
ORIGINAL ARTICLE

Intrusion detection using deep sparse auto-encoder and self-taught
learning

Aqsa Saeed Qureshi1 • Asifullah Khan1,2 • Nauman Shamim1
• Muhammad Hanif Durad1

Received: 17 November 2017 / Accepted: 15 March 2019 / Published online: 26 March 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
With the enormous increase in the use of the Internet, secure transfer of data across networks has become a challenging

task. Attackers are in continuous search of getting information from network traffic, and this is the main reason that

efficient intrusion detection techniques are required to identify different kinds of network attacks. In past, various

supervised and semi-supervised methods have been developed for intrusion detection. Most of these methods require a

large amount of data to develop an efficient intrusion detection system. In the proposed deep neural network and adaptive

self-taught-based transfer learning technique, we have exploited the concept of self-taught learning to train deep neural

networks for reliable network intrusion detection. In the proposed method, a pre-trained network on regression-related task

is used to extract features from NSL-KDD dataset. Original features along with extracted features from the pre-trained

network are then provided as an input to the sparse auto-encoder. Self-taught learning-based extracted features, when

concatenated with the original features of NSL-KDD dataset, enhance the performance of the sparse auto-encoder.

Performance of self-taught learning-based approach is compared against several techniques using ten independent runs in

terms of accuracy, false alarm and detection rate, area under the ROC, and PR curve. It is experimentally observed that the

auto-encoder trained on the combined original and extracted features is stable and offers good generalization in comparison

with the sparse auto-encoder trained on original features alone.

Keywords Self-taught learning � Deep sparse auto-encoder � Intrusion detection system

1 Introduction

In the last decade, with the rapid growth in information

technology, security has become one of the major concerns

of almost all the institutes and companies. Intruders are in

continuous search to access the network traffic, and that is

why, security systems have to cope with different types of

attacks [1]. Secure data transfer over a network has always

been a challenging task. In some cases, such as banking

transactions, defense-related communication, traffic of

government-related networks, the security of network

traffic becomes increasingly important. Consequently, it is

imperative to have a secure network monitoring and

detection system that can efficiently detect different types

of attacks and thus secure a network against malicious

attacks. An intrusion detection system (IDS) monitors and

detects violations regarding security policy and recognizes

any abnormal patterns in the network traffic [2]. In host-

based IDS, only information related to host is monitored

[3]. In case of network-based IDS, instead of monitoring

individual hosts in the network, an overall network flow is

monitored and analyzed [4]. However, in application-based

IDS, a system monitors any abnormal behavior of protocol

between the different devices [5].

An IDS can be considered as an expert system. The

system is first trained over a large dataset for selecting

features. After training and recognizing patterns as normal

or malicious, the working of IDS is tested on unseen data.

The performance of an IDS mostly depends on the selected

& Asifullah Khan

asif@pieas.edu.pk

1 PR-Lab, Department of Computer and Information Science,

Pakistan Institute of Engineering and the Applied Sciences,

Nilore, Islamabad 45650, Pakistan

2 Centre for Mathematical Sciences, Pakistan Institute of

Engineering and Applied Sciences, Nilore, Islamabad 45650,

Pakistan

123

Neural Computing and Applications (2020) 32:3135–3147
https://doi.org/10.1007/s00521-019-04152-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2039-5305
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04152-6&domain=pdf
https://doi.org/10.1007/s00521-019-04152-6

features. Intrusion detection techniques are broadly cate-

gorized into two main groups. The first one is called

anomaly-based IDS, in which those data patterns are

detected, which show abnormal behavior [6]. The advan-

tage of anomaly-based IDS is that zero-day attacks can be

detected; however, it may have a high false positive rate.

The second category of IDS is signature- or misuse-based

IDS, in which patterns are known in advance. For example,

a labeled intrusion detection dataset has instances, which

are labeled as normal or intrusive. By using machine

learning algorithms, a trained model can automatically

detect intrusive instances [7]. However, zero-day attacks

are difficult to be detected by signature-based IDS.

In past, many different intrusion detection techniques

have been reported by different researchers. Malhotra et al.

[8] used K-nearest neighbor and genetic programming for

developing a reliable IDS. To overcome the deficiencies of

IDS associated with single-level structure technique, a

hierarchical approach based on neural networks is recom-

mended by Zhan et al. [9]. On the other hand, Panda et al.

[10] used naı̈ve Bayes classifier for developing an efficient

IDS. Zhang et al. [11] used random forest-based classifier

for the purpose of detecting an intrusion within the net-

work. Portnoy et al. [12] proposed a clustering-based

technique that uses unlabeled data for detecting an intru-

sion within the network. Similarly, an IDS trained in an

unsupervised way was reported by Leung et al. [13]. Aslahi

et al. [14] reported a hybrid approach for intrusion detec-

tion system. Another network-based IDS was developed by

Ramakrishnan et al. [15] in which features are selected on

the basis of entropy. Similarly, a technique that detects

intrusion in wireless ad hoc networks was proposed by

Srinivasan et al. [16], whereby Kohen’s self-organizing

map identifies abnormal patterns within the network. In

contrast, Puri et al. [17] proposed a hybrid technique that

combines regression and classification trees along with

support vector machine (SVM) for identifying network

attacks. In a different work, in order to ensure network

security, SVM and neural network-based IDS are devel-

oped by Mukkamala et al. [18].

Recently, a fuzzy logic-based semi-supervised algorithm

has been proposed for intrusion detection, in which a sin-

gle-layer neural network is used to obtain fuzzy member-

ship function [19]. Similarly, Kim et al. [20] used deep

neural network-based approach for IDS. Another tree

algorithm-based approach for network intrusion detection

was reported by Subasi et al. [21]. Almost all of these

intrusion detection techniques use machine learning algo-

rithms that need to be trained from scratch. In contrast, the

proposed deep neural network and adaptive self-taught-

based transfer learning (DST-TL) technique uses the con-

cept of self-taught learning for developing efficient and

reliable IDS. Instead of training the model with original

features as in previously reported methods, the proposed

DST-TL technique uses a self-taught learning approach for

extracting feature through an already trained network (us-

ing unlabeled data). The extracted features are then com-

bined with the original features and are used to train a

sparse auto-encoder. The organization of the paper is as

follows: Sect. 2 is related to the description of the dataset.

Similarly, Sect. 3 presents the proposed technique. Imple-

mentation and parameter details are discussed in Sect. 4.

Results and discussion are described in Sect. 5. Section 6 is

related to conclusions.

2 Details of dataset

In 1998, MIT Lincoln Laboratory generated an environ-

ment in which raw data from TCP dump were gathered

throw local area network (LAN) that simulates Air Force

LAN in the USA [22]. Each TCP connection within the

network is labeled either as attacked or a normal. More-

over, training and test data contain five and two million

records, respectively. In 1999, a version of the data col-

lected from MIT Lincoln Laboratory is used in KDD

contest related to intrusion detection. The purpose of

gathering the data was to analyze and evaluate the research

related to detecting intrusion within the network. The

performance of proposed DST-TL is evaluated on NSL-

KDD dataset (an updated version of KDD dataset). KDD

dataset is among the few publically available network-

based IDS datasets. There are some inherent deficiencies

[23] in KDD dataset; some of which are:

(a) Almost 78% and 75% of the samples are repeated in

training and test sets, respectively.

(b) Redundant samples in training set may make the

classifier biased toward the most frequent samples;

as a result, good performance may not be achieved

on the test data.

To overcome the deficiencies of KDD dataset, NSL-

KDD dataset was introduced by Tavallaee et al. [23]. All

the redundant samples in KDD dataset were removed, and

only a single copy was kept in training and test sets.

Moreover, in both training and test sets, difficulty level

against each record of KDD data was also assigned. For

that purpose, the training set was divided into three equal

parts. After the division of training data, seven different

classifiers were trained on different portions of the data; as

a result, 21 different labels were predicted against test data

records. From KDD dataset, after the removal of redundant

records KDDTestþ was generated. In addition to

KDDTestþ, a new test set KDDTest�21 was also generated

containing only those records, which were not correctly

3136 Neural Computing and Applications (2020) 32:3135–3147

123

classified by any of the trained classifiers. For experimental

purposes, only 20% of the KDDTrainþ was reserved.

Therefore, performance of a classifier needs to be evaluated

on KDDTestþ, especially on KDDTest�21. Percentages of

the positive and negative samples in KDDTestþ and

KDDTest�21 are shown in Table 1. In NSL-KDD dataset,

each sample consists of 41 features, which are further

categorized into three different groups.

1 Basic features The TCP/IP connection-related attri-

butes are included in basic features. The basic features

are originated from the packet header, and out of 41

features in NSL-KDD dataset, ten features are catego-

rized as basic features. For example, protocol type,

service, flags, etc. are considered as basic features.

2 Content features Content features are related to all of

the suspicious information within the payload of a TCP

packet. For example, the number of failed login efforts

is considered as a content feature.

3 Traffic features Traffic features are calculated with

reference to the time interval and are further catego-

rized into two groups:

(a) Same service features Same service features are

features that are evaluated across only those

connections from past 2 s that contain the same

service as current connections hold.

(b) Same host features Same host features are

features (behavior, services of protocol, etc.)

that are evaluated across those connections in

past 2 s, which contain the same host as current

connections hold.

Table 2 shows details of the 41 features present within

NSL-KDD dataset.

All the attacks in the NSL-KDD data belong to the

following four attack categories:

• Denial-of-service (DOS) attacks

• User-to-root (U2R) attacks

• Remote-to-local (R2L) attacks

• Probing (PROB) attacks

Details related to all of the four categories of attacks are

shown in Table 3. Another property of the NSL-KDD

dataset is that an additional 14 new attacks also are

included in the test data.

3 Deep sparse auto-encoder

Sparsity is used for reducing the links within the network

and thus generally increases the generalization perfor-

mance of the machine learning technique. In past, different

researchers proposed the sparse representation-based clas-

sification system for recognizing face [24, 25], object cat-

egorization [26], classification [27], and regression-related

[28, 29] tasks. Lu et al. [24] proposed locality-based

weighted sparse representation classifier (WSRC) for the

face recognition-related task. Performance comparison of

Lu’s technique is checked on 15 different datasets from

UCI repository. Experimental results depict the WSRC-

based method outperforms most of the state-of-the-art

techniques. Work related to recognizing the partially

occluded faces within images is proposed by Mi et al. [25].

In Mi’s work after the division of images into blocks, the

regression-based technique is used to find out the occluded

blocks. In the end, sparse representation classification

(SRC)-based strategy is used to detect the face. Compar-

ison of Mi’s technique against extended SRC (eSRC)

shows that SRC technique is good not only in terms of

accuracy but also computationally less extensive. In

another researcher, Gui et al. [30] presented a survey

related to sparsity-based feature selection strategies. In

Gui’s survey, mathematical representation and motivation

behind the sparsity-based feature selection strategies have

been discussed. Another work related to group sparse

multiview patch alignment framework (GSM-PAF) method

for the purpose of selecting and extracting feature by

introducing sparsity within the projection matrix is pro-

posed [27]. GSM-PAF technique shows good performance

on real image classification tasks. In the proposed DST-TL

work, sparse auto-encoder-based self-taught learning

approach is used for the development of a reliable IDS.

An auto-encoder is a kind of neural network that tries to

reproduce input to its output. Two steps are involved in the

training of deep sparse auto-encoder. In the first step,

unsupervised greedy layer-wise pre-training is performed,

in which unlabeled data are used to extract useful features

at each layer. Encoding and decoding are important steps

involved in the pre-training of deep sparse auto-encoder.

An auto-encoder tries to reproduce its input to its output,

during the pre-training phase, and that is why, labeled data

are not needed during pre-training phase. Let dinp be the

Table 1 Percentage of positive

and negative samples in

KDDTestþ and KDDTest�21

dataset

Dataset Total samples Normal samples Abnormal samples

20% of KDDTrainþ 25,193 13,449 (53.4%) 11,744 (46.6%)

KDDTestþ 22,544 9711 (44%) 12,833 (56%)

KDDTest�21 11,850 2152 (19.2%) 9698 (81.8%)

Neural Computing and Applications (2020) 32:3135–3147 3137

123

input to the encoder, which is encoded in the form of a

function as shown in Eq. 1.

eninp ¼ funcðdinpÞ ð1Þ

After encoding the input data, next phase is to decode

the encoded results eninp
� �

using Eq. 2.

decinp ¼ funcðeninpÞ ð2Þ

Purpose of decoding is to reconstruct the original input.

During the training phase, if auto-encoder only tries to

reproduce its input to its output, then it may not be bene-

ficial because it will lead to overfitting, and thus, results of

Table 2 Types of features

present within NSL-KDD

dataset

Feature number Type Feature name

1 Basic features Duration

2 Protocol_type

3 Service

4 Flag

5 Src_bytes

6 Dst_bytes

7 Land

8 Wrong_fragment

9 Urgent

10 Hot

11 Content features Num_failed _logins

12 Logged_in

13 Num_compromised

14 Root_shell

15 Su_attempted

16 Num_root

17 Num_file_creations

18 Num_shells

19 Num_access_files

20 Num_outbound_cmds

21 Is_hot_login

22 Is_guest_login

Traffic features

23 Same service features Count

24 Srv_count

25 Serror_rate

26 Srv_serror_rate

27 Rerror_rate

28 Srv_rerror_rate

29 Same_srv_rate

30 Diff_srv_rate

31 Srv_diff_host_rate

32 Same host features Dst_host_count

33 Dst_host_srv_count

34 Dst_host_same_srv_rate

35 Dst_host_diff_srv_rate

36 Dst_host_same_src_port_rate

37 Dst_host_srv_diff_host_rate

38 Dst_host_serror_rate

39 Dst_host_srv_serror_rate

40 Dst_host_rerror_rate

41 Dst_host_srv_rerror_rate

3138 Neural Computing and Applications (2020) 32:3135–3147

123

unseen samples may be poor. To overcome the problem of

overfitting during the training of individual auto-encoder, a

sparsity term is introduced in the loss function which helps

the auto-encoder to learn more generalized features during

the pre-training phase.

A simple auto-encoder is comprised of an input layer, a

hidden layer (for encoding the input data), and an output

layer to reconstruct the original input. The loss function,

used during pre-training of sparse auto-encoder, is descri-

bed below.

Loss function ¼ 1

S

XI

i¼1

XJ

j¼1

ðdinpij � decinpijÞ
2 þ kLXweight

þ bLXsparsity

ð3Þ

1
S

PI
i¼1

PJ
j¼1 ðdinpij � decinpijÞ

2
� �

is the mean squared error

between decoded decinp
� �

and actual dinp
� �

inputs. Xweight

is weight regularization with a coefficient kL, and Xsparsity is

a sparsity regularization term with a coefficient bL.L2
weight regularization is expressed mathematically as:

Xweight ¼
1

2

XL

l

XI

i

XJ

j

ðWl
ijÞ

2

: ð4Þ

In Eq. 4, L, I, and J show the number of hidden layers,

instances, and variables, respectively, whereas W denotes

weights of a link. L2 weight regularization term in the loss

function helps to control the weights of the network and

thus act as regularization term (learns optimal weights

during training phase). The sparsity regularization term is

expressed mathematically as:

Xsparsity ¼
Xs0

i0¼1

KLD0
A0

A0
i0

� �

¼
Xs0

i0¼1

A0 log
A0

A0
i0

� �
þ ð1� A0Þ log 1� A0

1� A0
i0

� �
ð5Þ

A
0
i shows the average activation value of a neuron i,

whereas A
0
depicts the desired activation value of ith

neuron. The activation value of a particular neuron is

controlled by regulating the weights of the network. If the

desired and the average activation values of a neuron are

the same, then the sparsity regularization term will be zero.

The sparsity regularization term increases with an increase

in the difference between A
0
i and A

0
values.

To make the proposed network deep, the decoders are

removed after the individual training of auto-encoder and

the encoded input is provided as input to the next auto-

encoder. When the required number of auto-encoders is

trained, the next step is to stack the individually trained

auto-encoders to form a feedforward network (with good

initial weights). This feedforward network is then fine-

tuned using backpropagation-based learning algorithm. In

the proposed DST-TL technique, features are extracted by

implementing only unsupervised pre-training phase (using

unlabeled data). Sparsity within deep sparse auto-encoder

helps to extract effective feature space and improves gen-

eralization performance of the trained network. Moreover,

features extracted from the proposed DST-TL-based

approach, when combined with the original features of

NSL-KDD dataset, generally lead to a diverse feature

space.

3.1 Deep neural network and adaptive self-
taught-based transfer learning (DST-TL)
for IDS

The basic idea behind the proposed technique is the use of

an unsupervised feature extraction using adaptive self-

taught learning for developing an efficient IDS. Results

depict that the proposed DST-TL technique provides good

generalization in terms of different performance measures.

Deep sparse auto-encoder is used in the proposed DST-TL

technique for extracting effective features through unsu-

pervised learning. Figure 1 shows a block diagram of the

proposed DST-TL methodology.

3.2 Importance of transfer learning
in the proposed DST-TL technique

Leveraging the knowledge gained from one type of

machine learning problem and applying it to another

machine learning task is known as transfer learning. The

Table 3 Different types of attacks in NSL-KDD dataset

PROB IP-sweep Port-sweep NMAP Satan

R2L Warezmaster Wareclient Phf SPY Multi-HOP Guess-password FTP-Write IMAP

U2R Perl Root-kit Load-module Butter-overflow

DOS Smurf Land Ping-0f-death Neptune Back Teardrop

Neural Computing and Applications (2020) 32:3135–3147 3139

123

domain from where the knowledge is extracted is called the

source domain. Extracted information from the source

domain is either in the form of features or in the form of

learning weights. Domain, in which the knowledge gained

from the source domain is applied, is known as the target

domain. Transfer learning can help in providing good

results, particularly in case of deep neural networks where

a lot of calibrated effort is required during training. There

are several reasons that urge the machine learning experts

to apply transfer learning. Some of the reasons are listed

below:

• Sometimes labeled data are not sufficient to train a

network in the target domain.

• A lot of effort (for tuning parameters) is required in the

target domain to achieve remarkable results.

• Training from scratch takes a lot of time.

In case of transfer learning, it is not always a necessary

condition that target and source domains follow the same

distribution. There are also some forms of transfer learning

approaches in which the target and source tasks are not

from the similar domain. Some of the transfer learning

approaches are given below:

• Self-taught learning

• Multitasking

• Domain adaptation

• Unsupervised transfer learning

In past, various transfer learning-based approaches

[31–42] have been reported by many different researchers

for machine learning-related tasks. In the proposed DST-

TL technique, self-taught learning-based robust IDS is

developed.

3.2.1 Self-taught learning

Typically, in transfer learning, target and source domains

follow the same data distribution, and in comparison with

the target domain, a sufficient amount of data is available

in the source domain. In 2007, Rania et al. [31] presented

the idea of the self-taught learning, in which unlabeled data

in the source domain help in improving the performance of

classification-related task in the target domain. Moreover,

target and source domain data may not follow the same

distribution. Features thus extracted using unlabeled data

from a source domain may assist to improve learning in the

target domain task.

3.2.2 Exploiting adaptive self-taught learning using deep
sparse auto-encoder

Proposed DST-TL technique is comprised of two phases.

In phase 1, a pre-trained deep sparse auto-encoder (using

unlabeled data) on regression-related task (wind power

prediction in this case) is used as a transferable knowledge

from source domain. Only first and last layers (using pre-

Fig. 1 Block diagram of the proposed DST-TL methodology

3140 Neural Computing and Applications (2020) 32:3135–3147

123

training in target domain) are added to the already trained

hidden layers (from source domain) to form a feedforward

neural network. Feature extraction in phase 1 is performed

by just passing the target domain data through trained

feedforward network.

In phase 2, original features along with extracted fea-

tures (from phase 1) are provided as an input to train the

sparse auto-encoder. Sparse auto-encoder is trained (using

pre-training) such that only those features are extracted

from the input data on which softmax classifier shows good

performance (on validation data). Performance of trained

network is then evaluated on KDDTestþ and KDDTest�21

test data. Figure 2 shows self-taught learning-based feature

extraction methodology that is used in the proposed DST-

TL technique.

3.2.3 Knowledge transfer from source to target domains

In self-taught learning, although the source task does not

follow the same data distribution as that of the target

domain, both domains are somehow related to each other.

In the proposed DST-TL technique, source domain data are

collected from wind farms located near Europe, and the

task was to perform power forecasting against the provided

features. As power forecasting at time t depends on the

climatic condition of the previous hours; that is why, the

predicted power and associated features of last 24 h are

considered as input data to predict the power of time t. In

short, in the source domain, the dataset is of the time series

nature. Moreover, wind power prediction is a challenging

task because any sudden fluctuation in the geographical

and climatic conditions can affect the generated power. On

the other hand, the target domain task in the proposed

DST-TL technique is related to intrusion detection, in

which NSL-KDD is used as benchmark dataset. Discussion

related to the NSL-KDD dataset in Sect. 2 shows that

traffic features are also of the time series nature and are

calculated on the basis of connections in the past 2 s. When

an intruder attacks the network, it results in the sudden

change in the behavior of the Network flow, so any sudden

change in the behavior of the network may be the sign of

intrusion within the network. Network intrusion detection,

just like wind power, is of unpredictable nature. Thus, the

source domain task is related to target domain task in terms

of the time series nature of input features and unpre-

dictable behavior of power and intrusion.

In the proposed DST-TL technique, because of the

commonality between the target and source domains,

trained network from source domain is efficient enough to

predict the wind power despite any abrupt change in the

atmospheric behavior and thus share the gained knowledge

to target domain.

Fig. 2 Use of self-taught learning in training of deep sparse auto-encoder

Neural Computing and Applications (2020) 32:3135–3147 3141

123

4 Implementation details

All the experimental work related to the proposed work

was performed on a desktop computer, having 16 GB

RAM, Intel(R) Core(TM) i7-33770, 64-bit operating sys-

tem, CPU@3.4 GHz. The operating system used was

Windows 7 professional, and MATLAB 2016 a is used as a

programming tool.

4.1 Parameter setting of the proposed
technique

In order to set the parameters of deep sparse auto-encoder,

10% of training data were used for validating the optimal

parameters. Table 4 shows the parameter setting of the

deep sparse auto-encoder, in which hidden layers are pre-

trained on source domain task. Table 5 illustrates the

parameter setting during the training phase of sparse auto-

encoder with (using original as well as extracted features

from the source domain) or without (using only original

features of NSL-KDD data) self-taught learning approach.

4.2 Performance evaluation

To evaluate the proposed DST-TL technique, detection

rate, false alarm rate, area under the ROC curve (AUC-

ROC), area under the precision–recall curve (AUC-PR),

and accuracy are used as evaluation measures. AUC-ROC

is basically the plot of sensitivity and specificity, at dif-

ferent values of the thresholds. However, AUC-PR is the

plot between precision and recall. Mathematically, the

measures are defined in Eqs. 6–11.

Sensitivity ¼ Recall ¼ TP

TPþ FN
ð6Þ

1� Sepecificity ¼ FP

FPþ TN
ð7Þ

Precision ¼ TP

TPþ FP
ð8Þ

DetectionRate ¼ TP

TPþ FP
ð9Þ

False AlarmRate ¼ FP

TNþ FP
ð10Þ

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
� 100 ð11Þ

In the above equations, TP and TN are the number of

positive and negative class samples, respectively, that are

correctly classified by the classifier. FP and FN are the

number of negative and positive class samples, respec-

tively, which are classified wrongly by the classifier.

5 Results and discussion

In the proposed DST-TL technique, after the training of a

sparse auto-encoder, the performance of the trained model

is evaluated on KDDTestþ and KDDTest�21 datasets. To

show the stability of the proposed DST-TL technique,

performance in terms of detection and false alarm rates,

AUC-ROC and AUC-PR, and accuracy for ten independent

runs is shown in Tables 8, 9, and 10, respectively. Before

checking the performance of proposed DST-TL technique,

the performance of the conventional classifiers [multilayer

perceptron (MLP), nonlinear principal component analysis

(NLPCA), and deep belief network (DBN)] is evaluated on

KDDTestþ and KDDTest�21 datasets. MLP is a commonly

used classifier that uses backpropagation learning algo-

rithm during training. DBN is a type of classifier which is

formed by stacking of independently trained RBM (re-

stricted Boltzmann machine). After stacking of RBM, the

backpropagation learning algorithm is used to fine tune the

stacked feedforward network. Principal component analy-

sis (PCA) is a commonly used feature reduction technique;

however, NLPCA is considered as a generalized form of

PCA. In this case, NLPCA comprises of a simple auto-

encoder having an encoding layer that contains less neu-

rons in comparison with the number of neurons in input

layer. Features that are extracted from the hidden layer are

provided as input to a simple classifier for classifying the

Table 4 Parameter setting of deep sparse auto-encoder (for extracting features) using hidden layers trained on source domain task

Parameters Layer trained according

to the target domain

Trained layers on regression-related task in the

source domain

Layer trained according

to the target domain

Layer 1 Layer 2 Layer 3 Layer 4

Coefficient of L2 weight regularization 0.0002 0.00003 0.00001 0.00001

Coefficient of sparsity regularization 4 4 4 4

Maximum number of epochs 200 500 250 150

Number of neurons 124 300 220 200

3142 Neural Computing and Applications (2020) 32:3135–3147

123

input data. Table 6 shows the performance of MLP, DBN,

and NLPCA in terms of all the evaluation measures.

Parameters that are used during the training are provided in

Table 7.

5.1 Performance evaluation using detection
and false alarm rates

Table 8 shows the comparison between detection and false

alarm rates of a sparse auto-encoder with and without self-

taught learning. The standard deviation of error for the ten

independent runs is also shown. Table 8 illustrates that

deep, sparse auto-encoder trained with self-taught learning

approach shows better and more stable results (evident

from the low values of standard deviation of error) in

comparison with the deep sparse auto-encoder trained

without self-taught learning.

5.2 Performance evaluation using AUC-ROC,
AUC-PR, and accuracy

Table 9 shows the performance of the proposed DST-TL

on KDDTestþ and KDDTest�21 datasets in terms of AUC-

ROC and AUC-PR. It can be observed that the self-taught

learning approach increases stability and performance of

network on unseen data and also has a low standard

Table 5 Parameter setting of the sparse auto-encoder trained on the combined original and extracted features

Parameters Without self-taught learning approach With self-taught learning approach

Layer 1 Layer 2 Layer 1 Layer 2

Coefficient of L2 weight regularization 0.0002 0.00002 0.00002 0.00002

Coefficient of sparsity regularization 5 4 4 3

Maximum number of epochs 100 200 200 100

Number of neurons 100 80 166 180

Table 6 Performance comparison of MLP, NLPCA, and DBN in terms of AUC-ROC, AUC-PR, and detection and false alarm rates

AUC-ROC AUC-PR Detection rate False alarm rate

KDDTestþ KDDTest�21 KDDTestþ KDDTest�21 KDDTestþ KDDTest�21 KDDTestþ KDDTest�21

MLP 0.88 ± 0.02 0.75 ± 0.02 0.92 ± 0.01 0.93 ± 0.01 0.65 ± 0.01 0.28 ± 0.01 0.38 ± 0.02 0.51 ± 0.03

DBN 0.85 ± 0.03 0.74 ± 0.07 0.90 ± 0.02 0.92 ± 0.02 0.65 ± 0.01 0.27 ± 0.01 0.40 ± 0.01 0.53 ± 0.02

NLPCA 0.89 ± 0.03 0.64 ± 0.03 0.92 ± 0.01 0.91 ± 0.01 0.66 ± 0.01 0.25 ± 0.01 0.35 ± 0.01 0.47 ± 0.02

Table 7 Parameter setting of MLP, NLPCA, and DBN during training

MLP DBN NLPCA

Number of neurons in the hidden

layer

No of neurons No of

epochs

Batch

size

Momentum Learning

rate

No of neurons in encoding

layer
Layer

1

Layer

2

Layer

3

25 80 75 50 50 2 0.04 0.001 18

Table 8 Performance

comparison of the trained sparse

auto-encoders for ten

independent runs

Spars auto-encoder without transfer learning Sparse auto-encoder with transfer learning

Detection rate False alarm rate Detection rate False alarm rate

KDDTestþ 0.86 ± 0.09 0.13 ± 0.09 0.85 ± 0.05 0.14 ± 0.05

KDDTest�21 0.81 ± 0.13 0.18 ± 0.13 0.80 ± 0.06 0.19 ± 0.06

Neural Computing and Applications (2020) 32:3135–3147 3143

123

deviation of error. Figures 3 and 4 graphically illustrate the

AUC-ROC and AUC-PR on KDDTestþ and KDDTest�21

for ten independent runs.

Table 10 shows the accuracy of the proposed technique

for ten independent runs. It is observed that features

extracted through self-taught learning approach lead to the

better training of the proposed DST-TL method. The self-

taught learning approach helps in extracting robust fea-

tures, which are then utilized by the deep sparse auto-en-

coder to learn optimal weights during training and thus

increases the generalization performance.

5.3 Performance comparison of the proposed
DST-TL technique with state-of-the-art
techniques

Table 11 shows a comparison of the proposed DST-TL

method with different classifiers (J48, naı̈ve Bayes, NB

tree, random forest, random tree, MLP, NLPCA, DBN, and

SVM) and also with fuzzy-based semi-supervised tech-

nique. Table 11 depicts that the performance of the pro-

posed DST-TL technique is better in comparison with

existing methods, especially on KDDTest�21 dataset.

Table 9 Performance comparison of trained sparse auto-encoders on test data

Sparse deep auto-encoder without transfer learning Deep sparse auto-encoder with transfer learning

AUC-ROC AUC-PR AUC-ROC AUC-PR

KDDTestþ 0.89 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.93 ± 0.01

KDDTest�21 0.61 ± 0.03 0.88 ± 0.01 0.69 ± 0.01 0.91 ± 0.01

Fig. 3 AUC-ROC of the proposed DST-TL technique for ten

independent runs, a on KDDTestþ and b on KDDTest�21

Fig. 4 AUC-PR of ten independent runs, a on KDDTestþ and b on

KDDTest�21

3144 Neural Computing and Applications (2020) 32:3135–3147

123

6 Conclusion

A novel network IDS based on deep sparse auto-encoder

that exploits self-taught learning is proposed. In the first

phase, feature extraction is performed by passing the orig-

inal feature set of NSL-KDD through the pre-trained net-

work. Then, a combination of original and extracted features

is used to train the sparse auto-encoder. The combined

features improve the effectiveness of the feature space and

thus increase the performance of the sparse auto-encoder on

test samples. It is experimentally shown that the proposed

DST-TL technique yields improved performance, although

adaptation of the network trained on regression-related task

is used to improve the performance of the IDS. The exper-

imental comparison shows that the sparse auto-encoder

trained on the improved feature space extracted through

self-taught learning is more robust and stable in comparison

with the sparse auto-encoder trained on the original feature

space. Performance on test data shows that in comparison

with previous techniques, the proposed DST-TL approach is

robust and provides improved prediction accuracy. In

future, we intend to apply deep neural networks, especially

recent architectures of deep convolutional neural networks

for classifying different types of attacks [43].

Acknowledgements This work is supported by the Higher Education

Commission of Pakistan under the Indigenous Ph.D. Scholarship

(PIN#213-54573-2EG2-097) Program. We also acknowledge Pak-

istan Institute of Engineering and Applied Sciences (PIEAS) for

healthy research environment which led to the research work pre-

sented in this article.

Table 10 Performance comparison for ten independent runs of the trained sparse auto-encoders in terms of accuracy

Sparse auto-encoder without transfer learning (accuracy) Sparse auto-encoder trained using transfer learning (accuracy)

KDDTestþ KDDTest�21 KDDTestþ KDDTest�21

1 85.30 74.50 84.60 79.90

2 84.50 72.70 81.70 71.40

3 80.60 63.30 82.40 69.40

4 74.30 78.30 82.40 72.40

5 80.60 63.40 82.60 71.50

6 75.80 75.50 83.80 74.90

7 72.50 80.70 82.20 72.10

8 76.50 73.90 83.80 72.30

9 77.40 57.40 81.80 69.40

10 73.30 79.20 82.40 77.70

78.08 – 4.27 71.89 – 7.43 82.77 – 0.91 73.1 – 3.09

Bold values show the best and average results (that depict how stable is the proposed methodology) that are obtained for ten independent runs

Table 11 Performance

comparison of the proposed

technique with the existing

methods

Classifier Accuracy

KDDTestþ KDDTest�21

J48 81.05 63.97

Naı̈ve Bayes 76.56 55.77

NB tree 82.02 66.16

Random forest 80.67 63.25

Random tree 81.59 58.51

MLP 77.41 57.34

NLPCA 76.73 56.58

DBN 76 54.55

SVM 69.52 42.29

Fuzziness-based IDS (experiment 2) 84.12 68.82

DST-TL (best accuracy in ten independent runs) 84.60 79.90

DST-TL (average performance) 82.77 – 0.91 73.1 – 3.09

Bold values show the best and average results (that depict how stable is the proposed methodology) that are

obtained for ten independent runs

Neural Computing and Applications (2020) 32:3135–3147 3145

123

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Ashoor AS, Gore S (2011) Importance of intrusion detection

system (ids). Int J Sci Eng Res 2:1–4

2. Scarfone K, Mell P (2007) Guide to intrusion detection and

prevention systems (idps). NIST Spec Publ 800:94

3. Letou K, Devi D (2015) Host-based intrusion detection and

prevention system (HIDPS). Int J Comput Appl 69:975–988.

https://doi.org/10.5120/12136-8419

4. Mukherjee B, Heberlein LT (1994) Network intrusion detection.

IEEE Netw 83:26–41

5. Masri W, Podgurski A (2008) Application-based anomaly intru-

sion detection with dynamic information flow analysis 5. Comput

Secur 27:176–187. https://doi.org/10.1016/j.cose.2008.06.002

6. Dı J (2009) Anomaly-based network intrusion detection: tech-

niques, systems and challenges. Comput Secur 28:18–28. https://

doi.org/10.1016/j.cose.2008.08.003

7. Diaz-Gomez PA, Hougen DF (2007) Misuse detection: an itera-

tive process vs. a genetic algorithm approach. In: ICEIS (2),

pp 455–458

8. Malhotra S, Bali V, Paliwal KK (2017) Genetic programming and

K-nearest neighbour classifier based intrusion detection model.

In: 7th International conference on cloud computing data science

and engineering 2017, IEEE, pp 42–46

9. Zhang C, Jiang J, Kamel M (2005) Intrusion detection using

hierarchical neural networks. Pattern Recognit Lett 26:779–791.

https://doi.org/10.1016/j.patrec.2004.09.045

10. Panda M, Patra MR (2007) Network intrusion detection using

naive bayes. Int J Comput Sci Netw Secur 7:258–263

11. Zhang J, Zulkernine M (2005) Network intrusion detection using

random forests. PST, Citeseer

12. Portnoy L, Eskin E, Stolfo S (2001) Intrusion detection with

unlabeled data using clustering. In: Proceedings of the ACM CSS

workshop on data mining applied to security (DMSA-2001,

Citeseer)

13. Leung K, Leckie C (2005) Unsupervised anomaly detection in

network intrusion detection using clusters. In: Proceedings of

twenty-eighth Australasian computer science conference, vol 38,

pp 333–342

14. Chizari BMARRM, Eslami AMM (2016) A hybrid method

consisting of GA and SVM for intrusion detection system. Neural

Comput Appl 27:1669–1676. https://doi.org/10.1007/s00521-

015-1964-2

15. Devaraju SRS (2017) Attack’ s feature selection-based network

intrusion detection system using fuzzy control language. Int J

Fuzzy Syst 19:316–328. https://doi.org/10.1007/s40815-016-

0160-6

16. Srinivasan T, Vijaykumar V, Chandrasekar R (2006) A self-or-

ganized agent-based architecture for power-aware intrusion

detection in wireless ad-hoc networks. In: 2006 International

conference on computing and informatics, 2006, pp 1–6. https://

doi.org/10.1109/icoci.2006.5276609

17. Puri A, Sharma N (2017) A novel technique for intrusion

detection system for network security using hybrid svm-cart. Int J

Eng Dev Res 5:155–161

18. Mukkamala S, Janoski G, Sung A (2002) Intrusion detection

using neural networks and support vector machines. In: Pro-

ceedings of the 2002 international joint conference on neural

networks, IJCNN’02, 2002, pp 1702–1707

19. Aamir R, Ashfaq R, Wang X, Zhexue J, Abbas H, He Y (2017)

Fuzziness based semi-supervised learning approach for intrusion

detection system. Inf Sci 378:484–497. https://doi.org/10.1016/j.

ins.2016.04.019

20. Kim J, Shin N, Jo SY, Kim SH. Method of intrusion detection

using deep neural network. In: 2017 IEEE International confer-

ence on big data and smart computing (BigComp), IEEE; 2017,

pp 313–316

21. Kevric J, Jukic S, Subasi A (2016) An effective combining

classifier approach using tree algorithms for network intrusion

detection. Neural Comput Appl. https://doi.org/10.1007/s00521-

016-2418-1

22. Cup KDD (2007) Data: available on https://archive.ics.uci.edu/

ml/datasets/kdd?cup?1999?data. Accessed 25 Mar 2019

23. Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed

analysis of the KDD CUP 99 data set. In: Computational intel-

ligence in security and defence application, 2009, pp 1–6

24. Lu C, Min H, Gui J, Zhu L, Lei Y (2013) Face recognition via

weighted sparse representation. J Vis Commun Image Represent

24:111–116. https://doi.org/10.1016/j.jvcir.2012.05.003

25. Mi J, Lei D, Gui J (2013) Optik a novel method for recognizing

face with partial occlusion via sparse representation. Opt Int J

Light Electron Opt 124:6786–6789. https://doi.org/10.1016/j.

ijleo.2013.05.099

26. Gui J, Liu T, Tao D, Sun Z, Tan T (2016) Representative vector

machines: a unified framework for classical classifiers. IEEE

Trans Cybern 46:1877–1888

27. Gui J, Tao D, Sun Z, Luo Y, You X, Tang YY (2014) Group

sparse multiview patch alignment framework with view consis-

tency for image classification. IEEE Trans Image Process

23:3126–3137

28. Gui J, Sun Z, Hou G, Tan T. An optimal set of code words and

correntropy for rotated least squares regression. In: IEEE inter-

national joint conference on biometrics (IJCB), 2014, pp 1–6

29. Qureshi AS, Khan A, Zameer A, Usman A (2017) Wind power

prediction using deep neural network based meta regression and

transfer learning. Appl Soft Comput J 58:742–755. https://doi.

org/10.1016/j.asoc.2017.05.031

30. Gui J, Sun Z, Ji S, Member S, Tao D, Tan T (2017) Feature

selection based on structured sparsity: a comprehensive study.

IEEE Trans Neural Netw Learn Syst 28:1490–1507

31. Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught

learning: transfer learning from unlabeled data. In: Proceedings

of the 24th international conference on machine learning, ACM,

2007, pp 759–66

32. Maurer A, Pontil M, Romera-Paredes B. Sparse coding for

multitask and transfer learning. In: International conference on

machine learning, 2013, pp 343–351

33. Lim JJ, Salakhutdinov RR, Torralba A (2011) Transfer learning

by borrowing examples for multiclass object detection. In:

Advances in neural information processing systems, 2011,

pp 118–126

34. Hu Q, Zhang R, Zhou Y (2016) Transfer learning for short-term

wind speed prediction with deep neural networks. Renew Energy

85:83–95. https://doi.org/10.1016/j.renene.2015.06.034

35. Du B, Zhang L, Tao D, Zhang D (2013) Neurocomputing unsu-

pervised transfer learning for target detection from hyperspectral

images. Neurocomput J 120:72–82. https://doi.org/10.1016/j.neu

com.2012.08.056

36. Cao X (2013) A practical transfer learning algorithm for face

verification. In: IEEE international conference on computer

vision (ICCV), 2013, pp 3208–3215. https://doi.org/10.1109/iccv.

2013.398

37. Yang S, Lin M, Hou C (2012) A general framework for transfer

sparse subspace learning. Neural Comput Appl. https://doi.org/

10.1007/s00521-012-1084-1

3146 Neural Computing and Applications (2020) 32:3135–3147

123

https://doi.org/10.5120/12136-8419
https://doi.org/10.1016/j.cose.2008.06.002
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.patrec.2004.09.045
https://doi.org/10.1007/s00521-015-1964-2
https://doi.org/10.1007/s00521-015-1964-2
https://doi.org/10.1007/s40815-016-0160-6
https://doi.org/10.1007/s40815-016-0160-6
https://doi.org/10.1109/icoci.2006.5276609
https://doi.org/10.1109/icoci.2006.5276609
https://doi.org/10.1016/j.ins.2016.04.019
https://doi.org/10.1016/j.ins.2016.04.019
https://doi.org/10.1007/s00521-016-2418-1
https://doi.org/10.1007/s00521-016-2418-1
https://archive.ics.uci.edu/ml/datasets/kdd%2bcup%2b1999%2bdata
https://archive.ics.uci.edu/ml/datasets/kdd%2bcup%2b1999%2bdata
https://doi.org/10.1016/j.jvcir.2012.05.003
https://doi.org/10.1016/j.ijleo.2013.05.099
https://doi.org/10.1016/j.ijleo.2013.05.099
https://doi.org/10.1016/j.asoc.2017.05.031
https://doi.org/10.1016/j.asoc.2017.05.031
https://doi.org/10.1016/j.renene.2015.06.034
https://doi.org/10.1016/j.neucom.2012.08.056
https://doi.org/10.1016/j.neucom.2012.08.056
https://doi.org/10.1109/iccv.2013.398
https://doi.org/10.1109/iccv.2013.398
https://doi.org/10.1007/s00521-012-1084-1
https://doi.org/10.1007/s00521-012-1084-1

38. La L, Guo Q, Cao Q, Wang Y (2014) Transfer learning with

reasonable boosting strategy. Neural Comput Appl 24:807–816.

https://doi.org/10.1007/s00521-012-1297-3

39. Yang S, Hou C, Zhang C (2013) Robust non-negative matrix

factorization via joint sparse and graph regularization for transfer

learning. Neural Comput Appl. https://doi.org/10.1007/s00521-

013-1371-5

40. Seera M, Peng C (2014) Transfer learning using the online fuzzy

min–max neural network. Neural Comput Appl. https://doi.org/

10.1007/s00521-013-1517-5

41. Silva M, Cardoso JS (2017) Multi-source deep transfer learning

for cross-sensor biometrics. Neural Comput Appl. https://doi.org/

10.1007/s00521-016-2325-5

42. Khan A, Sohail A, Ali A (2018) A new channel boosted con-

volution neural network using transfer learning. arXiv:180408528

43. Khan A et al (2019) A survey of the recent architectures of deep

convolutional neural networks. arXiv:1901.06032

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:3135–3147 3147

123

https://doi.org/10.1007/s00521-012-1297-3
https://doi.org/10.1007/s00521-013-1371-5
https://doi.org/10.1007/s00521-013-1371-5
https://doi.org/10.1007/s00521-013-1517-5
https://doi.org/10.1007/s00521-013-1517-5
https://doi.org/10.1007/s00521-016-2325-5
https://doi.org/10.1007/s00521-016-2325-5
http://arxiv.org/abs/180408528
http://arxiv.org/abs/arXiv:1901.06032

	Intrusion detection using deep sparse auto-encoder and self-taught learning
	Abstract
	Introduction
	Details of dataset
	Deep sparse auto-encoder
	Deep neural network and adaptive self-taught-based transfer learning (DST-TL) for IDS
	Importance of transfer learning in the proposed DST-TL technique
	Self-taught learning
	Exploiting adaptive self-taught learning using deep sparse auto-encoder
	Knowledge transfer from source to target domains

	Implementation details
	Parameter setting of the proposed technique
	Performance evaluation

	Results and discussion
	Performance evaluation using detection and false alarm rates
	Performance evaluation using AUC-ROC, AUC-PR, and accuracy
	Performance comparison of the proposed DST-TL technique with state-of-the-art techniques

	Conclusion
	Acknowledgements
	References

