
REVIEW ARTICLE

On the automated, evolutionary design of neural networks: past,
present, and future

Alejandro Baldominos1 • Yago Saez1 • Pedro Isasi1

Received: 19 April 2018 / Accepted: 19 March 2019 / Published online: 27 March 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Neuroevolution is the name given to a field of computer science that applies evolutionary computation for evolving some aspects

of neural networks.After theAIWinter came to anend, neural networks reemerged to solve a great varietyof problems.However,

their usage requires designing their topology, a decision with a potentially high impact on performance. Whereas many works

have tried to suggest rules-of-thumb for designing topologies, the truth is that there are not analyticprocedures for determining the

optimal one for a given problem, and trial-and-error is often used instead.Neuroevolution arose almost 3 decades ago,with some

works focusing on the evolutionary design of the topology and most works describing techniques for learning connection

weights. Since then, evolutionary computation has been proved to be a convenient approach for determining the topology and

weights of neural networks, and neuroevolution has been applied to a great variety of fields. However, for more than 2 decades

neuroevolution hasmainly focused on simple artificial neural networksmodels, far from today’s deep learning standards. This is

insufficient for determining good architectures for modern networks extensively used nowadays, which involve multiple hidden

layers, recurrent cells, etc. More importantly, deep and convolutional neural networks have become a de facto standard in

representation learning for solvingmanydifferent problems, and neuroevolution has only focused in this kindof networks in very

recent years,withmanyworks being presented in 2017onward. In this paper,we review thefield of neuroevolution during the last

3 decades.Wewill put the focus on very recentworks on the evolution of deep and convolutional neural networks, which is a new

but growing field of study. To the best of our knowledge, this is the best survey reviewing the literature in this field, and we have

described the features of each work as well as their performance on well-known databases when available. This work aims to

provide a complete reference of all works related to neuroevolution of convolutional neural networks up to the date. Finally, we

will provide some future directions for the advancement of this research area.

Keywords Neuroevolution � Evolutionary algorithms � Deep neural networks � Convolutional neural networks

1 Introduction

In the 1980s, once the AI Winter had come to an end,

artificial neural networks (ANNs) reemerged to become

one of the most flexible tools to solve a variety of AI

problems. This emergence was driven by the discovery of

the backpropagation algorithm, which enabled to learn the

parameters (weights) of an ANN by using gradient descent

to reduce a loss function computed among the ANN output

and the real label of the data. The backpropagation of

errors in connected networks was first described by Lin-

nainmaa in his Master thesis in 1970 [72], although it was

Werbos who first explicitly applied it to neural networks

[131]. It would be Rumelhart, Hinton and Williams in 1986

who would popularize this process years later [102], by

experimentally proving the emergence of internal repre-

sentations in hidden layers.

However, backpropagation had an important limitation

at the time: It could only be used in the context of super-

vised learning. This was an important handicap, as neural

& Alejandro Baldominos

abaldomi@inf.uc3m.es

Yago Saez

yago.saez@uc3m.es

Pedro Isasi

isasi@ia.uc3m.es

1 Computer Science Department, Universidad Carlos III de

Madrid, Avda. de la Universidad 30, Leganes 28911, Madrid,

Spain

123

Neural Computing and Applications (2020) 32:519–545
https://doi.org/10.1007/s00521-019-04160-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8906-7572
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04160-6&domain=pdf
https://doi.org/10.1007/s00521-019-04160-6

networks proved to be a promising approach for many

reinforcement learning problems. It would require more

than a decade to explore the application of gradient descent

to reinforcement learning by enforcing the Bellman opti-

mality [5]. Additionally, in some problems the network

performance can be measured, yet a loss function cannot be

computed. As a result, it became an interesting problem to

discover techniques able to find optimal weights for an

ANN even when gradient descent could not be applied.

An additional issue with ANNs had to do with their

topology, i.e., the way in which neurons are connected

within the network. In particular, there were not analytic

procedures to determine the optimal topology of an ANN

for a problem at hand, and in many cases trial-and-error

was used to find a topology that worked fine. Although

some rules-of-thumb emerged to provide guidelines for

designing optimal topologies, the truth is that they did not

work [40]. Cybenko in 1989 [24] showed that although a

single hidden layer and sigmoid activation could approxi-

mate any continuous function, the size of such layer could

not be established to leverage a solution of a desired

quality. Cybenko indeed suggested that the majority of

problems would require an astronomically large number of

units. Researchers in an old Usenet thread from 1995 even

described the rules-of-thumb proposed in several books and

articles for choosing a topology as ‘‘total garbage’’ [93].

By the end of the 1980s, researchers had started to use

evolutionary algorithms (EAs) instead of backpropagation

to evolve the weights of ANNs, and few years later similar

approaches were used for determining the best network

topologies. This research field would later be called

‘‘neuroevolution’’ (NE) and has been proved effective in

many applications.

However, most early works in NE assume only one

hidden layer. Nowadays, the availability of hardware

resources has led to the development of ANNs with many

hidden layers, known as ‘‘deep neural networks’’ (DNNs),

and the recent inclusion of representation learning in ANNs

has given birth to convolutional neural networks (CNNs),

which involve layers able to automatically extract relevant

features from raw data. CNNs have been applied to very

diverse domains and problems in the last years, including

character, image and speech recognition, natural language

processing, automatic image captioning, signal processing,

etc.

CNNs can involve very complex topologies, with doz-

ens of convolutional layers comprising diverse depths and

filter sizes, and with several dense or recurrent layers with

a variable number of neurons and diverse activation func-

tions. Since manual design of CNN topologies is expen-

sive, NE shows as a promising approach to obtain optimal

topologies for a given problem. A schematic illustration of

this process is shown in Fig. 1: It should be noted that in

this approach the resulting CNN topology is trained using

backpropagation, and later evaluated over the validation

dataset.

Although this paper will try to make an exhaustive

analysis of the automatic and evolutionary design of neural

networks, we will focus in emphasizing the application of

evolutionary techniques in the specific design of CNNs,

since these models have been proved very successful in

solving AI problems that remained unsolved for decades,

allowing their expansion in the industry like never before.

Also, the complexity of CNNs makes the topology design

and the assignment of the parameters the cornerstone of

their success or failure, turning the CNN design and

training into a very sensitive and complex process, whose

automation is highly recommended. Finally, we strongly

believe that this new line is starting a groundbreaking

change in neuroevolution, and pioneering works in this

area are worth reviewing. To the best of our knowledge,

this is the first work of this kind, and in addition to

describing each of the works in the field, we will also

summarize their features and their performance on well-

known databases when available, hoping that it can become

a reference guide for readers interested in applying neu-

roevolution to the problems of their own.

This paper is structured as follows: Sect. 2 describes

some of the most relevant concepts of evolutionary com-

putation, and Sect. 3 analogously introduces neural net-

works, which are useful to understand this paper, and in

particular how their topology can be evolved. Section 4

explains in further detail the motivation for optimizing

CNN topologies. Section 5 briefly explains what NE is and

describes some relevant milestones in the history of this

field. Section 6 provides a more exhaustive survey on how

NE is nowadays being applied to CNNs. Finally, in Sect. 7

we try to foresee what we believe the future of this field is,

settling the basis for future works and encouraging aca-

demia to develop new research lines in this area.

2 Basic concepts on evolutionary
computation

An important area of application of computer science is

optimization: the selection of an optimal or set of optimal

elements from a larger set of candidates according to some

specific criteria. Optimization problems are pervasive and

can be found in nature. In extension, many problems can be

modeled as an optimization problem, coming from diverse

fields, such as economics, politics, engineering, game

theory, or evolutionary biology. In fact, many of these

problems (specifically, those belonging to the NP-Com-

plete class of complexity) can be restated to become

520 Neural Computing and Applications (2020) 32:519–545

123

equivalent among them. Unfortunately, finding an optimal

solution for many of these problems becomes

intractable upon a large enough search space, meaning that

a solution cannot be provided by computers in a reasonable

amount of time.

In the past, some authors have defined evolutionary

biology as an optimization process, with John Maynard

Smith being one of the greatest exponents of this school of

thought [77, 92]. The field of evolutionary computation

arises in this intersection between optimization problems

and biology, and it tries to approach optimization problems

using mechanisms dictated by Darwinian theory of natural

selection and evolution.

The term ‘‘evolutionary computation’’ is used to refer to

a discipline which encompasses a family of biologically

inspired optimization algorithms known as evolutionary

algorithms. Most of these algorithms adhere to the fol-

lowing properties [14, 121]:

• Metaheuristics: Evolutionary algorithms often perform

optimization within a search space that is too large as to

be computationally feasible to be tractable. These

techniques do not implement knowledge specific to

the problem (as in heuristic search), but instead rely on

a measure of quality of each potential solution (called

fitness), which may encode partial or even very little

knowledge about the problem, and which serves for the

purpose of driving the search process. The algorithms

and procedures used for searching are general, meaning

that can be reused in different problems with few to no

changes, although in some cases some problem-specific

knowledge can be introduced to enhance the search

process. On the other hand, the main disadvantage of

evolutionary algorithms is that they are stochastic in

nature and are not guaranteed to find an optimal

solution.

• Population based: In every state of the search process, a

set of candidate solutions (known as a population) is

maintained. The evolutionary algorithm bases the

search procedure in operating with the population by

applying operators that involve several individuals at

the same time. However, the quality metric (fitness) is

intrinsic to each individual.

• Biologically inspired: Evolutionary algorithms are

inspired by natural principles, in particular, by those

established in the Darwinian theory of evolution. For

such reason, these algorithms often implement opera-

tors such as selection, recombination or mutation, that

are applied over one or more individuals of the

population.

Historically, the application of principles taken from

natural evolution into optimization algorithms arose in the

1960s, although the rationale dates back to at least the

1950s, with Alan Turing mentioning this idea in the paper

in which he introduced the imitation game [124]. In par-

ticular, he stated:

[...] We have thus divided our problem into two parts.

The child program and the education process. These

two remain very closely connected. We cannot expect

to find a good child machine at the first attempt. One

must experiment with teaching one such machine and

see how well it learns. One can then try another and

see if it is better or worse. There is an obvious con-

nection between this process and evolution [...] One

may hope, however, that this process will be more

expeditious than evolution. The survival of the fittest

is a slow method for measuring advantages.

Starting in the 1960s, some implementations of these

ideas started to arise, which lead to different paradigms

which ultimately settled the field of evolutionary compu-

tation. Most evolutionary algorithms today belong to one of

the following classes:

• Evolutionary programming: This paradigm was pre-

sented by Fogel et al. [36] in 1966. The working

mechanism of evolutionary programming consists of

writing a computer program whose structure remains

fixed but which relies on different numerical

Fig. 1 Evolution of convolutional neural networks for supervised learning

Neural Computing and Applications (2020) 32:519–545 521

123

parameters, which are then optimized. The main

strategy for optimizing these parameters is random

mutation across generations.

• Genetic algorithms: This paradigm was introduced by

Holland [53] in 1975. It proposes the representation of a

candidate solution to a problem in the form of a genetic

encoding, which is often a binary string, even though

alternative representations have been suggested that do

not conform to the building blocks established by

Holland. The evolution then takes place by iteratively

applying genetic operators, the most common being

selection, recombination and mutation, which generates

offspring based on the genetic material of parents.

• Evolution strategies: This paradigm was introduced by

Rechenberg [99] and Schwefel [109] in the 1970s. In

this approach, a vector of real-valued numbers is

evolved through selection and mutation, whose strength

is often regulated by means of self-adaptation. In a first

version of evolution strategies, only one parent and one

child exist at the same time, and the best from both is

kept for the next generation: this particular implemen-

tation is known as (1 ? 1)-ES. Additional versions

have been described with several children, leading to

ð1þ kÞ-ES or ð1; kÞ-ES strategies, where in the former

children can compete with the parent and in the latter

the parent is disregarded. Also, several parents can be

considered, and sometimes recombination is also

included as an operator, leading to ðl=qþ; kÞ-ES. It
should be noted that while the classical canonical

version of an evolution strategy differs from genetic

algorithms in the use of real encoding instead of binary

and in the lack of a recombination operator, particular

innovations or implementations on these methods might

reduce the gap between the two techniques, even

turning them indistinguishable.

• Genetic programming: This paradigm is the most

consistent with Turing’s ideas. Early implementations

of this approach first appeared about 30 years later, with

those from Forsyth [37] and Cramer [22], although John

Koza is acknowledged to be one of the key researchers

that helped to establish the field [62, 63]. In genetic

programming, programs have been traditionally repre-

sented as trees, which can be modified using genetic

operators such as recombination or mutation.

A general execution framework for most evolutionary

algorithms is shown in Fig. 2. It is remarkable that some

algorithms might not adhere completely to this framework.

For example, evolutionary programming or evolutionary

strategies seldom use crossover, and their population might

comprise only one individual. Still, the basic idea remains:

Evolutionary algorithms are iterative processes (where

each iteration is called a ‘‘generation’’) which evaluate a

set of solutions and apply evolutionary operators on them

expecting their quality to rise generation after generation.

The most common operators, which are shown in the fig-

ure, are the following:

• Selection: This operator is intended to resemble natural

selection (survival of the fittest) and is in charge of

assigning the genetic material of the best solutions a

higher chance to reproduce and remain in the following

generations. There are different approaches for selec-

tion, although two are particularly common: tourna-

ments and roulette. In tournaments, random individuals

are chosen from the population and confronted among

them, with the fittest individual winning the tournament

and getting the chance to reproduce with another

individual, which had also been a champion of a

different tournament. In roulette, a probability distri-

bution is assigned to the population, with the probabil-

ity of one individual being proportional to its fitness;

and then individuals are randomly chosen to reproduce

following this probability distribution.

• Reproduction: This mechanism (also called recombi-

nation or crossover) is used to combine the genetic

material of two selected solutions, expecting that at

least part of their offspring is fittest that each of the

parents. The process is roughly illustrated in Fig. 3a,

where multi-point crossover has been used (i.e., differ-

ent cutting points are established for the genomes and

they are combined as shown in the figure). Other typical

forms of reproduction are single-point crossover (same

as displayed but only with one cutting point) or uniform

crossover (where genes in the parents’ genome inter-

leave). In genetic programming, reproduction often

involves exchanging two subtrees between the parents.

• Mutation: This operator enhances exploration by ran-

domly mutating part of the individual’s genome. In

Fig. 3b, we show an example of bit-flipping mutation,

which is common in genetic algorithms. In this case,

only one bit is flipped, but it is often common to define

a parameter, called ‘‘mutation rate,’’ which establishes

the percentage of the genome size to be mutated. When

the genome comprises real numbers (such as in

evolutionary programming or evolution strategies), the

mutation can be done by changing one value to a new

one following a Gaussian distribution centered in the

previous value (and, interestingly, the standard devia-

tion can evolve over generations depending on whether

we want to promote exploration or exploitation). In

genetic programming, mutation can be implemented by

different means, from mutating one operand or one

operator in one node, to mutating a whole subtree.

522 Neural Computing and Applications (2020) 32:519–545

123

3 Basic concepts on neural networks

Neural networks are artificial intelligence models that arose

in the early 1950s. It is considered that the first artificial

neural network was Marvin Minsky and Dean Edmonds’

Stochastic Neural Analog Reinforcement Calculator

(SNARC) [84] in 1951, built in hardware using vacuum

tubes. A significant achievement in AI arrived later in 1957

with Frank Rosenblatt’s invention: the perceptron [101].

The perceptron was a neural network-based algorithm for

learning a linear classifier to discriminate data in a binary

classification problem. Its first implementation was in

software for the IBM 704, yet it was later implemented in

hardware known as the Mark 1 perceptron. Despite the

relative simplicity of the perceptron algorithm, the project

raised significant attention from the media, and the New

York Times described it as ‘‘the embryo of an electronic

computer that [the Navy] expects will be able to walk, talk,

see, write, reproduce itself and be conscious of its exis-

tence’’ [89].

In the following years, the high expectations in the

perceptron lead to an increase in funding in artificial

intelligence research. However, results turned out to be

disappointing. One of the most desired applications of

artificial intelligence was machine translation, due to the

interest of the US government during the Cold War in

translating Russian documents in a fast and automatic way.

However, by the mid-1960s, the US National Research

Council had spent more than 20 million dollars without

remarkable results, concluding that human translation was

cheaper and more efficient. Also, in 1969, Marvin Minsky

and Seymour Papert explained some of the limitations of

artificial neurons and the perceptron, such as the inability

to learn a linear classifier to discriminate simple functions

such as the exclusive OR (XOR), in their book Perceptrons

[85]. This resulted in what is known as the ‘‘AI winter,’’

which froze the research and the interest in AI during the

1970s.

However, in mid-1985 there was a significant renais-

sance of neural networks. One of the most relevant con-

tributions by that time was the paper of Rumelhart et al. in

Nature [102] which helped to popularize backpropagation,

enabling an efficient way to automatically learn the optimal

weights of a neural network by computing the derivative of

the error and applying gradient descent. In the late 1980s

and in the 1990s, the field of artificial neural networks had

grown significantly.

By that time, the most common neural network topology

was the multilayer perceptron (MLP), a feed-forward net-

work (see Fig. 4a) where neurons in one layer are

Fig. 2 General running framework for evolutionary algorithms

Reproduction. Mutation.(a) (b)

Fig. 3 Illustration of operators

typically used in evolutionary

computation

Neural Computing and Applications (2020) 32:519–545 523

123

connected to neurons in the following layer. Because of the

vanishing gradient problem, which made the gradient very

small in the first layers when a large number of layers was

used, these networks often came with only one hidden

layer.

Still, despite the apparent simplicity of such models, the

number of design decisions regarding their topology and

training procedure was relatively large. Even when con-

sidering fully connected models (i.e., those in which every

neuron in one layer is connected to all neurons in the fol-

lowing layer), the number of hidden layers and the number

of neurons per layer have to be decided. With those two

being the main two variables deciding the network topol-

ogy, there are still a number of hyperparameters that must

be optimized as well: the neurons’ activation function

(hyperbolic tangent and sigmoid were common at the time,

though new functions have been designed throughout the

years, such as the popular ReLU function), whether or not

to use regularization or the learning rate.

Additionally, in the 1990s recurrent neural networks

gained significant popularity, given their good performance

at processing time series, with interesting applications such

as speech recognition. In their most basic form, recurrent

neural networks are those in which neurons can be con-

nected to themselves or even to neurons in previous layers

(see Fig. 4b). This change in the connectivity pattern can

increase the number of decisions to make regarding the

network topology. Additionally, with the years new

recurrent models appeared that solved some of the issues of

these primitive recurrent topologies, such as their inability

to learn patterns properly when the temporal context goes

back long into the past. One of the most remarkable con-

tributions in this kind of novel recurrent models is long

short-term memory (LSTM) cells [52], and gated recurrent

unit (GRU) cells [20]. Deciding which variation of recur-

rent implementation to use can be considered as an addi-

tional parameter of the network design process.

Finally, in the late 1990s convolutional neural networks

(CNNs) were presented by LeCun et al. [68, 69]. The idea

behind CNNs is to provide some layers performing a

convolutional operator over the input in order to automat-

ically learn relevant features from data, which will later be

introduced into a trainable classifier, such as a feed-forward

or recurrent network. A sample topology of this kind of

networks can be found in Fig. 4c. CNNs comprise one of

the most important contributions to the field currently

known as ‘‘deep learning.’’

Convolutional neural networks involve a higher com-

plexity in their topology. Besides the setup of the trainable

classifier, which is similar to what we previously described

as feed-forward or recurrent networks, the design of

Feed-forward. Recurrent.

Convolutional.

(a) (b)

(c)

Fig. 4 Different approaches to artificial neural networks

524 Neural Computing and Applications (2020) 32:519–545

123

convolutional layers imposes several parameters to be

specified.

To understand these parameters, it is useful to actually

know how convolutional layers work. First, raw data will

be introduced to the first layer, which will output some

‘‘feature maps,’’ that will then be introduced as the input

for the following layer. This process is done iteratively

until the last convolutional layer has computed its feature

maps. In general, it is considered that the more convolu-

tional layers the network has, the more abstract features it

will be able to extract.

Each convolutional layer will contain several kernels

(also known as filters or patches), which convolve the input

to generate a feature map as an output. The input data and

the kernels will be shaped as multi-dimensional arrays

(tensors). Optionally, an additional operator known as

‘‘pooling’’ can be placed after a convolutional layer, whose

purpose is to reduce the size of the feature maps by

downsampling them. A common practice to do so is max

pooling, where the input is reduced by taking a subtensor of

the feature map and replacing it by its maximum value.

As a result of this process, there are numerous param-

eters to consider when designing the convolutional layers

of a CNN. The first obvious parameter is the number of

convolutional layers. As stated before, the larger the

number of layers, the more abstract features that can be

extracted. However, many convolutional layers may not

only increase the computational cost of the learning pro-

cess, but also consume the dimensionality of the data.

Additionally, other relevant parameters are the number of

kernels in each layer, the size of the kernels (which again,

can vary from layer to layer), whether pooling is performed

after each layer, the pooling size, the activation function

for each kernel, etc.

Moreover, the advances in deep learning research have

introduced further innovations that can increase even more

the number of parameters to be determined. For example,

research has shown that introducing data in small batches

during gradient descent can enhance convergence; and

therefore, the size of such batches becomes a new hyper-

parameter. Also, new regularization techniques have been

developed to easily fight overfitting (i.e., the model learn-

ing too well the training set and generalizing poorly over

the validation and test sets), such as dropout [113]. Finally,

many new learning functions have been developed which

introduce enhancements over traditional gradient descent,

aiming at improving convergence. In some cases, these

learning functions involve additional hyperparameters that

must be optimized as well.

4 Motivation

The latest edition of the Encyclopedia of Machine Learning

and Data Mining [104] defines the topology of a neural

network as the ‘‘way the neurons are connected’’ [81] and

admits that it is ‘‘an important factor in network func-

tioning and learning.’’ However, this encyclopedic entry

states that ‘‘the most common topology in supervised

learning is the fully connected, three-layer, feed-forward

network,’’ ignoring later advances in deep neural networks

and convolutional neural networks, where a larger number

of layers (and thus of configurable parameters) is used.

The importance of the topology in neural networks has

been addressed several times in the past. One of the first

works studying this impact was presented in 1989 by Baum

and Haussler [10], where they suggested theoretical upper

and lower bounds on the sample size versus the network

size for the sake of improving generalization in networks

with one hidden layer.

Also, Lawrence et al. [67] tried to study in 1996 the

correlation between network size and optimal generaliza-

tion. In their work, they support the observation that larger

networks can produce better training and generalization

error. However, their results also show that some oversized

networks suffer from overfitting: MLP with two hidden

units outperformed 10 and 20 hidden units when approxi-

mating the function y ¼ sinðx=3Þ in the range [0, 5].

However, when a larger range ([0, 20]) was used, the

50-units MLP was the best performer. They also conclude

that committees or ensembles (a group of model working

together to provide a single response) can be more bene-

ficial when input data are noisy. Prior to that, Caruana [17]

reported that large networks rarely do worse than small

networks, though he only studied a limited set of problems

and this statement cannot be generalized to further

domains.

More recently, in 2011, Hermundstad et al. [49] tested

different architectures, from ‘fan’ architectures (one hidden

layer with many units), to ‘stacked’ architectures (many

hidden layers with very few units each), along with inter-

mediate architectures. However, they kept the total number

of weights as steady as possible (between 37 and 41). Even

if there were very few parameters and topologies were

similar to some extent, authors concluded that ‘‘different

network architectures produce error landscapes with dis-

tinguishable characteristics, such as the height and width

of local minima, which in turn determine performance

features such as speed, accuracy, and adaptability.’’

Some works have explored the impact on performance

of different ANN topologies in specific domains. For

instance, Choudhary et al. [21] looked for the influence of

one versus two hidden layers in the scope of character

Neural Computing and Applications (2020) 32:519–545 525

123

recognition and concluded that the addition of one hidden

layer leads to higher accuracy of the neural network. In

particular, accuracy in one test set improved from 65.38 to

88.46%, and in other test set from 80 to 84.61%. It is worth

noting that this work is very limited, as researchers only

compared one and two hidden layers using 10 hidden units

in each one, and higher differences in accuracy could be

expected when adding more neurons or further layers.

As for convolutional neural networks (CNNs), recent

works have explored the performance of diverse well-

known architectures. A good benchmark is annual Ima-

geNet Large Scale Visual Recognition Challenge

(ILSVRC) [103], as many different topologies have been

tested over the years. For example, a 2016 work from

Mishkin et al. [86] studies the influence of different

parameters in CNN topologies on the ILSVRC problem.

This work is interesting as it explores how the accuracy is

affected by the network width, batch size, or activation

functions. By the end of the paper, authors provide some

recommendations for a good topology, based on the

knowledge they acquired from evaluating the performance

of several CNNs, yet these are only valid for the ImageNet

domain.

An even more recent work by Canziani et al. [16]

reviews the accuracy values reported in the literature for

very relevant models in the ImageNet domain, and studies

the performance of these models in several dimensions,

including accuracy, power consumption, speed or memory

utilization. It is remarkable that the accuracy ranges from

54 to 80%, and it gets more impressive if we consider that

these models have all been published in a 4-year period:

AlexNet was introduced in 2012 by Krizhevsky et al. [65],

resulting in the first approach of convolutional neural net-

works to ILSVRC, whereas Inception-v4 was presented in

2016 [120] by Szegedy et al. from Google. From this study,

we can also conclude that larger networks, or networks

with more operations do not imply a higher accuracy in all

cases. The best performing network, Inception-v4, has an

average size and number of operations when compared to

its competitors.

Also, in the domain of human activity recognition,

Hammerla et al. [43] have evaluated different deep learn-

ing models and conclude that convolutional neural net-

works show the most characteristic behavior with respect

to the topology when compared to other models (non-

convolutional deep neural networks and LSTM networks),

as a fraction of model configurations do not work at all.

They also state that functional setups show little variance in

their performance, though they report a 7% difference in

F1 score between peak and median performance, which we

consider to be a remarkable variance.

Consequently, the influence of neural network design

decisions can be fundamental for their performance and

can be even greater when recurrent neural networks

(RNNs) come into play, as they enable many new appli-

cations when time series are available. The effectiveness of

RNNs is well demonstrated in Andrej Karpathy’s blog

[56], by applying them to train character-level language

models with impressive outcomes and describing the

internal behavior of the network. An interesting conclusion

is drawn in the recent work by Lipton and Berkowitz [73],

who after reviewing 3 decades of research in recurrent

neural networks, have concluded [emphasis added]:

While LSTMs and BRNNs (bidirectional recurrent

neural networks) have set records in accuracy on

many tasks in recent years, it is noteworthy that

advances come from novel architectures rather than

from fundamentally novel algorithms. Therefore,

automating exploration of the space of possible

models, for example via genetic algorithms or a

Markov chain Monte Carlo approach, could be

promising. Neural networks offer a wide range of

transferable and combinable techniques. New acti-

vation functions, training procedures, initialization

procedures, etc. are generally transferable across

networks and tasks, often conferring similar benefits.

As the number of such techniques grows, the practi-

cality of testing all combinations diminishes. It seems

reasonable to infer that as a community, neural net-

work researchers are exploring the space of model

architectures and configurations much as a genetic

algorithm might, mixing and matching techniques,

with a fitness function in the form of evaluation

metrics on major datasets of interest.

In summary, the architecture of a neural network is an

important factor affecting its performance, and its impact is

especially noticeable in CNNs, where very complex

topologies that can even comprise recurrent layers are

considered. Additionally, recent developments in hardware

devices (such as improved GPUs—graphic processor

units—or specific architectures for tensor processing) are

enabling the community to rapidly iterate over different

topologies and models, since both forward propagation and

backward propagation are significantly accelerated when

using these devices.

5 Past

5.1 Background

As previously mentioned, the discovery of backpropaga-

tion and its popularization by Rumelhart et al. [102] meant

the awakening of artificial neural networks within the AI

scene. Backpropagation was used for determining the best

526 Neural Computing and Applications (2020) 32:519–545

123

weights for a network in order to minimize a loss function

between the computed output and the real output.

Few years later, due to the absence of an analytic pro-

cedure to compute the best topology of ANNs, there were

an increasing interest on developing techniques for deter-

mining, or at least estimating, optimal neural network

topologies. Some of the earliest approaches have tried to

estimate the optimal topology for solving a certain problem

using constructive or destructive algorithms. In the former,

the process starts with a minimal network and new nodes

and connections are added during the training phase, until

performance stops improving (or starts degrading). As for

destructive algorithms, the idea is similar yet starting with

an oversized network from which nodes and connections

are removed. Examples of these simple algorithms can be

found in the works by Fahlman and Lebiere [33], Frean

[38], Mozer and Smolensky [88], Sietsma and Dow [111]

or Hirose et al. [51]. However, one of the most cited works

regarding destructive algorithms is that by LeCun et al.

published in 1990 [70].

Another early contribution was published by Wang et al.

[130] in 1994, though the article had been submitted to the

journal 2 years before, in 1992. In this work, authors con-

strained their research to neural networks with only two

hidden layers and proposed an algorithm for determining

the optimal number of hidden units by evolving the network

topology during training using an algebraic approximation.

Though they validated their approach by simulation over

five noise-free and noise-corrupted datasets, they did not

use more than 10 neurons per hidden layer, and thus their

work explores a very small search space.

However, early after the need for automatically deter-

mining the best topologies arose, a relevant new field

entered the scene: ‘‘neuroevolution’’ (NE). The Encyclo-

pedia of Machine Learning [104] defines NE as follows

[80]:

Neuroevolution is a method for modifying neural

network weights, topologies, or ensembles in order to

learn a specific task. Evolutionary computation is used

to search for network parameters that maximize a fit-

ness function that measures performance in the task.

Compared to other neural network learning methods,

neuroevolution is highly general, allowing learning

without explicit targets, with non-differentiable acti-

vation functions, and with recurrent networks.

5.2 Early steps

The concept of NE arose in the late 1980s,1 with some

authors motivating research in this area, such as

Miihlenbein and Kindermann [79]. Most early works in NE

are concerned with evolving the weights of ANNs. A

straightforward approach is to encode the weights of the

network in the genotype, either as a binary string or a list of

real numbers. Some of these early works are those by

Montana and Davis [87] or Whitley and Hanson [133] in

1989.

By that time, the application of NE for learning the

weights of ANNs was specially interesting for those cases

where backpropagation was not a good choice, e.g., mul-

tilayer or recurrent networks (RNNs). Whitley et al. [132]

considered the evolution of multilayer feed-forward net-

works in 1991. Regarding RNNs, some early works are

those by Torreele in 1991 [123] or de Garis in 1992 [27],

who stated NE was ‘‘more flexible and powerful than the

traditional neural network paradigms.’’ While most works

involved genetic algorithms (GAs), Scholz [108] suggested

a modified version of evolutionary strategies (ES) in 1991.

Besides evolving the weights of a neural network,

evolutionary computation was used in the beginning for a

diversity of tasks related to the improvement of neural

networks. For example, Harp et al. used genetic algorithms

to find good values for the learning rate and decay in 1989

[46], finding that resulting values are higher than expected

in some problems. Additionally, Belew et al. also used

genetic algorithms to find a suitable initialization of the

network for backpropagation in 1991 [11]. In 1990, Chal-

mers [18] used genetic algorithms in order to decide the

best learning algorithm while keeping the topology fixed,

although their results on feed-forward networks cannot be

assessed since there are no results reported on benchmark

datasets.

Some early works were also concerned with designing

ANN topologies. For example, in 1989 Miller et al. [83]

suggested using GAs for evolving the network structure.

There is an explosion of this area in the early 1990s: Harp

et al. [47] described NeuroGENESYS, a GA for learning

the network structure and some additional learning

parameters, yet using backpropagation for learning the

weights, and a similar approach was described by Schaffer

et al. [105]. Also that year, Kitano [60] suggested an

alternative encoding based on graph generation grammars

using GAs, arguing that the process is more efficient

because it is able to generate more connectivity patterns

while reducing the chromosome length; and in 1991

Schiffmann et al. [107] compared fixed and evolved net-

work topologies with an application to handwritten digits

recognition.

The first extensive survey in this area had been provided

by Schaffer et al. [106] already in 1992, in an international

workshop on combinations of genetic algorithms and

neural networks. It is remarkable that, as early as in 1992,

there was so much research interest in this field. By that1 However, the term ‘‘neuroevolution’’ would be coined years later.

Neural Computing and Applications (2020) 32:519–545 527

123

time, more authors were already working in the evolu-

tionary design of the neural network structure; e.g., Han-

cock [44] explored the performance of different

recombination operators when evolving the network

structure, Elias [32] described the use of a genetic algo-

rithm to evolve the connection patterns of a neural network

implemented over analog hardware, Dasgupta and

McGregor [25] used structured genetic algorithms for the

evolution of both the weights and topology of application-

specific neural networks, Karunanithi et al. [57] described

the use of genetic cascade learning to improve the network

topology by adding one hidden unit at a time, and Lindgren

et al. [71] evolved the topology and weights of a neural

network for regular language inference.

It is remarkable that only 6 years after backpropagation

was introduced, there was a large community of

researchers addressing its issues and applying EAs to

determine the weights and topology of ANNs. A summary

of these works was published in 1995 by Balakrishnan and

Honavar [6], according to a taxonomy based on the geno-

type representation, the network topology, the variables of

evolution and the application domain.

An additional review was provided in 1993 by Yao

[135], where the author distinguished three main types of

works: evolution of weights, of architectures, and of

learning rules. Yao’s work described the need for auto-

matic design of neural networks architectures:

It is well known that EANN architecture has signif-

icant impact on EANN information processing abil-

ities. Unfortunately, EANN architecture still has to be

designed by experienced experts through trial-and-

error. There is no systematic way to design an opti-

mal (near optimal) architecture for a particular task.

Yao also agreed with Miller et al. [83] in that GA-based

approaches are suitable for finding optimal solutions within

the search space, i.e., the set of candidate solutions com-

posed of all possible ANN architectures, because of the

next characteristics of the search space:

• It is potentially infinite, since the number of possible

nodes and connections is unbounded.

• It is non-differentiable, as changes in the number of

nodes or connections are discrete but can have a

continuous effect on the network performance.

• It is complex and noisy, because the mapping between a

network and its performance is indirect and stochastic

due to the randomness of initial weights.

• It is deceptive, since similar network architectures can

lead to very different performances.

• It is multimodal, since very different architectures can

have similar performance.

After addressing the advantages of using evolutionary

computation for determining optimal or near-optimal

topologies for artificial neural networks, Yao established a

taxonomy of works on neuroevolution based on the

encoding: direct or indirect.

In direct encoding, a binary chromosome specifies

whether a connection between two nodes exists or not. To

use this schema, we need some previous knowledge about

the problem in order to determine a maximal topology, i.e.,

determining an upper bound to the number of layers and

hidden units, which can be as large as desired. Once the

maximal topology comprising N nodes is established, each

neuron is numbered and a binary matrix C ¼ cij
� �

N�N
is

created. A ‘1’ in the position cij indicates that there is a

connection from neuron i to neuron j, where as a ‘0’

indicates that such connection does not exist. Additional

constraints can be imposed, for example to guarantee a

feed-forward neuron (only enabling connections from

nodes in one layer to nodes in the following one). These

additional constraints can be observed in the genotype by

removing genes cij so that j is in not in the following layer

than i. While this encoding is very natural, it entails two

handicaps: First, certain assumptions must be made about

the topology of the network ahead, in order to determine

the maximal topology. Second, unless certain constraints

are imposed (which requires still more knowledge and

prior decisions on the topology), the size of the chromo-

some grows quadratically with the number of nodes in the

network, posing a Oðn2Þ complexity.

In indirect encoding, some important features of the

neural network topology are considered in the chromo-

some, instead of the full connectivity pattern. It leads to a

more compact encoding when compared with the direct

one. Yao describes three main approaches to this encoding

that had been explored as of 1993: connectivity parameters

(specifying a set of parameters that characterize the

topology of a neural network, such as the number of layers,

the number of nodes in each layer, etc.), developmental

rules (recursive equations or production rules, such as those

found in generative grammars, that can be used to build a

topology) and, to a lesser extent, fractal representations of

connectivity (inspired by some of the processes of bio-

logical development, see Merrill and Port [78]).

Yao also remarks that some works also encode learning

parameters, such as the learning rate. Some have been

mentioned in the previous section; e.g., the work by Harp

et al. [46] in 1989.

In 1994, Gruau [42] presented his doctoral dissertation,

where he suggested representing ANNs via cellular

encoding, using grammar trees to describe the network’s

structure which would be optimized using GAs.

528 Neural Computing and Applications (2020) 32:519–545

123

Also that year, Angeline et al. [2] presented GNARL,

which stands for GeNeralized Acquisition of Recurrent

Links, an evolutionary programming-based approach with

direct encoding for evolving the structure and weights of a

recurrent neural network. In evolutionary programming,

the recombination operator is not used, and only mutation

is performed to obtain new individuals. In GNARL, the

number of input and output neurons are defined by the

problem, and the number of hidden units varies from 0 to a

user-defined maximum hmax. Neurons are not previously

assigned to layers, so there can be any recurrent connec-

tivity pattern. In fact, individual nodes or groups of nodes

can remain disconnected from the inputs and outputs

neurons, thus being ignored when constructing the neural

network.

In 1997, Vonk et al. [127] published a book describing

the application of NE in automatic generation of ANN

topologies. They studied GAs for optimizing the weights of

the network, and GP and GAs with grammar encoding for

the topology. As for GP, they had previously presented

GPNN [128]. They tested their approach only in two

simple problems (XOR and one-bit adder), but admitted

that the system did not scale out well for real-world

problems.

5.3 Consolidation of neuroevolution

One the most relevant early approaches of neuroevolution

arose when Yao and Liu [137] proposed EPNet in 1997, a

system based on evolutionary programming for evolving

artificial neural networks using direct encoding. In EPNet,

both architecture and weights are evolved simultaneously,

and authors noted that they put their focus on evolving the

behavior of neural networks, keeping a behavioral link

between parents and offspring during the evolutionary

process. This is one of the motivations for which they

chose evolutionary programming over genetic algorithms.

Because they used direct encoding, the user needed to

specify a maximum number (N) of hidden nodes allowable

in the network. The specification of the neural network

requires two matrices, each of them with dimension

ðmþ N þ nÞ � ðmþ N þ nÞ, being m the number of input

nodes and n the number of output nodes; and a binary

vector of length N. The first matrix is a binary connectivity

matrix determining the existence or not of a link between

two nodes, whether the second matrix specifies the con-

nection weights. The vector specifies whether nodes exist

or not in the network. Because Yao and Liu decided to

constrain the search space to feed-forward networks, some

constraints can be imposed on these matrices: Only the

upper triangle of the matrix will be used, and the connec-

tions between input nodes will be enforced to 0.

The main innovation of EPNet is the mutation scheme:

Yao and Liu came up with a sequence of mutations that

were only executed if the previous action did not improve

the network performance, comprising the next stages: (1)

hybrid training of the connection weights using back-

propagation with a custom learning rate or simulated

annealing, (2) deleting one or more hidden nodes by setting

the corresponding bits in the vector to 0, (3) deleting

several connections, based on their importance, by setting

the corresponding bits in the connectivity matrix to 0, and

(4) adding new connections with a small random weight,

and new nodes using cell division [91]. The mutation

scheme in EPNet gives preference to changes in the con-

nection weights rather than to architectural modifications.

Also, when the topology is mutated, removal of nodes and

connections is preferred over addition, to reduce the ANN

size during evolution. Finally, after evolution concludes,

further training is performed using both the training and

validation sets with backpropagation.

After proposing EPNet, Yao and Liu validated their

proposal using different real-world problems, including:

the N parity problem, the two-spiral problem, medical

diagnosis problems (including breast cancer, diabetes,

heart disease and thyroid data sets), the Australian credit

card assessment problem and MacKey–Glass chaotic time

series prediction problem. Authors concluded that EPNet

led to very competitive results because of the few con-

straints imposed on the network architectures, thus result-

ing in a large search space. However, they admitted that

EPNet involved many user-defined parameters.

In 1999, Yao [136] reviewed the field of NE and pointed

out some future directions for the new millennium. Yao

also established a general framework for NE in different

levels: connection weights, topology and learning rules.

Finally, he concluded that using EAs at the three levels can

be computationally expensive, and suggested that it is a

better idea to use these techniques only in some levels.

In 2002, Stanley and Miikkulainen [115] presented

NeuroEvolution of Augmenting Topologies (NEAT), a

solution which would become one of the most cited and

used systems in NE. NEAT evolved both the topology and

the weights of the neural network using genetic algorithms

with a direct encoding. Unlike in the working scheme of

evolutionary programming, genetic algorithms include a

recombination operator in order to perform the crossover

between two parents to generate offspring. For this reason,

the encoding must be thought in order to ease recombina-

tion, and authors stated that NEAT’s encoding eases lining

up corresponding genes when two genomes cross over

during recombination. Networks were encoded using two

vectors: one for nodes and other for connections. The nodes

vector includes a list of input, hidden and output nodes,

which can be connected. The connections vector include

Neural Computing and Applications (2020) 32:519–545 529

123

the input and output nodes of the connection, its weight,

whether it is enabled or not, and a so-called innovation

number (described later).

In NEAT, mutation could affect both weights and

topology. In the former case, weights evolved following

the standard mutation scheme in GAs. In the latter case,

structural mutations could either add connections or add

new nodes. When adding connections, a new item was

added to the connections vector with a random weight

between two existing, unconnected nodes. Adding nodes

was slightly more complicated: A new position is added to

the nodes vector and then, a random connection c is cho-

sen. To be more specific, if we considered ni to be the input

node of connection c, no to be the output node of that

connection, and nm the new node created during mutation;

then, connection c is disabled in the connections vector and

two new connections are added: c1 linking ni to nm, and c2
linking nm to no.

Regarding the aforementioned innovation number, it is

an incremental value added to each connection when cre-

ated, indicating at which stage of the evolution process the

gene appeared. In order to perform crossover, two indi-

viduals were lined up based on their innovation numbers,

leaving gaps when the innovation number in one parent is

not present in the other (see Fig. 4 in the original NEAT

paper [115]) and offspring were composed by randomly

choosing from either parent at matching genes. Disjoint

and excess genes (those in one parent with innovation

numbers not present in the other parent) would always be

included from the fittest parent.

As opposed to EPNet [137], NEAT’s mutation

scheme always increased the network size; therefore, the

acronym stands for ‘‘augmenting topologies.’’ This would

allow the search to start in a space of reduced dimension-

ality, increasing the search space only when required and

leading to minimal topologies. After evaluating its per-

formance, the authors concluded that NEAT was powerful

for evolving ANNs, being more efficient than other NE

techniques.

The approach used in NEAT led to some novel tech-

niques such as HyperNEAT by Stanley et al. in 2009 [114],

where an indirect encoding was used in order to evolve

compositional pattern-producing networks (CPPNs),

enabling the efficient representation of large-scale ANNs

(with over eight million connections) or ES-HyperNEAT

by Risi and Stanley in 2012 [100], a work similar to the

former but automatically deducing node geometry.

In 2005, Kassahun and Sommer introduced Evolution-

ary Acquisition of Neural Topologies (EANT) [59], a work

closely related to NEAT [115] and the work by Igel [55]. In

particular, they evolved the network starting from a mini-

mal topology and the weights using CMA-ES (Covariance

Matrix Adaptation Evolutionary Strategy, refer to the work

by Hansen [45] for further details). However, the authors

considered that their main contribution is the encoding,

which allowed to be evaluated without decoding it: The

genome in EANT is a linear sequence of genes which can

represent different entities of the ANN, either a neuron, an

input neuron, or a connection (feed-forward or recurrent)

between two neurons. All genes stored the weight between

the neuron they represented and the neuron to which it was

connected, and connection genes (or ‘‘jumper genes’’) also

contained one number specifying the neuron to which it

was connected.

The main advantage of their work is the proposal of a

single theoretical and mathematical framework called

common genetic encoding (CGE). This framework was

formally proved to be complete, as it was able to represent

all possible phenotypes, and closed, since every valid

genotype represents a valid phenotype [58].

In 2007, Siebel and Sommer proposed EANT2 [110],

improving the efficiency of EANT. EANT2’s performance

was evaluated by evolving a network which must control a

robotic arm equipped with a camera in order to steer the

arm to a certain object, and compared against NEAT’s

performance, showing that EANT2 obtained a higher

fitness.

NE is a highly prolific field, and many works have been

published across almost 3 decades. Many significant works

and contributions have been gathered in previous surveys

of the state of the art; e.g., Floreano et al. in 2008 [35] or

Ding et al. in 2013 [30].

In recent years, some novel open-source NE frameworks

have appeared. The availability of source code allows

researchers to work on their own implementations and

applications. One of these frameworks is MABE, whose

source code is currently maintained and receives frequent

contributions [50]. The foundations of the MABE frame-

work were presented in 2011 by Edlund et al. [31], and the

framework is general enough as to support different

encoding methods and optimization techniques.

6 Present: drifting toward deep learning

In the previous section, we have described almost 3 dec-

ades of research in neuroevolution. However, during most

of this time neural networks were relatively small, in some

cases containing only one hidden layer with few hidden

units or few recurrent connections, due to the limitations in

computational power.

The recent emergence of deep and convolutional neural

networks has brought back the need for designing topolo-

gies that are suitable to tackle specific problems. However,

DNNs can have dozens of feed-forward or recurrent layers

with thousands of units, and neurons can implement

530 Neural Computing and Applications (2020) 32:519–545

123

diverse activation functions. Besides, CNNs can also have

several convolutional layers with thousands of filters of

various sizes, apart from different pooling and padding

setups. As a result, DNNs and CNNs can have hundreds of

thousands or even millions of weights, and innovations

must be introduced in NE for it to adapt to these new

topologies.

The number of works studying the application of NE to

the optimization of deep and convolutional neural networks

is still very scarce due to the novelty of CNNs and the

computational cost of training and testing the performance

of these networks, although it has grown significantly

during 2017 and 2018. In this section we will cover the

most relevant works in this new, rapidly evolving field.

6.1 The origins

An early approach of neuroevolution to deep learning was

proposed by Koutnı́k et al. in 2014’s edition of GECCO

[61]. In the abstract, authors state that their work ‘‘is the

first use of deep learning in the context of evolutionary

reinforcement learning,’’ and to the best of our knowledge,

it is also the first attempt to evolve convolutional neural

networks published in the proceedings of a flagship con-

ference; although earlier works had used grid search or

bayesian optimization to find a small set of optimal

hyperparameters (Snoek et al. [112] or Bergstra et al. [13]).

However, in this work, the topology of the neural network

is not encoded, but rather a fixed architecture is used

comprising four convolutional layers with max pooling and

finally a small recurrent network with three hidden units.

The weights of the convolutional layers that eventually

output feature vectors from raw inputs, and the weights of

the recurrent neural network are learned separately. In the

former case, 993 weights were optimized to maximize the

variance of output representations, encoding them in a real-

valued genome evolved using CoSyNE [41]. As for the

recurrent neural network, it comprises only 33 weights,

which are encoded and evolved using the same mechanism

while fixing a sigmoid activation function.

Another work was published in 2015 by Verbancsics

and Harguess [126], where they proposed a modification on

HyperNEAT [114] to support the evolution of convolu-

tional neural networks, by adding a new CNN substrate

able to represent this kind of networks. The methods were

briefly described in a preprint published in arXiv in 2013

[125]. In their approach, they use their variation of

HyperNEAT to learn the weights of a feature extractor

shaped as the convolutional layers of a CNN (resembling

the LeNet-5 architecture [69]). The output of this feature

extractor, which is a vector of features, is then introduced

to a multilayer perceptron which is trained using classical

backpropagation. However, their experiments using the

evolved network over the MNIST dataset led to a test error

rate of 7.9%, which is one order of magnitude higher than

the performance of most CNN-based works.

Also by the end of 2015, Young et al. [139] introduced

multi-node evolutionary neural networks for deep learning

(MENNDL), a framework for optimizing the hyperpa-

rameters of a neural network using genetic algorithms, with

a focus on high-performance computing. From the evolu-

tionary perspective, their proposal turned out to be very

simple, evolving only six hyperparameters: the number of

filters plus the filter size for a fixed 3-layers convolutional

architecture. Their proposal was tested against the CIFAR-

10 dataset, but the final error rate is not reported. Same

authors [138], later in 2017, published a novel work where

the expressiveness of the genetic encoding was improved,

allowing for a variable number of layers (using on–off bits)

and evolving up to eleven parameters in convolutional

layers, as well as hyperparameters in pooling and fully

connected layers, including the evolution of activation

functions. Nevertheless, the paper provided just a few

details on the encoding, and the focus was again placed on

the high-performance computing.

During 2016, three related works were published. The

first was published by Loshchilov and Hutter [75] where

they propose using CMA-ES (covariance matrix adaptation

evolution strategy) to evolve the hyperparameters of a deep

neural network. In particular, 19 hyperparameters are

considered including optimizer parameters (learning rate,

momentum, etc.), batch size, dropout rate, number of filters

in the convolutional layers or number of units in the fully

connected layer. However, the number of layers is fixed

prior to the evolutionary process, and most of the hyper-

parameters involved are related to the optimizer rather than

the topology. In fact, neither filter sizes or activation

functions are evolved, and recurrent layers are not included

in the search space. Authors report performance of their

proposal in the MNIST and CIFAR-10 databases, with

approximate error rates of 0.27% and 9.3%, respectively

(values are not shown in the text, and these values are

inferred from the figures provided by the authors). This

seems that the first time such competitive performance is

obtained by applying neuroevolution to CNNs, although it

seems from the authors’ description that this error rate

refers to the validation set instead of the test set.

The second work was published by Fernando et al. [34],

from Google DeepMind. In their proposal, they suggest the

creation of a differentiable version of a compositional

pattern-producing network (a type of neural network suit-

able to be evolved using augmenting topologies approa-

ches, such as NEAT), which they call DPPN and evolve

using genetic algorithms with three different types of

mutation (add random node, add random edge, and remove

random edge) and crossover. Their solution is innovative as

Neural Computing and Applications (2020) 32:519–545 531

123

they use direct encoding to simultaneously evolve the

topology and the initial weights of the connections, even-

tually generating a convolutional architecture which is

embedded within a fully connected network, with filters

included in each hidden unit. This network is then evolved

using backpropagation. Authors report results on the

MNIST database, but instead of working on a classification

problem, they explore the problem of image reconstruction

using the evolved network.

The third work was published by Tirumala et al. [122],

who suggest the use of a coevolutionary algorithm, com-

paring both a competitive and a cooperative version. The

ways in which solutions are encoded and the evolutionary

process is carried out are not described with great level of

detail, but authors only evolve the weights of a fixed

architecture with 5 fully connected layers, not including

convolutional layers. Authors report a test error rate over

the MNIST database of 1.2% with cooperative coevolution

and 3.7% with competitive coevolution.

6.2 The rise

Most of the works evolving CNN topologies started to

appear during 2017, leading to a rise in the field of neu-

roevolution of deep learning networks. Some of these

works are only available in preprint repositories, such as

arXiv. Next, we will describe each of these works in further

detail.

6.2.1 GeNet

Xie and Yuille [134] have worked on a GA to evolve the

topology of a CNN to perform visual recognition. Authors

considered a constrained case with a limited number of

layers, with already predefined building blocks, such as

convolution or pooling, and recognize the need to perform

heuristic search in order to find the optimal topology for

their needs.

GeNet’s proposal is interesting, since it leads to con-

volutional structures which differ from widely used

sequential architectures. In a nutshell, it could be seen as if

each convolutional layer (called a ‘‘stage’’ in GeNet) had a

whole acyclic graph of convolutional operators. Nodes in

each stage are connected and numbered, and connections

are only allowed from one node to another with a higher

number in order to avoid cycles. The input to the stage is

always introduced to the first node, which applies a con-

volution operation over it. In all other nodes, tensors

coming from the different input nodes are aggregated via

element-wise summation, then convolution is performed,

and finally batch normalization and ReLU are followed.

Convolution operators within the same stage will share the

same width, height, and number of filters, and stages are

separated by pooling.

GeNet encodes the network structure as a fixed-length

binary string by dividing the network in S stages, where the

s-th stage (s 2 f1; 2; . . .; Sg) contains Ks nodes, denoted as

vs;ks ; ks 2 f1; 2; . . .;Ksg. In the chromosome, each stage is

represented with 1þ 2þ � � � þ ðKs � 1Þ ¼ 1
2
Ks Ks � 1ð Þ

bits, where each bit represents the existence or not of a link

between two nodes of the stage. Thus, the first bit encodes

the existence of a link from vs;1 to vs;2, the next two bits

encode the existence of links from nodes vs;1 and vs;2 to vs;3,

respectively, and so on and so forth until the last Ks � 1

bits encode the existence of links from vs;1; . . .; vs;Ks�1 to

vs;Ks
.

While this approach is innovative because convolutional

operators can be performed in a non-sequential fashion, it

has the drawback that many parameters must be defined

prior to the evolutionary process, namely the number of

sequences (S), the number of nodes per each sequence (Ks),

the number of filters and their width and height for each

sequence, and the size of the pooling operator. Thus, the

search space is constrained, and many degrees-of-freedom

could be added to the genetic search in the space of pos-

sible CNNs. Also, GeNet only evolves the structure of the

convolutional layers, not evolving the fully connected or

recurrent part of the CNN. Weights are learned using

backpropagation.

Xie and Yuille evaluated the performance of GeNet

using the SHVN, CIFAR-10, and CIFAR-100 datasets,

obtaining a test error rate of 1.97%, 7.10%, and 29.03%,

respectively. There results are not particularly competitive

with the state of the art, yet authors state that networks

evolved by GeNet are less deep than outperforming CNNs.

Interestingly, authors conclude that ‘‘generated structures,

most of which have been less studied before, often perform

better than the standard manually designed ones,’’ sug-

gesting that evolution of CNN topologies is a promising

area which is yet to be explored.

6.2.2 CoDeepNEAT

Miikkulainen et al. [82] have presented CoDeepNEAT,

first posing an interesting thought: ‘‘Human engineers can

optimize a handful of configuration parameters through

experimentation, but DNNs have complex topologies and

hundreds of hyperparameters. Moreover, such design

choices matter; often success depends on finding the right

architecture for the problem. Much of the recent work in

deep learning has indeed focused on proposing different

hand-designed architectures on new problems.’’

CoDeepNEAT follows the same working principles than

NEAT, yet adapted to work with CNNs. In this case, nodes

532 Neural Computing and Applications (2020) 32:519–545

123

in the chromosome no longer represent neurons, but whole

layers in the CNN. Each node contains a table of real-

valued and binary hyperparameters that are subject to

mutation. These hyperparameters specify the layer type

(convolutional, fully connected or recurrent) and its prop-

erties. Some of these properties are: number of convolu-

tional filters, dropout rate, kernel size, number of neurons,

activation function, etc. Also, connections no longer have

weights, but just indicate how layers are interconnected.

Finally, the chromosome also contains a set of global

hyperparameters that do not belong to any specific layer,

such as learning rate, momentum, etc. As for the fitness

function, the genome is converted into a CNN whose

weights are learned using a training dataset, and a perfor-

mance metric is computed.

One interesting novelty in CoDeepNEAT is that layers

in the CNN may not adhere to a sequential structure,

allowing arbitrary connectivity between layers. Therefore,

the ability of merging layers must be introduced when one

layer has more than one input layers. As in GeNet, this can

be done using element-wise summation, though it can

require downsampling to the minimum layer size.

While the approach described so far is called ‘‘Deep-

NEAT,’’ authors proposed a coevolutionary variant. First,

they notice that some successful CNN architectures are

composed of ‘‘modules’’ that are repeated several times,

where these modules can have complicated internal struc-

tures (as it happened in GeNet stages). Therefore, these

modules would be implementations of small neural net-

works, which can then be aggregated to form complex

CNN topologies. The authors then establish the concept of

a ‘‘blueprint,’’ which is a graph describing how different

modules are interconnected to form the final network. In

this coevolutionary variant, which they call ‘‘CoDeep-

NEAT,’’ both modules and blueprints are evolved simul-

taneously in order to create modular networks. This variant

is called ‘‘CoDeepNEAT.’’ Also, authors implemented the

possibility to include LSTM units within the network.

Finally, authors tested CoDeepNEAT’s performance

using the CIFAR-10 domain. After data augmentation, they

achieved a test error rate of 7.3%, which is not particularly

competitive within the state of the art, though authors claim

that the resulting topology converges much faster than

better architectures. It is remarkable that CoDeepNEAT

allows learning very complex networks involving convo-

lutional, feed-forward and recurrent or LSTM layers,

strongly relying on the mutation of these parameters.

6.2.3 EXACT

Desell [29] introduced EXACT (Evolutionary eXploration

of Augmenting Convolutional Topologies) in a poster

session in GECCO 2017. It is remarkable that most of the

work describes how the algorithm is supported by a largely

distributed architecture using volunteer computing.

To perform the evolutionary process, the author based

his work on NEAT. Desell relied on the realization that the

structure of the convolutional layers in a CNN can be

evolved by solely determining the filter sizes and how they

are connected, and in consequence he designed specific

mutation and crossover operators. Regarding mutations,

one or several of the following mutation operations are

performed at each generation, depending on some user-

defined hyperparameters:

• Disabling a random edge in the genome. If this led to

unreachability of some output node, then the mutated

genome is discarded and a new attempt at mutation is

performed.

• Enabling a random edge in the genome.

• Splitting a random edge by creating a new node (just as

it was done in NEAT) in the middle, with a filter size

which is the mean of the filter sizes of the source and

target nodes. Also, a depth value is included which is

also the mean of both nodes.

• Adding an edge between two random nodes, given the

condition that the edge goes from a node ni to a node no
where no has larger depth than ni.

• Changing the filter size in a random node (by increasing

or decreasing each dimension in either one or two

units).

• Changing the filter size in a random node only in one

dimension (similar to the previous one, but acting only

in one of the filter dimensions).

As for crossover, edges will be added from the parents

to the child with different probabilities depending on

whether the parent is the fittest or the less fit of the couple;

then, non-selected edges are also added, yet they are dis-

abled in the child. Finally, nodes are added to the child, and

when both parents share a node with the same innovation

number, then the parameters will be chosen from the fittest

parent.

EXACT allows obtaining complex structures involving

many convolutional filters, although it does not evolve

neither pooling operators, activation functions, fully con-

nected or recurrent layers and other hyperparameters such

as the learning rate. After training the network using

backpropagation, Desell reported an error rate on MNIST

of 1.68%, which unfortunately is significantly higher than

most CNN-based approaches.

6.2.4 Large-scale evolution of image classifiers

Another work, also with the focus put in scalability was

published by Real et al. [98], from the Google Brain team,

in 2017. Authors use a genetic algorithm relying on a

Neural Computing and Applications (2020) 32:519–545 533

123

tournament as the selection operator, which is deployed

atop a massively parallel infrastructure. The topologies are

encoded by means of a graph similarly as done in GeNet or

DeepNEAT, with nodes this time being translated into

convolutional layers. In the case that one node receives

several inputs of different sizes, then authors will chose one

such inputs as the primary, and then convert all other inputs

to match the primary’s size, either by padding (if their were

smaller) or truncation (if they were larger). Besides this

structure, the learning rate is also stored in the genome to

be evolved.

Given a parent, Real et al. rely on mutations to generate

the offspring. The set of allowed mutations include

mechanisms for altering both the topology of the model or

its training. When it comes to the topology, mutation

allows for inserting a convolution node, removing a con-

volution node, altering the stride, the number of channels

of the filter size of a convolution node, and inserting or

removing a connection between random layers. Batch

normalization and ReLU activation can be optionally

applied after convolution, depending on the chromosome.

Regarding the different aspects of the training process,

mutation enables to alter the learning rate, reset the weights

of the model or keep training with the previously learned

weights. Authors insist on that these mutations were chosen

because they resemble the design and refinement process

that a human expert would follow. Reported error rates are

5.4% on CIFAR-10 and 23% on CIFAR-100. Interestingly,

authors have also explored building an ensemble to test the

models on the CIFAR-10 dataset, reducing the error down

to 4.5%. They realized that very good solutions are found

soon during evolution and are then slightly improved over

the course of generations. This could mean that we could

obtain good, yet not state-of-the-art models after a short

time.

More recently, in 2018, Real et al. [97] have introduced

the concept of a regularized evolutionary algorithm, where

the oldest model is removed from the population in every

generation. When compared against reinforcement learning

and random search, authors conclude that neuroevolution

and reinforcement learning perform similarly well,

although the former is faster, and both considerably surpass

random search. It is worth mentioning that authors report

running large-scale experiments in 450 GPUs over a week,

and dedicated evolution experiments in 900 TPUv2 during

five days.

6.2.5 DEvol

Joe Davison, from Microsoft, presented in 2017 an open-

source project called DEvol [26], for automated CNN

design via genetic programming. We have not been able to

find a publication describing this project.

In his proposal, the genome connects several nodes

sequentially, each node representing a layer. Hyperpa-

rameters for each layer are also evolved, including the

number of filters, the dropout rate, the activation functions,

etc. From the code documentation, it can be inferred that

DEvol supports a variable number of convolutional and

dense layers. When tested over the MNIST dataset, they

have achieved a test error rate of 0.6%, which is fairly good

yet not competitive with the state of the art.

6.2.6 Genetic programming for CNN design

Also in 2017, Suganuma et al. [117] published a work

using Cartesian GP to optimize CNN architectures, which

was a best paper candidate in GECCO 2017. In their pro-

posal, authors represent the network as an acyclic graph,

with nodes defined on a 2-dimensional grid with Nr rows

and Nc columns for a total of Nr � Nc nodes. These nodes

will become operators, which can be of different types as

we will define later. The number of rows defines the level

of parallelism, meaning that nodes in the same column are

executed in parallel, whereas rows conform the sequential

aspect of the network, meaning that nodes in one column

are executed after the previous column. In fact, Suganuma

et al. allow connections to ‘‘jump over’’ some layers,

forcing that input connections of a node in column Nci can

come from nodes in columns from Nci�l to Nci�1, where l is

the ‘‘levels-back’’ parameter (the maximum number of

layers in the past that can be considered for the input of the

current layer).

Within each cell in the grid, there are several integers

that encode the type and connections of the node associated

with that cell. The meaning of these integers will vary

depending on the type of the node. Authors have consid-

ered the following types of operators (which they call

‘‘blocks’’): convolutional, residual (which combines con-

volution and tensor summation), max pooling, average

pooling, concatenation and summation. These operators

allow to resemble complex non-sequential network types

such as GoogleNet or residual networks [48]. The output of

the last node (which will be of an aggregation operator,

such as summation or concatenation) will then be passed to

a softmax classifier. Nodes can be set inactive in the gen-

ome, meaning that even if the grid size is established prior

to begin the evolution, the number of nodes can vary. The

evolutionary process is based on a modified ð1þ kÞ evo-

lution strategy, relying only on genome mutations.

This approach is flexible regarding the possible archi-

tectures that can be expressed. However, their approach

only evolves convolutional layers, not observing fully

connected or recurrent layers, nor hyperparameters

534 Neural Computing and Applications (2020) 32:519–545

123

optimization. Authors have reported a test error rate on the

CIFAR-10 database of 5.98% with data augmentation.

6.2.7 Hyperparameter optimization using evolution
strategies

By the end of 2017’s summer, Bochinski et al. [15] pub-

lished a work describing a system based on evolutionary

computation to optimize the hyperparameters of CNNs,

which they call IEA-CNN. In their proposal, authors evolve

a good number of hyperparameters, including the number

of filters and the filter size in convolutional layers and the

number of neurons in fully connected layers. Pooling is not

included as an option, and other training hyperparameters

are manually established by the authors.

An interesting design decision involves sorting the

evolved layers by descending complexity; i.e., layers are

first evolved and then sorted to form the network, so that

first layers will be those with more filters or more neurons,

reducing the search space factorially on the number of

layers. For the evolutionary algorithm, authors implement a

ðlþ kÞ evolution strategy, therefore encoding the hyper-

parameters in a vector of real numbers.

Besides, authors also suggest how to extend this

framework to allow for the joint optimization of CNN

committees, by using a fitness function that takes the global

classification error of the population, and naming this

alternative CEA-CNN.

Finally, authors reported a test error rate in the MNIST

database without data augmentation of 0.34% using an

individual model and 0.24% using a committee of 34

CNNs, this last result being extremely competitive among

the state of the art.

6.2.8 EvoCNN

In October 2017, Sun et al. [118] published a preprint paper

describing the use of a GA for evolving deep CNNs. A

remarkable feature of this proposal is that the encoding

supports variable-length chromosomes, therefore providing

a natural encoding for different numbers of layers.

The hyperparameters evolved by EvoCNN include the

number of filters and their size, the stride size and the

convolution type for convolutional layers, the filter and

stride size and pooling type in pooling layers, and the

number of neurons in fully connected layers. Besides,

weights are also evolved, but instead of evolving all

weights, the mean value and standard deviation are evolved

instead for each layer, and weights are later randomly

assigned following a Gaussian distribution.

Because the chromosome can be of different lengths, a

specific crossover operator was implemented in order to

allow recombination, which involves aligning parent

chromosomes of different lengths by separating the list of

convolutional layers, pooling layers and fully connected

layers. Also, a specific environmental selection operator is

introduced to promote diversity in the population, which is

combined with elitism (conserving the best individuals

across generations) to help improve the fitness. Also,

authors suggest using an efficient fitness computation

which reduces the amount of training epochs for each

individual, using the mean classification error and standard

deviation over the different validation batches in the last

epoch as the fitness value. Standard deviation is only used

in case of a tie when sorting individuals by mean error.

Authors apply EvoCNN to a variety of image recogni-

tion domains, including many MNIST variants described

by Larochelle et al. [66]. In basic MNIST, they report a test

error rate of 1.18%, which is large compared to the state of

the art.

6.2.9 Grammatical evolution of CNNs

More recently, in 2018, Baldominos et al. [7] proposed a

system which was able to evolve many different aspects of

the convolutional neural network, including convolutional,

fully connected and recurrent layers, activation functions

and other learning hyperparameters. They tested two dif-

ferent approaches: one based on genetic algorithms and

another using grammatical evolution, a particularization of

a genetic algorithm where a generative grammar is used to

map the chromosome into a CNN topology.

For the GA, authors propose a binary encoding with a

fixed-size chromosome, enabling a variable number of

layers by using activation bits for each layer. In the case of

convolutional layers, the number of filters, their size, and

the activation functions are evolved, as well as the exis-

tence of pooling layers and their size. In fully connected

layers, the hyperparameters subject to optimization are the

layer type (feed-forward or recurrent), the number of units,

the activation function, and whether regularization or

dropout is used. In the case of the grammatical evolution,

authors use roughly an equivalent search space, just

exploiting the improved encoding provided by this

technique.

One of the innovations introduced in this work is the use

of a niching scheme in the evolutionary algorithms to

enhance diversity in the population, with authors claiming

that this added diversity improves the performance of the

process.

This work observes many different aspects of opti-

mization, although it is constrained to sequential networks,

unlike other works described before, which could allow

more complex structures. Authors have tested their pro-

posal with MNIST obtaining a test error rate of 0.37%

without data augmentation nor preprocessing. In a more

Neural Computing and Applications (2020) 32:519–545 535

123

recent work published in late 2018 [9], authors proposed an

improvement of the previous system by evolving com-

mittees of CNNs in order to improve the performance,

reducing it to 0.25%. Also, the same system with a dif-

ferent encoding was used to tackle a human activity

recognition problem [8].

6.3 The settlement

So far we have seen some relevant works which have

started the application of neuroevolution to deep and con-

volutional neural networks. As of 2018, the field is settling

and the number of works is starting to grow significantly.

In this section, we will briefly describe the most relevant of

these works.

6.3.1 Hierarchical representations

Liu et al. [74] from Carnegie Mellon University and

DeepMind have published in ICLR 2018 a work repre-

senting neural networks by means of the computation

graph, with a single input and a single output. Therefore,

the architecture can be defined as a tuple ðG; oÞ, where
o ¼ fo1; o2; . . .g is the set of available operations and G is

the graph identified by its adjacency matrix, where Gij ¼ k

means that the k-th operation (ok) will be executed in

between nodes i and j.

Then, authors use a genetic algorithm for evolving

individuals using mutation, which allows adding, remov-

ing, or editing edges in the graph. The set of operations

proposed in this work allows the creation of convolutional

and pooling layers, although they do not evolve fully

connected or recurrent.

6.3.2 Lamarckian evolution

In 2018, Prellberg and Kramer [94] presented a new neu-

roevolution work in PPSN 2018. In both cases, a (1 ? 1)

evolution strategy is used to evolve the convolutional

layers in a CNN. In their approach, the evolutionary

algorithm relies only on a mutation operator, which is

intended to improve one individual one generation at a

time. The mutation can add a new building block (which is

equivalent to a convolutional layer) with a random number

of filters, a random filter size, and a stride of one, or modify

some of the hyperparameters of such building block by

adding or removing filters or changing the filter size or the

stride. Mutation can also delete a building block.

In this work, a mechanism is introduced to support

weights inheritance, so that once a network is trained, its

child can reuse the weights, except for the new layers and

filters resulting from mutation, where the parameters are

randomly initialized using Glorot initialization [39].

This work is closely related to one previously published

by Kramer [64] in the same year. In the work published by

Kramer alone, fully connected layers and activation func-

tions are evolved, and parameters are learned using gra-

dient descent. However, in the work of Prellberg and

Kramer, authors simplify the previous one by fixing fully

connected layers at the end of the network as well as

activation functions.

In both works, a niching scheme and mutation rate

control are used for supporting the evolutionary procedure.

Kramer reported a maximum MNIST accuracy of 99.1%,

and the work by Prellberg and Kramer attained an accuracy

of 89.3% in CIFAR-10 and 66.1% in CIFAR-100 without

data augmentation. These results are not state of the art, but

according to authors they are not intended to be, since they

focus on showing the advantages of weights inheritance.

Also in June 2018, Prellberg and Kramer presented a

different approach [95] where a GPU-optimized evolu-

tionary algorithm evolved the weights of a CNN (a total of

92,000 parameters), despite that they only obtain a 98%

accuracy on the MNIST dataset.

6.3.3 DENSER

Another work has been presented by Assunção et al. [3],

called DENSER (deep evolutionary network structured

representation). In this work the evolutionary algorithm

optimizes the topology of the network and the activation

functions. Authors claim that it can be used also to evolve

learning hyperparameters and, as a novelty, the hyperpa-

rameters of the data augmentation stage (a procedure

widely used in computer vision to synthetically enlarge the

dataset by applying transformations to the original images).

However, it is not clear how this is done given the

described genetic representation.

An interesting approach of their work is that the repre-

sentation of candidate solutions is done at two different

levels. In the first level, the topology of the neural network

is encoded in a chromosome and evolved using a genetic

algorithm. The genome can be interpreted as 3 tuples

where the first element is an initial non-terminal symbol in

a context-free generative grammar, and the second and

third elements refer to the minimum and maximum number

of times that the grammar will be used to generate a string

with such an initial symbol. In the second level, gram-

matical evolution is used to determine the hyperparameters

of each layer based on the previously mentioned grammar.

This representation allows for a variable number of layers

of different kinds (convolutional, pooling, and fully con-

nected) and the number of supported hyperparameters is

large, including the number of filters, the filter size,

536 Neural Computing and Applications (2020) 32:519–545

123

activation functions, the use of batch normalization, or the

number of units in fully connected layers.

In the evolutionary process, DENSER relies on both

crossover and mutation. Different mutations are supported:

In the case of the GA level, mutations can add, replicate, or

remove layers, whereas in the grammatical level mutations

allow to generate a different string or to mutate a numeric

value of the individual.

Assunção et al. have used the CIFAR-10 dataset in order

to evolve the network topology and then have transferred

such topology to other computer vision datasets. In par-

ticular, they report test error rates of 0.35% in MNIST

without data augmentation, 4.74% in CIFAR-10, and

21.25% in CIFAR-100.

6.3.4 DECNN

In late 2018, Wang et al [129] proposed the application of a

hybrid differential evolution algorithm to the optimization

of convolutional neural networks, an approach they called

‘‘DECNN.’’ They use an interesting encoding strategy

based on internet protocol (IP) addresses. In this encoding,

the hyperparameters of different layer types (convolutional,

pooling, and fully connected) are first encoded in a binary

string. Authors use 12 bits for convolutional (number of

filters, filter size and stride size), 5 bits for pooling (kernel

size, stride and pooling type) and 11 bits for fully con-

nected (number of neurons). These binary strings will then

constitute a ‘‘subnet’’ (making the analogy with network-

ing), which is its search space. Authors state that the fact

that pooling layers are represented by only 5 bits makes

them less prone to be chosen, and therefore, they add 6

more bits as a placeholder, so its final size is also 11 bits.

Finally, authors add a prefix bit string exclusive to each

layer type, finally encoding each subnet as a 2-byte (16-

bits) IP address.

Then, differential evolution is started by initializing a

random population, which involves the creation of indi-

viduals of different length and is followed by applying

standard mutation and crossover, with the only particularity

being that in crossover parents are trimmed to the shortest

length in order to generate offspring. Additionally, authors

have included a second crossover operator with the purpose

of taking two parents of the same size and generating two

children of different lengths, an effect that is achieved by

choosing a different cutting point in each of the parents’

chromosomes.

Authors test their proposal in different MNIST varia-

tions, achieving a test error rate of 1.08% in basic MNIST,

which is rather high when compared to the state of the art.

6.3.5 AE-CNN

Sun et al. [119] have recently published a preprint where

they propose the evolution of CNNs using a genetic algo-

rithm with two building blocks: ResNet block (standing for

residual network) and DenseNet. The ResNet block is

formed by three convolutional layers and a skip connection

that effectively combines the input to the block with the

output of the last layer using tensor summation, whereas

the DenseNet block is formed of four convolutional layers,

forcing that the input to each layer is the combination of all

previous outputs (e.g., the input to the fourth layer is the

combination of the feature maps produced by the first,

second and third layers).

The evolutionary algorithm used, which they call ‘‘AE-

CNN’’ (automatically evolving CNNs), is mostly a

canonical implementation of a genetic algorithm, yet the

best individuals for both the parents population and the

offspring population are selected for the next generation to

take place. The GA encoding is a chromosome of so-called

units, which can be either ResNet unit, DenseNet unit, or

Pooling unit. The former two can contain a variable

number of ResNet blocks and DenseNet blocks, respec-

tively, while the latter consist of a single pooling layer.

Each unit is encoded using an integer that determines its

type from among these three as well as parameters for each

unit (the number of blocks and the input and output size in

the case of ResNet and DenseNet, and the pooling type in

the case of pooling units). Chromosomes can have variable

length, and authors propose the use of single-point cross-

over, choosing different cutting points in each of the par-

ents. Mutations can be of three different kinds: add a new

unit to the chromosome, remove a unit, or modify the

parameters of a unit.

The advantage of AE-CNN is that a short encoding

allows for very deep neural architectures. This is because a

single gene in the chromosome (a unit) can lead to the

generation of several blocks which at the same time are

formed by three or four convolutional layers. On the con-

trary, this does not really allow for fine-tuning of the CNN,

and simple architectures which work very well for many

problems do not have the chance to be generated. Also,

although complex structures can be evolved, the number of

hyperparameters considered is small, affecting mostly the

input and output sizes of the convolutional layers.

Sun et al. test the performance of AE-CNN over the

CIFAR-10 and CIFAR-100 databases, attaining test error

rates of 4.7% and 22.4%, respectively, which are compet-

itive with the state of the art.

Neural Computing and Applications (2020) 32:519–545 537

123

6.3.6 Evolutionary gradient descent for DNNs

Cui et al. [23] from IBM Research presented a paper in

NIPS 2018 proposing the use of evolutionary computation

to complement stochastic gradient descent (SGD) during

the training phase of a deep neural network. In particular,

they alternate SGD and the evolutionary algorithm at each

generation. By using SGD, each individual is optimized

independently, and then, they interact as part of the evo-

lutionary stage.

In the process, which they call evolutionary stochastic

gradient descent (ESGC) the initial population is first cre-

ated. In every generation, SGD is first performed by

applying an optimization to each individual in the popu-

lation. If the fitness of an individual degrades after this

phase, then the parameters will be rolled back to the pre-

vious generation. In the evolutionary step, individuals are

combined using crossover and mutation to generate off-

spring, like in a regular genetic algorithm. Finally, the best

individuals from both the parents and the offspring are

chosen to be part of the following generation.

This proposal is not evolving any aspect of the topology;

instead, it is focused on evolving only weights, which are

encoded in a real-valued vector. Authors test their system

on different domains, including speech recognition, image

recognition, and language modeling. In the case of CIFAR-

10, they report a test error rate of 8.34%.

6.3.7 Neuroevolution of CNNs for reinforcement learning

All of the works we have seen so far have been ultimately

tested in supervised learning scenarios, commonly using

well-known classification datasets for benchmarking, such

as MNIST or CIFAR. However, in 2018 Such et al. [116]

from Uber AI Labs published a preprint describing the

application of evolution of CNNs for solving a different

problem: reinforcement learning.

In their work, authors purposely design a very simple

implementation of a genetic algorithm to test its perfor-

mance. They focus on optimizing weights instead of the

topology, but because storing all parameters in a real-val-

ued vector is impractical in very deep networks because of

the extremely large size of the search space, authors pro-

pose a compressed representation whose size increases

linearly with the number of generations (in the order of

thousands) and it is independent from the number of

parameters (which is often in the order of millions), at the

cost of requiring additional computation to generate the

model from the chromosome.

Authors have tested their approach on different rein-

forcement learning problems: learning to play Atari games

directly from pixels, solving an Atari-scale maze, and a

control problem involving a humanoid robot learning to

walk. According to their results, the GA is not particularly

competitive with other techniques, leading to worse solu-

tions or similar solutions requiring higher training time,

although it performs very well in some of the Atari games.

6.4 Summary

In this section, we have reviewed the field of neuroevolu-

tion applied to deep and convolutional neural networks.

This is a very new field which dates back to 2014 and

started to rise in 2017, and is currently settling, with a

considerable number of works testing different proposals.

The importance of this field can be observed given the

amount of works which are started to be published in top-

tier conferences such as GECCO, ICLR, and NIPS and in

journals, and an increasing number of papers can be found

in preprint repositories.

The importance of the field is such that in recent months

even a dedicated chapter in a Springer book [54] was

published about this topic, although it only surveys three

works from among all that were considered in this work.

Because every work introduces some novelties and

places the focus on different aspects to be optimized, we

have included a comparison of all reviewed works in

Table 1 including whether they support a variable number

of layers (VL), whether they evolve convolutional layers

(C), fully connected layers (FC), recurrent layers or LSTM

cells (R), activation functions (AF), learning hyperparam-

eters (H), whether they support the creation of ensembles

(E), or whether weights are evolved along with the topol-

ogy (W). We also report the performance of these works

over well-known image recognition databases when

available, since these datasets are widely used as a

benchmark for comparing CNN models.

Also, a graph is depicted in Fig. 5 showing how some of

the neuroevolution works described in this paper depend on

each other. This graph only shows arrows for those works

that extend or strongly relies on others, not showing a

dependency when some works only share some similarities

in their methods. NEAT occupies a key position in this

graph, since there it has strongly influenced many works,

including some aiming at the evolution of CNNs. Also, it

can be seen how many of the recent works are decoupled.

This can be due to the fact that neuroevolution of CNNs is

very recent, and the community is still exploring different

approaches and techniques before starting to exploit some

of the already available.

It can be seen how most works allow evolving the

design of the convolution operators and support a variable

number of layers. However, the approach used varies sig-

nificantly from work to work. On the other hand, the

number of works allowing the evolution of fully connected

layers, recurrent layers, activation functions, and

538 Neural Computing and Applications (2020) 32:519–545

123

optimization hyperparameters is very limited. Only two

works, CoDeepNEAT and the work by Baldominos et al.,

are shown to be very complete and flexible approaches for

neuroevolution of CNNs.

7 Future

Neuroevolution has been widely used for almost 3 decades

to automatically obtain neural network topologies and

models using evolutionary algorithms. This field has been

proved successful in many different domains and

Table 1 Comparison of different DNN and CNN neuroevolution techniques, including their supported features and error rates over well-known

benchmarking datasets

Work Method Ref VL C FC R AF L E W M (%) C10 (%) C100 (%)

The origins

Koutnı́k et al. [61] ES Section 6.1 �
Verbancsics and Harguess [126] GA Section 6.1 � 7.9

Young et al. [138, 139] GA Section 6.1 � � � �
Loshchilov and Hutter [75] ES Section 6.1 � � 0.27 9.3

Fernando et al. [34] GA Section 6.1 � �
Tirumala et al. [122] GA Section 6.1 � 1.2

The rise

GeNet [134] GA Section 6.2.1 � 7.1 29.03

CoDeepNEAT [82] GA Section 6.2.2 � � � � � � 7.3

EXACT [29] GA Section 6.2.3 � � 1.68

Real et al. [98] GA Section 6.2.4 � � � � 4.5 23

DEvol [26] GP Section 6.2.5 � � � � 0.6

Suganuma et al. [117] ES Section 6.2.6 � � 5.98

CEA-CNN [15] ES Section 6.2.7 � � � � 0.24

EvoCNN [118] GA Section 6.2.8 � � � � 1.18

Baldominos et al. [7, 9] GA Section 6.2.9 � � � � � � � 0.25

The settlement

Liu et al. [74] GA Section 6.3.1 � � 3.6

Prellberg and Kramer [64, 94] ES Section 6.3.2 � � � � 0.9 10.7 33.9

DENSER [3] GA Section 6.3.3 � � � � 0.35 4.74 21.25

DECNN [129] DE Section 6.3.4 � � � 1.08

AE-CNN [119] GA Section 6.3.5 � � 4.7 22.4

Cui et al. [23] GA Section 6.3.6 � 8.34

Such et al. [116] GA Section 6.3.7 �

Ref, the reference of the section where the work is described; VL, variable number of layers; C, convolutional layers; FC, fully connected layers;

R, recurrent layers; AF, activation functions; L, learning hyperparameters; E, ensembles or committees; W weights; M, MNIST; C10, CIFAR-10;

C100, CIFAR-100

Fig. 5 Graph showing how some of the neuroevolution works explored in this survey depend on previous work. Over each group of works, the

section of the paper where those works are described can be found

Neural Computing and Applications (2020) 32:519–545 539

123

applications and has received significant attention of the

scientific community.

Nowadays, remarkable improvements in hardware

architectures have popularized the use of more complex

models, involving deep and convolutional topologies

spanning several layers with a large number of hyperpa-

rameters. Unlike traditional feed-forward networks with

only one hidden layer, CNNs can involve very complex

topologies with many convolutional, feed-forward or

recurrent layers, and supporting many different setups in

each layer. Previous works have shown that the network

topology can have a significant impact in its performance

and, under the absence of analytic procedures for deter-

mining optimal topologies, neuroevolution shows as a

promising approach to tackle the automatic design of CNN

topologies.

Advances in GPU hardware and the development of

specific deep learning primitives (e.g., NVIDIA’s cuDNN

[19]) and frameworks (e.g., Theano [12] or TensorFlow

[1]) have made CNNs available even for personal use.

However, one major weakness in the use of NE for the

design of CNNs is the enormous resource consumption

during the optimization process. NE requires the evaluation

of thousands, or even hundreds of thousands, of different

individuals, each of which involves a complete training

process of a network with a complex topology and its

evaluation.

Only in very recent years has been neuroevolution of

CNNs shown to be a feasible technique, and thus, it is a

promising yet mostly unexplored field. Whereas some

neuroevolution approaches for traditional ANNs have

reached a significant degree of maturity (e.g., EPNet or

NEAT), the number of works where the evolution of CNNs

is tackled is still small, yet growing. In this paper, we have

summarized some of the most relevant milestones in the

history of neuroevolution and have extensively focused on

reviewing very recent works that have put the focus on the

evolution of deep and convolutional neural networks. A

timeline showing all these works and important landmarks

at a glance is shown in Fig. 6.

The good news is that current trends in technology

include manufacturing specific chipsets and product lines

for deep learning (e.g., Google Tensor Processing Units—

TPU—or NVIDIA Tesla), release of this hardware under

an infrastructure-as-a-service model (e.g., Google Cloud

TPUs [28] or more recently Amazon EC2 P3 instances [4]),

or construction of large AI supercomputers (e.g., NVI-

DIA’s DGX SATURNV, comprising 125 servers with a

total of 1000 powerful GPUs optimized for deep learning

[90]).

These innovations should constitute the fuel that

empowers this new promising research area. As hardware

resources get more affordable and accessible, the feasibility

of training and testing thousands of CNNs increases and

researchers can focus on exploring novel NE techniques or

extending NE to unexplored domains.

For those cases where NE is used to attain the highest

performance in terms of accuracy or other quality metric,

then the evolution of ensembles must be considered. So far,

very few works explore NE of ensembles or committees of

ANNs. Still, in most cases, ensembles perform better than

any of the models involved in them, turning this research

line into a one which worth to be explored. The main

advantage of evolutionary computation regarding ensem-

bles is that population-based techniques lead to a very

natural source of models to build a committee. Specific

techniques from the field of quality diversity [96] can be

considered and embodied into NE, leading to another

promising research line that involves the study of the

effects of increasing genetic diversity in the ensemble

performance.

On the other hand, some works may want to focus not in

attaining the highest performance, but rather in obtaining

simpler or more efficient models, for example, in terms of

time or energy expenditure. Decreasing time can help to

obtain populations whose individuals are faster to train and

validate, reducing the cost of fitness computations. As for

energy expenditure, its reduction can be especially inter-

esting when resulting models are going to be embedded in

portable devices, such as smartphones or wearables.

In this case, multi-objective evolutionary algorithms are

an interesting approach to optimize the different objectives,

taking advantage of the benefits of NE described before.

This line has barely been explored [76] and future work can

settle the foundations for obtaining high-performance

models which are also energy efficient or which involve

minimal topologies.

It seems natural that the evolution of machine learning

leads to learning more and more generic tasks. At the

moment, most models learned are tailored specifically for

solving particular problems and are difficult to apply to

different domains, even if they are very similar. One pos-

sibility involves the generation of more versatile models,

by means of modular learning, where learning is not con-

ducted as a whole, but by small independent modules. Each

module is generated independently to solve a certain task

that is common to a very diverse set of machine learning

problems. Therefore, these larger problems can only be

solved by cooperation of several of these modules. As these

modules are learned autonomously, they can be success-

fully reused to be part of the solution in other different

domains. In this case, the learning system must be able to

identify the subtasks, define specific modules for each of

them, identify possible candidates in a set of previously

learned modules, and link the modules with each other so

that the whole resulting model is coherent and effective.

540 Neural Computing and Applications (2020) 32:519–545

123

More specifically, a collection of simple neural modules

could be generated, which are trained (at least partially)

beforehand that could be used as building blocks for the

rapid and efficient generation of complex systems of neural

networks. It seems evident that NE would have a funda-

mental role in the development of these complex models,

being able to mold the modules and assemble them

quickly, efficiently and in a natural way in order to achieve

a successful result for this larger, more difficult task.

Another field to explore, closely related to the idea of

reusing previously learned models, is transfer learning.

With a very large set of possible problems to solve, which

is continuously growing, it remains as an interesting field

of study to explore how a topology optimized for solving

one problem can be reused (with or without modifications)

to solve a different yet similar problem. To illustrate this

with an example, it seems reasonable to think that a

topology learned for recognizing handwritten characters

can be used, at least to some extent, for successfully rec-

ognizing characters from digitized books. In a broader

sense, many different problems hold some common aspects

which can enable researchers to transfer some of the

expertise acquired in one problem to others. In this case,

NE can provide the means for learning more general

topologies, which can be transferred to other problems or

domains, as well as for determining the best way to transfer

the knowledge in each scenario.

In summary, NE of CNNs remains a mostly unexplored

and promising field which has gained significant attention

in the last year, and current advances in technology enable

researchers to develop new works within this research line.

Much work is still to be done, but given the large appli-

cability of CNNs and their success, the automatic evolu-

tionary design of their topologies is a very promising area

which must be tackled as of today.

Acknowledgements This research is partially supported by the

Spanish Ministry of Education, Culture and Sports under FPU fel-

lowship with grant number FPU13/03917.

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin

M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J,

Monga R, Moore S, Murray DG, Steiner B, Tucker P,

Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016)

TensorFlow: a system for large-scale machine learning. In: 12th

USENIX symposium on operating systems design and imple-

mentation, pp 265–283

2. Angeline PJ, Saunders GM, Pollack JB (1994) An evolutionary

algorithm that constructs recurrent neural networks. IEEE Trans

Neural Netw 5(1):54–65

Fig. 6 Timeline summarizing the chronology of all the neuroevolu-

tion works reviewed in this paper, with their references. Some

relevant milestones in the history of the field are shown as well. Under

the timeline, the section of the paper where the works are described is

shown, to serve as a reference

Neural Computing and Applications (2020) 32:519–545 541

123

3. Assunção F, Lourenço N, Machado P, Ribeiro B (2018) DEN-

SER: deep evolutionary network structured representation.

Genet Program Evol Mach (in press)
4. AWS: Amazon EC2 P3 Instances (2017). https://aws.amazon.

com/es/ec2/instance-types/p3/. Last queried on 14 Nov 2017

5. Baird L (1999) Reinforcement learning through gradient des-

cent. Ph.D. thesis, School of Computer Science, Carnegie

Mellon University

6. Balakrishnan K, Honavar V (1995) Evolutionary design of

neural architectures—a preliminary taxonomy and guide to lit-

erature. Technical report, Iowa State University. Paper 26

7. Baldominos A, Saez Y, Isasi P (2018) Evolutionary convolu-

tional neural networks: an application to handwriting recogni-

tion. Neurocomputing 283:38–52

8. Baldominos A, Saez Y, Isasi P (2018) Evolutionary design of

convolutional neural networks for human activity recognition in

sensor-rich environments. Sensors 18(4):1288

9. Baldominos A, Saez Y, Isasi P (2018) Model selection in

committees of evolved convolutional neural networks using

genetic algorithms. In: Intelligent data engineering and auto-

mated learning—IDEAL 2018. Lecture Notes in Computer

Science, vol 11314. Springer, pp 364–373

10. Baum EB, Haussler D (1989) What size net gives valid gener-

alization? Neural Comput 1(1):151–160

11. Belew RK, McInerney K, Schraudolph NN (1991) Evolving

networks: using the genetic algorithm with connectionist

learning. In: Langton CG, Taylor C, Farmer JD, Rasmussen S

(eds) Artificial life II. Addison-Wesley, MA, pp 511–547

12. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R,

Desjardins G, Turian J, Warde-Farley D, Bengio Y (2010)

Theano: a CPU and GPU math compiler in Python. In: 9th

Python in science conference

13. Bergstra J, Yamins D, Cox D (2013) Making a science of model

search: hyperparameter optimization in hundreds of dimensions

for vision architectures. J Mach Learn Res 28(1):115–123

14. Blum C, Roli A (2003) Metaheuristics in combinatorial opti-

mization: overview and conceptual comparison. ACM Comput

Surv 35(3):268–308

15. Bochinski E, Senst T, Sikora T (2017) Hyper-parameter opti-

mization for convolutional neural network committees based on

evolutionary algorithms. In: 2017 IEEE international conference

on image processing, pp 3924–3928

16. Canziani A, Paszke A, Culurciello E (2017) An analysis of deep

neural network models for practical applications. arXiv:1605.

07678

17. Caruana R (1993) Generalization vs. net size. NIPS Tutorial.

Denver, CO

18. Chalmers DJ (1990) The evolution of learning: an experiment in

genetic connectionism. In: 1990 Connectionist Models Summer

School, pp 81–90

19. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J,

Catanzaro B, Shelhamer E (2014) cuDNN: efficient primitives

for deep learning. arXiv:1410.0759

20. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On

the properties of neural machine translation: encoder–decoder

approaches. arXiv:1409.1259

21. Choudhary A, Rishi R, Dhaka VS, Ahlawat S (2010) Influence

of introducing an additional hidden layer on the character

recognition capability of a BP neural network having one hidden

layer. Int J Eng Technol 2(1):24–28

22. Cramer NL (1985) A representation for the adaptive generation

of simple sequential programs. In: 1st international conference

on genetic algorithms and their applications, pp 183–187

23. Cui X, Zhang W, Tüske Z, Picheny M (2018) Evolutionary

stochastic gradient descent for optimization of deep neural

networks. In: Advances in neural information processing sys-

tems 31. NIPS Proceedings

24. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2:303–314

25. Dasgupta D, McGregor DR (1992) Designing application-

specific neural networks using the structured genetic algorithm.

In: International workshop on combinations of genetic algo-

rithms and neural networks, pp 87–96

26. Davison J (2017) DEvol: Automated deep neural network design

via genetic programming. https://github.com/joeddav/devol.

Last visited on 01 July 2017

27. de Garis H (1992) Steerable GenNETS: the genetic program-

ming of steerable behavior in GenNETS. In: Towards a practice

of autonomous systems, pp 272–281

28. Dean J, Hölzle U (2017) Build and train machine learning

models on our new Google Cloud TPUs. https://www.blog.goo

gle/topics/google-cloud/google-cloud-offer-tpus-machine-learn

ing/. Published on 17 May 2017

29. Desell T (2017) Large scale evolution of convolutional neural

networks using volunteer computing. In: 2017 genetic and

evolutionary computation conference companion, pp 127–128

30. Ding S, Li H, Su C, Yu J, Jin F (2013) Evolutionary artificial

neural networks: a review. Artif Intell Rev 39(3):251–260

31. Edlund JA, Chaumont N, Hintze A, Koch C, Tononi G, Adami

C (2011) Integrated information increases with fitness in the

evolution of animats. PLOS Comput Biol 7(10):e1002236

32. Elias JG (1992) Genetic generation of connection patterns for a

dynamic artificial neural network. In: International workshop on

combinations of genetic algorithms and neural networks,

pp 38–54

33. Fahlman SE, Lebiere C (1990) The cascade-correlation learning

architecture. In: Touretzky DS (ed) Advances in neural infor-

mation processing systems, vol 2. Morgan Kaufmann. Los

Altos, CA, pp 524–532

34. Fernando C, Banarse D, Reynolds M, Besse F, Pfau D, Jader-

berg M, Lanctot M, Wierstra D (2016) Convolution by evolu-

tion: differentiable pattern producing networks. In: 2016 genetic

and evolutionary computation conference, pp 109–116

35. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from

architectures to learning. Evol Intell 1(1):1–47

36. Foley LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence

through simulated evolution. Wiley, Hoboken

37. Forsyth R (1981) BEAGLE a Darwinian approach to pattern

recognition. Kybernetes 10(3):159–166

38. Frean M (1990) The upstart algorithm: a method for con-

structing and training feedforward neural networks. Neural

Comput 2(2):198–209

39. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feed forward neural networks. In: 13th interna-

tional conference on artificial intelligence and statistics, vol 9.

JMLR Proceedings, pp 249–256

40. Gnana Sheela K, Deepa SN (2013) Review on methods to fix

number of hidden neurons in neural networks. Math Probl Eng

2013:425740

41. Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated

neural evolution through cooperatively coevolved synapses.

J Mach Learn Res 9:937–965

42. Gruau F (1994) Neural network synthesis using cellular

encoding and the genetic algorithm. Ph.D. thesis, Laboratoire de

l’Informatique du Parallélisme, Ecole Normale Supérieure de

Lyon

43. Hammerla NY, Halloran S, Plötz T (2016) Deep, convolutional,

and recurrent models for human activity recognition using

wearables. In: 25th international conference on artificial intel-

ligence, pp 1533–1540

542 Neural Computing and Applications (2020) 32:519–545

123

https://aws.amazon.com/es/ec2/instance-types/p3/
https://aws.amazon.com/es/ec2/instance-types/p3/
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1409.1259
https://github.com/joeddav/devol
https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/
https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/
https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/

44. Hancock PJB (1992) Genetic algorithms and permutation

problems: a comparison of recombination operators for neural

net structure specification. In: International Workshop on com-

binations of genetic algorithms and neural networks,

pp 108–122

45. Hansen N (2006) The CMA evolution strategy: a comparing

review. In: Towards a new evolutionary computation. Springer,

pp 75–102

46. Harp SA, Samad T, Guha A (1989) Towards the genetic syn-

thesis of neural networks. In: 3rd international conference on

genetic algorithms, pp 360–369

47. Harp SA, Samad T, Guha A (1990) Designing application-

specific neural networks using the genetic algorithm. In:

Advances NIPS 2. Morgan Kaufmann, pp 447–454

48. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: 2016 IEEE conference on computer

vision and pattern recognition. IEEE

49. Hermundstad AM, Brown KS, Bassett DS, Carlson JM (2011)

Learning, memory, and the role of neural network architecture.

PLOS Comput Biol 7(6):e1002063

50. Hintzelab. MABE: Modular Agent Based Evolution Framework

(2017). https://github.com/Hintzelab/MABE. Last visited on 27

June 2017

51. Hirose Y, Yamashita K, Hijiya S (1991) Back-propagation

algorithm which varies the number of hidden units. Neural Netw

4(1):61–66

52. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

53. Holland JH (1975) Adaptation in natural and artificial systems:

an introductory analysis with applications to biology, control,

and artificial intelligence. University of Michigan Press, Ann

Arbor

54. Iba H (2018) Evolutionary approach to deep learning. In: Evo-

lutionary approach to machine learning and deep neural net-

works. Springer, pp 77–104

55. Igel C (2003) Neuroevolution for reinforcement learning using

evolution strategies. In: 2003 IEEE congress on evolutionary

computation, pp 2588–2595

56. Karpathy A (2015) The unreasonable effectiveness of recurrent

neural networks. http://karpathy.github.io/2015/05/21/rnn-effec

tiveness/. Published on 21 May 2015

57. Karunanithi N, Das R, Whitley D (1992) Genetic cascade

learning for neural networks. In: International workshop on

combinations of genetic algorithms and neural networks,

pp 134–145

58. Kassahun Y, Edgington M, Metzen JH, Sommer G, Kirchner F

(2007) Common genetic encoding for both direct and indirect

encodings of networks. In: 9th annual conference on genetic and

evolutionary computation, pp 1029–1036

59. Kassahun Y, Sommer G (2005) Efficient reinforcement learning

through evolutionary acquisition of neural topologies. In: 13th

European symposium on artificial neural networks, pp 259–266

60. Kitano H (1990) Designing neural networks using genetic

algorithms with graph generation system. Complex Syst

4:461–476

61. Koutnı́k J, Schmidhuber J, Gomez F (2014) Evolving deep

unsupervised convolutional networks for vision-based rein-

forcement learning. In: 2014 annual conference on genetic and

evolutionary computation, pp 541–548

62. Koza JR (1989) Hierarchical genetic algorithms operating on

populations of computer programs. In: 11th international joint

conference on artificial intelligence, pp 7768–774

63. Koza JR, Rice JP (1992) Genetic programming: the movie. MIT

Press, Cambridge

64. Kramer O (2018) Evolution of convolutional highway networks.

In: Sim K, Kaufmann P (eds) EvoApplications 2018:

applications of evolutionary computation, vol 10784. Lecture

Notes in Computer Science. Springer, Berlin, pp 395–404

65. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet clas-

sification with deep convolutional neural networks. In: Advan-

ces NIPS 25. NIPS Proceedings, pp 1097–1105

66. Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y

(2007) An empirical evaluation of deep architectures on prob-

lems with many factors of variation. In: 24th international

conference on machine learning, pp 473–480

67. Lawrence S, Giles CL, Tsoi AC (1996) What size neural net-

work gives optimal generalization?. Technical report, Institute

for Advanced Computer Studies, University of Maryland,

Convergence properties of backpropagation

68. LeCun Y, Bengio Y (1998) Convolutional networks for images,

speech, and time series. In: Arbib MA (ed) The handbook of

brain theory and neural network. MIT Press, MA, USA,

pp 255–258

69. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

70. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage.

In: Advances NIPS 2. Morgan Kaufmann, pp 598–605

71. Lindgren K, Nilsson A, Nordahl MG, Rade I (1992) Regular

language inference using evolving neural networks. In: Inter-

national workshop on combinations of genetic algorithms and

neural networks, pp 75–86

72. Linnainmaa S (1976) Taylor expansion of the accumulated

rounding error. BIT Numer Math 16(2):146–160

73. Lipton ZC, Berkowitz J (2015) A critical review of recurrent

neural networks for sequence learning. arXiv:1506.00019

74. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K

(2018) Hierarchical representations for efficient architecture

search. In: 6th international conference on learning

representations

75. Loshchilov I, Hutter F (2016) CMA-ES for hyperparameter

optimization of deep neural networks. In: 2016 international

conference on learning representations workshop track

76. Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E,

Banzhaf W (2018) NSGA-NET: a multi-objective genetic

algorithm for neural architecture search. arXiv:1810.03522

77. Maynard Smith J (1978) Optimization theory in evolution. Ann

Rev Ecol Syst 9:31–56

78. Merrill JWL, Port RF (1991) Fractally configured neural net-

works. Neural Netw 4(1):53–60

79. Miihlenbein H, Kindermann J (1989) The dynamics of evolution

and learning—towards genetic neural networks. In: Pfeifer R,

Schreter Z, Fogelman-Soulié F, Steels L (eds) Connectionism in

perspective. Elsevier, pp 173–197

80. Miikkulainen R (2017) Neuroevolution. In: Sammut C, Webb

GI (eds) Encyclopedia of machine learning and data mining.

Springer, pp 899–904

81. Miikkulainen R (2017) Topology of a neural network. In:

Sammut C, Webb GI (eds) Encyclopedia of machine learning

and data mining. Springer, Boston, MA, pp 1281–1281

82. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D,

Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat

B (2017) Evolving deep neural networks. arXiv:1703.00548

83. Miller GF, Todd P, Hedge SU (1989) Designing neural networks

using genetic algorithms. In: 3rd international conference on

genetic algorithms, pp 379–384

84. Minsky ML (1954) Theory of neural-analog reinforcement

systems and its application to the brain-model problem. Ph.D.

thesis, Princeton University

85. Minsky ML, Papert SA (1969) Perceptrons: an introduction to

computational geometry. MIT Press, Cambridge

Neural Computing and Applications (2020) 32:519–545 543

123

https://github.com/Hintzelab/MABE
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1810.03522
http://arxiv.org/abs/1703.00548

86. Mishkin D, Sergievskiy N, Matas J (2016) Systematic evalua-

tion of CNN advances on the ImageNet. arXiv:1606.02228

87. Montana DJ, Davis L (1989) Training feedforward neural net-

works using genetic algorithms. In: 11th joint international

conference on artificial intelligence, pp 762–767

88. Mozer MC, Smolensky P (1989) Skeletonization: a technique

for trimming the fat from a network via relevance assessment.

In: Advances NIPS 1. Morgan Kaufmann, pp 107–115

89. New York Times (1958). New Navy device learns by doing;

psychologist shows embryo of computer designed to read and

grow wiser. http://www.nytimes.com/1958/07/08/archives/new-

navy-device-learns-by-doing-psychologist-shows-embryo-of.

html

90. NVIDIA: The world’s most efficient supercomputer for AI and

deep learning (2017). http://images.nvidia.com/content/pdf/info

graphic/dgx-saturnv-infographic.pdf. Last visited on 15 July

2017

91. Odri SV, Petrovacki DP, Krstonosic GA (1993) Evolutional

development of a multilevel neural network. Neural Netw

6(4):583–595

92. Parker GA, Maynard Smith J (1990) Optimality theory in evo-

lutionary biology. Nature 348:27–33

93. Prechelt L (1995) Neural Net FAQ . https://www.cs.cmu.edu/

Groups/AI/util/html/faqs/ai/neural/faq.html. Last modified on 23

Feb 1995

94. Prellberg J, Kramer O (2018) Lamarckian evolution of convo-

lutional neural networks. arXiv:1806.08099

95. Prellberg J, Kramer O (2018) Limited evaluation evolutionary

optimization of large neural networks. arXiv:1806.09819

96. Pugh J, Soros L, Stanley K (2016) Quality diversity: a new

frontier for evolutionary computation. Front Robot Artif Intell

3:40

97. Real E, Aggarwal A, Huang Y, Le QV (2018) Regularized

evolution for image classifier architecture search. arXiv:1802.

01548

98. Real E, Moore S, Selle A, Saxena S, Leon-Suematsu Y, Tan J,

Le QV, Kurakin A (2017) Large-scale evolution of image

classifiers. In: Proceedings of the 34th international conference

on machine learning, vol 70. JMLR Proceedings

99. Rechenberg I (1971) Evolutionsstrategie – optimierung tech-

nischer systeme nach prinzipien der biologischen evolution.

Ph.D. thesis, Technische Universität Berlin

100. Risi S, Stanley KO (2012) An enhanced hypercube-based

encoding for evolving the placement, density, and connectivity

of neurons. Artif Life 18(4):331–363

101. Rosenblatt F (1957) The perceptron–a perceiving and recog-

nizing automaton. Technical report, Cornell Aeronautical

Laboratory

102. Rumelhart D, Hinton G, Williams RJ (1986) Learning repre-

sentations by back-propagating errors. Nature 323:533–536

103. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,

Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC (2015)

ImageNet large scale visual recognition challenge. Int J Comput

Vis 115(3):211–252

104. Sammut C, Webb GI (eds) (2017) Encyclopedia of machine

learning and data mining. Springer, Berlin

105. Schaffer JD, Caruana RA, Eshelman LJ (1990) Using genetic

search to exploit the emergent behavior of neural networks. Phys

D Nonlinear Phenom 42(1–3):244–248

106. Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of

genetic algorithms and neural networks: a survey of the state of

the art. In: International workshop on combinations of genetic

algorithms and neural networks, pp 1–37

107. Schiffmann W, Joost M, Werner R (1991) Performance evalu-

ation of evolutionarily created neural network topologies. In:

Schwefel HP, Männer R (eds) Parallel Problem Solving from

Nature. PPSN 1990. Lecture Notes in Computer Science, vol

496. Springer, pp 274–283

108. Scholz M (1991) A learning strategy for neural networks based

on a modified evolutionary strategy. In: Schwefel HP, Männer

R (eds) Parallel Problem Solving from Nature. PPSN 1990.

Lecture Notes in Computer Science, vol 496. Springer,

pp 314–318

109. Schwefel HP (1974) Evolutionsstrategie und numerische opti-

mierung. Ph.D. thesis, Technische Universität Berlin

110. Siebel NT, Sommer G (2007) Evolutionary reinforcement

learning of artificial neural networks. Int J Hybrid Intell Syst

4(3):171–183

111. Sietsma J, Dow RJF (1991) Creating artificial neural networks

that generalize. Neural Netw 4(1):67–79

112. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian

optimization of machine learning algorithms. In: Advances in

neural information processing systems 25. NIPS Proceedings,

pp 2951–2959

113. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I,

Salakhutdinov R (2014) Dropout: a simple way to prevent neural

networks from overfitting. J Mach Learn Res 15(1):1929–1958

114. Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-

based encoding for evolving large-scale neural networks. Artif

Life 15(2):185–212

115. Stanley KO, Miikkulainen R (2002) Evolving neural networks

through augmenting topologies. Evolut Comput 10(2):99–127

116. Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J

(2018) Deep neuroevolution: genetic algorithms are a competi-

tive alternative for training deep neural networks for reinforce-

ment learning. arXiv:1712.06567

117. Suganuma M, Shirakawa S, Nagao T (2017) A genetic pro-

gramming approach to designing convolutional neural network

architectures. In: 2017 genetic and evolutionary computation

conference companion, pp 497–504

118. Sun Y, Xue B, Zhang M (2017) Evolving deep convolutional

neural networks for image classification. arXiv:1710.10741

119. Sun Y, Xue B, Zhang M (2018) Automatically evolving cnn

architectures based on blocks. arXiv:1810.11875

120. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-

v4, Inception-ResNet and the impact of residual connections on

learning. In: 31st AAAI conference on artificial intelligence,

pp 4278–4284

121. Talbi EG (2009) Metaheuristics: from design to implementation.

Wiley, Hoboken

122. Tirumala SS, Ali S, Ramesh CP (2016) Evolving deep neural

networks: a new prospect. In: 12th international conference on

natural computation, fuzzy systems and knowledge discovery,

pp 69–74

123. Torreele J (1991) Temporal processing with recurrent networks:

an evolutionary approach. In: 4th international conference on

genetic algorithms, pp 555–561

124. Turing AM (1950) Computing machinery and intelligence.

Mind 59:433–460

125. Verbancsics P, Harguess J (2013) Generative neuroevolution for

deep learning. arXiv:1312.5355

126. Verbancsics P, Harguess J (2015) Image classification using

generative neuroevolution for deep learning. In: 2015 IEEE

winter conference on applications of computer vision,

pp 488–493

127. Vonk E, Jain LC, Johnson RP (1997) Automatic generation of

neural network architecture using evolutionary computation,

advances fuzzy systems–application and theory, vol 14. World

Scientific Publishing, Singapore

128. Vonk E, Jain LC, Veelenturf LPJ, Johnson RP (1995) Automatic

generation of a neural network architecture using evolutionary

544 Neural Computing and Applications (2020) 32:519–545

123

http://arxiv.org/abs/1606.02228
http://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
http://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
http://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
http://images.nvidia.com/content/pdf/infographic/dgx-saturnv-infographic.pdf
http://images.nvidia.com/content/pdf/infographic/dgx-saturnv-infographic.pdf
https://www.cs.cmu.edu/Groups/AI/util/html/faqs/ai/neural/faq.html
https://www.cs.cmu.edu/Groups/AI/util/html/faqs/ai/neural/faq.html
http://arxiv.org/abs/1806.08099
http://arxiv.org/abs/1806.09819
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1710.10741
http://arxiv.org/abs/1810.11875
http://arxiv.org/abs/1312.5355

computation. Electronic Technology Directions to the Year

2000:144–149

129. Wang B, Sun Y, Xue B, Zhang M (2018) A hybrid DE approach

to designing CNN for image classification. In: 31st Australasian

joint conference on artificial intelligence

130. Wang Z, Di Massimo C, Tham MT, Morris AJ (1994) A pro-

cedure for determining the topology of multilayer feedforward

neural networks. Neural Netw 7(2):291–300

131. Werbos PJ (1974) Beyond regression: new tools for prediction

and analysis in the behavioral sciences. Ph.D. thesis, Committee

on Applied Mathematics, Harvard University

132. Whitley D, Dominic S, Das R (1991) Genetic reinforcement

learning with multi-layer neural networks. In: 4th international

conference on genetic algorithms, pp 562–569

133. Whitley D, Hanson T (1989) Optimizing neural networks using

faster, more accurate genetic search. In: 3rd international con-

ference genetic algorithms, pp 391–396

134. Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of the

2017 IEEE international conference on computer vision

135. Yao X (1993) A review of evolutionary artificial neural net-

works. Int J Intell Syst 8(4):539–567

136. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

137. Yao X, Liu Y (1997) A new evolutionary system for evolving

artificial neural networks. IEEE Trans Neural Netw

8(3):694–713

138. Young SR, Rose DC, Johnston T, Heller WT, Karnowski TP,

Potok TE, Patton RM, Perdue G, Miller J (2017) Evolving deep

networks using HPC. In: Machine learning on HPC environ-

ments workshop, pp 3924–3928

139. Young SR, Rose DC, Karnowsky TP, Lim SH, Patton RM

(2015) Optimizing deep learning hyper-parameters through an

evolutionary algorithm. In: Workshop on machine learning in

high-performance computing environments

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:519–545 545

123

	On the automated, evolutionary design of neural networks: past, present, and future
	Abstract
	Introduction
	Basic concepts on evolutionary computation
	Basic concepts on neural networks
	Motivation
	Past
	Background
	Early steps
	Consolidation of neuroevolution

	Present: drifting toward deep learning
	The origins
	The rise
	GeNet
	CoDeepNEAT
	EXACT
	Large-scale evolution of image classifiers
	DEvol
	Genetic programming for CNN design
	Hyperparameter optimization using evolution strategies
	EvoCNN
	Grammatical evolution of CNNs

	The settlement
	Hierarchical representations
	Lamarckian evolution
	DENSER
	DECNN
	AE-CNN
	Evolutionary gradient descent for DNNs
	Neuroevolution of CNNs for reinforcement learning

	Summary

	Future
	Acknowledgements
	References

