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Abstract
In this paper, a new approach for facial expression recognition has been proposed. The approach has imbedded a new

feature extraction technique, new multiclass classification approach and a new kernel parameter optimization for support

vector machines. The scheme of the approach begins with feature extraction from the input vectors, and the extracted

features are transformed into a Gaussian space using compressive sensing techniques. This process ensures feature vector

dimensionality reduction and matches the features vectors with radial basis function kernel used in support vector machines

for classification. Prior to classification, an optimized parameter for support vector machines training is automatically

determined based on an approach proposed which relies on the receiver operating characteristics of the support vector

machine classifier. With the optimized kernel parameter, new proposed multiclass classification approach is used to finally

classify any vector. In all the experiments conducted on the two facial expression databases with different cross-validation

techniques, the proposed approach outperforms its counterparts under the same database and settings. The results further

confirmed the validity and advantages of the proposed approach over other approaches currently used in the literature.
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1 Introduction

The Quest for information and intelligence gathering con-

stitutes an integral part of modern day technological

demands. This has momentously grown ever since the

major breakthrough in digital technology. Automatic

identification systems have drawn a lot of interests from

researchers driven by an insatiable need for such systems in

many applications. Among the numerous methods for

identity establishments and information gathering are face

recognition and facial expression recognition. Facial

expression recognition (FER) is an emerging technology

with an increasing patronage from many areas such as

security, medical diagnosis, psychology, human–computer

interaction (HCI) and entertainments. One of the very

recent applications of FER is in marketing where goods

and services are considered stimuli and the consumers’

response (satisfaction to the products or services) is mea-

sured automatically and objectively through FER. How-

ever, the challenges in FER are enormous and tasking in

nature [1].

Automatic recognition of facial expressions from face

images is more complicated than standard face recognition

[2, 3]. Despite the fact that both face recognition and FER

need to adjust for common image alterations (i.e., rotation,

illumination, scaling, etc.), facial expression may depend

on human ethnicity, culture and even the nature and the

strength of the stimuli leading to an expression. In addition,

there are intrinsic correlations among the seven expression

classes (e.g., anger, disgust, happy, fear, neutral, sad and

surprise) making some pairs of classes easy to be recog-

nized; some others, hard. Expressions such as sadness and

anger may be difficult to differentiate in some individuals

[2]. In the context of algorithm implementation, the general

framework of FER remains the same. The algorithm

framework begins from facial image preprocessing, feature
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extraction, classification and finally decision making based

on the output of the classifier algorithm [3].

In the hierarchy of FER algorithm framework, feature

extraction and classifier algorithms have been the most

widely investigated research topics all in an attempt to

achieve an improved performance and robustness. This is

not to downplay the contributions of the other stages which

may be valuable as well and contribute to overall perfor-

mance. In the realm of feature extraction algorithms, FER

is generally classified into appearance-based (holistic) and

feature-based [2]. Whereas the former used the whole

facial image to extract the salient features, the later tries to

take some geometrical and localized neighborhood mea-

surements of some key points (action units) within the face

image such as eye, nose, mouth and the chin [3]. Among

the popular general methodologies for feature extraction

include local binary pattern, discrete cosine transform

(DCT), discrete wavelet transform (DWT), complex

wavelet transform (CWT), curvelet transform (CT), Gabor

wavelet transform (GWT) and many others [4–12]. Feature

extractors such as DWT and GWT have a multi-resolution

approach by breaking down the image into sub-bands of

frequencies or wavelets before extracting features. These

feature extractors are hugely successful in many pattern

recognition applications such as texture, face, retina and

finger print recognition, but the same cannot be said of

FER due to its complex nature [2]. For instance, authors in

[11] applied PCA by extracting principal eigenvectors of

the data as a feature and not so impressive results were

reported. Due to the low performance of the conventional

feature extraction algorithms in FER, researchers deploy

multi-classification and fusion techniques at features, score

and decision level of the both feature extractor and clas-

sifier algorithms. One group of feature extractors with best

performance in FER is the multi-resolution feature

extractors like GWT. Gabor transform has been hugely

successful in many face-related applications and still

remains an excellent feature extractor for face-related

patterns [6]. Its success can be attributed to its higher

capacity (i.e., many number of tunable parameters) and

response similar to receptive fields of simple cells in the

primary visual cortex of human eyes [1] Authors in [3–7]

implemented variants of GWT feature extractors to obtain

more robust features for FER problems. However, GWT

and other multi-resolution algorithms demand intensive

computation and higher memory usage [7]. Due to these

setbacks, most of the times dimensionality reduction

algorithms are required to trim down the size of the feature

vectors. Some of the state-of-the-art dimensionality

reduction algorithms are discussed in [8–11]. This becomes

a hindrance in real-time applications where speed and

simplicity are of great interest.

On the other hand, classifier algorithms also have

resounding contributions toward the overall performance of

any pattern recognition problems. Distance metric classi-

fiers such as Manhattan ðdl1Þ, Euclidean ðdl2Þ and Cosine

ðdcosÞ have been used in the literature for their simplicity

and less computation [7]. These classifiers do not require

training. But in a more tasking and machine learning

problems, distance measures-based classifiers may not

have the upper hand due to difficulties in learning the

patterns, and some more sophisticated and state-of-the-art

learning-based classifiers such as support vector machine

(SVM) and neural network (NN) are frequently used.

These learning-based classifiers equally have their chal-

lenges as well which include convergence (i.e., ability to

learn the pattern), training error, generalization error,

suitable parameter selections and so on [13, 14]. Moreover,

most of these classifiers were initially designed for binary

classification, and the extension of their original goal to

multi-classification problems has been one of the active

fields of research in pattern recognition problems.

The generalization error is being considered as one

performance enhancer for such classifiers and is linked to

both errors on the training examples and complexity of the

classifier [13, 15]. Trade-off exists between higher-capacity

classifiers (i.e., with large number of adjustable parame-

ters) and low-capacity classifiers (i.e., within sufficient

number of adjustable parameters). Low-capacity classifiers

might not be able to learn the task at all but when they do

they exhibit good generalization due to their low com-

plexity. On the other hand, higher-capacity classifiers can

learn any classification pattern according to the learning

rules without error, but they generally tend to exhibit poor

generalization. However, a good generalization perfor-

mance can be achieved with higher-capacity classifiers

when the capacity of the classification function is matched

to the size of the training set [13, 15, 16]. A smart way to

improve such classifiers generalization capacity is by

optimizing kernel parameters with cross-validation data.

Authors in [15] proposed a method for automatically

optimizing multiple kernel parameters as a way of

improving classifiers generalization accuracy using stan-

dard steepest decent algorithms, whereas [2] applied a

heuristic optimization approach based on particle swarm

optimization (PSO). In general, researchers usually resor-

ted to naı̈ve search techniques or use parameters values

based on experience to avoid excessive computational

overheads especially in a database with a large number of

samples.

The manuscript proposes a new approach to facial

expression recognition with contributions at feature

extraction and classification levels. The feature extraction

process utilizes the compressive sensing technique with

statistical analysis of the extracted compressed facial signal
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to represent a more robust feature representation for each

individual facial expression class. In the classification

stage, a dynamic classifier referred as dynamic cascaded

classifier (DCC) within the scope of this work has been

proposed. DCC leverages on the proposed feature extrac-

tion approach to produce an adaptive classification

approach with kernel matching techniques which lead to

low training error and improve generality of the classifi-

cation process. In summary, the major contribution of the

paper includes (a) new feature extraction techniques and

(b) proposes an optimized technique for automatic

parameter selection in multilevel classification and (c) dy-

namic cascaded classifying techniques.

The paper has been categorized into five sections as

follows: Sect. 1 contains the introduction and review of the

related works. Section 2 presents the theoretical back-

ground of some key concepts used in the proposed

approach. Section 3 presents the contributions in this

paper. In Sect. 4 experimental results are presented along

with the performance comparison and discussion. Conclu-

sions are drawn in Sect. 5.

2 Theoretical background

2.1 Support vector machine

Support vector machines are a generally supervised learn-

ing algorithm used in classification and regression [13].

The original training algorithm for SVM is referred to as

maximum margin training algorithm. For linearly separable

patterns, it finds a hyperplane line in a space that maxi-

mally separates two patterns. This hyperplane is repre-

sented by a decision function D xð Þ for a pattern vector x

with n - dimension belonging to either class A or B. Now,

the inputs to the training algorithm become a sequence

x1; y1ð Þ; x2; y2ð Þ; . . . xn; ynð Þ, where y is the class level for

each pattern in x which only takes two values for binary

classification according to (1) (Fig. 1) [13].

yk ¼ 1; if xk 2 class A

yk ¼ �1; if xk 2 class B

�
ð1Þ

During the training phase, the decision function D xð Þ is
determined according to the rule in (2).

x 2 A; if D xð Þ[ 0

x 2 B; otherwise

�
ð2Þ

The decision function D xð Þ has two forms of represen-

tations which are the (i) direct space (3) and (ii) dual space

(4). The two representations work similarly to maximize

the margin of distance M between the patterns and the

separating hyperplane represented by D xð Þ [11].

D xð Þ ¼
Xn
k¼1

xiui xð Þ þ b orD xð Þ ¼ w:xþ b ð3Þ

D xð Þ ¼
Xn
k¼1

akk xk; xð Þ þ b or D xð Þ ¼ a:xþ b ð4Þ

where in direct space form, x and b are the parameters

(weights and bias) to be adjusted during training and ui xð Þ
are predetermined function of a pattern x of dimension n,

referred to as kernel function. In dual-space representation

ak and b become the adjustable parameters (weights and

bias) and k xk; xð Þ is the dual kernels function. A number of

kernel functions have been shown to be suitable for the

original maximum margin SVM classifier training rules

[14]. These kernel functions include perceptron, polyno-

mial, RBF and arc-tangent functions.

With direct space kernels function ui xð Þ, the distance

between a hyperplane and a pattern x is given by
D xð Þ
x .

where x is the l2-norm of the training weights. Assuming

that a margin M between class boundary A and B and a

pattern x exists, then for every pattern xk with class level yk
in pattern vector x will be trained to fulfill the inequality in

(5) which aims at maximizing the hyperplane margin

between patterns and the hyperplane:

ykD xkð Þ
x

�M ð5Þ

Now, the problem is reduced to an optimization

whereby the objective is to find the weights vector x which

maximizes the margin M in accordance with (5) (Fig. 1).

2.2 Multiclass support vector machine

Most of the earlier machine learning algorithms were ini-

tially designed for binary classification, e.g., perceptron

learning and SVM [17]. However, in practice multiclass

classification problems are very prevalent in real world

applications. Over times, researchers have proposed num-

ber of multi-classification algorithms based on combination

of many binary classifiers or solving the whole classifica-

tion at ones as an optimization problem. Research in this

field is still ongoing. For instance, SVM multiclass learning

is generally conducted in two ways. The first approach

constructs a number of binary SVM classifiers and then

combines them to predict a class to which a new input

vector belongs. The most known among these algorithms

are: one-versus-rest (1-vs-r), one-versus-one (1-vs-1), de-

cision directed acyclic graph (DDAG) and error-correct-

ing output code (ECOC) [13, 18]. The second approach

considers the whole dataset as one optimization problem

and tries to solve the problem in one single step, e.g.,

‘‘Crammer and Singer’’ approach [19]. However, this

method is very difficult and computationally expensive to
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solve due to its complexity and is hardly used in practical

SVM multiclass classification problems [17].

In one-versus-rest as it’s popularly referred to, for

datasets with K number of unique classes, for each class, a

binary SVM classifier model is constructed (trained)

totaling to K-SVM models. Each of the Kth SVM is

obtained by training the datasets with all members of Kth

class having the same positive class level (i.e., 1), whereas

all the remaining training vectors in the datasets are

assigned same negative class level (i.e., - 1 or 0). During

prediction, a new input vector x is tested in all the K binary

SVMs and the output of their decision function D xð Þ (3) is
computed. The classifier model which produces the largest

function output is assumed to be the class which the input

vector x belongs [20]. For details about one-versus-one,

decision directed acyclic graph (DDAG) and error-cor-

recting output code (ECOC), refer to [21–24].

2.3 Radial basis function

Applications of RBF in machine learning algorithms such

as radial basis neural networks originally surfaced in the

literature in 1988 through the work of Broomhead and

Lowe [25]. They developed the opinion that in most feed-

forward networks; the kernel function performs a simple

curve fitting operation in a higher-dimensional space. They

further demonstrated that learning was synonymous to

producing a best fit surface in that space (i.e., higher-di-

mensional space) to a finite set of data points (training set)

and generalization was equivalent to interpolating the test

data on this fitting surface [20, 25]. RBF is any real-valued

function, / x; cð Þ; whose value depends only on the distance
from the origin c ¼ 0ð Þ, or alternatively on the distance

from some other point c, called a center, so that:

/ x; cð Þ ¼ /ð x; ck kÞ ð6Þ

The ‘2-norm operator || || is usually Euclidean distance,

although other distance functions are also possible. Most

commonly used RBF are Gaussian, multi-quadratic,

inverse quadratic and inverse multi-quadratic functions

[13]. Gaussian radial function kernel commonly used is

represented in (7).

/ x; cð Þ ¼ e
� x�c2

2r2

� �
ð7Þ

where sigma r is the standard deviation of the kernel,

which is adjustable.

2.4 Compressive sensing theory

After the landmark Nyquist–Shannon sampling theory, an

evolution into the digital and information technology era

had its major boosts. The theory provided a limit for effi-

cient reconstruction of an analog signal sampled at regu-

larly spaced intervals (i.e., period). It states that if a signal

is sampled by a frequency at least twice its bandwidth, then

the signal can be perfectly reconstructed from its samples

[26]. Sooner enough, researchers realized sampling at

Nyquist rate results in a large number of samples resulting

Fig. 1 Maximum margin SVM
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to large data samples, inefficient use of communication

channels and huge processing of data. Inspired by the

information theory [27], a number of signal encoding

algorithms are evolved over time in an attempt to reduce

the signal size samples without loss of information. Com-

pressive sensing (CS) is one of the data compression

algorithms with even more radical approach to data com-

pression [28].

Generally, in data compression algorithms, a N length

signal x in RN space is transformed into a linear sum of its

basis functions wi i ¼ 1; 2; . . .Nð Þ and scaling vector s as in

(8). The signal x is K-sparse if it has at most, K nonzero

and, N � Kð Þ zero coefficients in s. The case of interest in

CS is when K � N [28–30]. CS theory addressed three

inefficiencies of the conventional compression techniques.

First, the initial number of samples N may be large even if

the desired K is small. Second, the set of all N transform

coefficients fsig must be computed even though all but

K of them will be discarded. Third, the locations of the

large coefficients must be encoded, thus introducing an

overhead [28].

x ¼
XN
i¼1

siwi ð8Þ

CS considers a general linear measurement process that

computes M\N inner products between x. The measure-

ment y of x can be obtained from a M � N measurement

matrix U ¼ ½/1;/2;/3; . . ./N �, with column vectors

/iði ¼ 1; 2; . . .MÞ. Using vector form of (8), a new mea-

surement vector y is computed.

y ¼ Ux ¼ UWs ¼ Hs ð9Þ

where H ¼ UW and coefficients vector s can be obtained

s ¼ HTy. The measurement matrix must allow the recon-

struction of the N length signal x from M\N measure-

ments provided it satisfies (10) for an arbitrary 3K-sparse

vector v. This condition is referred to as restricted isometry

property (RIP) [28].

1� �� Hvk k2
vk k2

� 1þ � ð10Þ

where v is any vector sharing the same non-zero entries as s

and for some �[ 0. The authors in [20] proved that the

measurement matrix satisfying (10) can be obtained with

high probability from independent identically distributed

(i.i.d) random variables of the Gaussian probability density

function with mean zero and variance 1/N.

3 Proposed approach

3.1 Proposed feature extraction

One of the important attributes of any feature extraction

algorithm is its ability to represent the original row infor-

mation in another form (features) while retaining the

original data uniqueness. In the proposed approach, arith-

metic mean difference (AMD) and CS were proposed as

the feature extractors. Initially, a 2D image sample I of size

M � N is vectorized and then normalized within an interval

[0 1] to form a column vector x of size Q� 1, where

Q ¼ M � N. The AMD vector xamd of the normalized

image vector, x is computed as follows:

xamd
i ¼ xi �

1

Q

XQ
i¼1

xi i ¼ 1; 2; . . .;Qð Þ ð11Þ

The final feature fv is computed using xamd and mea-

surement matrix U, obtained using the CS theory (de-

scribed above) as follows:

fv ¼ U.xamd: ð12Þ

where ‘.’ is the dot product operator.

3.2 Dynamic cascaded classifier

The objective of DCC is to form a classifier capable of

learning any training patterns with minimum error and a

good generalization capacity. The trade-offs between

training error and generalization error of the learning-based

classifiers have received lots of attention. As discussed in

the preceding section, higher-capacity classifiers can learn

any training pattern without error but exhibits poor gen-

eralization due to their complexity [13]. However, it has

been shown that a good generalization performance can be

achieved when the capacity of the classification function is

matched to the size of the training set or by minimizing the

complexity of the classifier [13]. Therefore, the proposed

DCC addressed the issue of minimizing training error using

CS by matching the training sets with the classifier’s ker-

nel. The second problem of generalization is addressed by

proposing an automatic way of determining the classifier

optimum kernel’s parameter. Proper tuning or selection of

the classifier’s kernel parameters has been associated with

low generalization error [17]. Based on this, DCC has been

designed as a three-stage classifier built around binary

SVMs with RBF as a kernel function. Figure 2 represents

the schematic of the proposed DCC with training data xtr
and testing data xts as inputs.
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3.2.1 Stage one

The first stage in the cascade is a prerequisite to the suc-

ceeding stages. The aim here is to transform the training

vectors into a random variable Gaussian space so that the

training sets match the Gaussian RBF kernel. CS with a

random variables Gaussian measurement matrix ensures

this goal is achieved. Since such kernel basically performs

a task synonymous to curve fitting [20], best fit with least

mean square error is estimated. The Gaussian transforma-

tion of the training patterns can be realized based on (9) as

described in CS theory. In accordance with the theory, the

measurements preserved the class uniqueness of each input

vector x. In addition, in this way a dimensionality reduction

is also realized since the measurements matrix U can be set

to predefined length. For a training vector x, the Gaussian

transformation according to CS will produce a vector x0

such that:

x0 ¼ U.x ð13Þ

3.2.2 Stage two

This is the strongest link in the cascade where maximum

margin binary SVM classifier models are created and

trained with RBF as kernel function. The numbers of

models created are equals to the number of classes in the

training sets as in one-versus-rest multiclass training.

Sequel to this training, an optimum value of RBF sigma

ðroptÞ is determined from the portion of datasets which

have not been used for training. The two key processes in

the link are described in the following subsections.

3.2.2.1 Proposed automatic RBF kernel parameter selec-
tion A key factor to optimizing the classifiers general-

ization error is proper selection of the kernel’s parameter

[14]. The major goal here is to automatically select kernel

parameter that minimizes the classifier’s generalization

error. To optimize this parameter ðrÞ for RBF kernel, an

optimization technique based on the receiver operating

characteristic (ROC) analysis of the classifier has been

proposed. A cross-validation with the portion of the data-

base which has not been used during training is used to

generate the responses of the K trained binary classifiers.

Assuming K binary SVM models are created based on

training dataset, where K is equals to the total number of

expressions classes in the dataset. Measurement matrixes,

i.e., false accept rate (FAR) and false reject rate (FRR), are

generated using the cross-validation dataset. For each

cross-validation vector x, K scores are recorded being the

outputs of K binary SVM decision function D xð Þ. Since
each cross-validation vector x can only belong to only one

1 binary SVM model (i.e., a particular expression class),

there are P p ¼ 1ð Þ number of genuine claim and

N n ¼ k � 1ð Þ number of imposters claims to be made and

hence FAR and FRR can be computed for each cross-

validation vector x, as follows:

Fig. 2 Proposed DCC

schematic diagram
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FAR ¼ 1

N

XN
i¼1

1 	 ðd Ii; Tið Þ[ cÞ ð14Þ

FRR ¼ 1

P

XP
i¼1

1 	 ðd Ii; Tið Þ\cÞ ð15Þ

where d Ii; Tið Þ is the measurement matrix between the

input vector I and template vector T and c is the hard

decision threshold. The matrix d Ii; Tið Þ is equivalent to the

SVM decision function D xð Þ, and the threshold c is equal

to zero as used in binary SVM. Both expressions

d Ii; Tið Þ[ cð Þ and ðd Ii; Tið Þ\cÞ are evaluated as 1 if true,

otherwise are evaluated as 0.

An ideal situation is where both FRR and FAR are

equivalent to zero and hence the cumulative objective

function F, for M cross-validation vectors, is defined as

follows;

F ¼ min
XM
j¼1

1

N

XN
i¼1

1 	 ðd Ii;Tið Þ[ cÞ þ 1

P

XP
i¼1

1 	 ðd Ii; Tið Þ\cÞ
( )

ð16Þ

The RBF kernel parameter r, which is to be optimized

and determined automatically, is arbitrarily initialized and

then updated using (17).

rnew ¼ rold þ Dr ð17Þ

Dr is the incremental step of r and is determined based

on the present and preceding output of the objective

function F to ensure speedy convergence.

Dr ¼ 0:1 	 Fold � Fnewð Þ ð18Þ

rnew is returned as the optimal value optimum sigma y, in

the case of convergence or maximum number of iterations

is reached.

3.2.2.2 Single-branch decision tree multiclass classification
approach Here variant of multiclass SVM proposed in

[31] is adopted. The classification approach is similar to

one-versus-rest algorithm in the training phase but differs

in the prediction. During prediction, the winning class to

which a new input vector x belongs is evaluated via a

single-branch decision tree. The tree has a single branch

with decision nodes equal to the number of binary SVMs

created during training. Each decision node represents a

unique binary SVM with two leaves (left and right) cor-

responding to the output response of the node when new

input vector x is presented to it. Vector x traverses from the

root of the tree to last node along the evaluating path. At

each decision node, D xð Þ is computed and if D xð Þ[ 0, the

corresponding class on the left side of that node will be

assigned a logical 1, whereas if D xð Þ� 0, the class is

assigned logical 0. At the end of evaluation, only classes

with logical 1 are considered, whereas classes with zero

output are eliminated. In the end, candidates with output 1

are further proofed for three possibilities until an undis-

puted winner is found [31].

3.3 Stage three

Conceptually, the third stage deals with an exceptional

circumstance where convergence has not been achieved

after a predetermined number of iterations. Sequel to this, a

simple classifier but with different orientation (i.e., dis-

similar approach) to the binary SVMs used in second stage

will suffice. Because a feature may still exist of a testing

vector x, associating it with its rightful class which the

second stage is unable to exploit. To keep the approach

simple having gone far through the cascades, k-nearest

neighbor based on d‘2 -norm (Euclidean) distance measure

has been proposed to be used in this stage, though other

classifiers may work as well. For an n-dimensional training

vector xtr and testing vector xts, their Euclidean distance is

measured as;

d‘2 xtr; xtsð Þ ¼ xtr � xtsk k2 ð16Þ

4 Simulation results

To evaluate the performance of the proposed approach, two

standard methods for performance evaluation in FER are

adopted. These methods include expression specific per-

formance and the general cross-validation results which

give the overall performance of the algorithm. Three

popular FER databases were used to evaluate the perfor-

mance of the proposed approach. Extensive experiments

were conducted on these FER databases which include

Japanese Female Facial Expression (JAFFE) [5] and Cohn-

Kanade (CK) [32] and MMI facial expression database

[33]. On all databases, identity-independent (II) approach

was adopted, i.e., all the samples in the database were

grouped into their constituents’ expression classes (i.e.,

anger, disgust, fear, happy, neural, sad and surprise) inde-

pendent of the person to which the samples belong. This

implies that based on the seven basic facial expressions

considered, there are maximum of seven possible classes

independent of the size of the database. The results

obtained from the proposed approach were validated into

categories:

(a) Comparisons with existing state-of-the-art SVM

multilevel classification algorithms. In both cases,

proposed RBF kernel parameter selection is used to

select the kernel’s optimum parameter (sigma).
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(b) Comparison with results obtained by other research-

ers under the same databases and experimental

procedures.

The results presented in Tables 1, 2 and 3 compared

proposed DCC results with other multiclass classification

approaches. The other approaches were implemented using

the same proposed future extraction approach and the

optimized kernel parameter computed with proposed

approach for parameter selection in this paper.

4.1 Experiments on JAFFE database

The JAFFE database has 213 images from 10 subjects each

having 3 to 4 sample images per expression [5]. 210 images

were used in this context. Before the training, all the

samples were grouped into seven classes based on their

expression contents (II). Leave-one-subject-out (LOSO)

standard cross-validation was used for training and evalu-

ation. In LOSO, at each run of the training, one sample

from each of the seven groups was used as a testing set

while the remaining samples were used as training set.

Each run of the training was repeated with different test

samples until each sample was uniquely used as testing

data as well as training data. The recognition rate was

given as the average performance over all the runs. Fig-

ure 3 contains a cross section of the JAFFE database. The

vertical columns represent seven PI expression classes,

whereas each row represents seven PD expression classes

for a single subject.

4.2 Experiments on CK database

CK database contains 97 subjects and total of 8795 sample

images [32]. Two standard cross-validation procedures

were use used here (i.e., LOSO and n-fold validation).

LOSO cross-validation technique could be very exhaustive

and computationally intensive [1], and hence, LOSO cross-

validation was run only once at a fixed feature vector

length. For the n-fold validation, the tenfold cross-

validation method was used. In tenfold cross-validation

using II approach, all the sample images were initially

grouped into their constituent’s classes based on expression

information. Each of the expression group is divided into

10 subclasses with each subclass having the same number

of samples. Then, the 10 subclasses from each unique

group were recombined (using random selection) with the

remaining subclasses from other unique groups to form

tenfold with each fold having all the unique group samples

(i.e., unique expression classes) and the same size. During

training, onefold was used as the testing set whereas the

remaining ninefolds were used as training set. The training

was repeated 10 times, each time with a different fold as a

testing set whereas the remaining ninefolds as the training

set. The recognition rate was given as the average perfor-

mance from the 10 cross-validation runs.

It is noteworthy that the original CK database contains

640 9 490 sized samples with non-facial background

information. In this experiment, all face samples were

cropped to remove irrelevant background information and

resized to 256 9 256. Moreover, every expression in CK

database starts from neutral to peak level. In these exper-

iments neural samples were excluded from the non-neutral

facial expression classes. Examples of preprocessed images

from CK database are shown in Fig. 4.

Table 1 LOPO cross-validation results across databases (JAFFE JF, MMI and CK) using pi grouping

Length Sigma 1-vs-1 1-vs-rest DDAG ECOC DCC

JF CK MM1 JF CK MM1 JF CK MM1 JF CK MM1 JF CK MM1 JF CK MM1

100 8.1 4.0 1.2 72.4 91.7 89.3 76.2 97.6 93.3 75.7 97.0 94.0 77.6 97.7 92.1 90.5 97.7 96.1

200 9.8 5.8 2.0 69.5 95.6 90.0 76.2 98.3 93.7 76.2 98.0 94.0 78.1 98.2 94.5 92.9 97.5 96.8

300 11.2 7.5 2.8 71.9 94.0 90.0 78.6 98.0 95.0 80.0 98.0 94.8 82.4 97.2 95.0 92.4 98.3 98.1

400 12.3 7.3 3.4 75.2 96.2 92.3 81.4 98.5 95.4 80.5 98.1 96.2 80.0 98.3 96.0 90.5 99.3 98.6

500 13.4 10.4 4.0 74.8 93.3 91.5 78.1 97.6 95.6 83.3 97.9 96.3 81.9 98.1 97.3 94.3 97.1 98.4

600 14.2 11.9 4.9 79.1 91.9 90.0 82.4 97.7 94.3 85.7 97.2 96.0 82.4 96.7 95.7 92.4 96.5 97.7

Table 2 LOPO cross-validation results CK? database using pi

grouping

Length Sigma 1-vs-1 1-vs-rest DDAG ECOC DCC

100 3.80 90.76 96.50 95.99 95.70 97.22

200 4.90 94.50 97.30 97.80 98.25 97.89

300 7.85 92.90 96.91 98.10 96.12 97.98

400 7.90 95.10 97.01 98.20 97.93 98.35

500 11.42 92.32 97.02 97.01 97.81 97.72

600 12.30 90.80 97.89 96.29 96.72 96.01
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4.3 Experiments on MMI database

The MMI database was compiled from more than 20 stu-

dents and research staff members’ images that are from

both genders (44% female), ranging in age from 19 to

62 years [33]. For each session, an image sequence is

captured that has neutral faces at the beginning and the end.

During the experiments, 121 samples sequences were

selected from 28 subjects. Seven emotion classes were and

LOSO cross-validation procedures. In each sequence, the

Table 3 Confusion matrix with

DCC on JAFFE database
Length = 500 Anger Disgust Fear Happy Neutral Sad Surprise

Anger 90.2 5.3 0.0 0.0 0.0 7.3 0.0

Disgust 3.4 94.7 3.7 0.0 0.0 0.0 0.0

Fear 0.4 0.0 93.0 2.0 0.0 0.0 0.0

Happy 0.0 0.0 0.0 95.7 3.3 0.0 0.0

Normal 0.0 0.0 0.0 2.3 96.3 1.7 0.0

Sad 3.3 0.0 0.0 0.0 0.4 91.0 0.0

Surprise 2.7 0.0 3.3 0.0 0.0 0.0 100

Fig. 3 Cross section of JAFFE database

Fig. 4 Cross section of preprocessed CK database
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first frames are chosen as the neutral while peak frames

were used to a facial expression class. The cross-validation

results at different feature vector length are presented in

Table 1, where Table 4 presents the confusion matrix using

the proposed approach.

4.4 Experiments on extended Cohn-Kanade
(CK1) database

The C? database is an extension of the original CK data-

base. It is made up of facial behavior of 210 adults were

recorded with two synchronized Panasonic AG-7500

cameras. Participants were 18 to 50 years of age, 69%

female, 81%, Euro-American, 13% Afro-American and 6%

other groups. Participants were instructed by an experi-

menter to perform a series of 23 facial displays; these

included single action units and combinations of action

units. Each display began and ended in a neutral face with

any exceptions noted. Image sequences for frontal views

and 30-degree views were digitized into either 640 9 490

or 640 9 480 pixel arrays with 8- bit gray-scale or 24-bit

color values [34].

The same approach of cross-validation was adopted here

during the experiments as in the CK dataset training. The

results obtained are shown in Table 2.

4.5 Expression-specific performance results

Apart from the cross-validation results, one of the most

important indicators on how well FER algorithm performs

is, its performances based on expression modes. Sequel to

this fact, confusion matrices have been computed on the

three databases and presented in Table 3, 4 and 5. The

confusion matrices are computed where the proposed

approach has its best cross-validation results, i.e., for

JAFFE, the best cross-validation result is 94.3% at 500

feature vector length.

4.6 Comparison with other approaches
in the literature

Here performance comparison is performed with other

state-of-the-arts approaches under the same settings and

databases to with the proposed approached. Moreover, the

gain in performance between the proposed method and the

others also included as contained in Tables 6 and 7.

4.7 Discussions

A new approach has been proposed which is effective,

competitive and promising based on the experimental

results obtained. The experimental results validate the

consistency and good performance of this proposed

approach over most of the state-of-the-art approaches

compared with. Some novel contributions contained in this

paper that could be seen as the backbone to the good

performance exhibited by the proposed approach are wor-

thy of being highlighted:

(a) AMD and CS feature extraction proposed to be used

along DCC are simple and help to drastically avoid

exhaustive computations as is the case in many

feature extractions.

(b) The concept of using compressive sensing to project

the input vectors into random Gaussian space has

been instrumental and a prerequisite to ensure that

the input vectors, no matter the type, are matched

with the RBF kernel of the SVM classifiers. This

proposed method has the combined the benefits of

dimensionality reduction and generally making it

possible for the SVM kernel to be able to learn any

pattern with minimum error irrespective of the

vectors type. By doing so, the approach makes it

possible for SVM classifiers to learn even with a

training pattern which conventional SVM might have

hitherto fail to learn.

(c) It could be inferred that the proposed approach for

RBF kernel parameter optimization has been very

effective. This could be testified from the fact that,

all the multiclass classification algorithms used in the

Table 4 Confusion matrix with

DCC on MMI database
Length = 400 Anger Disgust Fear Happy Neutral Sad Surprise

Anger 97.0 0.3 0.0 0.0 0.0 0.0 0.0

Disgust 1.4 98.3 2.7 0.0 0.0 0.0 0.0

Fear 0.0 0.0 96.7 0.0 0.0 0.0 0.0

Happy 0.0 0.0 0.0 100 0.0 0.0 0.0

Neutral 0.0 1.4 0.0 0.0 100 2.3 0.0

Sad 1.3 0.0 0.3 0.0 0.0 97.7 0.0

Surprise 0.3 0.0 0.3 0.0 0.0 0.0 100
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experiments have good performance. Moreover, the

optimization approach for parameter selection is

automatic and a convergence is realized in all the

conducted and is consistent. However, this proposed

automatic parameter selection is limited here to a

single parameter optimization. Multiple parameter

selection using the proposed method could be

computationally expensive as it may require numer-

ous combinations of the multiple parameters to be

optimized.

(d) In summary all the approaches proposed together

achieved simplicity, good performance, less classi-

fier generalization error, ability to learn pattern and

consistency.

4.7.1 DCC dynamic responses

Figures 5, 6 and 7 show the receiver operating character-

istics (ROC) responses of the DCC classifier at different

feature vector lengths. These responses compared FAR,

FRR and the RBF kernel’s parameter using the proposed

approach for optimum parameter selection. The show the

behavioral pattern of the FAR and FRR before, during and

after convergence. From all the three scenarios, it can be

seen that the optimum kernel’s parameter scales up linearly

as the length of the feature vectors increases. It is not

surprising how the FRR takes the shape of the RBF kernel,

because all the input vectors were transformed into Gaus-

sian space before they were trained with RBF kernel. It is

Table 5 Confusion matrix with

DCC on CK database
Length = 400 Anger Disgust Fear Happy Neutral Sad Surprise

Anger 99.0 1.3 0.0 0.0 0.0 1.1 0.0

Disgust 0.7 98.3 0.0 0.0 0.0 0.0 0.0

Fear 0.0 0.0 99.4 0.0 0.0 0.0 0.0

Happy 0.0 0.0 0.0 100 0.0 0.0 0.0

Normal 0.0 0.4 0.0 0.0 100 0.0 0.0

Sad 0.3 0.0 0.3 0.0 0.0 98.9 0.0

Surprise 00 0.0 0.3 0.0 0.0 0.0 100

Table 6 Comparison with different approaches on JAFFE database

References Feature extraction Dimension reduction Classifier Recog. rate (%) Performance gain (%)

by proposed method

[3] Radial encoded gabor SVM 89.67 4.63

[35] LPQ ?es_LBP-s cr_LPP SVM 76.67 17.63

[36] LBP PCA SVM 53.80 40.50

[36] LBP GDA SVM 65.70 28.60

[36] LBP Adaboost SVM 65.71 28.59

[37] Gabor Histogram MV-Boost SVM 58.70 35.60

[38] LBP SRC SVM 62.90 31.40

[39] CT LLE SVM 63.81 30.40

[39] ASM N/A SVM 68.50 25.80

[40] LBP ? Gabor N/A Ensembles SVMs 70.00 24.30

[41] Gabor Filter N/A Fusion SVMs 72.00 22.30

[42] MB-LGBP N/A Two level SVMs 74.18 20.12

[43] LNBPOA –(Tenfold) SVM 95.50 - 1.20

[43] GEM ? LNBPOA –(Tenfold) SVM 63.00 31.30

[43] GEM ? LNBPTA –(Tenfold) SVM 62.40 31.90

[43] LBP (no 3D features) –(Tenfold) SVM 81.50 12.80

[44] LDN CODES – SVM 90.10 4.20

[45] TR1DGPA – NN classifier 92.20 2.10

[46] Boosted-LBP – SVM 81.00 13.30

[47] Gabor encoded FLD 89.60 4.70

Proposed Proposed CS SBDT SVM 94.30 0.00
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Table 7 Comparison with different approaches on CK database

References Subjects Classes Validation Recognition rate (%) Performance gain (%)

by proposed method

[3] 97 7 Tenfold 91.51 6.33

[43] – 7 Tenfold 97.40 0.44

[43] – 7 Tenfold 50.20 47.64

[43] – 7 Tenfold 89.70 8.14

[44] 96 7 Tenfold 96.60 1.24

[46] – 7 Tenfold 88.90 8.94

[47] 96 7 Tenfold 91.50 6.34

[48] 76 6 Fivefold 90.90 6.94

[49] 90 6 93.66 4.18

[50] 97 6 Tenfold 96.26 1.58

[51] 90 6 LOSO 96.33 1.51

[52] 96 7 (6) Tenfold 88.4 (92.1) 9.44 (5.74)

[53] 90 7 Tenfold 86.90 10.94

[54] 90 6 LOSO 93.80 4.04

[55] 97 6 – 93.80 4.04

[56] 96 7 LOSO 94.60 3.04

[57] 96 6 Tenfold 86.80 11.04

Proposed 97 7 Tenfold 97.84 0.00

(a) 100 features (b) 300 features (c) 600 features
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Fig. 5 DCC ROC responses for PI LOPO (JAFFE) training at different feature vector length
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Fig. 6 DCC ROC responses for PD LOPO (JAFFE) training at different feature vector length
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also noteworthy that, the FRR of the DCC in CK (PI) and

JAFFE (PI) becomes highly unstable after its best operating

point or convergence point is attained. Parameter chosen in

that region will result in a very poor generalization per-

formance. Hence, in a situation whereby the error differ-

ence of the objective function is set to a value close to zero

there is a chance that the convergence may be skipped and

a region of instability is experienced. In this exceptional

circumstance the training is stopped by the predetermined

maximum number of allowable iterations. At this point,

third stage of the classifier may be used for reinforcement.

In general, the DCC ROC plots testify that the best kernel

parameter can always be found within the search space

based on the proposed approach for parameter selection in

preceding section.

5 Conclusions

A new approach for facial expression recognition has been

proposed. The proposed approach was conceived to pro-

duce good feature extraction and classifier algorithms for

overall performance of the process. The combination of

arithmetic mean difference and compressive sensing as

feature extractor has been validated by the experimental

results and has advantage of less computation. Similarly,

the compressive sensing techniques used to transform

feature vector into Gaussian space in the proposed DCC

ensures that the classifier can operate with any feature

extraction algorithm and also capable of learning any

training patterns. The experimental results have also shown

that the proposed automatic parameter selection approach

will always converge to an optimum value based on the

rules used for search. Furthermore, the single-branch

decision tree proposed has also lived to expectations and

has a less overheads in evaluating solution compared to its

counterparts. The overall approach has been able to

achieve effectiveness and simplicity in feature extraction

and reduced training and generalization error of the clas-

sifier which together results in good performance.
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