
ORIGINAL ARTICLE

Parameters optimization of support vector machines for imbalanced
data using social ski driver algorithm

Alaa Tharwat1 • Thomas Gabel1

Received: 29 March 2018 / Accepted: 19 March 2019 / Published online: 1 April 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
The parameters of support vector machines (SVMs) such as kernel parameters and the penalty parameter have a great

influence on the accuracy and complexity of the classification models. In the past, different evolutionary optimization

algorithms were employed for optimizing SVMs; in this paper, we propose a social ski-driver (SSD) optimization algo-

rithm which is inspired from different evolutionary optimization algorithms for optimizing the parameters of SVMs, with

the aim of improving the classification performance. To cope with the problem of imbalanced data which is one of the

challenging problems for building robust classification models, the proposed algorithm (SSD-SVM) was enhanced to deal

with imbalanced data. In this study, eight standard imbalanced datasets were used for testing our proposed algorithm. For

verification, the results of the SSD-SVM algorithm are compared with grid search, which is a conventional method of

searching parameter values, and particle swarm optimization (PSO). The experimental results show that the SSD-SVM

algorithm is capable of finding near-optimal values of SVMs parameters. The results also demonstrated high classification

performance compared to the PSO algorithm.

Keywords Optimization algorithms � Support vector machine (SVM) � Parameter optimization � Imbalanced data

1 Introduction

Support vector machines (SVMs) are among the well-

known machine learning techniques that are used for

classification and regression problems [1, 2]. SVM classi-

fier has been used in different applications such as bio-

metrics [3], renewable energy [4], and cheminformatics

[5]. In SVMs, the training data are utilized to build a

classification model. Next, the classification model is used

to classify an unknown sample. SVMs have a penalty

parameter which determines the trade-off between mini-

mizing the training error rate and maximizing the classi-

fication margin [6]. Moreover, SVMs have kernel

parameters which define the nonlinear transformation from

the input feature space to a higher-dimensional space.

Hence, the kernel parameters have an influence on the

performance of SVM and choosing suitable values for the

two types of parameters, i.e., penalty and kernel parame-

ters, controls the performance of SVM [2].

Evolutionary optimization algorithms have achieved

competitive results when solving optimization problems

including parameter tuning problem [6–8]. In this paper, an

evolutionary optimization technique called social ski-dri-

ver (SSD) is proposed. The name of this method tributes to

the fact that its stochastic nature bears some similarity to

alpine skiing paths. Besides, the behavior of the SSD

algorithm is also inspired by different evolutionary opti-

mization algorithms such as the particle swarm optimiza-

tion (PSO) algorithm [9], the gray wolf optimization

(GWO) [10], and sine cosine algorithm (SCA) [11]. After

all, the proposed SSD algorithm has the same stochastic

nature as other swarm intelligence algorithms; hence, it has

no guarantees for finding an optimal solution for any

problem; however, it will often find a good solution if one

exists.

& Alaa Tharwat

aothman@fb2.fra-uas.de

Thomas Gabel

tgabel@fb2.fra-uas.de

1 Faculty of Computer Science and Engineering, Frankfurt

University of Applied Sciences, Frankfurt am Main,

Germany

123

Neural Computing and Applications (2020) 32:6925–6938
https://doi.org/10.1007/s00521-019-04159-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04159-z&domain=pdf
https://doi.org/10.1007/s00521-019-04159-z

The problem of imbalanced data is one of the chal-

lenging problems to build a robust classification model. In

imbalanced data, the number of samples of one class, i.e.,

the majority class, is outnumbering the samples of the other

classes, i.e., the minority classes. Traditional classification

algorithms tend to classify the unknown samples to the

majority class; and hence, such a classification model is

ineffective at classifying minority class samples, which is

frequently the class of interest. In this paper, the synthetic

minority over-sampling technique (SMOTE) algorithm was

employed to obtain balanced data [12].

The main objectives of this paper are to:

• introduce the proposed SSD algorithm,

• use the SSD algorithm to present a novel SSD-SVM

model for parameters tuning of SVMs classifier, which

(1) improves the classification performance and (2)

makes the optimal separating hyperplane obtainable in

different classification problems, and

• employ the SSD-SVM algorithm for the classification

of imbalanced data.

The rest of the paper is organized as follows: Sect. 2

introduces related work. In Sect. 3, the background of

support vector machines, the SSD algorithm, and the

SMOTE algorithm are presented. The proposed model

(SSD-SVM) is introduced in Sect. 4. Experimental results

and discussion are presented in Sect. 5. Concluding

remarks and future work are provided in Sect. 6.

2 Related Work

There are many studies which searched for SVM parame-

ters empirically by trying a finite number of values and

keeping the values that obtain the best results. However,

this procedure requires an exhaustive search over the whole

search space to find feasible solutions [13]. A grid search

was used to search for optimizing SVM parameters over

the parameter space, where the parameters vary with a

fixed step size through the parameter space [14]. The grid

search algorithm is only suitable for optimizing a few

parameters, since it is complex and time-consuming

[2, 13, 15]. Different studies used evolutionary optimiza-

tion algorithms for finding the optimal values of SVM

parameters to achieve high classification performance. For

example, Subasi employed the PSO algorithm to search for

SVM parameters for diagnosis of neuromuscular disorders

in EMG signals [16]. Also, the PSO algorithm was utilized

for parameter determination of the SVM classifier and for

feature selection [6]. Wu et al. proposed a hybrid genetic

algorithm (GA) for optimizing SVM parameters for pre-

dicting the maximum electrical daily load [17]. The ant

colony optimization (ACO) algorithm has also been used

for optimizing SVM parameters [7]. In another research,

Tharwat et al. used bat algorithm (BA) for optimizing

SVMs [18]. Recently, the whale optimization algorithm

(WOA) was employed for optimizing SVM classifier,

where the combined WOA-SVM algorithm was used for

the classification of toxicity effects of biotransformed

hepatic drugs [5]. Dragonfly algorithm (DFA) was also

used for optimizing SVM, and the proposed model was

used to predict the toxicity effects of a new drug [19].

Further, Aydin et al. used a multi-objective artificial

immune algorithm for optimizing SVM parameters [20].

Bat algorithm, firefly algorithm, fruit fly optimization

algorithm, PSO, univariate marginal distribution algorithm

(UMDA), and Boltzmann-UMDA were employed for

finding the optimal SVM parameters in [21]. Tharwat et al.

introduced the chaotic ant lion optimizer (CALO) for

optimizing SVM parameters [22].

3 Preliminaries

3.1 Support Vector Machines (SVMs) Classifier

Support vector machines (SVMs) are among the most

widely used learning algorithms. The main idea of them is

to separate different classes using hyperplanes. However,

the performance of SVMs is much affected by the non-

linearly separable data and this problem can be addressed

using kernel functions. The goal of kernel functions is to

map the current features onto a higher-dimensional space

where the data can be linearly separable. Selecting the

appropriate kernel function and adjusting its parameters are

two challenges of using SVMs. Computationally, finding

the best decision plane is considered an optimization

problem to help the kernel functions for finding the optimal

space where the classes can be linearly separated through a

nonlinear transformation [15].

3.1.1 Separable data (non-overlapping classes)

Assume we have N training samples (X ¼ fx1; x2; . . .;xNg),
where xi indicates the ith training sample with d features

and it is in one of two classes yi 2 f� 1g; hence, the

training data are fðx1; y1Þ; ðx2; y2Þ; . . .; ðxN ; yNÞg, where yi
is the class label for xi. The decision boundary between the

two classes is denoted by a hyperplane wTxþ b ¼ 0 when

the data are linearly separable, where w is a weight vector,

wk k represents the Euclidean norm of w, b indicates the

bias or threshold, and x is the input vector or the training

sample. The feature space is divided by the hyperplane into

two spaces, namely the positive half space, where the

samples from the positive class, xþ, are located, and the

6926 Neural Computing and Applications (2020) 32:6925–6938

123

negative half space, where the samples from the negative

class, x�, are located [2].

In SVMs, the values of w and b are calculated to ori-

entate the hyperplane to (1) be as far as possible from the

closest samples, and (2) construct the two planes, H1 !
wTxi þ b ¼ þ1 for yi ¼ þ1 andH2 ! wTxi þ b ¼ �1

for yi ¼ �1, where wTxi þ b� þ 1 for the positive

class and wTxi þ b� � 1 for the negative class. The

equations of these two planes can be written as

follows:

yiðwTxi þ bÞ � 1� 0 8i ¼ 1; 2; . . .;N ð1Þ

The two planes are at the same distance from the hyper-

plane, and the distance between the two planes represents

the margin of SVMs, d1 þ d2 ¼ 2
wk k, where d1 and d2 are

the distances from H1 and H2, respectively, to the hyper-

plane. The margin of SVMs needs to be maximized subject

to Eq. (1) as follows:

min
1

2
wk k2

s:t: yiðwTxi þ bÞ � 1� 0 8i ¼ 1; 2; . . .;N

ð2Þ

Equation (2) represents a quadratic programming problem

that is formalized into Lagrange formula by combining the

objective function (min 1
2

wk k2) and the constraints

(yiðwTxi þ bÞ � 1� 0) as follows:

min LP ¼ wk k2

2
�
X

i

aiðyiðwTxi þ bÞ � 1Þ

¼ wk k2

2
�
X

i

aiyiðwTxi þ bÞ þ
XN

i¼1

ai

ð3Þ

where ai � 0 indicates the Lagrange multiplier for the

training sample xi and LP represents the primal problem

[23]. The dual problem of SVMs can be formulated as

follows:

max LD ¼
XN

i¼1

ai �
1

2

X

i;j

aiajyiyjx
T
i xj

s:t: ai � 0;
XN

i¼1

aiyi ¼ 0 8i ¼ 1; 2; . . .;N

ð4Þ

where LD is the dual form of LP which needs to be maxi-

mized instead of minimizing LP. As indicated in Eqs. (3

and 4), in the primal problem of SVMs, the objective

function is minimized with respect to w and b; on the other

hand, the objective function of the dual SVMs problem is

maximized with respect to ai [2].
In SVMs, the training samples with nonzero a’s repre-

sent support vectors (SVs), which are the samples that

achieve the maximum width margin, i.e., the closest to the

separating hyperplane.

3.1.2 Non-separable data (overlapping classes)

The classification performance will be decreased when the

data are non-separable. Thus, the constraints of linear

SVMs must be relaxed and this can be achieved by adding

a slack variable, �i, as follows:

yiðwTxi þ bÞ � 1þ �i � 0 where �i � 0 ð5Þ

where �i is the distance between the training sample (xi)

and the corresponding margin hyperplane; hence, it should

be minimized as follows:

min
1

2
wk k2 þC

XN

i¼1

�i

s:t: yiðwTxi þ bÞ � 1þ �i � 0 8i ¼ 1; 2; . . .;N;

ð6Þ

where C is the penalty or regularization parameter and it

controls the trade-off between the size of the margin and

the slack variable penalty. Equation (6) is formalized into

Lagrange formula as follows:

LP ¼ 1

2
wk k2þC

XN

i¼1

�i

�
XN

i¼1

ai½yiðwTxi þ bÞ � 1þ �i�;
ð7Þ

where ai � 0 .

3.1.3 Nonlinear separable data

In nonlinearly separable data, the kernel functions were

employed to map the data from the current feature space

into a higher-dimensional space using a nonlinear function,

/. The kernel function is defined as a dot product of the

nonlinear functions as follows, Kðxi; xjÞ ¼ /ðxiÞT/ðxjÞ;
and the objective function of SVMs will be:

min
1

2
wk k2þC

XN

i¼1

�i

s:t: yiðwT/ðxiÞ þ bÞ � 1þ �i � 0 8i ¼ 1; 2; . . .;N

ð8Þ

There are different kernel functions such as (1) linear

kernel, Kðxi; xjÞ ¼ xi; xj
� �

, (2) radial basis function (RBF),

Kðxi; xjÞ ¼ expð�jjxi � xjjj2=2r2Þ, and (3) polynomial

kernel of degree d, Kðxi; xjÞ ¼ ð xi; xj
� �

þ cÞd [24].

The focus of this study is to optimize the SVM classifier

with the RBF kernel function. RBF kernel has only a single

parameter r. This parameter affects the mapping

Neural Computing and Applications (2020) 32:6925–6938 6927

123

transformation of the data space and hence changing the

value of r controls the performance of SVMs.

3.1.4 Illustrative example

The aim of this example is to show how the r and C pa-

rameters influence the performance of SVMs. Given two

classes, each class consists of 150 samples and hence the

total number of samples is 300; 80% (240 samples) were

used to train the SVMs model and the rest of the samples,

i.e., 20% (60 samples), were utilized for testing the trained

model.

This example has two experiments, Fig. 1 shows the

results of the first experiment when the value of C was 10

and the values of r were 0.01, 0.1, and 1, and Table 1 lists

the results of this experiment. From the results, we can

conclude that:

• In terms of a number of support vectors, all the training

samples were used as SVs when r was 0.01, and the

number of SVs decreased when the value of r
increases. This reflects how the small value of r
increases the complexity of the SVM classifier and the

model becomes much more sensitive to the noise in the

training data.

• In terms of training accuracy, decreasing the value of r
makes the model more complex, i.e., less bias and high

variance; this is called overfitting. Table 1 shows that

the training error increases by increasing r. Figure 1a

shows also how the model was complex when r was

small and increasing r relaxes the model as shown in

Fig. 1b, c. Hence, very large r may lead to the

underfitting problem. Mathematically, the RBF kernel

function is defined as follows: Kðxi; xjÞ ¼
expð�jjxi � xjjj2=2r2Þ; thus, small values of r decrease

the value of the kernel function. On the other hand,

increasing r increases the kernel value regardless the

value of �jjxi � xjjj2 and hence all samples become

closer and this leads to the underfitting problem. As a

consequence of that, with a large r the training samples

are overlapped because it limits the VC dimension. On

the contrary, a small r increases the VC dimension and

hence the samples are perfectly separated [25].

• In terms of testing accuracy, as mentioned in the

previous two points, small values of r, e.g., in our

example r ¼ 0:01, may lead to overfitting and hence to

a small testing accuracy. On the other hand, increasing

the value of r makes the model more flexible, which

yields an increase in the testing accuracy.

Figure 2 shows the results of our second experiment

when the value of r was one and the values of C were 0.01,
1, and 100, and Table 2 lists the results of this experiment.

From the results, we can conclude that:

(a) σ = 0.01

(b) σ = 0.1

(c) σ = 1

Fig. 1 The effect of r parameter on the performance of SVMs with

RBF kernel function (our first example). The x and y axes represent

the first and second features, respectively. Decision boundaries (solid

black line), two planes (dashed lines, red for the first class and blue

for the second class), support vectors samples are marked by

surrounding it by square shapes, and the testing samples are marked

by surrounding it by circles (color figure online)

6928 Neural Computing and Applications (2020) 32:6925–6938

123

• In terms of a number of support vectors, 213 training

samples were used as SVs when C ¼ 0:01 and the

number of SVs decreased when the value of C increases.

Figure 2 shows that the margin width was large with a

small C and increasing C reduces the margin width and

this agrees mathematically with Eq. (7). This is the

reason why small C increases the number of support

vectors. This means that a small value of C leads to

underfitting.

• In terms of training accuracy, small values of C result in

minimum training accuracy. These results are in

agreement with the first point, small C values increase

the bias which may lead to severe underfitting.

• In terms of testing accuracy, the minimum results were

obtained when C ¼ 0:01, and the classification accu-

racy improved when the value of C was increased.

To sum up, the values of the r and C parameters play an

important role in controlling the flexibility of the resulting

SVMs in fitting the data. Stated differently, these two

parameters may lead to overfitting or underfitting.

3.2 Social ski-driver (SSD) optimization
algorithm

In what follows, we propose a novel optimization algo-

rithm, which is called social ski-driver (SSD) algorithm.

The behavior of SSD was inspired from many different

evolutionary optimization algorithms. Its name tributes to

the fact that its stochastic exploration somehow resembles

the paths that ski-drivers take downhill. SSD has many

parameters; a brief description of these parameters is given

below.

– Positions of the agents (Xi 2 Rn): The positions of the

agents are used to calculate the objective function at

that location, where n is the dimension of the search

space.

– Previous best position Pi: The fitness value for all

agents is calculated using the fitness function. The

fitness value for each agent is then compared with its

current position, and the best position is stored. This is

similar to the PSO algorithm [9].

– Mean global solution Mi: In our algorithm, as in the

gray wolf optimizer (GWO) [10], the agents move

toward the global point which represents the mean of

the best three solutions (Fig. 3) as follows:

Mt
i ¼

Xa þ Xb þ Xc

3
; ð9Þ

where Xa, Xb, and Xc are the best three solutions.

– Velocity of the agents (Vi): The agents’ positions are

updated by adding the velocity Vi as follows:

Xtþ1
i ¼ Xt

i þ Vt
i; ð10Þ

where

Vtþ1
i ¼

c sinðr1ÞðPt
i � Xt

iÞ þ sinðr1ÞðMt
i � Xt

iÞ if r2 � 0:5

c cosðr1ÞðPt
i � Xt

iÞ þ cosðr1ÞðMt
i � Xt

iÞ if r2 [0:5

�

ð11Þ

where Vi is the velocity of Xi, r1 and r2 are uniformly

generated random numbers in the range of [0, 1], Pi is

the best solution of the ith agent, Mi is the mean global

solution for the whole population, and c is a parameter

which is used to make a balance between exploration

and exploitation and it is calculated as follows:

ctþ1 ¼ act, where t is the current iteration and 0\a\1

is used to reduce the value of c. Hence, c ! 0, where

t ! tmax and tmax is the maximum number of iterations.

As indicated in Eq. (11), the moving directions for the

agents are not straightforward as in GWO or PSO, and

this is because of the sine and cosine functions. Fig-

ure 3 visualizes a simple example of how two agents

are moved in the SSD algorithm. This gives the pro-

posed algorithm a better-guided exploration ability and

makes the search directions to be diversified, but in a

guided mode.

The main objective of the SSD is to search in the space

for optimal or near-optimal solutions. The number of

parameters that are needed to be optimized determines the

dimension of that space. In SSD, the positions (Xi) of

agents are randomly initialized, where the number of

agents is determined by the user. The agents update their

positions by adding a velocity to their old positions as in

Eq. (10). The agents’ velocities are also randomly initial-

ized, and it is modified according to Eq. (11). As indicated

Table 1 The number of SVs (# SVs), training accuracy (Tr. Acc.), and the testing accuracy (Test Acc.) of the SVMs classifier with RBF kernel

using different values of r and C ¼ 10

Results r ¼ 0:01 r ¼ 0:1 r ¼ 1

SVs 240 192 36

Tr. Acc. ð240=240Þ ¼ 100% ð240=240Þ ¼ 100% ð233=240Þ � 97:08

Test Acc. ð32=60Þ � 53:33% ð58=60Þ � 96:67% ð59=60Þ � 98:33%

Neural Computing and Applications (2020) 32:6925–6938 6929

123

in Eq. (11), the adjusted velocity of the agents depends on

(1) the distance between the current position, Xt
i, and the

previous best position Pi, (2) the distance between the

current position, Xt
i, and the mean global solution Mi.

Hence, the agents in SSD move toward the mean of the

best three solutions which makes the SSD algorithm more

social than PSO. Additionally, the agents in SSD are

moved not in a straightforward direction which gives the

SSD algorithm better exploration capabilities. The steps of

SSD are listed in Algorithm (1).

Algorithm 1 SSD algorithm
1: Initialize the agents’ positions Xi and velocities Vi. As-

sume the fitness function is minimum.
2: while stopping criteria are not met do
3: for all agents do
4: Calculate the fitness values.
5: Sort the agents according to their fitness values.
6: Calculate previous best position and mean global

solution.
7: Generate a new solution by updating the agents’ po-

sitions as denoted in Eq. (10).
8: Adjust the velocities of the agents as in Eq. (11).
9: end for
10: end while
11: Return the best solution.

3.3 Synthetic minority over-sampling technique
(SMOTE) algorithm

The problem of imbalanced datasets appears when the

number of samples of one class [this is called the majority

class (Smaj)] is significantly higher than the samples of the

other class [this is called the minority class (Smin)] [12].

This problem decreases the classification performance

because it is difficult for a learning model to learn from a

minority class and hence the minority class samples are

misclassified frequently.

There are many methods which handle the imbalanced

data problem such as kernel-based methods [12], cost-sen-

sitive methods [26], and sampling methods [12]. This paper

uses the sampling methods to obtain more balanced samples

in each class. There aremanywell-known samplingmethods

such as random under-sampling (RUS), random over-sam-

pling (ROS), and synthetic minority over-sampling tech-

nique (SMOTE). The goal of the RUS method is to extract

randomly a small set of the majority class samples and

remove the rest of majority samples to obtain balanced data.

This reduces the training data. However, the removed sam-

ples may have useful information and this is the reason why

RUS may decrease the classification performance [12]. The

aim of the ROS method is to replicate the minority class

samples. However, making exact copies of minority class

samples may increase the classification performance but

without extending the decision boundary of the minority

class [12, 27].

(a) C = 0.01

(b) C = 1

(c) C = 100

Fig. 2 The effect of C parameter on the performance of SVMs with

RBF kernel function (r ¼ 1) (our second example). The x and y axes

represent the first and second features, respectively. Decision

boundaries (solid black line), two planes (dashed lines, red for the

first class and blue for the second class), support vectors samples are

marked by surrounding it by square shapes, and the testing samples

are marked by surrounding it by circles (color figure online)

6930 Neural Computing and Applications (2020) 32:6925–6938

123

In SMOTEalgorithm, the goal is to generate newminority

class samples based on the similarities between current

minority samples. In the minority class Smin, for each sample

xi 2 Smin, the k nearest samples are selected, and a new

synthetic sample is created according to

xnew ¼ xi þ rij 	 d ¼ xi þ ðx̂nðnkÞ � xiÞ 	 d, where xi indi-

cates one of the minority class samples, x̂nðnkÞ is one of the

k nearest neighbors for xi : x̂nðnkÞ 2 Smin, nk represents a

random number between 1 and k to select one of the k nearest

neighbors randomly, k is the number of selected neighbors,

d 2 ½0; 1� represents a random number, and xnew is the new

sample along the line joining xi and x̂nðnkÞ. Hence, a synthetic

or new sample is generated randomly by selecting one of the

k nearest neighbors, x̂nðnkÞ, and by multiplying a random

number, d, with the corresponding feature vector difference,
rij, and then adding this vector to xi [28]. SMOTE is better

than other sampling algorithms because (1) it extends the

decision region of the minority class and (2) it preserves all

data without removing any samples [28].

4 The Proposed model: SSD-SVM

As shown in Fig. 4, the first step in our approach is the data

preprocessing. The goal of this step is to adopt linear

scaling to avoid features in greater numeric ranges domi-

nating those in smaller numeric ranges. This step helps to

get higher classification performance [18]. In our model,

the Min-Max method is used to scale the feature ranges to

[0, 1] according to f 0 ¼ f�min
max�min

, where f is the original

value, min and max are the lower and upper bounds of the

feature value, respectively, and f 0 is the scaled value. Next,

the SMOTE algorithm is used to obtain balanced data as

shown in Fig. 4. The next steps of the proposed algorithm

are presented in the next sections.

4.1 Parameters’ initialization

In this step, the parameters of SSD such as the number of

agents and the maximum number of iterations are initial-

ized. In the proposed model, the SSD provides the SVM

classifier with the parameters’ values, i.e., C and r, to train

the SVM classifier using the training data. In our model,

there are two parameters; therefore, the search space is

two-dimensional and each point in the space represents a

combination between C and r. The agents’ positions are

Fig. 4 Flowchart of the proposed model (SSD-SVM)

Fig. 3 Illustration of an example of how two agents (A and B) using

the SSD algorithm move toward the mean of the best three solutions

(M). The agent A moves toward M in a nonlinear direction to A0 and
then to A00, and similarly, the agent B

Table 2 The number of SVs (# SVs), training accuracy (Tr. Acc.), and the testing accuracy (Test Acc.) of the SVMs classifier with different

values of C and with the RBF kernel r ¼ 1

Results C ¼ 0:01 C ¼ 1 C ¼ 100

SVs 213 86 20

Tr. Acc. ð122=240Þ � 50:83% ð233=240Þ � 97:08% ð235=240Þ � 97:92

Test Acc. ð28=60Þ � 46:67% ð58=60Þ � 96:67% ð58=60Þ � 96:67%

Neural Computing and Applications (2020) 32:6925–6938 6931

123

initialized randomly, and the searching range of parameter

C is bounded by Cmin ¼ 0:01 and Cmax ¼ 1000, and the

searching range of r is bounded by rmin ¼ 0:01 and

rmax ¼ 50. Increasing these limits extends the search

space; thus, more agents are required for searching for the

optimal solution, which results in more computational time

and a slower convergence rate.

4.2 Fitness evaluation

The models that were proposed in [7, 16, 18] divided the

data into training and testing sets only; and they used the

training set for training the model and the testing set for

evaluating the model. This may lead to the overfitting

problem. By contrast, in our model, the data were parti-

tioned into three sets. The training set is used for the

training, and the validation set is used to evaluate the

trained model during the iterations; finally, the testing set is

used to test the final model. In other words, the training and

validation sets were used for building a classification

model and determining suitable parameters for it, whereas

the fully trained SVM model is then tested using the testing

set. Hence, our model will be evaluated using totally

unseen data.

Having trained a machine learning model on imbalanced

data, the accuracy or misclassification rate may lead to

erroneous conclusions because the accuracy does not dis-

tinguish between the numbers of corrected labels of dif-

ferent classes. Therefore, in the proposed model, due to the

small number of samples in the minority class1 the aim is to

maximize the sensitivity, S, as follows:

Minimize :F ¼ �S ¼ TP

TPþ FN
; ð12Þ

where TP is the number of true positives and TN is the

number of true negatives. Hence, for each agent’s position,

the training set is used to train the SVM classifier, while the

validation set is used to calculate the sensitivity rate. The

optimal solution is found in a position where the values of

C and r achieve the maximum sensitivity. When the ter-

mination conditions are satisfied, the algorithm ends;

otherwise, we proceed with the next generation operation.

The proposed algorithm is terminated when the maximum

number of iterations is reached.

5 Experimental Results and Discussion

In this section, we present the results of different experi-

ments that were conducted to evaluate the performance of

the proposed SSD-SVM algorithm. The platform adopted

to test the SSD-SVM algorithm is a PC with the following

features: Intel(R) Core (TM) i5-2400 CPU3.10GHz, 4G

RAM, a Windows 7 operating system, and MATLAB

7.10.0 (R2010a). To evaluate the proposed algorithm, eight

classification datasets were used. The datasets were

obtained from the KEEL2 collection of datasets, and they

were divided into two divisions. The first division contains

the datasets which have an imbalance ratio (IR) lower than

nine (called Lower IR), whereas the second division con-

tains the datasets which have an IR higher than nine (is

called Upper IR). The IR represents the number of

instances of the majority class for each instance of the

minority class. Moreover, all datasets have two classes.

The descriptions of all datasets are listed in Table 3, where

the top four datasets represent the lower IR datasets and the

bottom four datasets are the upper IR datasets.

In all experiments, k-fold cross-validation tests have

been used. In k-fold cross-validation, the data were ran-

domly divided into k subsets of (approximately) equal size

and the experiment is run k times. For each run, one subset

was used as a testing set, and one is used as a validation set,

and the other k � 2 sets were used as a training set (Fig. 4).

The average of the k results from the folds can then be

calculated to produce a single estimation. In our experi-

ments, tenfold cross-validation was used to estimate the

results of each approach, and the obtained results are

illustrated in the form of average ± standard deviation.

Moreover, in all experiments, the number of iterations of

SSD was 50 and the number of agents was 20.

Three assessment methods were used in our experi-

ments, namely sensitivity (Sen.) (Sect. 4.2), specificity

(Spc.), and the area under curve (AUC). The specificity is

the percentage of the correctly classified negative samples.

It is defined as TNR ¼ TN
TNþFP

, where TN is the number of

true negatives and FP represents the number of false pos-

itives. The AUC indicates the area under the receiver

operating characteristics (ROC) curve, and it is calculated

as AUC ¼ 1þTPR�FPR
2

[29].

5.1 Experimental results

In this section, the results of two experiments are pre-

sented. The goal of the first experiment (Sect. 5.1.1) is to

compare the SSD-SVM with a naive grid search over the

SVM parameters. In the second experiment (Sect. 5.1.2),

the aim is to compare the SSD-SVM with the PSO-SVM

[6] and BA-SVM algorithm [18].

1 In our model, the minority class is considered as the positive class. 2 Available at http://sci2s.ugr.es/keel/imbalanced.php.

6932 Neural Computing and Applications (2020) 32:6925–6938

123

http://sci2s.ugr.es/keel/imbalanced.php

5.1.1 SSD-SVM vs. Grid-SVM

The aim of this experiment is to compare the proposed

algorithm with naive grid search. Grid search as mentioned

before has been used for adjusting or tuning SVM

parameters [6, 18, 30].

Table 4 shows the sensitivity, specificity, and AUC

results of this experiment. As can be read from that table,

the sensitivity of the proposed algorithm is much higher

than the results achieved using grid search. For further

comparison, the nonparametric Wilcoxon signed-rank test

was used for all datasets. As shown in Table 4, in terms of

sensitivity, the p value for D4 is larger than the predicted

statistical significance level of 0.005, but the other p values

are smaller than the significance level of 0.005. In terms of

specificity and AUC results, our proposed algorithm

obtains results better than the grid search-optimized SVMs;

and the p values for all datasets are smaller than the sig-

nificant level of 0.005. Generally, compared with basic grid

search, the proposed SSD-SVM achieves high sensitivity,

specificity, and AUC results. It is also worth mentioning

that the required computational time for the proposed SSD-

SVM algorithm is much less than the time required for the

grid search algorithm. This is because the computational

cost for the grid search algorithm increases exponentially

with (1) the number of parameters, (2) the range, and (3)

the number of sampling points for each parameter [31].

5.1.2 SSD-SVM versus PSO-SVM and BA-SVM

The second experiment was conducted to compare our

proposed SSD-SVM algorithm with PSO-SVM that was

proposed in [6] and BA-SVM that was introduced in [18].

Tables 5 and 6 show the results of this experiment.

As shown, the SSD-SVM algorithm yields higher sen-

sitivity results than the PSO-SVM and BA-SVM algo-

rithms in most cases. Moreover, using the PSO-SVM

algorithm, the p values for D1 and D5 are larger than the

predicted statistical significance level of 0.005, but the

other p values are smaller than the significance level of

0.005. In terms of specificity, the SSD-SVM algorithm

obtains results better than the PSO-SVM algorithm; and

only the p values for D4 and D5 are larger than the pre-

dicted statistical significance level of 0.005. The SSD-SVM

algorithm also achieves better AUC results than the PSO-

SVM algorithm; and the p values for D1 and D5 are larger

than the predicted statistical significance level of 0.005.

Table 6 shows that with the BA-SVM algorithm, in terms

of sensitivity results, the p values for D1, D3, and D5 are

larger than the predicted statistical significance level of

0.005, but the other p values are smaller than the signifi-

cance level of 0.005. Additionally, in terms of specificity

and AUC results, the SSD-SVM algorithm obtains results

better than the BA-SVM algorithm, and only the p values

for D1 and D5 are larger than the predicted statistical

significance level of 0.005.

For further comparison between the SSD-SVM and the

PSO-SVM and BA-SVM algorithms, Fig. 5 shows the

average of results for all datasets. As shown, the SSD-SVM

outperforms the PSO-SVM and BA-SVM algorithms.

Generally, the SSD-SVM obtains results better than the

PSO-SVM and BA-SVM algorithms. This is due to the

following reasons:

1. The particles in the PSO algorithm move toward the

global best position or previous best positions and in

the bat algorithm, the particles/agents move toward the

global best position, while in SSD the agents move

toward the mean of the best three solutions. This is

beneficial for the SSD algorithm in terms of being

more social than PSO and BA. Hence, if the global best

solution is trapped into a local minimum, the other two

best solutions can help the SSD to escape from the

local minimum solution.

2. The agents in the PSO and BA algorithms move in

straightforward directions, while in SSD, the moving

directions are not straightforward due to the sine and

cosine functions as shown in Fig. 3 yielding ski-driver-

live paths through the search space. This gives the SSD

algorithm better exploration capabilities.

3. The PSO algorithm has fixed parameters which need to

be tuned first, while the parameters of BA or SSD can

be changed as the iterations proceed. Hence, SSD and

BA switch automatically from exploration to exploita-

tion. As a results, both algorithms (i.e., BA and SSD)

have the ability to escape from local minimum

solutions better than the PSO algorithm.

As a consequence, it is not surprising that SSD behaves

more efficiently than PSO and BA algorithms.

In terms of computational time, a comparison of the

SSD-SVM, PSO-SVM, and BA-SVM reveals that all

Table 3 Datasets characterization

Dataset # Samples # Features IR

Ecoli2 (D1) 336 7 5.46

Ecoli3 (D2) 336 7 8.6

Glass0 (D3) 214 9 2.06

Glass6 (D4) 214 9 6.38

Glass4 (D5) 214 9 15.46

Glass2 (D6) 214 9 11.59

winequality-white-9_vs_4 (D7) 168 11 32.6

Poker Hand (D8) 244 10 29.5

Neural Computing and Applications (2020) 32:6925–6938 6933

123

algorithms require approximately the same computational

time.

It is also worth mentioning that the proposed algorithm

obtained high classification results with all datasets. Fur-

thermore, the obtained results for the datasets which have

high IR were better than the results achieved for datasets

with low IR. This reflects the robustness of our proposed

algorithm against imbalanced data. Another important

finding is that our algorithm improved the sensitivity

results without sacrificing the specificity results. It is

interesting to note from our experiments that the optimal

value of r changes from one dataset to another. This is

because the transformation of the samples to a higher-di-

mensional space depends also on the distance between

samples. As a consequence, the range of features has a

great influence on the value of r.

Table 4 Comparison between the SSD-SVM and grid search SVMs algorithms in terms of sensitivity, specificity, and AUC

Dataset IR Grid Search SVMs SSD-SVM p value for Wilcoxon testing

Sen. Spc. AUC Sen. Spc. AUC Sen. Spc. AUC

D1 5.46 0.90 ± 0.08 0.93 ± 0.03 0.92 ± 0.04 0.97 ± 0.05 0.94 ± 0.02 0.95 ± 0.04 \ 0.005 \ 0.005 \ 0.005

D2 8.6 0.88 ± 0.08 0.91 ± 0.03 0.89 ± 0.05 0.92 ± 0.08 0.94 ± 0.04 0.91 ± 0.06 \ 0.005 \ 0.005 \ 0.005

D3 2.06 0.85 ± 0.10 0.90 ± 0.02 0.88 ± 0.05 0.92 ± 0.04 0.91 ± 0.02 0.92 ± 0.03 \ 0.005 \ 0.005 \ 0.005

D4 6.38 0.76 ± 0.05 0.81 ± 0.04 0.80 ± 0.04 0.78 ± 0.12 0.82 ± 0.08 0.81 ± 0.10 0.0054 \ 0.005 \ 0.005

D5 15.46 0.89 ± 0.13 0.97 ± 0.02 0.95 ± 0.06 0.94 ± 0.02 1 ± 0.00 0.96 ± 0.02 \ 0.005 \ 0.005 \ 0.005

D6 11.59 0.96 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 \ 0.005 \ 0.005 \ 0.005

D7 32.6 0.93 ± 0.04 0.97 ± 0.02 0.95 ± 0.03 0.97 ± 0.03 1 ± 0.00 0.98 ± 0.01 \ 0.005 \ 0.005 \ 0.005

D8 29.5 0.84 ± 0.05 0.88 ± 0.06 0.85 ± 0.04 0.86 ± 0.07 0.92 ± 0.04 0.87 ± 0.06 \ 0.005 \ 0.005 \ 0.005

Table 5 Comparison between the SSD-SVM and PSO-SVM algorithms in terms of sensitivity, specificity, and AUC

Dataset PSO-SVM SSD-SVM p value for Wilcoxon testing

Sen. Spc. AUC Sen. Spc. AUC Sen. Spc. AUC

D1 0.97 ± 0.03 0.93 ± 0.02 0.95 ± 0.03 0.97 ± 0.05 0.94 ± 0.02 0.95 ± 0.04 0.0064 \ 0.005 0.0051

D2 0.91 ± 0.04 0.88 ± 0.06 0.89 ± 0.05 0.92 ± 0.08 0.94 ± 0.04 0.91 ± 0.06 \ 0.005 \ 0.005 \ 0.005

D3 0.90 ± 0.03 0.88 ± 0.02 0.90 ± 0.03 0.92 ± 0.04 0.91 ± 0.02 0.92 ± 0.03 \ 0.005 \ 0.005 \ 0.005

D4 0.73 ± 0.08 0.79 ± 0.06 0.78 ± 0.06 0.78 ± 0.12 0.82 ± 0.08 0.81 ± 0.10 \ 0.005 0.006 \ 0.005

D5 0.94 ± 0.03 1 ± 0.00 0.97 ± 0.01 0.94 ± 0.02 1 ± 0.00 0.96 ± 0.02 0.0062 0.0059 0.0058

D6 0.96 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 \ 0.005 \ 0.005 \ 0.005

D7 0.95 ± 0.03 1 ± 0.00 0.97 ± 0.02 0.97 ± 0.03 1 ± 0.00 0.98 ± 0.01 \ 0.005 \ 0.005 \ 0.005

D8 0.84 ± 0.06 0.86 ± 0.04 0.85 ± 0.04 0.86 ± 0.07 0.92 ± 0.04 0.87 ± 0.06 \ 0.005 \ 0.005 \ 0.005

Table 6 Comparison between the SSD-SVM and BA-SVM algorithms in terms of sensitivity, specificity, and AUC

Dataset BA-SVM SSD-SVM p value for Wilcoxon testing

Sen. Spc. AUC Sen. Spc. AUC Sen. Spc. AUC

D1 0.98 ± 0.02 0.94 ± 0.03 0.96 ± 0.03 0.97 ± 0.05 0.94 ± 0.02 0.95 ± 0.04 0.0063 0.0058 0.0064

D2 0.91 ± 0.03 0.89 ± 0.05 0.90 ± 0.04 0.92 ± 0.08 0.94 ± 0.04 0.91 ± 0.06 \ 0.005 \ 0.005 \ 0.005

D3 0.92 ± 0.02 0.90 ± 0.03 0.91 ± 0.03 0.92 ± 0.04 0.91 ± 0.02 0.92 ± 0.03 0.0060 \ 0.005 \ 0.005

D4 0.72 ± 0.05 0.78 ± 0.07 0.76 ± 0.06 0.78 ± 0.12 0.82 ± 0.08 0.81 ± 0.10 \ 0.005 \ 0.005 \ 0.005

D5 0.94 ± 0.04 1 ± 0.00 0.96 ± 0.03 0.94 ± 0.02 1 ± 0.00 0.96 ± 0.02 0.0061 0.0060 0.0059

D6 0.97 ± 0.04 0.98 ± 0.02 0.98 ± 0.03 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 \ 0.005 \ 0.005 \ 0.005

D7 0.94 ± 0.02 0.99 ± 0.01 0.97 ± 0.04 0.97 ± 0.03 1 ± 0.00 0.98 ± 0.01 \ 0.005 \ 0.005 \ 0.005

D8 0.85 ± 0.05 0.88 ± 0.04 0.86 ± 0.05 0.86 ± 0.07 0.92 ± 0.04 0.87 ± 0.06 \ 0.005 \ 0.005 \ 0.005

3 http://archive.ics.uci.edu/ml/index.php.

6934 Neural Computing and Applications (2020) 32:6925–6938

123

http://archive.ics.uci.edu/ml/index.php

Finally, different experiments have been conducted to

investigate the performance of our proposed algorithm

against:

• Balanced data: In this experiment, two well-known

balanced datasets (iris and liver from the UCI3 data

repository) were used to test the performance of our

proposed algorithm when applied for balanced data.

The liver dataset has two classes, and only two classes

were used from the iris dataset. Compared with the

results in [32], the SSD-SVM algorithm obtained

competitive results as listed in Table 7. These results

prove that our model is also applicable for balanced

data.

• Data with high dimensionality: As shown in Table 3,

the dimensionality of all datasets that were used in our

experiments was low (\11). A simple experiment was

conducted to test our proposed algorithm for one dataset

(sonar dataset from the UCI repository) with higher

dimensionality. Table 7 shows empirically that our

proposed algorithm achieves promising results com-

pared to the results in [6]. However, with imbalanced

data which have high IR, more samples from the

minority class are generated which increases the

required computational time. One of the solutions for

this problem is to assign different weights to the

imbalanced classes.

• Multiclass data: In our experiments, all the datasets

have only two classes. As an additional test, our

proposed algorithm was applied on a multiclass dataset

(iono dataset from the UCI repository). The iono dataset

(as shown in Table 7) has three classes with different

numbers of samples. In order to be applicable for

multiclass datasets, we developed an extended SSD-

SVM version. To this end, the main modification was

made in the SMOTE part of the algorithm. As

mentioned before (Sect. 3.3), in the binary classifica-

tion problem, the SMOTE algorithm is used for

generating new minority class samples to obtain more

balanced data for both the majority and minority

classes. In a multiclass problem, one majority class,

which has the maximal number of samples, was

selected, and then all minority class samples were

oversampled using the SMOTE algorithm. The results

of this experiment (shown in Table 7) obtained com-

petitive results compared with the results in [32].

To sum up, the developed SSD-SVM algorithm yielded

more appropriate SVMs parameters, giving better results

across different datasets. Even so, we cannot guarantee that

the SSD-SVM algorithm performs well and outperforms

other methods in different applications. In fact, many fac-

tors may have an influence on the quality of the proposed

model, such as the number of data samples, the diversity of

training sets, representativeness, severe imbalance ratios,

and the number of features.

6 Conclusions and future work

The SVMs learning algorithm is widely used in different

applications. However, the parameter values of SVMs have

a great influence on the classification performance of

SVMs. This study proposes a social ski-driver-based

approach (SSD-SVM) for optimizing SVM parameters.

Because imbalanced datasets represent a severe challenge

in many supervised learning scenarios, in this paper, the

proposed algorithm was developed to be suitable for

imbalanced data. In our algorithm, the minority class rep-

resents the positive class; hence, the goal is to maximize

the sensitivity of the SVM model. Different experiments

were conducted to compare the proposed SSD-SVM

algorithm with a naive grid search for the parameters of the

SVMs and PSO-SVM algorithms by applying many stan-

dard classification datasets with different imbalance ratios.

The results of this study showed that the SSD-SVM

Fig. 5 Comparison between the proposed SSD-SVM algorithm and

the PSO-SVM and BA-SVM algorithms

Table 7 Experimental results of

the proposed algorithm with

different datasets

Datasets classes #dim=4 Sen. Spc. AUC Previous results

Iris (50/50) 4 1 ± 0 1 ± 0 1 ± 0 Acc. (100%)

Liver (145/200) 6 81.07 ± 0.90 71.18 ± 2.24 76.13 ± 1.84 Acc. (68.7%)

Sonar (97/111) 60 86.47 ± 1.05 88.54 ± 1.18 87.23 ± 0.97 Acc. (88.3%)

Iono (59/71/48) 13 92.12 ± 2.14 94.22 ± 0.84 93.73 ± 1.13 Acc. (97.92%)

Neural Computing and Applications (2020) 32:6925–6938 6935

123

algorithm outperformed the PSO-SVM as well as grid

search algorithms in terms of sensitivity, specificity, and

AUC.

There are several directions for future studies. Firstly,

the experiments in this paper were performed using only

eight datasets, but other public datasets should be tested in

the future to verify and extend the proposed algorithm.

Secondly, severe imbalance ratio datasets should be used to

evaluate the proposed algorithm. Thirdly, due to the per-

formance of SSD, it would be worthwhile to explore the

potential of SSD to other applications.

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict of

interest.

Appendix

Illustrative example

The goal of this example is to compare the proposed SSD

algorithm with the PSO and bat algorithms. In this exam-

ple, the number of agents was 20, the number of iterations

was 50, and the search space was two-dimensional, i.e.,

d ¼ 2. We used the Rastrigin objective function, which is

defined as follows:

FðxiÞ ¼ 10d þ
Xd

t¼1

ðx2i � 10: cosð2pxiÞÞÞ;

� 5:12� xi � 5:12

ð13Þ

The Rastrigin function is one of the well-known functions,

and it has been used in different studies because it has many

local optimal solutions and one global minimum (Fig. 6).

The optimal solution is zero, and it is located at the origin as

shown in Fig. 6 [10, 33]. In this experiment, the SSD, PSO,

and bat algorithms were employed to find the optimal solu-

tion for the Rastrigin function, and the results of this

experiment are summarized in Fig. 7. As shown, all algo-

rithmswere run for three runs, where the convergence curves

of the SSD, PSO, and bat algorithms are represented in the

red, blue, and green colors, respectively. For a fair compar-

ison, in all runs, all algorithms started from the same posi-

tion, i.e., the initial solutions for all optimization algorithms

were the same. It is interesting to note from Fig. 7 that the

SSD algorithm significantly escaped from local minima in

many cases. This is clear in the figure when the convergence

curve of SSD was constant for some iterations. As shown,

after some iterations, the SSD algorithm escaped from this

local minimum solution and converged to a better solution.

On the other hand, the blue lines have nofluctuations because

in two runs, the PSO algorithm succeeded to reach the

optimal solutionwithout facing localminimum solutions and

in one run, the PSO algorithm trapped into one local mini-

mum from the fifth iteration and it did not escape from it till

the end of iterations. The bat algorithm is more flexible than

PSO, and hence it (the bat algorithm) can escape from the

local minimum better than PSO. This is because PSO has

Fig. 6 The surface plot of the Rastrigin function

Fig. 7 Convergence curves of the SSD (in the red color), the PSO (in

the blue color), and the bat (in the green color) algorithms in different

three runs (color figure online)

Fig. 8 A comparison between the SSD, bat, and PSO optimization

algorithms using 20 runs. The solid lines represent the mean of all

runs, and the shaded areas represent the standard deviation

6936 Neural Computing and Applications (2020) 32:6925–6938

123

fixed parameters that need to be tuned first, while the

parameters of the bat algorithm can be adjusted as the iter-

ations proceed.

Figure 8 shows a comparison between the SSD, PSO, and

bat optimization algorithms using 20 runs. As shown, the

average of runs of the SSD algorithm (i.e., the red solid line)

was much lower than the PSO and bat algorithms. Further,

the shaded area of the SSD algorithm which represents the

standard deviation of all runs was much smaller than the

shaded area of the other two algorithms. This reflects that the

SSD algorithm is more stable than PSO and bat algorithms

and most of the runs of the SSD algorithm converged to the

optimal or near-optimal solution. Additionally, the bat

algorithm obtained results better than PSO. This is due to the

fixed parameters of PSO, and hence the bat algorithm has a

quick convergence rate compared with PSO.

These results reflect how the SSD algorithm can keep a

larger diversity which is capable of finding better results

than PSO and bat algorithms. This is because (1) SSD is

more social than PSO and bat algorithms because the

agents in SSD track the mean of the best three solutions,

while in the bat and PSO algorithms, the agents follow the

global best solution, (2) the agents of SSD move not in a

straightforward direction, while in PSO and bat algorithms

the agents move only in a straightforward direction, which

gives the SSD algorithm better exploration capabilities.

Even so, we still cannot guarantee that the SSD algorithm

must perform well and outperform other optimization

algorithms in different applications.

References

1. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

2. Wang L (2005) Support vector machines: theory and applica-

tions, vol 177. Springer, Berlin

3. Wang Y, Wang Y, Tan T (2004) Combining fingerprint and

voiceprint biometrics for identity verification: an experimental

comparison. In: Biometric authentication, pp 289–294

4. Bouzerdoum M, Mellit A, Pavan AM (2013) A hybrid model

(SARIMA-SVM) for short-term power forecasting of a small-

scale grid-connected photovoltaic plant. Sol Energy 98:226–235

5. Tharwat A, Moemen YS, Hassanien AE (2017) Classification of

toxicity effects of biotransformed hepatic drugs using whale

optimized support vector machines. J Biomed Inform 68:132–149

6. Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm

optimization for parameter determination and feature selection of

support vector machines. Expert Syst Appl 35(4):1817–1824

7. Zhang X, Chen X, He Z (2010) An aco-based algorithm for

parameter optimization of support vector machines. Expert Syst

Appl 37(9):6618–6628

8. Yamany W, Tharwat A, Hassanin M F, Gaber T, Hassanien AE,

Kim TH (2015) A new multi-layer perceptrons trainer based on

ant lion optimization algorithm. In: Fourth international confer-

ence on information science and industrial applications (ISI).

IEEE, pp 40–45

9. Poli R, Kennedy J, Blackwell T (2007) Particle swarm opti-

mization. Swarm Intell 1(1):33–57

10. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61

11. Mirjalili S (2016) Sca: a sine cosine algorithm for solving opti-

mization problems. Knowl-Based Syst 96:120–133

12. He H, Garcia EA (2009) Learning from imbalanced data. IEEE

Trans Knowl Data Eng 21(9):1263–1284

13. Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM

parameters. Neurocomputing 64:107–117

14. LaValle SM, Branicky MS, Lindemann SR (2004) On the rela-

tionship between classical grid search and probabilistic road-

maps. Int J Robot Res 23(7–8):673–692

15. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002)

Choosing multiple parameters for support vector machines. Mach

Learn 46(1–3):131–159

16. Subasi A (2013) Classification of EMG signals using pso opti-

mized SVM for diagnosis of neuromuscular disorders. Comput

Biol Med 43(5):576–586

17. Wu CH, Tzeng GH, Lin RH (2009) A novel hybrid genetic

algorithm for kernel function and parameter optimization in

support vector regression. Expert Syst Appl 36(3):4725–4735

18. Tharwat A, Hassanien AE, Elnaghi BE (2017) A ba-based

algorithm for parameter optimization of support vector machine.

Pattern Recognit Lett 93:13–22

19. Tharwat A, Gabel T, Hassanien AE (2017) Parameter optimiza-

tion of support vector machine using dragonfly algorithm. In:

International conference on advanced intelligent systems and

informatics. Springer, pp 309–319

20. Aydin I, Karakose M, Akin E (2011) A multi-objective artificial

immune algorithm for parameter optimization in support vector

machine. Appl Soft Comput 11(1):120–129

21. Rojas-Domı́nguez A, Padierna LC, Valadez JMC, Puga-Sober-

anes HJ, Fraire HJ (2018) Optimal hyper-parameter tuning of svm

classifiers with application to medical diagnosis. IEEE Access

6:7164–7176

22. Tharwat A, Hassanien AE (2018) Chaotic antlion algorithm for

parameter optimization of support vector machine. Appl Intell

48:670–686

23. Kecman V (2001) Learning and soft computing: support vector

machines, neural networks, and fuzzy logic models. MIT Press,

Cambridge

24. Tharwat A (2019) Parameter investigation of support vector

machine classifier with kernel functions. Knowl Inf Syst 1–34.

https://doi.org/10.1007/s10115-019-01335-4

25. Burges CJ (1998) A tutorial on support vector machines for

pattern recognition. Data Min Knowl Discov 2(2):121–167

26. Sun Y, Kamel MS, Wong AK, Wang Y (2007) Cost-sensitive

boosting for classification of imbalanced data. Pattern Recognit

40(12):3358–3378

27. Sun Y, Wong AK, Kamel MS (2009) Classification of imbal-

anced data: a review. Int J Pattern Recognit Artif Intell

23(04):687–719

28. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)

SMOTE: synthetic minority over-sampling technique. J Artif

Intell Res 16:321–357

29. Tharwat A (2018) Classification assessment methods. Appl

Comput Inform. https://doi.org/10.1016/j.aci.2018.08.003

30. Huang CL, Wang CJ (2006) A GA-based feature selection and

parameters optimizationfor support vector machines. Expert Syst

Appl 31(2):231–240

31. Moore G, Bergeron C, Bennett KP (2011) Model selection for

primal SVM. Mach Learn 85(1–2):175

32. Zhang Y, Zhang P (2015) Machine training and parameter set-

tings with social emotional optimization algorithm for support

vector machine. Pattern Recognit Lett 54:36–42

Neural Computing and Applications (2020) 32:6925–6938 6937

123

https://doi.org/10.1007/s10115-019-01335-4
https://doi.org/10.1016/j.aci.2018.08.003

33. Tharwat A, Gaber T, Hassanien AE, Elnaghi BE (2017) Particle

swarm optimization: a tutorial. In: Handbook of research on

machine learning innovations and trends. IGI Global, pp 614–635

Publisher’s Note Publisher’s Note Springer Nature remains neutral

with regard to jurisdictional claims in published maps and

institutional affiliations.

6938 Neural Computing and Applications (2020) 32:6925–6938

123

	Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm
	Abstract
	Introduction
	Related Work
	Preliminaries
	Support Vector Machines (SVMs) Classifier
	Separable data (non-overlapping classes)
	Non-separable data (overlapping classes)
	Nonlinear separable data
	Illustrative example

	Social ski-driver (SSD) optimization algorithm
	Synthetic minority over-sampling technique (SMOTE) algorithm

	The Proposed model: SSD-SVM
	Parameters’ initialization
	Fitness evaluation

	Experimental Results and Discussion
	Experimental results
	SSD-SVM vs. Grid-SVM
	SSD-SVM versus PSO-SVM and BA-SVM

	Conclusions and future work
	Appendix
	Illustrative example

	References

