in Algorithm 2, we use the online

sampling and learning method. Moreover, Eqs. (10), (11)

in Algorithm 1 depend on the dynamics information. But in

Algorithm 2, we do not need any dynamics information by

Eq. (13).

4 Simulation examples

Example 1 To show the applicability of Algorithm 2, we

consider a fourth order jump linear model with two jump

modes as:

N ¼ 2; P ¼ � 3 3

2:5 � 2:5

� 	
;

A1 ¼

� 2:2361 � 1:1358 1 0:6324
� 0:1024 � 3 0:3835 0:85
0:7112 11:2346 � 36:8199 4

1:0692 13:4230 20:1185 � 12:1801

2
664

3
775;

A2 ¼

� 1:5326 � 1:2436 0:5458 0:7136
� 0:8 � 2:9346 0:0920 0:42
11:1634 23 � 26:4655 � 1:8347

25 8:3132 � 3:8714 � 31:4631

2
664

3
775;

B1 ¼ B1 ¼

1

1

1

1

2
664

3
775; Q1 ¼ Q2 ¼

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

2
664

3
775:

In the simulation, we set R1 ¼ R2 ¼ 1, the error value e
as 10�15 and the initial stabilizing feedback gain as

Kið0Þ ¼ 0. According to the OPPIA in Algorithm 1, AREs

(6) can be directly solved. After the 14th iterations, the

exactly solutions are obtained:

P�
1 ¼

0:3505 � 0:0320 0:0180 0:0191
� 0:0320 0:5943 0:0572 0:0845
0:0180 0:0572 0:0268 0:0232
0:0191 0:0845 0:0232 0:0503

2
664

3
775;

Start

Subsystem transformation

Given initialization stabilizable sequence
( )(0)A 0i i iB Kλ − <{ }(0) =0iK

Stop

( ) ( 1)i k i ki S
max P P ε−∀ ∈

− <

The control input  

Let                                   and compute, (0) ,i t i i t iu K x e= − +
{ }, ,ixx ixx ixuI Iδ

Online solving                         

( ) T 1 T
( ) ( ) ( ) ( )

( 1)

( )
( )

N k
N k N k N k N k

N k

P
vec K

−

+

⎡ ⎤
= Θ Θ Θ Ξ⎢ ⎥

⎣ ⎦

, ( ) ,i t i k i tu K x= −

Yes 

{ }( ) ( ), , ( )i k i kP K i M∈
No (k=k+1)

Fig. 1 The flowchart of Algorithm 2
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P�
2 ¼

0:5574 �0:0483 0:0140 0:0227
�0:0483 0:4057 0:0164 0:0111
0:0140 0:0164 0:0196 �0:0003
0:0227 0:0111 �0:0003 0:0178

2
664

3
775:

The OPPIA in Algorithm 1 is offline and the subsystems

dynamics matrices are all needed. To show the effective-

ness and applicability of Algorithm 2, we use the same

conditions mentioned above. For the two subsystems, we

select the initial states as x10 ¼ x20 ¼ 0 � 0:1½ 0:10�T
and the controller uiðkÞ ¼ �KiðkÞxi þ ei in the time interval

0; 2½ � with the exploration noises as

e1 ¼ e2 ¼ 100
P100

n¼1 sinðxn tÞ, where xn is a number and

can be randomly selected in � 500; 500½ �. For the two

subsystems, the information of the states and inputs is

sampled every 0.01 s, and the optimal controller can be

updated every 0.1 s. By the given iteration criterion, we

can get the final calculation results of Algorithm 2 in step

4, after 7th iterations as:

P1ð7Þ ¼

0:3505 � 0:0320 0:0180 0:0191
� 0:0320 0:5943 0:0572 0:0845
0:0180 0:0572 0:0268 0:0232
0:0191 0:0845 0:0232 0:0503

2
664

3
775;

P2ð7Þ ¼

0:5574 � 0:0483 0:0140 0:0227
� 0:0483 0:4057 0:0164 0:0111
0:0140 0:0164 0:0196 � 0:0003
0:0227 0:0111 � 0:0003 0:0178

2
664

3
775:

The optimal state feedback controller gains are:

K1ð7Þ ¼ 0:3557 0:7040 0:1253 0:1771½ �;

K2ð7Þ ¼ 0:5458 0:3849 0:0497 0:0513½ �:

Then, we get the simulation results by using MATLAB.

Figures 2, 3, 4 and 5 show the convergence of Algorithm 2.

The convergence of P1 and P2 to the optimal values are

shown in Figs. 2, 3. The elements of matrices P1 and P2 are

updated which are shown in Figs. 4, 5.

Example 2 In order to further study the proposed

approach, we give the following comparative results.

Applying the parallel RL algorithm proposed in this paper

and simulating the experiment with the same parameters as

[45], we can get the final solutions after 7 iterations:

P1ð7Þ ¼

0:2408 0:0705 0:0393 0:0182
0:0705 0:0308 0:0085 0:0064
0:0393 0:0085 0:0157 0:0025
0:0182 0:0064 0:0025 0:0016

2
664

3
775;

P2ð7Þ ¼

0:5026 0:1343 0:0518 0:0097
0:1343 0:0485 0:0138 0:0026
0:0518 0:0138 0:0193 0:0002
0:0097 0:0026 0:0002 0:0003

2
664

3
775:

Comparing with the online algorithms proposed in [45],

the simulation errors between the calculated results pro-

posed in this paper can nearly converge to zero. It shows

that the parallel RL algorithm in this paper gives a more

accurate solution. It is also seen from Figs. 6 and 7 that the

convergence rate of the parallel RL algorithm is also faster

than the results in [45].

Remark 6 In the two simulation examples, we solve the

positive-definite solution PiðkÞ by the online reinforcement

0 5 10 15

Number of P1
k
 iterations

0

0.5

1

1.5

2

2.5

3

3.5

||P1
k
-P1*||

Fig. 2 The convergence of P1ðkÞ to the optimal value P�
1

151050

Number of P2
k
 iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

||P2
k
-P2*||

Fig. 3 The convergence of P2ðkÞ to the optimal value P�
2
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learning method. First, we obtain N coupled Riccati

equations by decomposing the subsystems. According to

the online implementation process, we need to collect the

states and the inputs of each subsystem, and satisfy the

condition of the full rank of the least square equation.

Then, we iteratively solve the least square formula, until

the final optimal solution satisfying the limited precision

requirement is obtained.

5 Conclusion

A novel online parallel RL algorithm is proposed with

completely unknown dynamics. It can solve the AREs by

collecting the information of the states and the inputs of

each of the subsystems. Therefore, this novel parallel RL

algorithm can parallelly compute the corresponding

N coupled AREs with completely unknown dynamics. The

convergence of the parallel RL algorithm is also proved.

Two simulation results illustrate the applicability and
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Fig. 4 The updated elements of P1ðkÞ at each step in Algorithm 2
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Fig. 5 The updated elements of P2ðkÞ at each step in Algorithm 2
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effectiveness of the designed algorithm. In the future, the

RL algorithm and the relevant optimal algorithm can be

used in other aspects, such as artificial intelligence,

industrial informatics, pattern processing and wireless

automation devices.
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stochastic systems with Markovian jumps. IET Control Theory

Appl 10(12):1431–1439

47. Song J, He S, Ding Z, Liu F (2016) A new iterative algorithm for

solving H! control problem of continuous-time Markovian

jumping linear systems based on online implementation. Int J

Robust Nonlinear Control 26(17):3737–3754

48. Gajic Z, Borno I (2000) General transformation for block diag-

onalization of weakly coupled linear systems composed of

N-subsystems. IEEE Trans Circuits Syst I Fundam Theory Appl

47(6):909–912

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

14320 Neural Computing and Applications (2020) 32:14311–14320

123

https://doi.org/10.1109/tcyb.2017.2752845
https://doi.org/10.1109/tcyb.2017.2752845
https://doi.org/10.1109/tsmc.2017.2780194
https://doi.org/10.1109/tsmc.2017.2780194

	Reinforcement learning and adaptive optimization of a class of Markov jump systems with completely unknown dynamic information
	Abstract
	Introduction
	Backgrounds and preliminaries
	Problem description
	An offline parallel policy iteration algorithm (OPPIA)

	Main results
	A parallel RL algorithm with completely unknown dynamics
	Online implementation of the novel parallel RL algorithm
	The convergence proof

	Simulation examples
	Conclusion
	Acknowledgements
	References




