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Abstract
The principal component analysis method and GRNN neural network are used to construct the gesture recognition system,

so as to reduce the redundant information of EMG signals, reduce the signal dimension, improve the recognition efficiency

and accuracy, and enhance the feasibility of real-time recognition. Using the means of extracting key information of human

motion, the specific action mode is identified. In this paper, nine static gestures are taken as samples, and the surface EMG

signal of the arm is collected by the electromyography instrument to extract four kinds of characteristics of the signal. After

dimension reduction and neural network learning, the overall recognition rate of the system reached 95.1%, and the

average recognition time was 0.19 s.
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1 Introduction

Surface EMG reflects the activity state of the nerve, it can

be analyzed to push back the neural information, and the

surface EMG signal has the advantages of noninvasive

acquisition, bionics, etc., so it is well in the fields of

prosthetic control, clinical diagnosis, motion detection, and

neurological rehabilitation [1, 2]. Gesture recognition

based on surface EMG signals is an important research

topic in the practical application of surface EMG, and

reliable and effective gesture recognition can help develop

a good human–machine interface.

There is a relationship between the sEMG signal and the

limb movement. Muscle contraction or relaxation causes

different limb movements, and a large difference in bio-

electrical signals is released [3, 4]. Feature extraction by

sEMG signal and then analysis of features can be pushed to

the active state of the muscle, thereby identifying the action

pattern resulting from muscle contraction [5–8].

An auxiliary device for controlling neurological reha-

bilitation (for example, an active prosthesis) is realized

through a human–machine interface. When detecting neu-

romuscular system information, interfaces can be con-

nected to the brain, peripheral nerves, and muscle regions

[9–13], among these potential options, muscle interface is

currently the only viable method for controlling external

devices in commercial and clinical systems [14, 15, 16].

Due to its noninvasive, relatively simple application, and

rich neural information, surface EMG signals can be

widely used in human–machine interfaces which can con-

trol prostheses in clinical and commercial fields [17, 18].

Studies have shown that human limb movement is a

joint movement of muscles and bones controlled by the

nervous system, so different peoples have different habitual

exercise patterns [19, 20], even the same person has dif-

ferent modes of motions under different external conditions

and different physical and psychological conditions. This
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puts high demands on EMG signal processing and feature

extraction.

In addition, because the EMG signal is more complex,

the performance requirements of the system are higher, and

the response time of the pattern recognition system is

slower, which has adverse effects on real-time prosthetic

control or other applications [21–23].

In view of the above problems, based on the previous

research, this paper uses the means of extracting the key

information of human body motion to identify the specific

action mode and takes the specific gesture as a sample to

extract the feature of the acquired surface EMG. Use PCA

to reduce feature dimensions and eliminate redundant

information and construct the GRNN neural network

classifier to achieve the purpose of accurate pattern

recognition, which is of great significance for the devel-

opment of prosthetic control, clinical medicine, brain

health, human–computer interaction, and other fields.

2 Feature extraction

After the EMG signal is segmented through the window,

feature extraction can be performed on the intercepted

signal in a single window. The properties of the extracted

features affect the performance of the gesture recognition

system, for example, the number and type of features affect

the real-time accuracy of the system. In the field of signal

analysis, the types of features are mainly time-domain

features, frequency-domain features, time–frequency fea-

tures, and nonlinear methods. According to the research

results of the reference, only two time domain features,

root mean square (RMS) and wavelength (WL), can obtain

good classification results [24–26]. In addition, the median

amplitude spectrum (MAS) and sample entropy (SampEn)

are introduced [27–31]. Therefore, this study uses these

four parameters as extracted features.

2.1 Acquisition of signal sets

This paper uses the electromyograph which has advanced

surface EMG signal amplification technology and

16-channel high space-time resolution sampling technol-

ogy. As shown in Fig. 1, the electrode sleeve can be used

to quickly and easily collect the arm muscle signal. Among

them, 18 dry electrode sheets are placed, among which the

electrodes 1–16 are sampling electrodes, 17 is the reference

electrode, and 18 is the bias electrode.

As shown in Fig. 2, according to the research results of

Xiong Caihua [26], Fang Yinfeng [32], and other people

[33–36], 9 hand movements were planned for sEMG data

collection. The 9 gestures involve the whole hand exercise,

including palm closure (SH) and palm open (SK), wrist

movement including wrist flexion (NQ) and external flex-

ion (WQ), finger movement including thumb force on

index finger (MS), middle finger (MZ), ring finger (MW),

and the little finger (MX) and in addition to this test gesture

action also include a rest action (RE). In each experiment,

10 trials were repeated for each action. The repeated

method is to rest for 5 s, keep the action for 5 s, repeat 10

times, and collect for 3 consecutive days, using the same

collection method every day. This method can be used to

obtain temporal and spatial differences in myoelectric

signals of the same individual.

Fig. 1 Electrode sleeve

Fig. 2 Static gesture
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2.2 Time-domain characteristics

1. Root mean square (RMS) is the measure of the

amplitude of the EMG signal, which can be expressed

as:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

x2i

v

u

u

t ð1Þ

where N is the length of the window and is the i th

sample point. Similar to RMS, the absolute value of the

integral and the mean absolute value (MAV) have been

proven to have the same performance in manual

identification. Therefore, this paper chooses RMS as

the representative.

2. Waveform length (WL) refers to the cumulative length

of the EMG waveform. Its principle is:

WL ¼
X

N�1

i¼1

xiþ1 � xij j ð2Þ

where N is the length of the window and i is the ith

sample point.

2.3 Frequency-domain characteristics

The median amplitude spectrum (MAS) reflects the rela-

tionship between the amplitude and frequency of a wave or

wave train. The MAS feature can ignore the extreme value,

so it reflects the average characteristics of the signal in the

frequency domain. The principle of the median amplitude

spectrum is as follows:

MAS ¼ 1

2
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�

�

�
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where S is a segment of the original signal, N is the length

of the window, L is the length of the signal, and FFT is the

fast Fourier transform.

2.4 Sample entropy

SampEn (sample entropy) is a method of measuring the

complexity of time series. Its sample entropy can be

expressed as SampEn(m, r, N), where N is the length of

time and r is similar tolerance; dimensions are defined as m

and mþ 1. The sample entropy is used to reduce the error

of the approximate entropy and is closer to the existing

random part [4, 37, 38].

When N is finite, the equation is expressed as:

SampEn ðm; r;NÞ ¼ � ln
Bmþ1ðrÞ
BmðrÞ ð4Þ

Among them, BmðrÞ ¼ L=ðN � m� 1Þ
dxðiÞxðjÞ ¼ max

k
xðiþkÞ � xðjþkÞ
�

�

�

�

� �

k ¼ 0; . . .;m� 1

For a given threshold r, for each i, the number of

occasions whenever dxðiÞxðjÞ is less than r is specified as the

number of template matches represented by L, and the ratio

of the number to the total number of distance dxðiÞxðjÞ is

expressed as Bm
i ðrÞ.

3 Feature dimensionality reduction based
on PCA

The training of the pattern classifier for EMG signals

depends on the large training database, but these multi-

farious data reduce the training speed of the model, so the

highly efficient features or channel data will be selected

from it, but it has great uncertainty for different gestures or

collection methods. There are different combinations of

requirements, and if a large portion of the information is

lost in the sample arrangement, the coupling situation will

occur, which leads to a large reduction in the classification

ability of the classifier [39, 40]. Therefore, it is necessary to

improve the efficiency of data utilization by means of

dimensionality reduction, and avoid overloading of the

classifier [41, 42]. In addition, dimensionality reduction

can eliminate redundant information and prevent non-

essential information from interfering with the correct

judgment of the classifier. Therefore, when we do a lot of

pattern recognition, we need to introduce the method of

feature dimensionality reduction [43, 44].

For the problem of reducing the dimension of high-di-

mensional signals, the strategy is to assume that the data

are linearly separable in low-dimensional space, and the

main representative algorithm is the principal component

analysis (PCA) [45]. The algorithm has developed a com-

plete theoretical system, and has shown good performance

in practical applications.

3.1 PCA principle

In the basic idea of principle component analysis (PCA), a

small number of new variables (linear combinations of the

original variables) are used instead of the original variables

[46–49]. The new variable should reflect the signal infor-

mation of the original variables to the maximum extent,

and at the same time, the new variables are orthogonal to

each other and can be used to eliminate the overlapping

information in the original variables.
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The standardized input variable matrix of the sample is

as follows:

X ¼

x11 x12 . . . x1k
x21 x22 . . . x2k

. . .
xn1 xn2 . . . xnk

2

6

6

4

3

7

7

5

ð5Þ

It is required to construct a variable P1 to meet the

following conditions:

P1 ¼ Xt1; t1k k ¼ 1 ð6Þ

On the other hand, the variables are enabled to carry

information that normalizes the input variable matrix Xn�k.

From the viewpoint of probability and statistics, the

greater the variance of a variable, the more information it

carries. Therefore, the above problems can be transformed

into the maximum variance of the required variables. P1

variance is

VarðP1Þ ¼
1

n
P1k k2¼ 1

n
t01X

0Xt1 ¼ t01 Vt1V ¼ 1

n
X0X ð7Þ

Constructing a Lagrangian function

L ¼ t01Vt1 � kðt01t1 � 1Þ ð8Þ

Among them, k1 is the Lagrangian coefficient. To calculate

the partial derivatives of L to k1 and t1 separately and make

them zero, there are the following rules:

oL

ot1
¼ 2Vt1 � 2k1t1 ¼ 0

oL

ok1
¼ �ðt01t1 � 1Þ ¼ 0

8

>

>

<

>

>

:

Vt1 ¼ k1t1 ð9Þ

It can be seen that t1 is a normalized feature vector of V ,

and k1 is its corresponding feature value

VarðP1Þ ¼ t01Vt1 ¼ t01k1t1 ¼ t01t1k1 ¼ k1 ð10Þ

The required t1 is the normalized feature vector corre-

sponding to the maximum eigenvalue k1 of the matrix V .

The corresponding structural variable P1 ¼ Xt1 at this time

is called the first principal component.

By analogy, the m th principal component of V can be

found as Pm ¼ Xtm.

The sum of the information carried by the former m

principal components is:

X

m

i¼1

VarðPiÞ ¼
X

m

i¼1

ki ð11Þ

The data dimension obtained by transforming in the new

coordinate space is the same as the data dimension of the

original space. It is worth noting that the variance of the

data in the new coordinates mainly exists in previous

several dimensions, so we can achieve the purpose of

dimensionality reduction by retaining only the principal

components of the first few dimensions.

3.2 Pretreatment

The feature data need to be preprocessed before dimension

reduction, in order to unify the order of magnitude of each

feature parameter. Because the magnitude of each feature

parameter is different, even a big difference. As shown in

Fig. 3, it can be seen that the WL features are of the largest

order from Fig. 3a, and other features are covered when

gesture recognition is performed. The classifier is sensitive

to large values of data, ignoring other features, so the

features need to be normalized.

The feature values are mapped into the (0, 1) space by

min–max normalization shown in part b of Fig. 3. So the

features are in the same order of magnitude, and the fea-

tures can be merged without overlapping each other, while

simplifying the calculation.

3.3 Way of dimensionality reduction

This paper uses four features to be integrated into one

feature set. The feature set includes root mean square

(RMS), wavelength (WL), sample entropy (SampEn), and

median amplitude spectrum (MAS) for a total of 64

dimensions (16 channels 9 4 features).

In the experiment, after the 64 feature set is analyzed by

the principal component analysis, a new 64-dimensional

feature set which is arranged according to the variance of

the components is formed. Then, the first n dimensions of

the new feature set are taken as the reduced dimension

feature set. The value of the dimensional k after the optimal

dimensionality reduction is determined by the calculated

principal component ratio which should be above 95%.

As shown in Fig. 4, the contribution rate of the first

three principal components is accounted for, and the first

three accumulative accounts are 98.3%. Therefore, k value

of this experiment is 3, and the first three principal com-

ponents are taken as the new dimensionality reduction

eigenvectors.

Before the classification, the training components and

the first two components of the test set are compared, as

shown in Fig. 5.

It can be found that the first and second principal

components of the test set and the training set are sub-

stantially coincident, and the classification effect is best

when the main component of the training set is included in

the test set.

As shown in Fig. 6, these two images show the feature

separation before and after PCA processing, and according

to the value of k, the first three features are also taken

before dimension reduction. As shown in Fig. 6a,
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obviously, each gesture cannot be distinguished well. As

shown in Fig. 6b, the first three features which have the

principal component are used to test feature separation.

The divergence of the scatter plot for each gesture is very

high, and it is clear that they can be effectively

distinguished.

4 GRNN neural network classifier

4.1 GRNN network principle

The GRNN network proposed by Specht [50] is a variant of

a radial basis neural network and is commonly used for

approximation functions. As a generalization of radial basis

function (RBF) and probabilistic neural network (PNN)

networks, GRNN networks do not require an iterative

process for training and high degree of parallelism are

presented in their structure. This network can be used for

predictive modeling, mapping, and interpolation or as a

controller [51–54].

The architecture of the GRNN network is shown in

Fig. 7. The input layer receives a vector X containing the M

input variables of the network. The number of neurons

constituting the layer corresponds to the number of training

patterns stored in the weight matrix w1.

When a new vector is input to the network, the distance

between the input vector and the vector stored weight is

typically calculated in Dist block using the Euclidean

distance. The output of block Dist is multiplied by the

polarization factor b point by point. The result of this

multiplication is applied to the radial basis function pro-

vided as output a1.

The second layer performs the sum of the outputs a1
according to the number of outputs required. The weight

Fig. 3 Comparison of single channel eigenvalues before and after normalization

Fig. 4 Principal component contribution rate

Fig. 5 Principal component analysis of training set and test set
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matrix x1 of this layer already stores the target vector

containing the desired output. The output vector m2 is

obtained by adding the product of each element of a1 to the

elements of each vector stored in x1, normalized by the

sum of the elements of a1. Then, when an input vector X is

stored in the network beside the training vector xi in the

first layer, the vector X produces an output a1i close to 1 in

the first layer. This results in the output of the second layer

being the vector m2i next to it, one of which is stored in the

second layer.

The GRNN network has the advantages of simple

structure, fast training, and few adjustment parameters. In

addition, compared with the feedforward network, the

calculation results of the GRNN network have global

convergence. So in this paper, GRNN is used as a classifier

for supervised gesture recognition.

4.2 Gesture recognition experiment results
and analysis

The data are divided into a test set and a training set; the

training set is used to train the classifier parameters, and the

test set is used to test the classifier training.

1. Identification results before dimensionality reduction

The feature values of each gesture are randomly divided

into two groups: one is a training set and one is a test set.

The training set contains 250 sets of data for each gesture,

and each test set contains 60 sets of data.

The sleeves are collected in a total of 16 channels which

are not used as input for pattern recognition at the same

time. Instead, 16 channels are arranged in a gradient to

construct multiple different combinations of classifiers.

According to the arrangement and combination, 136 clas-

sifiers are obtained. They are arranged as shown in Fig. 8.

As shown in Fig. 9, the correct rate comparison chart of

the 136 classifiers corresponding for the four features. The

abscissa of the graph represents the label of 136 models,

and the ordinate represents the correct rate of the model.

The correct rate distribution of the four graphs in Fig. 9

can be analyzed, the more the input channels of the clas-

sifier, the better the effect of pattern recognition, the less

the input channel, the worse the effect of pattern recogni-

tion. However, in some cases, the data of each channel

affect each other, and too many channels will cause the

pattern recognition success rate to decrease.

The accuracy and calculation time of the classifier are

evaluated separately. The classification results of the four

characteristics are shown in Table 1. The accuracy of the

Fig. 6 Comparison of feature separation before and after PCA dimension reduction

Dist

ω1 b ω2

X

Input layer Radial layer Output layer

m1 a1 m2 Y

Fig. 7 Schematic diagram of the GRNN network

1 1 1 2 1 3  1 16
2 2 2 3 2 4  2 16

15 15 15 16
16 16

Fig. 8 Input channel arrangement
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identification of the four features and the average time of

operation are recorded in Table

2. Experimental results after dimensionality reduction

After dimension reduction, the first three principal

component features are used for pattern recognition in the

GRNN classifier; the correct rate is 95.1%, and the average

operation time is 0.19 s, as shown in Figs. 10 and 11. The

accuracy of gesture recognition is higher than the average

of the success rate of previous individual features.

Principal component analysis is a simple and efficient

unsupervised feature dimension reduction method. After

the dimensionality reduction process, the feature size can

be reduced, the redundant information can be reduced, the

accuracy of the pattern recognition can be improved, and

the stability of the classifier can be improved. At the same

time, the dimensionality reduction method can be used to

reduce the structure of the simplified classifier and enhance

the real-time performance of the classifier. Compared with

other recognition systems, such as BP neural network

[2, 22] and D–S evidential theory [3], the method of this

paper has greatly improved the recognition efficiency and

accuracy.

Fig. 9 Accuracy of recognition

results for four features

Table 1 Comparison table of

feature classification results
Item RMS WL MAS SampEn

Average accuracy (%) 86.6054 88.8685 88.4191 83.6667

Average running time (s) 0.2553 0.18991 0.22403 0.17762

Fig. 10 Identification results after dimensionality reduction
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5 Conclusion

This paper studies the recognition of static gestures based

on EMG signals. The main characteristics of surface EMG

signals, non-stationary, nonlinear, non-deterministic, etc.,

make effective feature extraction and pattern recognition

difficult. In addition, choosing a fast, simple, and effective

pattern classification scheme has become a difficult prob-

lem that must be faced before pattern recognition. Based on

the extraction of RMS, WL, MAS, and SampEn, this paper

reduces the feature dimension and eliminates redundant

information by the PCA algorithm. At the same time, the

classifier of GRNN generalized regression neural network

is constructed to achieve highly efficient and highly accu-

rate static gesture recognition target. The accuracy of the

resulting gesture recognition was significantly improved to

95.1%, and the calculation time was only about 0.19 s,

which made it possible for real-time processing.

In this paper, the feature extraction of static gestures

based on EMG signals is studied. Although some theoret-

ical and experimental results have been obtained, there are

still many problems that can be further discussed. The

selection of the original features, the specific choice of

features and the combination of features need to be further

studied; in addition to the method of transforming dimen-

sionality reduction, the feature selection method can be

used to reduce the dimension, but the specific algorithm

needs to be further determined.
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