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Abstract
At this stage, brain health can be directly expressed in the human hand posture estimation. Therefore, model estimation of

healthy human hand posture can also be used as a criterion for brain health. The recognition algorithm of healthy human

hand gesture based on global feature extraction of depth map sequence is not enough to analyze the motion correlation of

healthy human hand posture, which leads to the need to improve the accuracy of human body hand gesture description and

the change of movement speed of robustness. After analyzing the characteristics of healthy human hand movement in

detail, this paper proposes a hand posture decomposition algorithm based on depth map sequence. The goal is to find

information that plays a key role in hand gesture recognition in the depth map sequence. The algorithm can remove

redundant information and improve the robustness of the recognition algorithm.
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1 Introduction

The rapid development of modern information technology,

followed by the gradual update of computer application

technology, human–computer interaction, has become an

important direction of computer science research (Human–

Computer Interaction, HCI). At present, the relationship

between computers and users has long been adapted from

users to computers, gradually moving toward user-

centered, and computers are actively adapting to the new

stage of users. Computers will also be designed to be more

and more intelligent and more humane to meet the needs of

different groups of people. The development of human–

computer interaction has gone through the interface of the

keyboard and mouse as the main tools. Although the key-

board and mouse are still used as the main tools, the

inconvenience and unnaturalness exposed during its use

have greatly limited the further development of human–

computer interaction [1].

When designing the human–computer interaction sys-

tem, if the human hand gesture language and movement

trajectory are used as a new communication method, the

communication between the human and the machine will

become intelligent and convenient. Compared with the

traditional keyboard, mouse and other external devices,

gesture operation is intuitive and natural. However, due to

the rich information represented by human gestures,

especially in the gesture recognition process, it is difficult

for the opponent to locate the gesture, and there is still a

gap between the recognition effect and other recognition

technologies. Influenced by human subjectivity and

objective factors, the content of the gestures to be

expressed is ambiguous, and the expression is also diver-

sified. Therefore, gestures have the characteristics of
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flexibility and intuitiveness in human–computer interac-

tion. With the development of various types of artificial

intelligence devices, gesture recognition has an important

significance in the field of human–computer interaction.

In general, gesture recognition can be divided into static

gesture recognition and dynamic gesture recognition.

Among them, the recognition of the static gesture refers to

the recognition of changes in the hand shape and the ori-

entation of the hand at a certain time, but the recognition of

the dynamic gesture is the process of focusing on analyzing

the movement of the hand. In other words, dynamic gesture

recognition is the sequence of trajectories formed by the

movement of the hand identified within a period of time.

Based on different input devices, gesture recognition

includes wearable device-based gesture recognition and

computer vision-based gesture recognition. Gesture

recognition based on wearable devices mainly utilizes data

gloves and corresponding 3D tracking devices [2]. Among

them, the data glove is made of a material having certain

elasticity. At the same time, the data glove is also installed

with a sensor corresponding to the joint of the human hand

and can be used to detect the unfolding and bending of the

finger. Through the data glove, the sensor’s resulting

information is passed to the computer to get the dynamic

information of the gesture in real time. The gesture

recognition using the 3D tracking device needs to be

installed on the user’s arm or hand, and spatial information

such as the relevant position can be obtained. Although this

method has a small amount of data and a high processing

speed, it requires the user to wear a complicated device

which greatly affects the flexibility of operation and natural

comfort; furthermore, the price of the device is relatively

expensive. In vision-based gesture recognition, the input

data only contain the image of the hand when the input

device is just a 2D camera. Therefore, it is necessary to

obtain the characteristics of the gesture through a certain

image processing algorithm and then the recognition can be

performed [3].

In the new dynamic gesture recognition development

background, dynamic gesture recognition based on depth

information has the following advantages over traditional

gesture recognition methods: First, equipment costs are

reduced. Contact sensors have a more sophisticated struc-

ture, and they are often more expensive. On the premise of

ensuring accuracy, the depth camera reduces the cost of

acquiring 3D information which is an inevitable advantage

for the application of gesture recognition based on depth

image. Second, depth maps are not affected by lighting

conditions and background complexity. Using depth maps

for hand gesture recognition can easily and accurately

implement segmentation of the hand region and remove the

effect of the background on gestures based on the depth

information, thereby further improving the robustness of

the algorithm. Third, dynamic gesture recognition based on

depth information has rich three-dimensional information.

Compared with traditional gesture recognition algorithms

based on color images, depth information-based gesture

recognition introduces depth maps which allows gesture

recognition algorithms to return to the analysis of gesture

space shapes [4]. Furthermore, this provides more distin-

guishing feature information for gesture recognition.

Finally, gesture recognition based on depth information is

more natural and flexible. From the perspective of the

development trend of human–computer interaction, the

way of interaction has become increasingly natural and

convenient [5]. Gesture recognition based on depth infor-

mation does not require users to wear complex devices and

is easy to learn and master. With the increasing demand for

user experience, this way of gesture interaction has become

an inevitable trend [6]. These features make the dynamic

gesture recognition based on depth information closer to

the requirements of practical applications. On the other

hand, gesture recognition based on depth information is

still in the basic research stage. The recognition efficiency

of dynamic gesture recognition based on depth information

in extreme environments such as strong or weak illumi-

nation is significantly better than traditional gesture

recognition methods. The research on dynamic gesture

recognition based on depth information can be a good

complement to the traditional gesture recognition method,

which will make the final recognition result more accurate.

Therefore, our research should continue to deepen in this

area.

This paper mainly introduces the gesture decomposition

algorithm based on depth map sequence. The fourth

chapter mainly introduces the direction-based depth map

gesture shape feature extraction algorithm. The direction-

based depth map gesture shape feature has the character-

istics of low dimension and low extraction method com-

plexity and also can well describe the edge direction

information of the hand region;

The fifth chapter mainly introduces the depth map

sequence gesture decomposition algorithm based on spec-

tral clustering algorithm. This algorithm divides the depth

map sequence into different sub-segments according to the

similarity between frames which is to divide the gesture

into different sub-processes. At the same time, we extract

the corresponding key nodes from each sub-process. The

sixth chapter is mainly based on the sequence decompo-

sition of the key node extraction algorithm to extract the

key point set from the decomposed subsequence, and then,

the new sequence consisting of the key point set, at the

same time, removes the redundant information of the time

domain. In addition, the depth map sequence decomposi-

tion algorithm based on feature similarity distance is pro-

posed to adapt to the application scenario with low
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computational performance. The experimental results show

that the proposed algorithm effectively implements the

decomposition of depth map sequences and the extraction

of key points.

2 Related works

At present, commonly used gesture recognition methods

include template-matching method and state transition-

based graph model method.

The basic idea of the template-matching method is to

calculate the similarity between the input gesture and the

known gesture template to recognize the gesture, which is

the simplest gesture recognition method. Specifically, a

corresponding template is established for each gesture

training by using a gesture sample. When a new gesture is

identified, its feature vector is first calculated and then

matched with the known template one by one. The gesture

type corresponding to the template with the highest simi-

larity is the recognition result. Three functions are gener-

ally used to measure the similarity between input gestures

and gesture template feature sequences: squared differ-

ences, correlation coefficients and related matches. Liter-

ature [7] uses skin history images for gesture modeling and

uses K-means clustering algorithm to train to get gesture

templates. The similarity between the two is calculated by

calculating the tangent distance between the input gesture

and the gesture template.

The template-matching method is simple to set up and

modify, but when the dynamic gesture becomes very

complicated, the difference in time and space of the gesture

makes the template threshold of each gesture become lar-

ger; that is, the matching range is set to be wider. When

there are many types of gestures, there may be a case where

a template matches several gestures at the same time,

which eventually leads to recognition errors. The recog-

nition speed of the template-matching method is gradually

reduced as the number of gestures increases. Therefore, the

template-matching method cannot solve the problem of

time and space difference of gestures and cannot accurately

realize real-time multi-gesture recognition.

Dynamic time warping (DTW) [8] is a time-varying data

sequence matching method that eliminates differences in

dynamic gesture time by adjusting the sequence of gestures

on the time axis. DTW adjusts the timeline to nonlinearly

map the input gesture to the timeline of the template ges-

ture, minimizing the distance between the two and then

performing template matching to get the final recognition

result. The advantage of the DTW algorithm is that the data

training is simple and easy to implement. The disadvantage

is that a large number of template-matching calculations

are difficult in real time and are susceptible to noise. In

addition, when gestures are more complex, such as large

differences in time or large amplitude changes, or when

encountering undefined interactive gestures, the recogni-

tion effect of DTW will be worse.

The state transition-based graph model method uses the

nodes or states of the graph model to describe each static

pose or motion state and is linked by various probabilities

through corresponding graph model nodes. In the literature

[9], the characteristics of the position of the dynamic

gesture, the direction of the trajectory and the speed of

motion are set as observation sequences. The HMM model

of each gesture is trained to analyze the time series, and the

timescale is not deformed under the condition of time and

space changes. HMM is a widely used statistical method.

Its topology is general, not only can describe the shape,

position, direction and motion characteristics of the hand,

but also can describe the difference in time between ges-

tures, especially for complex dynamic gesture recognition.

HMM training and recognition calculations are very large

and have difficulty meeting actual requirements.

Literature [10] adopts a dynamic gesture recognition

method based on feature package (BOF-based). Firstly, the

local region is extracted from the sample, and the operator

is described by SIFT. Then, the feature dictionary is con-

structed by clustering algorithm, and the feature package of

each type of gesture is calculated, which is used as the

basis for gesture classification. Local image blocks of the

method are typically obtained by feature point detection,

random sampling, and thus local features typically do not

have explicit semantics.

The neural network has strong adaptive learning ability

and fault tolerance. The neural network and DTW are

combined. At the same time, the recognition method based

on hand shape and motion trajectory is proposed in the

literature [11]. Neural networks are used for classification

and recognition of hand shapes, and DTW is used for

motion path recognition. The neural network is not sus-

ceptible to noise and has strong fault tolerance. However,

the training calculation is large and the ability to model

time series is poor, which cannot solve the problem of

gesture time difference.

3 Gesture decomposition core framework

At present, the process of a typical gesture recognition

algorithm based on the depth map sequence is shown in

Fig. 1. Firstly, we acquire the depth map sequence by the

depth sensor and the hand movement is tracked, then the

hand feature extraction is performed, and finally the final

output gesture label is obtained by classifier classification.

Feature extraction is one of the key issues, and its accuracy

directly affects the accuracy of gesture recognition;
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however, there are still some challenging problems in the

feature extraction accuracy, robustness and computational

complexity. First, for the same gesture, different people have

different speeds when doing the gesture. This difference

leads to the inconsistency in the time-domain motion

intensity of the same gesture frame in the sequence of depth

pictures and reduces the similarity between the same ges-

tures [12]. In addition, by observing the series of depth maps

acquired in real time, it is found that there is a lot of redun-

dancy between adjacent frames. Such redundancy does not

contribute to the feature extraction in gesture recognition and

even reduces the distinguishability of the features. However,

it takes a lot of computational cost to process this redundant

information. This is the main reason for the low efficiency of

the current algorithm for gesture recognition based on the

global features of depth map sequences [13].

This paper proposes a method based on dynamic gesture

decomposition to solve the above challenges: By analyzing

the similarity between frames and frames, the gesture

sequence is decomposed into multiple independent subse-

quences. The frames within the subsequence have rela-

tively slow motion changes, and the key gesture action

nodes in the subsequence are extracted to form the last

sequence used for recognition. Identifying the sequence of

these key action nodes can not only overcome the differ-

ence of the same gesture caused by the different speeds of

the collected person, but also remove the redundant frames

in the sequence, so as to improve the efficiency of the

gesture recognition algorithm [14].

The overall block diagram of the algorithm is shown in

Fig. 2. First, we extracted the image features of each frame

from the depth map sequence, and then the depth map

sequence decomposition strategy is adopted to divide the

entire depth map sequence into several fragments. Then, a

key node is extracted from each segment as a representa-

tive of this segment, so that a sequence of depth maps

consisting of a set of key nodes is obtained. And the new

sequence will be used as the input to the gesture recogni-

tion algorithm to further perform gesture feature extraction

and gesture recognition. Among them, the key issues that

need to be resolved include these points: First of all, we

need to analyze the similarity between the frame and the

frame and also need to design a reasonable depth map

feature so that it can accurately distinguish the differences

between different frames [15]. Second, we need to design a

reasonable depth map sequence decomposition algorithm

Fig. 1 Dynamic gesture recognition algorithm flow of depth map

sequence

Fig. 2 Dynamic gesture recognition flowchart for gesture

decomposition
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which can decompose the depth map sequence into several

independent subsequences [16]. The similarity between

frames and frames within the subsequence is the highest,

and the similarity of the images is the lowest. In the end,

we need to further adopt a reasonable strategy to extract the

most representative key sub-action nodes from each sub-

sequence, so as to achieve the construction of the key point

set [17].

4 Feature extraction algorithm for depth
image gesture direction

Since there is no texture information in the depth map, the

description of the gesture is more dependent on the shape

of the hand. But the different hand types can be described

by the edge information of the hand [18]. The Sobel

operator can extract the direction information of the edge

which is the effective expression of the shape feature of the

hand. Therefore, this paper uses Sobel operator to calculate

the depth map pixel gradient. The Sobel operator was

proposed by Irwin Sobel in 1970 which is a one-step

operator for edge detection [19]. It includes a horizontal

operator and a vertical operator, and they are, respectively,

expressed as:

Sx ¼
�1 0 þ1

�2 0 þ2

�1 0 þ1

2
4

3
5 Sy ¼

þ1 þ2 þ1

0 0 0

�1 �2 �1

2
4

3
5

Convolution of these two operators with the image can

yield the transverse gradient Gx and longitudinal gradient

Gy of each pixel point, as shown in Eq. 1:

Gx ¼ Sx � I
Gy ¼ Sy � I

�
ð1Þ

The angle between the horizontal gradient and the ver-

tical gradient is the direction of the gradient. The direction

of the gradient can describe the directionality of the edges

in the image [20].

4.1 Gesture shape feature extraction

The depth map can describe the spatial geometric proper-

ties of the object well, and the difference between the hand

shapes can be distinguished by the edge contour of the

hand. However, depth maps often have a large area of

depth-invalid regions, i.e. regions with zero pixel values.

Pixel-level features exhibit sparseness and cannot describe

image content well [21]. For this reason, a block-based

gesture shape feature is proposed in this paper. Since pixel-

level features exhibit sparseness, the image content cannot

be well described. For this reason, a block-based gesture

shape feature is proposed in this paper. For each depth

map, the shape of the hand can be described using the edge

direction of the hand. For a given depth map I, find the

lateral gradient Gx and the longitudinal gradient Gy

according to the Sobel operator introduced in the previous,

and then use formula 2. Find the direction angle of each

pixel’s gradient:

h ¼ arctan
Gx

Gy

� �
ð2Þ

Because the edges of the depth map are not sharp, this

will cause the edge direction information obtained by the

gradient operator to overlap. In order to remove the excess

direction vectors, the gradient values are further processed

in the form of block histograms. In order to quantify the

direction of the pixel, we need to map it to a gradient

pattern and divide the gradient pattern according to the

block of k*k; finally, the gradient histogram is counted in

each block. In this paper [22], the size of the block is set to

8*8 pixels, because the movement of the gesture is not only

formed by the rotation of the hand, the forward and

backward movement of the hand can also be used as a

gesture. Therefore, we do not need to consider the hand

scale problem in the decomposition of the gesture

sequence. In other words, the characteristics need to be

sensitive to changes in the scale of the hand, so as to

decompose the gestures of the forward and backward

movements [23]. Due to the spatial nature of the depth

map, the gradient angle range of the gradient should be [0�,
360�]. In this paper, the quantization step length is 20�; that
is, 18 equal parts are divided to ensure the integrity of the

spatial data. The largest classification of the histogram of

each block is taken as a feature of the block, and this

component represents the main direction of the depth edge

in this block. The shape feature of the gesture is to connect

the main components of each block, represented as

F ¼ fd1; d2; . . .; dng. The direction-based gesture shape

feature describes the direction of the gesture edge with a

low-dimensional feature vector [24].

At present, the directional characteristics of gestures in

the depth map have been extracted and used to calculate

the feature distance between different frames, and the

feature distance can be converted into the similarity

between frames. The decomposition process of the depth

map sequence is actually a clustering process. Therefore,

this paper adopts the clustering method to achieve the

decomposition of the gestures. The sub-actions with higher

similarity are grouped into one category, and the sub-ac-

tions with lower similarity are decomposed into different

sub-categories [25].

Neural Computing and Applications (2020) 32:6327–6342 6331

123



5 Spectral clustering algorithm and depth
map sequence gesture decomposition
algorithm

At present, dynamic gesture recognition algorithms based

on global features often consider a dynamic gesture as a

whole, but in fact a dynamic gesture often consists of

multiple sub-processes. Each sub-process can be seen as a

basic unit of a dynamic gesture, and the entire gesture is a

combination of multiple basic units. This section will focus

on the decomposition of dynamic gestures. We will analyze

each sub-process and extract a set of key points from it to

improve the performance of the gesture recognition algo-

rithm [26]. Finding the segmentation points of different

sub-processes is the key to dynamic gesture decomposition.

At the same time, the differences between adjacent sub-

processes can be measured by changes in the depth map.

The decomposition process of the depth map sequence is to

divide the depth maps with similar similarity between

adjacent frames into the same category, and the similarity

frames are divided into different classes [27]. We consider

the depth map sequence as a dataset which is actually a

clustering process, and each frame of depth map is a point

in the dataset. Decomposition of the depth map sequence is

to cluster these data points. When the sample space does

not satisfy the assumption of convex optimization, the

traditional clustering algorithm will fall into a local opti-

mum and cannot obtain a global optimal solution. Spectral

clustering algorithm avoids the assumption that the sample

space is convex. It simplifies the optimization problem of

the graph into the matrix solution problem and realizes the

global optimal solution process [28]. This paper will use

spectral clustering algorithm to solve the decomposition of

the gesture sequence.

5.1 Spectral clustering algorithm

Spectral clustering algorithms are derived from graph

optimization theory. For a given dataset, we first need to

build a graph model. Assume that the graph model is

G ¼ V;Eð Þ, where V ¼ v1; v2; . . .; vnf g represents a set of

vertices, each vi represents a data point in the sample and

s11; s12; . . .; sij; . . .; snm
� �

denotes an adjacency matrix.

Among them, sij � 0 indicates the similarity of any two

sample data points vi and vj, and sij is greater than 0 or

greater than a certain threshold, indicating that two vertices

are connected; otherwise, there is no connection between

the two vertices. The process of clustering is to divide the

graph model and divide the graph into several subgraphs.

The similarity of the vertices in the subgraph is the largest,

and the vertex similarity between the subgraphs is the

smallest. The optimal solution of the graph partition

criterion is an NP-hard problem [29]. However, the spectral

clustering algorithm considers the continuous relaxation of

the problem and converts this problem into the spectral

decomposition of a similarity matrix or Laplacian matrix.

This solution is an approximation of the optimal solution to

the graph. Finally, by clustering the selected eigenvectors,

the dataset at this time satisfies the assumption of convex

optimization, and the clustering results can be obtained by

using a traditional clustering algorithm [30].

When we use the spectral clustering algorithm to

decompose the depth map sequence, we should regard each

frame image in the depth map sequence as a vertex and

construct an undirected weighted graph model. This graph

model connects any two frames with similarity weights

[31]. However, this will bring two problems: First, the

sequence of depth maps is ordered in the time domain.

Constructing the above undirected graph model will break

this ordering, resulting in depth maps that are far apart in

the time domain which may be divided into one class.

Second, the gesture needs to be decomposed into several

subsequences that are unknown at the beginning, so when

the feature vectors are further clustered, the number of

categories cannot be initialized. In order to solve these two

problems [32], this paper will further discuss the con-

struction of similarity matrix and the clustering method

without initial category parameters.

5.2 Similarity metric matrix

To achieve the decomposition of the depth map sequence,

we must first construct the relationship between the frame

and frame of the depth map sequence. In this paper, the

similarity measure matrix is used to find the similarity

between any two frames [33]. From the previous section, a

gesture sequence can be represented as a set of gesture

shape features. First, the Gaussian similarity function is

used to find the similarity between any two frame features,

as shown in Eq. 3:

s Fi;Fj

� �
¼ exp �

jjFi � F2
j jj

2r2

 !
ð3Þ

The similarity (Fi;Fj) between any two frames Ii and Ij
forms a similarity metric matrix. The parameter is used to

control the degree of dispersion of the similarity matrix. As

shown in Fig. 3, when takes different values, the similarity

metric matrix shows different degrees of dispersion [34].

The smaller the value of is, the more concentrated the

matrix is. As increases, the matrix gradually becomes

dispersed.

However, as described in the above section, the simi-

larity measure matrix calculated according to the above

rules ignores an important problem: The depth map
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sequence is time series, and the similarity calculation

between any two frames neglects the influence of the time

sequence change. However, as described in the above

section [35], the similarity measure matrix calculated

according to the above rules ignores an important problem:

The depth map sequence is time series and the similarity

calculation between any two frames neglects the influence

of the time sequence change. It can be clearly seen from

Fig. 3 that the similarity of the depth map sequence in the

time domain may also be very large [36]. There are several

peaks in addition to the diagonals in Fig. 4 because the

gesture movement may have a certain periodicity and the

depth map of the same hand may appear multiple times in

the sequence. This situation needs to be avoided by

weighting in the time domain. If the image frames are only

clustered based on the spatial characteristics, then the

discontinuous frames will also be clustered into one cate-

gory and destroy the time-domain adjacency of the sub-

sequences. In order to avoid dividing the non-adjacent

depth maps in the time domain into a class, the similarity

metric matrix needs to be weighted and constrained by the

time-domain conditions [37]. The weights are still obtained

using a Gaussian similarity matrix, as shown in Eq. 4:

St ti; tj
� �

¼ exp �
ti � tj
� �2

2s2t

 !
ð4Þ

Among them, the parameter st determines the degree of

weight control of the time-domain window. The larger the

value of st, the slower the attenuation of the weight and the

larger the window in the time domain. The influence of

different st on the similarity matrix is shown in Fig. 4,

where the similarity matrix takes r = 5.0. By weighting the

time domain, the similarity measure is wi;j ¼ si;j � sti;j.

5.3 Laplacian matrix and feature vector
selection

To further transform the graph optimization problem into a

matrix solution problem, the spectral clustering algorithm

converts the similarity matrix into a Laplacian matrix.

There are generally two types of Laplacian matrix selec-

tions: The first type is a non-canonical Laplacian matrix:

L ¼ D�W and the other is the canonical Laplacian

matrix. The canonical Laplacian matrix is divided into two

forms: L ¼ D�1
2LD�1

2 ¼ I � D�1
2LD�1

2 and L ¼ D�1L ¼ I �
D�1W [38]. The Laplacian matrix first needs to calculate

the degree matrix of the graph which is a diagonal matrix

composed of the degrees of each vertex. The degree of

each vertex is given by Eq. 5 which is the sum of the

elements of each row of the adjacency matrix:

di
Xn
j¼1

wi;j ð5Þ

In this paper, we solve the actual depth map sequence

and find that the degree of change of the obtained vertex is

not significant. So as shown in Fig. 5, when the degree of

Fig. 3 Distribution map of similar matrix when takes different values

Fig. 4 Weighted similarity matrix with different values of st
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the vertices is close, the result of which Laplacian matrix is

selected is basically the same.

The adjacency matrix is processed further in the form of

a standard Laplacian matrix, and the matrix is solved to

obtain eigenvalues and eigenvectors. The eigenvalue of the

matrix is 0, and the eigenvector corresponding to the

eigenvalue is a constant. The eigenvector corresponding to

the second smallest eigenvalue is an approximation of the

potential function which is an approximate solution to the

best map partition, and this eigenvector is also named

Fiedler vector [39]. The potential function referred to here

is an indicator vector that indicates to which subgraph the

vertex is divided. The indicator vector is a constant vector.

If the vertex belongs to a subgraph, then its element is 1,

otherwise it is 0. The Fiedler vector is an approximation of

the vector. Figure 6 lists the feature vector curves corre-

sponding to the first four minimum eigenvalues and the

eigenvector corresponding to the eigenvalue 0. Since the

eigenmatrix operation library is used to solve the matrix

[40], the limitation of the operation accuracy results in the

minimum eigenvalue being close to a very small number of

0, so the feature vector has slight fluctuations. Finally,

feature vector 2 is the Fiedler vector.

Since similarity matrices are weighted using the infor-

mation of the time-domain interval when calculating the

adjacency matrix, the similarity of frames that are clustered

far away in the time domain is well attenuated [41].

Therefore, the time-domain coherence of the subsequences

is preserved and this limitation is also well represented in

the Fiedler vector here. When there is a large difference in

the independent variables in the Fiedler vector, there is no

case where the dependent variables are similar. However, if

we do not perform time-domain constraints on the

similarity matrix, Fiedler here will have multiple extremum

points which will cause the time domain to have a large

number of independent variables with similar dependent

variables [42]. As shown in Fig. 7, the eigenvalues and

eigenvectors obtained when the Laplacian matrix is further

solved for the unweighted similarity matrix are shown.

Feature vector 2 has multiple peaks. After obtaining the

Fiedler vector, we need to further cluster all the points. At

this time, we face a new problem. We cannot determine in

advance that the depth map sequence needs to be decom-

posed into several subsequences when clustering. That is,

the clustering category number is uncertain. To solve this

problem, this paper further proposes a bipartite iterative

clustering algorithm [43].

5.4 Iterative clustering algorithm

As mentioned earlier, a gesture depth map sequence

includes several segments that cannot be predicted in

advance which makes it unable to provide a category

number of parameters for the clustering algorithm [3].

Because the traditional K-means clustering algorithm

cannot solve this problem, this paper improves it and

proposes a binary iterative clustering algorithm.

For the depth map sequence A, firstly find the similarity

dA of the similarity between the frame and the frame. The

similarity mean can be obtained from formula 6 by the

degree of the vertex:

dA

Pn
i¼1 di

n2
ð6Þ

In order to determine whether it is necessary to continue

segmentation of sequence A, that is whether the cluster

iteration stops, find the similarity mean of its two sub-

classes. Assuming that its two subsequences are B and

C [44], then the similarity values dB and dc can also be

obtained from the vertex degrees of B and C. If the value of

dB þ dcð Þ=2 is similar to dA which means that the change of

sequence A has been relatively smooth and it is stop the

iteration. Set the iteration stop condition as shown in Eq. 7.

Kstop ¼
dA

dB þ dcð Þ=2 � sstop ð7Þ

When the parameter Kstop gradually converges to 1, the

change of the sequence A gradually becomes gentle [45]. In

this time, the threshold sstop can be set to control the

number of iterations and the number of categories in the

sequence. The range of sstop is [0, 1].

Fig. 5 Distribution of vertex degree
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6 Gesture key node extraction of sequence
decomposition

The extraction of key nodes refers to finding one of the

most representative frames in each depth map sequence

sub-segment decomposed above and using this as a key

node of the gesture. For a sub-fragment, we use the

Euclidean distance between any two frames in the same

segment to select the key frame, calculate the Euclidean

distance between each frame in the sequence and all other

frames and select the Euclidean distance between the frame

and other frames [46]. Assuming that Ck is the kth segment

in the m video segments, the key point selection method is

given by Eq. 8:

kfi;k ¼ argmin
Xi2Ck

j2Ck

dis Fi;Fj

� �
ð8Þ

Then, kfi;k represents the key point in the kth segment,

and the key node set of the entire gesture is expressed as

kfi1;1; kfi2;2; . . .; kfim;m
� �

. In the above manner, the most

representative frame can be extracted from each subse-

quence as a key action node. Then, we will make a new

sequence of extracted frames for gesture recognition. Key

Point Set Extracted from Gesture Decomposition, the time-

domain information is compressed to a certain extent

which reduces a large amount of redundant information

caused by high similarity between adjacent frames. In

addition, the gesture decomposition according to the dif-

ferent degree of sequence density can decompose the depth

map sequence into subsequences of different sizes. This

decomposition can reduce the difference between sequen-

ces due to the speed change of the gesture [47].

7 Experimental results analysis
and database testing

MSRGesture3D database The database was provided by

Microsoft Research. Its depth map was acquired by the first

generation of Kinect, and it is the most common depth map

gesture database. The gesture database contains 12

dynamic American Sign Language (ASL) signs. Each

gesture came from ten volunteers, and each volunteer

repeated a gesture two or three times. The gesture set

contains 336 depth map sequences, and each of which is a

gesture. The gesture set has undergone a series of prepro-

cessing, including removing the arm below the wrist.

Figure 8 shows several gesture sequences in the

MSRGesture3D database [48].

This paper builds a gesture dataset based on the Kinect 2

generation. In order to create a gesture dataset, four vol-

unteers were called to collect 12 one-handed dynamic

gestures. These unit dynamic gestures include a rotation-

type gesture, a front-to-back variation gesture and a non-

rigid body gesture. We collected eight repetitions of each

gesture for each volunteer, and the speed of the same

gesture varied [49]. The custom gesture set contains 384

gesture sequences, and the depth map undergoes a series of

preprocessing which includes removing the arm area and

uniformly setting the resolution to 160*160 pixels. Fig-

ure 9 shows several gesture sequences in a custom gestures

database.

Fig. 6 Eigenvectors corresponding to the first four minimum eigenvalues

Fig. 7 Unweighted similarity matrix for solving eigenvalues and eigenvectors
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7.1 Analysis of depth map sequence
decomposition results

Depth map sequence gesture decomposition algorithm

based on spectral clustering algorithm has two important

parameters that are crucial to the decomposition result of

the depth map sequence, namely the parameter st that

limits the time-domain-weighted window size and the

parameter sstop that stops the iterative clustering. The

parameter st controls the decay speed of the similarity

matrix over the time interval. The larger the st, the slower

the decay of the similarity matrix, and vice versa [50]. The

parameter sstop represents the threshold of the iteration

stop. The closer the value is to 1, the stricter the conditions

for stopping the iteration and the smaller the difference

between categories; otherwise, the looser the iteration is

stopped and the greater the difference between categories

[51]. When the value of st is large, we need to increase the

depth of the iteration to increase the degree of similarity

between the same classes in order to achieve a better

decomposition result; in this case, it is necessary to take a

large value of sstop that is to require sstop to be close to 1.

When st is set more strictly, that is, st is smaller and

smaller and the similarity between sequences has been

limited in the time domain. At this time, the value of sstop
does not have to be close to 1 to obtain better decompo-

sition results [52].

Figures 10 and 11, respectively, show the changes in the

number of key points extracted by the depth map sequence

gesture decomposition algorithm when using the spectrum

Fig. 8 Gesture sequence of MSRGesture3D database

Fig. 9 Gesture sequence for custom gesture database
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clustering algorithm for the MSRGesture3D gesture data-

base and the custom gesture database; the red curve rep-

resents the original image. The number of frames in each

sequence which represents the number of images in the key

points of different sequences extracted under the combi-

nation of parameters. This set of curves has shown that the

gesture decomposition algorithm proposed in this paper

can achieve the removal of time-domain redundant

information.

From Figs. 10 and 11, we can see that the number of

depth maps in key points has been significantly reduced.

This reduction brings two beneficial effects: First, the key

point set is the result of compressing the original sequence

in the time domain. It removes many redundant frames and

improves the differentiation of gesture sequences. Second,

gesture recognition based on key points can overcome the

shortcomings of the same gesture caused by different

recognition speeds, because the decomposition of the

gesture sequence can overcome the influence of the change

Fig. 10 Number of images in the key point set under different parameters of the MSRGesture3D gesture database at st ¼ 1:5

Fig. 11 Number of images in the key point set of the custom gesture database under different parameters at st ¼ 1:5
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of the gesture speed which also makes the gesture recog-

nition based on the key point set more robust. Figures 12

and 13 show the comparison of the original data and the

key point set data of the two depth map sequences in the

two databases, respectively. From this, we can see that the

key point set removes the redundant data between adjacent

images which makes time-domain information com-

pressed. More importantly, this kind of compression is not

uniform. When the depth map changes more slowly, that is,

when gesture movement is relatively slow, the extracted

key points are sparse. When the depth map changes sig-

nificantly, that is, the gesture movement is relatively fast,

and the extracted key points are denser which improves the

robustness of the recognition algorithm to the same gesture

with different speed.

7.2 Feature similarity distance gesture
decomposition algorithm experiment

Depth map sequence gesture decomposition algorithm

based on spectral clustering algorithm can fully utilize the

similarity relationship between depth map frames to

achieve the decomposition of the sequence, but the clus-

tering algorithm often requires high computational costs. In

order to meet the application requirements of low-end

devices, this paper also implements a fast and effective

depth map sequence decomposition scheme: depth map

sequence decomposition algorithm based on feature simi-

larity distance. The algorithm realizes the time-domain

compression of depth map sequences with an efficient

strategy and removes the redundant information in the time

domain, and then improves the robustness to the time-do-

main change of the same gesture which improves the

accuracy of gesture recognition.

For feature extraction of each frame of the depth map

sequence, a depth map sequence I1; I2; . . .; INf g can be

represented by a feature sequence F1;F2; . . .;FNf g. Dif-
ferences between frames can be represented by Euclidean

distances, and the Euclidean distances of features between

any frames are calculated, as shown in Eq. 9:

disi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

Fi dkð Þ � Fj dkð Þ

 �2

s
ð9Þ

From the Euclidean distance between any frames, we

can further obtain the correlation coefficient, as represented

by Eq. 10:

ri;j ¼ exp � disi;j

r2

� �2

ð10Þ

The value of r is 0.05 times the maximum distance, that

is, r ¼ 0:05�max di;j
� �

. After the correlation coefficient

is obtained, the segmentation metrics between consecutive

two frames of images are calculated by using the theory of

normalized cut-set criteria to obtain the segmentation

metrics [47]. The objective function is shown in Eq. 11

[48]:

Ncut A;Bð Þ ¼ cut A;Bð Þ
assoc A;Vð Þ þ

cut A;Bð Þ
assoc B;Vð Þ ð11Þ

where cut A;Bð Þ ¼
P

i2A
P

i2B ri;j, assoc A;Vð Þ ¼
P

i2AP
i2V ri;j,

P
i2B
P

i2V ri;j, A and B and, respectively, rep-

resent two sequence fragments and V = A ? B. Further,

the split measure between any two successive frames is

obtained by Eq. 12:

Spi ¼ ln Ncutið Þ ð12Þ

According to the segmentation metric, we search for the

segmentation points of the segmented depth map sequence.

Fig. 12 MSRGesture3D gesture

database original sequence and

its key point set
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When Spi\ss, a segmentation point is set between the

i frame and the i ? 1 frame. Therefore, each depth map

sequence will be divided into m segments, and the depth

map in the segment will change smoothly while the depth

maps between the segments will have large differences.

Gesture Decomposition Based on Sequence of Character-

istic Similar Distance Depth Map which the original

sequence can also be compressed in the time domain to de-

redundancy, and a more robust set of key points can be

extracted. The algorithm can effectively decompose the

depth map sequence and extract the key points of gesture,

but the analysis of the similarity between adjacent frames is

not enough which resulting in the extraction of the key

point set is lower than the depth map sequence decompo-

sition algorithm which based on spectrum clustering

algorithm. In spite of this, the set of key points extracted by

the depth map sequence gesture decomposition algorithm

based on feature similarity distance can still improve the

accuracy and robustness of the gesture recognition. Fig-

ures 14 and 15, respectively, represent the change curve of

the number of frames of the key point set extracted from

the two databases by the depth map sequence based on

feature similarity distance.

Fig. 13 Comparison of the

original sequence of custom

gesture database and its key

point collection

Fig. 14 Number of images in key point set of MSRGesture3D gesture database
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Figures 16 and 17 show the comparison of the two sets

of original data and key set data of two kinds of depth maps

based on feature similarity distance-based depth map

sequence gesture decomposition algorithm, respectively.

From this, we can see that the key point set removes the

redundant data between adjacent images and has similar

rules to the extraction of key points and the depth map

sequence gesture decomposition algorithm based on spec-

trum clustering algorithm. This rule can also overcome the

effects of gesture speed changes on recognition algorithms

to some extent.

8 Conclusion

This paper introduces a depth-sequence-based gesture

decomposition algorithm. Direction-based depth maps

have low-dimensional shape features and low extraction

complexity and can be well used to describe the edge

direction information of the hand area. This paper further

introduces the depth map sequence gesture decomposition

algorithm based on spectral clustering algorithm. The

algorithm realizes that the depth map sequence is divided

into different sub-fragments according to the similarity

Fig. 15 Number of images in the custom key database key point set

Fig. 16 MSRGesture3D gesture

database original sequence and

its key point set
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between frames. This decomposition is to divide gestures

into different subsections process and extract the corre-

sponding key nodes from each sub-process. The gesture

key node extraction algorithm based on sequence decom-

position extracts the key point set from the decomposed

subsequences. The new sequence composed of the key

point set removes the time-domain redundant information

and improves the robustness of change of the gesture

speed. In addition, depth map sequence decomposition

algorithm based on feature similarity distance is proposed

to adapt to low computation performance application sce-

narios. Experimental results show that the algorithm pro-

posed in this paper effectively implements the

decomposition of the depth map sequence and the extrac-

tion of the key point set. In future research, we can consider

the complementarity of gesture recognition based on depth

information and gesture recognition based on color infor-

mation, which makes the gesture recognition in different

environments less affected by the environment and the

recognition result more accurate.
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