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Abstract
The strength of evolutionary computational heuristic paradigms is exploited for parameter estimation of power signal

modeling problems by incorporating differential evolution (DE), genetic algorithms (GAs) and pattern search (PS)

methodologies. The objective function of power signal harmonics is constructed by utilizing the power of approximation

theory in mean squared error sense. The stiff optimization task of signal harmonics is performed with heuristic solvers DE,

GAs and PS that provide efficacy, fast convergence rate and avoid getting trapped in local minima. Statistics reveal that DE

outperforms its counterparts in terms of accuracy, robustness and complexity measures.

Keywords Power signals � Parameter estimation � Differential evolution � Genetic algorithm � Pattern search algorithm �
Evolutionary computing

1 Introduction

Electrical power supply systems are designed to ensure

standard power provision to the consumers and the utilities.

The ideal sinusoidal behavior of an AC power voltage or

current signals distorts due to the excessive employment of

power electronics devices, power converters, solid-state

power switching devices, renewable power grid integration

and nonlinear loads in electrical grid stations [1–5]. The

distorted signals deteriorate the rated voltage and current,

which badly affect the electrical equipment operations [6].

Due to these reasons, it is essential to monitor power

quality of electrical networks by estimating the parameters

for amplitudes, phases and frequencies to analyze the

power signals. During the last few decades, researchers

have made great effort toward estimating parameters of the

signal models. Chen et al. provided several fast Fourier

transform-based methods for parameter estimation [7]. Li

studied least squares-based algorithms for power signals

modeling [8]. Zhao et al. considered multifrequency iden-

tification technique for parameter estimation of various

signal models [9]. Cao proposed hierarchical identification

approach for estimation of signal frequency [10]. Ding

et al. introduced recursive least squares and stochastic

gradient-based parameter estimation techniques [11].

Adaptive filtering techniques were employed for the esti-

mation of signal modeling parameters [12, 13]. Besides

simple least square technique variations, i.e., bilinear

recursive least square algorithm [14], forgetting factor [15]

and variable constraint-based least mean square [16] were

also investigated for estimation of signal components.

These all are deterministic approaches, which are
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exhaustively applied for parameter identification of elec-

trical power signals with their own perks and limitations,

while stochastic solvers proficiency in nonlinear systems

has not yet been widely exploited in harmonic estimation

problems of various electrical networks.

The stochastic numerical optimization mechanisms

based on evolutionary heuristics have been extensively

applied for optimization of constrained and unconstrained

problems in various domains [17–21]. Few notable appli-

cations of evolutionary computational technique include

problems arising in computational fluid dynamics [22],

electronic circuits [23], combustion theory [24], optimized

power dispatch in electrical power system [25], optimal

power flow solution [26], system identification [27],

bioinformatics [28], controls [29], satellite systems design

[30], magnetohydrodynamics [31], electrical machines

[32], energy [33], plasma physics [34], astrophysics [35],

atomic physics [36], signal processing [37], economic

dispatch problem [38] and finance [39]. In the view of the

above techniques, authors investigated the performance of

new optimization techniques for stable and accurate

parameter estimation of power signal modeling. In this

research work, the strength of differential evolution (DE)

optimization technique is employed for estimating funda-

mental signal model components by taking various noise

variances and different model dynamics. The comparative

performance of the proposed algorithm has also been car-

ried out with renowned heuristic techniques based on

genetic algorithms (GAs) and pattern search (PS) for dif-

ferent power signal models. The primary objectives of the

proposed study are described as:

• Novel application of bioinspired heuristic computing

through differential evolution is proposed for estimating

fundamental components of power signal in the pres-

ence of noise with different variance levels.

• The objective function is formulated by exploiting the

competency of approximation theory in mean squared

error sense, and unknown adjustable variables of the

system model are optimized with efficient global search

tools based on differential evolution, genetic algorithms

and pattern search method to draw constructive

deductions.

• The efficacy, reliability and stability of the scheme are

evaluated through comparison of true parameters of the

power signal models with different degree of freedom

based on amplitudes, frequencies, phases and their

arbitrary combinations.

• Validation of the performance through statistic opera-

tors calculated for multiple executions of the algorithm

in terms of mean absolute error (MAE), Nash–Sutcliffe

efficiency (NSE) and Theil’s inequality coefficient

(TIC) along with their global versions.

Rest of the paper is organized as follows: The power

signal model, objective function mathematical formulation,

detailed description of designed methodology and opti-

mization procedures are presented in Sect. 2. Discussion on

the simulation results based on single run and multiple runs

is provided in Sects. 3 and 4, respectively, in terms of

tabular and graphical illustrations. Concluding remarks are

listed in Sect. 5.

2 Design methodology

The proposed methodology for parameter estimation

problem in power signal modeling consists of two parts; in

the first step, system modeling of power signals is over-

viewed along with the development of the objective func-

tion in the mean squared error sense, while in the later

stage, the optimization procedures for minimizing the error

function are described. The detailed description of the

designed scheme in the block processes is illustrated in

Fig. 1.

2.1 Power signal modeling

The general form of electric alternating current signal can

be described in terms of frequencies, phases and ampli-

tudes as:

rðtÞ ¼
Xn

i¼1

ci sinðxit þ uiÞ ¼ c1 sinðx1t þ u1Þ

þ c2 sinðx2t þ u2Þ þ � � � þ cn sinðxnt þ unÞ;
ð1Þ

where c ¼ ½c1; c2; . . .; cn� are the amplitudes of the peak

deviation of the function from zero, the number of oscil-

lations (cycles) that occur each second of time is

x ¼ ½x1;x2; . . .;xn�, the frequencies. u ¼ ½u1;u2; . . .;un�
are the phases (in radians) at t = 0 during oscillation. For

all nonzero values of u, the complete waveform emerges to

be shifted in timescale by u=x seconds. A positive value of

u signifies an advance, while a negative value indicates a

delay in the signal. Equation (1) appears in many report

studies of engineering and applied sciences [40–42] and

referenced therein.

In the experiment, the sampling time is tm ¼ mh, where h is

sampling period. The observed data are shown as tk; rðtkÞf g.
Let rm ¼ rðtmÞ for implication; then, the discretized power

signal based on sinusoidal function is given as:

rm ¼
Xn

i¼1

ci sinðxitm þ uiÞ ¼ c1 sin x1tm þ u1ð Þ

þ c2 sin x2tm þ uð Þ2þ � � � þ cn sin xntm þ unð Þ;
For m ¼ 1; 2; . . .;M

ð2Þ
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Standalone as well as the arbitrary combination of the

parameters based on frequencies, phases and amplitudes of

the sinusoidal-based signal model can be formulated for the

estimation problems. The unknown parameters to be

identified are given as:

hc ¼ c ¼ c1; c2; . . .; cn½ �T2 Rn ð3Þ

hx ¼ x ¼ x1;x2; . . .;xn½ �T2 Rn ð4Þ

hu ¼ u ¼ u1;u2; . . .;un½ �T2 Rn ð5Þ

hc;x ¼ ½c;x� ¼ c1; c2; . . .; cn;x1;x2; . . .;xn½ �T2 R2n ð6Þ

hc;u :¼ ½c;u� ¼ c1; c2; . . .; cn;u1;u2; . . .;un½ �T2 R2n ð7Þ

hx;u :¼ ½x;u� ¼ x1;x2; . . .;xn;u1;u2; . . .;un½ �T2 R2n

ð8Þ

hc;x;u :¼ ½c; x; u�
¼ c1; c2; . . .; cn;x1;x2; . . .;xn;u1;u2; . . .;un½ �T

2 R3n

ð9Þ

The standalone parameter identification problems are

based on Eqs. (3–5), while parametric Eqs. (6–9) represent

the integrated parameter identification systems.

The fitness function for power signal modeling problem

is formulated by exploiting the approximation theory in

mean squared error sense as:

e ¼ 1

M

XM

m¼1

rm � r̂m þ vmð Þð Þ2 ð10Þ

e ¼ 1

M

XM

m¼1

Xn

i¼1

ci sinðxitm þ uiÞ �
Xn

i¼1

ĉi sinðx̂itm þ ûiÞ � vm

 !2

;

ð11Þ

where v ¼ ½v1; v2; . . .; vm� is the noise signal with zero

mean and constant variance, and r̂m is the approximate

signal with parameter vectors for amplitude, frequency and

phase as:

ĥc ¼ ĉ ¼ ĉ1; ĉ2; . . .; ĉn½ �T2 Rn; ð12Þ

ĥx ¼ x̂ ¼ x̂1; x̂2; . . .; x̂n½ �T2 Rn; ð13Þ

ĥu ¼ û ¼ û1; û2; . . .; ûn½ �T2 Rn; ð14Þ

accordingly, the variables ĥc;x, ĥc;u, ĥx;u and ĥc;x;u of

integrated parameter identification systems can be defined.

Now the requirement is to optimize fitness function (10)

such that e approaches 0; then, the adaptive parameters ĥc,

ĥx, ĥu, ĥc;x, ĥc;u, ĥx;u and ĥc;x;u match with the true

variables hc, hx, hu, hc;x, hc;u, hx;u and hc;x;u of the

model.

2.2 Optimization procedure

The well-known global stochastic procedures DE, GAs and

PS are used for estimation of signal model parameter

Fig. 1 Graphical abstract of the designed scheme
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vector h by optimizing objective function as described in

Eq. (10), and brief introduction of these optimization sol-

vers is given in this section.

DE is a stochastic optimization technique belonging to

the class of evolutionary algorithms introduced by Storn

and Price [43]. It is population-based search technique

which mainly uses mutation as a search tool. Later the

selection operation directs the search in the proximity of

the feasible regions in the search space. Crossover and

recombination operators are also used to search for better

solution space. The generic flow graph with coherent

designed steps of DE is shown in Fig. 2, while recent

applications of DE are seen in solving different problems

including text classification [44], reactive power

management [45], hydrothermal energy scheduling prob-

lem [46], load dispatch involving wind power plant

incorporating emission [47], nonlinear systems [48] and

nanofluidics systems [49], while the renewed application of

DE in diverse field can be seen latest review articles

[50–53] and referenced therein. Genetic algorithms (GAs)

belong to a family of evolutionary computational heuristics

[54, 55]. Inspired by the theory of evolution, an optimal

solution of a problem is determined through three basic

genetic operators, i.e., mutation, selection and reproduc-

tion. The generic flow graph with essential procedural steps

of GAs is presented in Fig. 2a. The global search efficacy

of well-tuned, coherent structure and smooth implemented

GAs can provide near-optimal solution for multiobjective,

Pick Base Points and 
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Objective Function

Make Local Search. Move 
distance to each side and 
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Than Base Points
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Fig. 2 Schematic workflow of PS and GAs
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multiconstraint, convex and nonconvex problems. This

method was introduced by Holland [54, 55] and has several

applications in science and engineering [56–61]. The PS is

direct search optimization technique that does not require

gradient information to search for minimal value of the cost

function [62]. This method is exploited for nondifferen-

tiable, stochastic and continuous functions. The pattern

search algorithm computes a set of points known as a mesh

around the initial/current point that tends to approach

optimal value. When a current point is used to update a

pattern, a mesh is created. The generic flow diagram with

intermediate major steps of PS algorithm is illustrated in

Fig. 2b [62], while the few recent application addresses

with PS algorithm as can be seen in [63–66].

Efficiency of global optimizers DE, GAs and PS was the

reason to utilize these optimization procedures for finding

unknown parameters of signal model. The process flow

graph of DE for signal model is presented in Fig. 3, while

the detailed procedural steps are given in the form of

pseudocode demonstrated in Table 1.

2.3 Performance indices

In this research study, performance evaluation of the

designed methodology for parameter estimation of the

power signal models is carried out using four performance

indices, i.e., mean absolute error (MAE), root of mean

squared error (RMSE), estimation error function and

coefficient of determination (R2). All these performance

measures are briefly discussed in this section.

The performance measure MAEc is described as:

Fig. 3 Workflow diagram of DE for power signal modeling
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Table 1 Pseudocode for DE

algorithm for optimization of

power signal modeling system
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MAEc ¼
1

n

Xn

i¼1
hc;i � ĥc;i

���
���: ð15Þ

where ĥ is an estimated weight vector of true vector h.

Similarly, the performance measure of MAEc;x, MAEc;u,

MAEx;u, MAEc;x;u are formulated for ĥc;x, ĥc;u, ĥx;u and

ĥc;x;u, respectively.

The RMSE is mathematically defined as:

RMSEc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðhc;i � ĥc;iÞ2;
s

ð16Þ

Likewise, the root-mean-square errors for ĥc;x, ĥc;u, ĥx;u

and ĥc;x;u are also formulated mathematically.

Estimation error function d is calculated as:

d ¼
ĥ� h
���

���
hk k ; ð17Þ

where kk represents the L2 norm.

Coefficient of determination R2
c is determined as below:

R2
c ¼

Pn
i¼1 ðhc;i � �hÞðĥc;i � hÞ

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhc;i � �hÞ2

q Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĥc;i � ĥÞ2

q

0
B@

1
CA

2

;

for �h ¼ 1

n

Xn

i¼1

hc;i; h ¼ 1

n

Xn

i¼1

ĥc;i:

ð18Þ

The error in R2
cðER2

cÞ is shown as:

ER2
c ¼ 1� R2

c : ð19Þ

Similarly, the performance indices ER2
c;x, ER

2
c;u, ER

2
x;u

and ER2
c;x;u are also defined for ĥc;x, ĥc;u, ĥx;u and ĥc;x;u,

respectively.

The average fitness �e calculated from total number of

runs R is illustrated as:

�e ¼

1

R

XR

r¼1

er

1

R

XR

r¼1

1

N

XN

i¼1

uTðtc;i;rÞhþ vðtc;i;rÞ
� �

� uTðtc;i;rÞĥ
� �� �2

 !
:

8
>>>><

>>>>:

ð20Þ

Similarly, the global MAE (GMAEc) is mathematically

evaluated as:

GMAEc ¼
1

R

XR

r¼1

MAEcr ¼
1

R

XR

r¼1

Xn

i¼1

hc;i � ĥc;i

���
���

 !
; ð21Þ

where R represents the total number of independent

executions, and one independent run is an algorithmic

process with different random seeds. The global perfor-

mance measures GMAEc;x, GMAEc;u, GMAEx;u and

GMAEc;x;u are also formulized for ĥc;x, ĥc;u, ĥx;u and

ĥc;x;u, respectively.

Likewise, the global RMSE (GRMSEc) is formulated as,

GRMSEc ¼
1

R

XR

r¼1

RMSEcr ¼
1

R

XR

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðhc;i � ĥc;iÞ2
s !

:

ð22Þ

For ĥc;x, ĥc;u, ĥx;u and ĥc;x;u, the global performance

operators are GMAEc;x, GMAEc;u, GMAEx;u and GMAEc;x;u,

respectively.

Global ER2
c (GRc) is mathematically formalized as:

GRc ¼

1

R

XR

r¼1

ER2
c

1

R

XR

r¼1

Pn
i¼1 ðhc;i � �hÞðĥc;i � ĥÞ

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhc;i � hÞ2

q Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĥc;i � ĥÞ2

q

0
B@

1
CA

2

:

8
>>>>>>><

>>>>>>>:

ð23Þ

The global performance operators GRc;x, GRc;u, GRx;u

and GRc;x;u are also formulated for other four parameter

vectors. In case of the perfect models, the standard values

of these performance indices MAE, RMSE and ER2 should

be zero.

3 Simulation with discussion

The simulation results of numerical experimentation for

five examples are presented for parameter estimation

problem of power signal model with variation in opti-

mization parameters as well as different signal-to-noise

ratios using various heuristic computing techniques

including DE and GAs and PS algorithms.

Example 1 Power Signal with Unknown Amplitude: In this

example, the description of parameter estimation problem

of power signal with unknown amplitude as parameter

vector is considered as below:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ þ c4 sinðx4t þ u4Þ

hc ¼ c1; c2; c3; c4½ �T

hc ¼ ½1:8; 0:9; 4; 2:5�T:

ð24Þ
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Example 2 Power Signal with Unknown Amplitude and

Frequency: Here, an estimation problem of power signal

with unknown amplitude and frequency is evaluated as:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ

hc;x ¼ c1; c2; c3;x1;x2;x3½ �T

hc;x ¼ ½0:8; 0:9; 0:4; 0:7; 0:5; 0:2�T :

ð25Þ

Example 3 Power Signal with Unknown Amplitude and

Phase: In this case study, parameter estimation of power

signals having unknown amplitude and phase in the

parameter vector is considered as follows:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ

hc;u ¼ c1; c2; c3;u1;u2;u3½ �T

hc;u ¼ ½0:8; 0:6; 0:7; 0:6; 0:8; 0:76�T :

ð26Þ

Example 4 Power Signal with Unknown Frequency and

Phase: In this study, parameter estimation of power signal

with unknown frequency and phase in the parameter vector

is shown as follows:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ

hx;u ¼ x1;x2;x3;u1;u2;u3½ �T

hx;u ¼ ½0:07; 0:1; 0:2; 0:95; 0:8; 0:76�T :

ð27Þ

Example 5 Power Signal with Unknown Amplitude, Fre-

quency and Phase: In this example, signal power parameter

estimation model having unknown amplitude, frequency

and phase in the parameter vector is described as follows:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ:

hc;x;u ¼ c1; c2; c3;x1;x2;x3;u1;u2;u3½ �T

hc;x;u ¼ ½0:8; 0:9; 0:4; 0:95; 0:8; 0:76; 0:07; 0:5; 0:2�T :
ð28Þ

Example 6 Power Signal with Unknown Frequency and

Phase: In this example, signal parameter estimation model

having unknown frequency and phase in the parameter

vector is considered as follows:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ
. . .þ c4 sinðx4t þ u4Þ þ c5 sinðx5t þ u5Þ:

# ¼ x1;x2;x3;x4;x5;u1;u2;u3;u4;u5½ �T

# ¼ ½0:07; 0:50; 0:20; 0:30; 0:10; 0:95; 0:80; 0:76; 0:60; 0:56�T

ð29Þ

Example 7 Power Signal with Unknown Amplitude, Fre-

quency and Phase: In this example, power signal parameter

estimation model having unknown amplitude, frequency

and phase in the parameter vector is given as follows:

rðtÞ ¼ c1 sinðx1t þ u1Þ þ c2 sinðx2t þ u2Þ
þ c3 sinðx3t þ u3Þ þ c4 sinðx4t þ u4Þ
. . .þ c5 sinðx5t þ u5Þ þ c6 sinðx6t þ u6Þ
þ c7 sinðx7t þ u7Þ:

# ¼ c1; c2; c3; c4; c5; c6; c7;x1;x2;x3;x4;x5;x6;½
x7;u1;u2;u3;u4;u5;u6;u7�T

# ¼ ½0:80; 0:07; 0:95; 0:90; 0:50; 0:80; 0:40; 0:20;
0:76; 0:10; 0:30; 0:60; . . .0:0020; 0:10; 0:56;

0:10; 0:10; 0:34; 0:10; 0:90; 0:24�T

ð30Þ

In the present research study, five examples of power

signal modeling are taken, the input signal r(k) is a ran-

dom signal sequence with zero mean and unit variance,

and v(t) is a noise signal with zero mean for different

variance magnitudes. Three different noise levels are

added to the signal which produce three noise scenarios,

i.e., no noise scenario, 70-db and 30-db SNR levels,

respectively, while the values of sampling period h and

the data length L are set to 0.2 s and 2000 steps,

respectively. The parameter estimation of the power sig-

nal model is performed with the designed methodologies

based on DE, GAs and PS techniques, as discussed briefly

in the previous section, while the parameter settings of all

three algorithms for all seven examples are given in

Table 2. However, fitness function (10) is formulated for

M = 2000 for each case of all examples and is given as:

e ¼

1

2000

X2000

m¼1

rm � r̂m þ vmð Þð Þ2

1

2000

X2000

m¼1

Xn

i¼1

ci sinðxitm þ uiÞ �
Xn

i¼1

ĉi sinðx̂itm þ ûiÞ � vm

 !2

;

8
>>>>><

>>>>>:

ð31Þ

For all five examples of power signal model, the

optimization of objective function (31) is performed for

three SNR levels employing optimization procedures

based on DE, GAs and PS. The magnitudes of the per-

formance metrics MAE, MWD, RMSE and ER2 as

defined in Eqs. (15) to (18) for each optimization tech-

nique are computed for 100 independent executions. The

best run of the methodologies is revealed on the basis of

the smallest magnitudes of all these performance indices
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which are listed in Table 3 for all five examples of power

signal modeling problems. Comparison of actual signal

with the approximated signals is made and is plotted in

Figs. 4, 5 and 6 for each designed methodology DE, GAs

and PS, respectively. Absolute error (AE) values, i.e.,

deviation from the reference solution of power signals,

are evaluated to further elaborate similarity level of the

results with true solutions for all three SNR levels of each

defined example.

The absolute error is computed for the run of the

algorithm with minimum MAE value. The results of AE

for all five examples of power signal model for each

variation are shown graphically in Fig. 4a–f, for DE.

Generally, the respective AE magnitudes lie around

10-10, 10-06 and 10-03 for example 1, 10-10, 10-06 and

10-04 for example 2, 10-10, 10-06 and 10-04 for example

3, 10-10, 10-05 and 10-03 in case of example 4 and

10-09, 10-05 and 10-03 in case of example 5, for no noise

scenario, 70-db SNR and 30-db SNR, respectively.

Curves are also plotted in Fig. 4g–l comparing actual

signal with the approximated signal. The computed

solutions are found in good agreement with the actual

numerical solutions. Comparison of MAE values for the

first five examples is shown in subfigure, 4(m). Similar

plots are also displayed for GAs, and PS is presented in

Figs. 5 and 6, respectively.

The values of performance indices in terms of accuracy

measures of fitness, MAE, RMSE and ER2 are computed

for the best execution of each algorithm, and results are

listed in Table 4 for the first five examples, together with

complexity measures based on time consumed, generations

executed and function evaluated. It is clear that the values

Table 2 Parameter settings for all examples of power signal modeling

Examples Method Parameters Setting Parameters Setting

DE Generations 1000 Population size 150

1–5 Scaling factor 0.5 Unknowns 4/6/9

Probability 0.99 Mutation Random-best-2

GA Population creation Constrained dependent Population size 30 * num of variables

Scaling function Rank Variables 4,6,9

Selection function Stochastic uniform Generation 500

Initial population [- 1, 1] Function tolerance 10-25

Crossover function Scattered Stall generation limit 250

Mutation function Adaptive feasible Bounds (lower, upper) (0,1)

Elite count 10 Nonlinear constraint tolerance 10-25

Fitness limit 10-25 Other Defaults

PS Poll method GPS positive base 2 N Constraint tolerance 10-15

Polling order Consecutive Function tolerance 10-12

Max. iterations 3000 X-tolerance 10-15

Max. function evaluations 100,000 Mesh tolerance 10-15

6–7 DE Generations 5000 Population size 300

Scaling factor 0.1 Unknowns 21/10

Probability 0.5 Mutation Random-best-2

GA Population creation Constrained dependent Population size 200

Scaling function Rank Variables 21

Selection function Stochastic uniform Generation 1000

Initial population [-0.1, 0.1] Function tolerance 10-25

Crossover function Scattered Stall generation limit 250

Mutation function Adaptive feasible Bounds (lower, upper) (0,1)

Elite count 5 Nonlinear constraint tolerance 10-25

Fitness limit 10-25 Other Defaults

PS Poll method GPS positive base 2 N Constraint tolerance 10-15

Polling order Consecutive Function tolerance 10-12

Max. iterations 3000 X-tolerance 10-15

Max. function evaluations 100,000 Mesh tolerance 10-15
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Table 3 Best iteration of DE, GAs and PS algorithms based on different performance operators for each examples of power signal model

Example Scheme Operator No noise SNR = 70 db SNR = 30 db

Best value Iteration # Best value Iteration # Best value Iteration #

1. DE MAE 2.6E-10 55 5.90E-06 18 1.02E-03 37

RMSE 3.2E-10 55 8.20E-06 64 1.18E-03 37

R2 2.8E-12 55 3.26E-10 64 6.79E-06 37

GAs MAE 1.6E-08 30 1.18E-05 9 7.46E-04 47

RMSE 2.1E-08 77 1.48E-05 88 9.24E-04 71

R2 2.1E-15 77 1.07E-09 88 4.15E-06 71

PS MAE 2.8E-16 38 1.70E-05 54 3.25E-04 83

RMSE 3.2E-16 38 2.12E-05 4 3.99E-04 10

R2 5.5E-15 38 2.18E-09 4 7.74E-07 10

2. DE MAE 1.9E-10 82 4.22E-06 92 2.34E-04 67

RMSE 3.2E-10 82 6.73E-06 92 4.51E-04 13

R2 0.0E ? 00 82 1.87E-10 92 8.36E-07 13

GAs MAE 5.3E-08 36 3.97E-06 13 7.94E-04 69

RMSE 1.1E-07 96 7.37E-06 74 1.36E-03 69

R2 5.4E-14 96 2.23E-10 74 7.57E-06 69

PS MAE 7.7E-16 19 1.00E-01 68 5.97E-04 74

RMSE 9.9E-16 19 1.29E-01 68 9.12E-04 74

R2 4.5E-16 19 6.88E-02 68 3.43E-06 74

3. DE MAE 1.9E-10 82 4.22E-06 92 2.34E-04 67

RMSE 3.2E-10 82 6.73E-06 92 4.51E-04 13

R2 8.7E-10 82 1.87E-10 92 8.36E-07 13

GAs MAE 5.3E-08 36 3.97E-06 13 7.94E-04 69

RMSE 1.1E-07 96 7.37E-06 74 1.36E-03 69

R2 5.4E-14 96 2.23E-10 74 7.57E-06 69

PS MAE 7.7E-16 19 1.00E-01 68 5.97E-04 74

RMSE 9.9E-16 19 1.29E-01 68 9.12E-04 74

R2 3.4E-15 19 6.88E-02 68 3.43E-06 74

4. DE MAE 2.3E-10 65 2.46E-05 67 1.01E-03 78

RMSE 3.4E-10 65 3.69E-05 67 1.81E-03 86

R2 1.9E-10 65 5.46E-09 67 1.31E-05 86

GAs MAE 7.2E-06 50 2.73E-05 17 4.74E-04 91

RMSE 1.3E-05 50 4.50E-05 55 7.53E-04 91

R2 6.3E-10 50 8.12E-09 55 2.27E-06 91

PS MAE 2.3E-03 58 3.98E-03 93 1.79E-03 65

RMSE 3.4E-03 58 5.66E-03 93 2.59E-03 65

R2 4.6E-05 58 1.28E-04 93 2.68E-05 65

5. DE MAE 2.0E-09 40 1.20E-05 57 1.15E-03 94

RMSE 2.7E-09 40 2.09E-05 57 1.62E-03 94

R2 6.5E-09 40 1.81E-09 57 1.09E-05 94

GAs MAE 5.1E-04 74 1.18E-04 49 4.75E-04 46

RMSE 8.6E-04 74 2.42E-04 49 6.88E-04 46

R2 3.1E-06 74 2.43E-07 49 1.97E-06 46

PS MAE 4.4E-02 18 7.54E-02 63 1.28E-01 34

RMSE 8.7E-02 8 1.29E-01 63 1.97E-01 34

R2 3.2E-02 8 6.89E-02 63 1.62E-01 34
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Table 4 Performance indices of accuracy and complexity for each algorithm for the first five examples of power signal model

Method Example Noise (db) Accuracy Complexity

e d MAE RMSE ER2 Time Generations FCs

DE 1 0 3.7E-21 1.8E-11 4.3E-11 5.2E-11 3.3E-11 0.70 109 13,452

70 5.9E-08 6.1E-06 1.6E-05 1.8E-05 6.2E-11 0.84 124 15,003

30 6.4E-04 3.0E-04 7.7E-04 8.6E-04 1.5E-07 1.00 147 17,786

2 0 2.4E-02 1.0E-00 4.6E-01 6.4E-01 1.7E-01 17.81 349 63,168

70 1.2E-01 7.1E-01 3.6E-01 4.5E-01 8.2E-01 4.01 77 13,936

30 6.4E-04 7.1E-04 2.3E-04 4.5E-04 8.4E-07 24.35 424 76,743

3 0 6.5E-19 7.6E-10 3.9E-10 5.5E-10 0.0E-00 7.85 134 24,253

70 6.0E-08 1.1E-05 5.9E-06 8.2E-06 3.3E-10 7.73 131 23,710

30 6.3E-04 1.7E-03 1.0E-03 1.2E-03 6.8E-06 9.89 168 30,407

4 0 1.0E-18 8.6E-03 3.4E-02 6.8E-01 1.9E-01 18.39 311 56,290

70 6.5E-08 2.2E-01 2.3E-02 5.1E-01 1.0E-01 23.64 241 43,620

30 6.5E-03 9.4E-01 3.0E-02 5.7E-01 1.3E-01 21.89 369 66,788

5 0 3.7E-16 1.3E-00 8.7E-02 1.6E-00 1.0E-01 39.16 509 137,938

70 6.7E-08 6.3E-00 1.3E-01 2.3E-00 2.2E-01 32.90 420 113,819

30 1.5E-02 1.1E-01 2.8E-01 7.2E-00 2.1E-02 22.38 290 78589

GA 1 0 7.0E-16 7.7E-09 2.2E-08 2.3E-08 5.0E-09 31.23 500 120,240

70 5.9E-08 6.0E-06 1.6E-05 1.8E-05 6.1E-11 33.78 500 120,240

30 6.4E-04 3.0E-04 7.7E-04 8.6E-04 1.5E-07 32.45 500 120,240

2 0 9.9E-05 5.3E-01 2.7E-01 3.4E-01 4.7E-01 33.31 500 120,240

70 6.4E-08 1.3E-05 5.1E-06 8.2E-06 2.8E-10 33.39 500 120,240

30 6.5E-04 2.2E-03 8.0E-04 1.4E-03 7.7E-06 41.15 500 120,240

3 0 5.0E-15 7.7E-08 4.5E-08 5.5E-08 1.5E-14 38.25 500 120,240

70 6.3E-08 2.2E-05 1.2E-05 1.5E-05 1.2E-09 35.09 500 120,240

30 6.3E-04 1.3E-03 7.7E-04 9.5E-04 4.4E-06 38.66 500 120,240

4 0 1.7E-10 2.1E-03 2.5E-05 3.7E-05 5.4E-09 32.89 500 120,240

70 2.4E-07 2.3E-03 6.8E-04 9.7E-04 3.8E-06 36.23 500 120,240

30 6.4E-04 2.3E-03 8.9E-04 1.4E-03 7.5E-06 36.78 500 120,240

5 0 2.2E-05 3.2E-03 4.1E-03 7.3E-03 2.2E-04 37.45 500 120,240

70 8.2E-06 3.3E-01 1.5E-01 2.2E-01 2.0E-01 42.65 500 120,240

30 6.4E-04 4.4E-01 2.5E-01 2.9E-01 3.6E-01 43.86 500 120,240

PS 1 0 8.5E-31 2.6E-16 5.0E-16 7.4E-16 4.6E-11 0.08 158 1040

70 5.9E-08 6.1E-06 1.6E-05 1.8E-05 6.3E-11 0.10 186 1229

30 6.4E-04 3.1E-04 8.1E-04 9.0E-04 1.6E-07 0.15 290 1977

2 0 3.7E-26 1.6E-15 7.7E-16 9.9E-16 0.0E-00 2.97 1000 8705

70 1.9E-03 2.0E-01 1.0E-01 1.3E-01 6.9E-02 3.54 1182 10,079

30 6.7E-04 1.4E-03 6.0E-04 9.1E-04 3.4E-06 3.25 922 7984

3 0 7.7E-32 4.5E-16 2.8E-16 3.2E-16 0.0E-00 1.15 370 3635

70 6.6E-08 3.0E-05 1.7E-05 2.1E-05 2.2E-09 1.76 552 5435

30 6.1E-04 5.6E-04 3.2E-04 4.0E-04 7.7E-07 1.10 354 3490

4 0 2.2E-06 2.0E-00 2.3E-03 3.4E-03 4.6E-05 4.22 1287 12,000

70 6.0E-06 1.1E-00 4.0E-03 5.7E-03 1.3E-04 4.32 1275 12,000

30 6.3E-04 4.3E-03 1.8E-03 2.6E-03 2.7E-05 3.90 1371 12,000

5 0 1.5E-03 4.3E-01 4.4E-02 8.8E-02 3.2E-02 1.60 501 5836

70 6.6E-03 6.8E-01 7.5E-02 1.3E-01 6.9E-02 1.54 501 5589

30 3.2E-03 2.9E-01 1.3E-01 2.0E-01 1.6E-01 1.54 501 5666
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of MAE are around 10-10 to 10-11, 10-05 to 10-04 and

10-04 to 10-03 for no noise level, 70-db SNR and 30-db

SNR, respectively, for DE in case of example 1, while for

examples 2, 3, 4 and 5 the respective values lie 10-01 to

10-04, 10-03 to 10-10, 10-02 and 10-01 to 10-02. Similarly,

the values of performance indices along with complexity

measures for examples 6 and 7 are listed in Table 5. The

MAE magnitudes of DE and GAs are comparable, while

PS algorithm depicts significantly low performance. It is

observed from the figures that in example 3, among all

designed procedures, GAs generate best results, while DE

outperforms in example 5 on the basis of accuracy indi-

cators, while in case of complexity measures, DE is found

much more efficient than GAs as DE consumes less time,

smaller number of generations and function calls than GAs.

Very low values of these performance measures verify the

stability of DE and GA schemes for estimating parameters

of all examples of the power signal models.

It is important to note here that due to increased popu-

larity of memetic computing methodologies, hybrid pro-

cedures based on combination of global and local search

techniques are also suggested for power signal modeling

identification problem. Recently, memetic computing-

based methodologies are broadly used to find the candidate

solution of the constrained/unconstrained and convex/

nonconvex optimization problems, such as GAs aided with

active-set method (GAs-ASM) [96], GAs integrated with

sequential quadratic programming (GAs-SQP) [36, 61] and

GAs hybrid with interior-point method (GAs-IPM) [37].

The hybrid schemes usually give better results than opti-

mization techniques independently; therefore, hybridiza-

tion of DE, GA and PS with local search mechanisms SQP,

IPA and ASM for optimization of power signal models was

also employed; however, no significant increase in the

accuracy is achieved for all examples. Furthermore, local

search techniques such as SQP, IPM and ASM were indi-

vidually employed for estimation of components of power

signal model and it was observed that due to nonconvex

nature of the examples, these techniques failed to optimize

their cost functions. For this reason, in the current article

we restricted our analysis to three global search techniques

based on DE, GAs and PS for identification of power signal

models.

4 Statistics-based comparative analysis

In order to determine the stability and reliability of the

proposed schemes, 100 independent runs were executed for

each SNR level for all examples of power signal models

Table 5 Performance indices of accuracy and complexity for each algorithm for examples 6 and 7 of power signal model

Method Example Noise (db) Accuracy Complexity

e d MAE RMSE ER2 Time Generations FCs

DE 6 0 1.22E-07 5.95E-12 5.34E-06 2.16E-05 1.82E-07 34.51 5000 13,265

70 1.06E-04 6.14E-08 4.08E-04 3.81E-04 2.94E-06 48.53 5000 22,511

30 1.63E-02 6.33E-04 3.33E-02 7.16E-02 6.10E-04 55.75 5000 42,611

7 0 1.19E-04 4.84E-07 1.06E-04 7.57E-05 3.15E-07 313.93 5000 153,785

70 4.35E-03 1.96E-06 1.24E-03 1.42E-04 4.45E-04 354.81 5000 161,253

30 3.37E-02 6.38E-04 9.31E-02 4.25E-03 3.22E-03 393.21 5000 173,225

GA 6 0 1.40E-06 7.34E-08 3.54E-06 7.28E-05 9.63E-07 280.46 1000 240,240

70 1.52E-04 5.90E-06 4.66E-04 1.69E-02 4.32E-04 163.10 1000 240,240

30 1.54E-02 6.38E-04 2.63E-02 1.59E-01 2.60E-03 188.28 1000 240,240

7 0 6.41E-04 6.41E-06 7.43E-04 2.33E-04 3.45E-05 573.61 1000 450,655

70 5.81E-03 8.75E-04 9.21E-03 7.45E-03 7.84E-04 392.23 1000 450,655

30 6.75E-01 4.14E-03 8.76E-01 2.67E-01 6.56E-02 486.47 1000 450,655

PS 6 0 6.61E-02 5.94E-02 2.47E-02 8.28E-01 1.70E-02 2.16 657 6387

70 6.14E-01 6.47E-02 5.14E-01 9.19E-01 5.38E-01 2.23 657 6397

30 8.97E-00 5.92E-01 1.42E-01 6.60E-01 1.63E-01 2.65 657 6453

7 0 4.78E-01 6.16E-01 1.28E-01 8.35E-01 3.42E-01 4.22 1500 24,050

70 6.4E-00 6.3E-01 4.3E-00 8.4E-00 8.6E-00 4.32 1501 24,050

30 1.0E-00 5.6E-01 2.1E-00 9.9E-00 2.7E-00 3.9 1500 24,050
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and optimized results of fitness function values for several

runs of each method are illustrated in Fig. 7. The graphs

are given in sorted output and zoomed plots for better

perception. The results based on performance metrics

MAE, RMSE and ER2 are presented in Figs. 8, 9, 10,

respectively, for all designed approaches DE, GAs and PS.

The results of GAs computed for each SNR level for the

first five examples for power signal models are computed,

and few plots are also presented in Figs. 7, 8 and 9a, for

MAE, RMSE and ER2, respectively. These plots are given

in semi-logarithmic scale in order to decipher the results

more clearly. The MAE values for power signal model of

example 4 lie around 10-04 to 10-05, 10-03 to 10-04 and

10-02 to 10-03 for no noise scenario, 70-db and 30-db

SNRs, and similar trend is observed for performance

measures of RMSE and ER2, which shows the robustness

of the schemes. For the analysis of consistency in preci-

sion, histogram studies are carried out and results based on

MAE values for GAs are shown in Fig. 8b–e, and results

based on PS are presented graphically in Fig. 8j–m.

Empirical cumulative distribution function plots for all

designed approaches are also plotted and are illustrated in

Fig. 8f–i, while stacked bar plots for MAE values of DE

for power signal modeling problem with few noise sce-

narios of different examples are also shown in Fig. 8n.

Likewise, plots for RMSE and ER2 are given in Figs. 9 and

Table 6 Comparison of DE, GA and PS results through statistics for power signal model in case of all SNR levels for example 1

Method Noise levels Model Approximate parameter vector ĥ

i = 1 i = 2 i = 3 i = 4

DE 0 Best 1.800 2.900 4.000 2.500

Mean 1.800 2.900 4.000 2.500

Worst 1.800 2.900 4.000 2.500

70 Best 1.800 2.900 4.000 2.500

Mean 1.800 2.900 4.000 2.500

Worst 1.800 2.900 4.000 2.500

30 Best 1.801 2.901 4.000 2.499

Mean 1.801 2.901 4.000 2.499

Worst 1.801 2.901 4.000 2.499

GA 0 Best 1.800 2.900 4.000 2.500

Mean 1.800 2.900 4.000 2.500

Worst 1.800 2.900 4.000 2.500

70 Best 1.800 2.900 4.000 2.500

Mean 1.800 2.900 4.000 2.500

Worst 1.800 2.900 4.000 2.500

30 Best 1.801 2.901 4.000 2.499

Mean 1.801 2.901 4.000 2.499

Worst 1.801 2.901 4.000 2.499

PS 0 Best 1.800 2.900 4.000 2.500

Mean 1.800 2.900 4.000 2.500

Worst 1.800 2.900 4.000 2.500

70 Best 1.800 2.900 4.000 2.500

Mean 1.800 2.900 4.000 2.500

Worst 1.800 2.900 4.000 2.500

30 Best 1.801 2.900 4.000 2.499

Mean 1.801 2.900 4.000 2.499

Worst 1.801 2.900 4.000 2.499

True values h 1.8000 2.9000 4.000 2.900
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10, respectively. All these figures and plots verify that

these designed approaches are capable of parameter esti-

mation of power signal model, yet the DE and GAs results

are comparatively better than PS. The algorithms DE and

GAs are found parallel in terms of accuracy, while in

example 5, DE outperforms GAs. The algorithm giving

superior fitness value has corresponding better MAE,

RMSE and ER2 indices, which validate the accuracy

through different performance measures.

Accuracy of the proposed methodology is further eval-

uated to observe the best, mean and the worst estimated

parameter vector obtained on minimum error-based fitness,

AEs in three noise scenarios for the first five examples of

power signal model computed through 100 independent

runs of DE, GAs and PS approaches. Outcomes of statis-

tical measures for the three approaches are presented in

Tables 6, 7, 8, 9, 10 for three SNR levels of examples 1–5

with their actual parameters, respectively. The parameter

estimation performance of DE, GAs and PS algorithms is

dependent on the noise variance, such as for larger SNR

level, performance of the designed procedures reduces.

Furthermore, by increasing the length of the parameter

vector of the power signal model, a small decrease in the

accuracy of the proposed algorithms is observed which is

understandable as with more degrees of freedom, the

optimization problem gets stiffer.

In order to draw reliable inference on the precision, the

global performance metrics �E, GMAE, GRMSE and GER2

Table 7 Comparison of DE, GA and PS results through statistics for power signal model in case of all SNR levels for example 2

Method Noise levels Model Approximate parameter vector ĥ

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

DE 0 Best 0.800 0.900 0.400 0.700 0.500 0.200

Mean 0.615 0.553 0.525 0.383 0.388 0.643

Worst 0.875 0.432 0.550 0.500 0.706 0.192

70 Best 0.800 0.900 0.400 0.700 0.500 0.200

Mean 0.583 0.569 0.569 0.775 0.352 0.695

Worst 0.133 0.955 0.802 0.678 0.500 0.700

30 Best 0.799 0.900 0.400 0.700 0.500 0.200

Mean 0.627 0.574 0.458 0.376 0.340 0.569

Worst 0.870 0.548 0.424 0.500 0.695 0.171

GA 0 Best 0.800 0.400 0.900 0.700 0.200 0.500

Mean 0.701 0.713 0.680 0.519 0.469 0.420

Worst 0.907 0.150 0.788 0.500 0.604 0.701

70 Best 0.800 0.900 0.400 0.700 0.500 0.200

Mean 0.713 0.712 0.663 0.547 0.469 0.400

Worst 0.907 0.150 0.788 0.500 0.604 0.701

30 Best 0.800 0.897 0.399 0.700 0.500 0.200

Mean 0.660 0.765 0.651 0.491 0.532 0.412

Worst 0.790 0.049 0.905 0.700 1.800 0.500

PS 0 Best 0.797 0.397 0.074 0.700 0.200 0.553

Mean 0.427 0.397 0.388 0.827 0.913 0.872

Worst 0.027 0.037 0.132 2.000 1.995 1.405

70 Best 0.894 0.800 0.061 0.500 0.700 1.395

Mean 0.370 0.371 0.308 0.847 0.864 1.014

Worst 0.018 0.037 0.127 1.956 1.995 1.905

30 Best 0.115 0.050 0.089 0.099 0.992 0.292

Mean 0.321 0.454 0.354 0.907 0.918 0.924

Worst 0.036 0.081 0.117 0.010 1.998 1.706

True values h 0.800 0.900 0.400 0.700 0.500 0.200
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magnitudes are computed based on multiple executions of

DE, GAs and PS as described in Eqs. (11)–(14), respec-

tively. Result is tabulated in Table 11 for the first five

examples of the power signal systems for each SNR level.

On the basis of fitness, the accuracy level for global

operators is found in the order of 10-02 to 10-21 for DE,

10-04 to 10-16 for GAs and 10-01 to 10-16 for PS in all

examples of power signal models, whereas the range of

performance indices of MAE, RMSE and ER2 is

approximately 10-01 to 10-10 for DE and GAs and 10-01

to 10-16 for PS methods. The attained global performance

metrics have values almost close to their ideals, which

verify the correctness of the DE- and GAs-based

methodologies for each example of power signal model.

The performance of the proposed algorithms is further

evaluated using ANOVA test for power signal modeling

problem. The results are generated for the first five examples

of the power signalmodels, and results are presented only for

complex scenarios, i.e., example 4 with 70-dB SNR and

example 5 with 30-dB SNR, in Tables 12 and 13, respec-

tively. While considering the assumption of homogeneity of

variances, the null hypothesis of homogeneous variances at

the significance level 0.05 cannot be rejected, as the

respective probability values attained for AE in case of DE,

GAs and PS are 0.895, 0.810 and 0.821 for example 4, while

in case of example 5, the respective probability values are

0.897, 0.695 and 0.107. This indicates that the expected

values in the three groups do not have any strong evidence of

Table 8 Comparison of DE, GA and PS results through statistics for power signal model in case of all SNR levels for example 3

Method Noise levels Model Approximate parameter vector ĥ

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

DE 0 Best 0.800 0.600 0.700 0.600 0.800 0.760

Mean 0.800 0.600 0.700 0.600 0.800 0.760

Worst 0.800 0.600 0.700 0.600 0.800 0.760

70 Best 0.800 0.600 0.700 0.600 0.800 0.760

Mean 0.800 0.600 0.700 0.600 0.800 0.760

Worst 0.800 0.600 0.700 0.600 0.800 0.760

30 Best 0.798 0.600 0.700 0.598 0.801 0.759

Mean 0.798 0.600 0.700 0.598 0.801 0.759

Worst 0.798 0.600 0.700 0.598 0.801 0.759

GA 0 Best 0.800 0.600 0.700 0.600 0.800 0.760

Mean 0.800 0.600 0.700 0.600 0.800 0.760

Worst 0.800 0.600 0.700 0.600 0.800 0.760

70 Best 0.800 0.600 0.700 0.600 0.800 0.760

Mean 0.800 0.600 0.700 0.600 0.800 0.760

Worst 0.800 0.600 0.700 0.600 0.800 0.760

30 Best 0.800 0.601 0.701 0.599 0.800 0.758

Mean 0.800 0.601 0.701 0.599 0.800 0.758

Worst 0.800 0.601 0.701 0.599 0.800 0.758

PS 0 Best 0.800 0.600 0.700 0.600 0.800 0.760

Mean 0.800 0.600 0.700 0.600 0.800 0.760

Worst 0.800 0.600 0.700 0.600 0.800 0.760

70 Best 0.800 0.600 0.700 0.600 0.800 0.760

Mean 0.800 0.600 0.700 0.600 0.800 0.760

Worst 0.800 0.600 0.700 0.600 0.800 0.760

30 Best 0.800 0.599 0.700 0.600 0.800 0.759

Mean 0.800 0.599 0.700 0.600 0.800 0.759

Worst 0.800 0.599 0.700 0.600 0.800 0.759

True values h 0.800 0.600 0.700 0.600 0.800 0.760
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variation in the response variable of uniformity. Thus, it is

quite significant that all means are equal. Additionally, it is

seen from the values of confidence interval that DE and GAs

provide better results than PS, while DE performs compar-

atively better than GAs. The same trend prevails with similar

inferences for rest of the cases on the basis of ANOVA test.

Computational complexity for all three algorithms, DE,

GAs and PS, is analyzed through calculating the time,

each algorithm consumed for hundred independent runs,

iteration executed and objective functions evaluated, for

optimization of the first five examples of power signal

model for different noise levels, and results are tabulated

in Table 14. Average time expended, generation executed

and functions evaluated are around 16 ± 14, 750 ± 550,

51,200 ± 48,100 for DE, 37 ± 5, 500, 120,240 for GAs,

2.5 ± 1.1, 750 ± 550 and 5827 ± 4100 for PS, respec-

tively. It is observed that with the increase in the length

of parameter vector of power signal model, the com-

plexity of DE and PS increases significantly, whereas

GAs-based extensive global search does not show such

behavior. In general, GAs complexity is much more than

that of DE and PS, while its accuracy is found parallel

with DE. All the simulations are performed in this

research work on HP ProDesk 400 G3, Processor core i7,

3.4 GHz, RAM 8 GB, using MATLAB 2016a running in

Windows 8.1 professional environment.

5 Concluding remarks

Strength of nature-inspired heuristics based on DE, GAs

and PS is efficiently exploited in power signal modeling

through estimating the necessary components of the

power signal. Comparative studies reveal that all the three

Table 9 Comparison of DE, GA and PS results through statistics for power signal model in case of all SNR levels for example 4

Method Noise levels Model Approximate parameter vector ĥ

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

DE 0 Best 0.070 0.100 0.200 0.950 0.800 0.760

Mean 0.150 0.066 0.467 1.211 0.997 0.760

Worst 0.100 0.070 0.200 0.823 2.156 0.812

70 Best 0.070 0.100 0.200 0.950 0.800 0.760

Mean 0.045 0.061 0.126 1.113 1.017 0.739

Worst 0.070 0.100 0.200 0.950 0.800 0.640

30 Best 0.070 0.100 0.200 0.954 0.801 0.759

Mean 0.214 0.071 0.746 1.090 0.982 0.746

Worst 0.070 0.100 0.200 2.187 0.801 0.625

GA 0 Best 0.070 0.100 0.200 0.950 0.800 0.760

Mean 0.081 0.090 0.199 0.905 0.859 0.752

Worst 0.200 0.100 0.070 0.599 0.704 0.854

70 Best 0.070 0.100 0.200 0.950 0.800 0.760

Mean 0.079 0.091 0.199 0.907 0.857 0.762

Worst 0.099 0.070 0.100 0.504 0.972 1.931

30 Best 0.070 0.100 0.200 0.952 0.801 0.760

Mean 0.078 0.093 0.199 0.919 0.843 0.751

Worst 0.200 0.100 0.070 0.596 0.697 0.845

PS 0 Best 0.070 0.100 0.200 0.954 0.804 0.766

Mean 0.906 0.749 0.841 0.976 0.898 0.754

Worst 1.923 1.898 1.901 1.170 0.000 2.000

70 Best 0.070 0.100 0.200 0.943 0.807 0.751

Mean 0.823 0.761 0.831 0.867 0.834 0.922

Worst 1.988 1.984 1.974 2.000 0.000 0.000

30 Best 0.070 0.100 0.200 0.947 0.796 0.755

Mean 0.812 0.706 0.774 0.960 0.888 0.890

Worst 1.762 1.597 1.600 0.000 0.000 2.000

True values h 0.070 0.100 0.2 0.950 0.800 0.760
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proposed algorithms are effective; however, estimation

ability reduced for the model with more degrees of

freedom for each approach, but the estimation of DE

outperforms its counterparts GAs and PS in each scenario.

The better performance of the DE and GAs is because of

the fact that DE and GAs are population-based meta-

heuristics, while PS is a single-solution-based algorithm,

while comparison shows DE is relatively better than GAs.

Robustness of the design schemes is established through

estimation power signal parameters with different SNRs

(70 db, 30 db and no noise), and results show that with

the increase in noise variance, the accuracy of DE, GAs

and PS algorithms degrades, yet the performance of both

DE and GAs is found still reasonable in precision. Sta-

tistical results based on mean and STD values of MAE,

RMSE and ER2 performance indices along with their

global versions as well as illustrations of histograms,

cumulative distribution functions and stacked bar validate

the consistent accuracy of DE and GAs in each case. The

superior performance of DE is further endorsed through

ANOVA-based statistical test. Complexity analyses for all

three algorithms show that by increasing the optimization

variables in the signal model the complexity of the

algorithms increases, while the gauges of complexity

operators are greater for GAs than the rest. One may

explore recently introduced variants of modern opti-

mization procedures for the better performance such as

firefly algorithm, backtracking search algorithm, fractional

particle swarm optimization, fireworks and gravitational

search algorithm.

Table 10 Comparison of DE, GA and PS results through statistics for power signal model in case of all SNR levels for example 5

Method Noise levels Model Approximate parameter vector ĥ

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

DE 0 Best 0.800 0.900 0.400 0.950 0.800 0.760 0.070 0.500 0.200

Mean 0.503 0.414 0.447 0.103 3.862 0.605 0.191 0.299 0.172

Worst 0.900 0.800 0.400 0.800 0.950 0.670 0.500 0.070 0.200

70 Best 0.800 0.900 0.400 0.950 0.800 0.760 0.070 0.500 0.200

Mean 0.401 0.504 0.351 0.130 0.810 0.870 0.167 0.496 0.196

Worst 0.900 0.400 0.800 0.800 0.820 0.830 0.500 0.200 0.070

30 Best 0.800 0.897 0.399 0.952 0.802 0.763 0.070 0.500 0.200

Mean 0.504 0.409 0.349 1.010 0.900 0.550 0.216 0.186 0.193

Worst 0.897 0.800 0.399 0.802 0.952 0.640 0.500 0.070 0.200

GA 0 Best 0.900 0.400 0.800 0.800 0.754 0.951 0.500 0.200 0.070

Mean 0.659 0.712 0.694 0.847 0.889 0.899 0.301 0.228 0.295

Worst 0.164 0.804 0.899 2.000 0.949 0.802 0.601 0.070 0.500

70 Best 0.801 0.900 0.399 0.948 0.808 0.754 0.070 0.500 0.200

Mean 0.665 0.644 0.747 0.850 0.951 0.849 0.263 0.270 0.299

Worst 0.165 0.803 0.899 2.000 0.956 0.787 0.601 0.070 0.500

30 Best 0.799 0.399 0.901 0.945 0.764 0.801 0.070 0.200 0.500

Mean 0.634 0.731 0.705 0.871 0.869 0.855 0.262 0.280 0.268

Worst 0.161 0.802 0.899 2.000 0.963 0.789 0.601 0.070 0.500

PS 0 Best 0.063 0.122 0.148 0.200 1.308 0.000 0.124 0.664 0.357

Mean 0.407 0.354 0.367 0.976 0.997 0.950 0.618 0.731 0.603

Worst 0.052 0.226 0.071 1.012 1.999 1.999 1.904 1.072 1.347

70 Best 0.143 0.091 0.083 0.495 0.091 1.453 1.059 1.945 1.245

Mean 0.323 0.343 0.445 0.891 0.963 1.004 0.782 0.679 0.617

Worst 0.127 0.232 0.069 1.776 1.996 2.000 1.505 1.072 1.346

30 Best 0.828 0.035 0.214 0.953 1.041 1.999 0.070 0.006 1.501

Mean 0.368 0.371 0.351 1.031 0.943 0.879 0.685 0.698 0.801

Worst 0.127 0.088 0.106 2.000 0.000 0.000 1.348 1.623 1.923

True values h 0.80 0.90 0.800 0.900 0.400 0.950 0.800 0.760 0.070
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Table 11 Magnitudes of global performance metrics for each variation of the first five examples of power signal model

Method Example Noise (db) �e GMAE GRMSE GER2

Mean STD Mean STD Mean STD Mean STD

DE 1 0 7.30E-21 4.79E-21 6.04E-11 1.80E-11 6.94E-11 1.96E-11 5.19E-18 1.65E-18

70 5.92E-08 1.09E-16 1.57E-05 2.48E-10 1.76E-05 3.56E-10 6.16E-11 2.49E-15

30 6.44E-04 1.49E-15 7.72E-04 2.23E-11 8.63E-04 1.86E-11 1.48E-07 6.38E-15

2 0 4.48E-02 7.32E-02 3.75E-01 5.62E-01 5.29E-01 1.23E-00 7.34E-00 6.40E-01

70 4.17E-02 7.15E-02 5.28E-01 1.05E-00 9.16E-01 2.47E-00 2.84E-01 1.33E-02

30 4.17E-02 6.52E-02 3.81E-01 5.58E-01 5.32E-01 1.23E-00 7.34E-00 6.39E-01

3 0 1.26E-18 1.57E-18 7.34E-10 3.94E-10 8.85E-10 4.74E-10 1.11E-18 1.11E-17

70 5.97E-08 1.34E-15 5.91E-06 2.87E-09 8.21E-06 5.39E-09 3.28E-10 4.30E-13

30 6.33E-04 8.04E-15 1.02E-03 2.32E-09 1.18E-03 3.29E-09 6.79E-06 3.77E-11

4 0 2.44E-02 5.63E-02 2.33E-00 2.00E-01 5.51E-00 4.89E-01 9.62E-03 9.62E-04

70 2.71E-02 5.94E-02 4.58E-01 3.23E-02 1.12E-02 7.91E-02 2.53E-06 1.84E-07

30 1.75E-02 4.55E-02 2.38E-01 2.11E-02 5.80E-01 5.16E-02 1.07E-06 1.06E-07

5 0 4.95E-02 9.33E-02 6.21E-01 4.63E-02 1.85E-02 1.39E-03 8.10E-06 7.59E-07

70 5.19E-02 9.78E-02 7.05E-01 5.09E-02 2.10E-02 1.53E-03 9.77E-06 9.39E-07

30 3.21E-02 7.50E-02 3.12E-02 1.48E-03 9.35E-02 4.43E-03 8.46E-07 6.05E-08

GA 1 0 8.15E-16 2.23E-16 2.04E-08 3.79E-09 2.38E-08 3.88E-09 1.55E-16 1.02E-16

70 5.92E-08 1.59E-14 1.57E-05 1.69E-08 1.76E-05 2.82E-08 6.16E-11 1.98E-13

30 6.44E-04 6.10E-11 7.72E-04 1.11E-06 8.63E-04 9.98E-07 1.48E-07 3.43E-10

2 0 2.02E-03 8.29E-03 1.93E-01 1.37E-01 2.30E-01 1.60E-01 3.22E-01 2.50E-01

70 3.04E-03 1.15E-02 1.79E-01 1.40E-01 2.15E-01 1.64E-01 3.00E-01 2.53E-01

30 5.27E-03 1.41E-02 1.87E-01 1.43E-01 2.24E-01 1.68E-01 3.21E-01 3.01E-01

3 0 7.59E-15 1.74E-14 4.65E-08 3.84E-08 5.79E-08 5.12E-08 2.89E-14 6.72E-14

70 6.33E-08 8.84E-14 1.23E-05 2.28E-07 1.54E-05 2.54E-07 1.15E-09 3.80E-11

30 6.28E-04 1.98E-10 7.73E-04 8.37E-06 9.49E-04 6.93E-06 4.38E-06 6.36E-08

4 0 2.80E-03 1.02E-02 2.40E-02 3.28E-02 3.36E-02 4.52E-02 1.26E-02 1.96E-02

70 2.33E-03 6.83E-03 2.41E-02 4.32E-02 3.44E-02 6.50E-02 2.15E-02 1.08E-01

30 3.00E-03 1.01E-02 1.76E-02 2.99E-02 2.45E-02 4.09E-02 9.04E-03 1.81E-02

5 0 7.75E-03 1.94E-02 2.02E-01 8.54E-02 2.66E-01 1.08E-01 3.43E-01 2.46E-01

70 9.13E-03 2.04E-02 2.07E-01 8.65E-02 2.76E-01 1.17E-01 3.72E-01 2.83E-01

30 6.40E-03 1.70E-02 1.80E-01 9.96E-02 2.35E-01 1.26E-01 2.96E-01 2.45E-01

PS 1 0 8.48E-31 1.41E-45 5.00E-16 0.00E-00 7.45E-16 2.97E-31 0.00E-00 0.00E-00

70 5.92E-08 8.65E-23 1.58E-05 0.00E-00 1.79E-05 3.06E-20 6.34E-11 0.00E-00

30 6.44E-04 1.42E-18 8.11E-04 0.00E-00 9.00E-04 8.72E-19 1.61E-07 0.00E-00

2 0 2.55E-01 1.98E-01 4.72E-01 2.27E-01 5.76E-01 2.48E-01 1.62E-00 1.17E-00

70 3.07E-01 1.83E-01 4.99E-01 2.17E-01 6.10E-01 2.29E-01 1.74E-00 1.24E-00

30 2.84E-01 1.82E-01 4.85E-01 2.08E-01 5.94E-01 2.30E-01 1.67E-00 1.17E-00

3 0 1.42E-30 6.48E-31 9.25E-16 2.63E-16 1.07E-15 2.56E-16 0.00E-00 0.00E-00

70 6.60E-08 1.41E-14 1.72E-05 3.93E-08 2.13E-05 5.77E-08 2.21E-09 1.20E-11

30 6.07E-04 7.58E-11 3.29E-04 3.49E-06 4.03E-04 3.21E-06 7.91E-07 1.26E-08

4 0 7.01E-01 3.09E-01 6.51E-01 3.05E-01 7.70E-01 3.22E-01 2.79E-00 1.91E-00

70 6.91E-01 3.24E-01 6.81E-01 2.96E-01 7.79E-01 2.97E-01 2.78E-00 1.76E-00

30 6.27E-01 3.21E-01 6.56E-01 3.10E-01 7.79E-01 3.04E-01 2.80E-00 1.83E-00

5 0 3.31E-01 1.90E-01 4.94E-01 1.82E-01 5.89E-01 1.89E-01 1.59E-00 8.96E-01

70 3.30E-01 1.89E-01 5.19E-01 1.64E-01 6.28E-01 1.66E-01 1.76E-00 8.77E-01

30 3.47E-01 1.84E-01 5.35E-01 1.96E-01 6.40E-01 2.01E-01 1.87E-00 1.11E-00
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Table 12 Results of ANOVA

test for example 4 of power

signal model with 70-dB SNR
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Table 13 Results of ANOVA

test for example 5 of power

signal model with 30-dB SNR
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Table 14 Comparison of computational complexity comparison for each SNR level of the first five power signal model examples

Method Example Noise (dB) Complexity operators

Time Generations Function counts

Mean STD Mean STD Mean STD

DE 1 0 00.75 0.08 111.44 2.18 13,351.37 1373.66

70 00.80 0.02 118.21 2.92 14,302.41 353.00

30 00.97 0.03 142.79 4.10 17,276.59 496.16

2 0 17.70 6.60 325.13 116.68 58,847.53 21,118.65

70 18.53 6.62 326.09 115.03 59,021.29 20,820.83

30 19.25 5.80 337.90 96.94 61,158.90 17,546.86

3 0 07.74 0.27 130.84 2.62 23,681.04 474.17

70 07.55 0.18 128.98 2.67 23,344.38 484.02

30 09.60 0.28 163.50 4.37 29,592.50 791.47

4 0 18.25 6.12 281.47 89.55 50,945.07 16,207.65

70 19.26 6.40 263.36 83.35 47,667.16 15,085.65

30 18.92 5.86 308.21 93.53 55,785.01 16,929.27

5 0 23.62 10.67 316.06 143.69 85,651.26 38,940.00

70 25.47 11.84 324.96 150.66 88,063.16 40,827.56

30 30.87 13.26 408.38 189.67 110,669.98 51,401.32

GA 1 0 34.67 3.46 500.00 0.00 120,240.00 0000.0

70 38.78 3.48 500.00 0.00 120,240.00 0000.0

30 34.49 6.09 500.00 0.00 120,240.00 0000.0

2 0 35.48 6.73 500.00 0.00 120,240.00 0000.0

70 36.14 5.93 500.00 0.00 120,240.00 0000.0

30 31.11 1.24 500.00 0.00 120,240.00 0000.0

3 0 34.26 1.52 500.00 0.00 120,240.00 0000.0

70 36.32 4.89 500.00 0.00 120,240.00 0000.0

30 35.47 4.08 500.00 0.00 120,240.00 0000.0

4 0 39.12 3.46 500.00 0.00 120,240.00 0000.0

70 41.34 3.48 500.00 0.00 120,240.00 0000.0

30 38.45 6.09 500.00 0.00 120,240.00 0000.0

5 0 37.76 6.73 500.00 0.00 120,240.00 0000.0

70 39.87 5.93 500.00 0.00 120,240.00 0000.0

30 42.88 1.24 500.00 0.00 120,240.00 0000.0

PS 1 0 0.08 0.22 0158.00 034.00 01,040.00 2166.00

70 0.10 0.27 0186.00 075.00 01,229.00 2965.00

30 0.15 0.26 0290.00 174.00 01,977.00 2854.00

2 0 3.12 1.17 1003.94 366.09 08,695.92 3127.59

70 3.16 1.25 1012.86 386.10 08,742.43 3272.93

30 3.56 1.35 0989.53 353.90 08,559.28 3055.10

3 0 1.20 0.20 0372.34 021.18 03,648.10 0424.28

70 1.51 0.35 0478.67 111.88 04,673.17 1072.65

30 1.28 0.25 0401.00 077.74 03,928.17 0677.39

4 0 3.59 0.96 1192.45 318.82 10,351.67 2749.62

70 3.51 1.23 1139.74 331.37 09,827.48 3084.19

30 3.25 1.11 1131.66 342.60 09,617.03 3195.08

5 0 1.63 0.10 0501.00 000.00 05,757.49 0285.24

70 1.62 0.09 0501.00 000.00 05,749.90 0240.40

30 1.65 0.10 0501.00 000.00 05,757.46 0279.67
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It seems to be a potential research direction to study

other metaheuristics based on the swarming optimization,

fractional evolutionary PSO, scatter search and back-

tracking search optimization algorithm for power signals

parameter estimation.
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19. Jesenko D, Mernik M, Žalik B, Mongus D (2017) Two-level

evolutionary algorithm for discovering relations between nodes’

features in a complex network. Appl Soft Comput 56:82–93

20. He C, Tian Y, Jin Y, Zhang X, Pan L (2017) A radial space

division based evolutionary algorithm for many-objective opti-

mization. Appl Soft Comput 61:603–621

21. Masood Z et al (2017) Design of Mexican Hat Wavelet neural

networks for solving Bratu type nonlinear systems. Neurocom-

puting 221:1–14

22. Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016)

Stochastic numerical solver for nanofluidic problems containing

multi-walled carbon nanotubes. Appl Soft Comput 38:561–586

23. Raja MAZ, Mehmood A, Niazi SA, Shah SM Computational

intelligence methodology for the analysis of RC circuit modelled

with nonlinear differential order system. Neural Comput Appl

1–20

24. Raja MAZ (2014) Solution of the one-dimensional Bratu equa-

tion arising in the fuel ignition model using ANN optimised with

PSO and SQP. Connect Sci 26(3):195–214

25. Heidari AA, Abbaspour RA, Jordehi AR (2017) Gaussian bare-

bones water cycle algorithm for optimal reactive power dispatch

in electrical power systems. Appl Soft Comput 57:657–671

26. El-Fergany AA, Hasanien HM (2018) Tree-seed algorithm for

solving optimal power flow problem in large-scale power systems

incorporating validations and comparisons. Appl Soft Comput

64:307–316

27. Raja MAZ, Shah AA, Mehmood A, Chaudhary NI, Aslam MS

(2018) Bio-inspired computational heuristics for parameter esti-

mation of nonlinear Hammerstein controlled autoregressive sys-

tem. Neural Comput Appl 29(12):1455–1474

28. Raja MAZ, Shah FH, Alaidarous ES, Syam MI (2017) Design of

bio-inspired heuristic technique integrated with interior-point

algorithm to analyze the dynamics of heartbeat model. Appl Soft

Comput 52:605–629

29. Raja MAZ, Aslam MS, Chaudhary NI, Nawaz M, Shah SM

Design of hybrid nature-inspired heuristics with application to

active noise control systems. Neural Comput Appl pp 1–29

30. Hitomi N, Selva D (2018) Incorporating expert knowledge into

evolutionary algorithms with operators and constraints to design

satellite systems. Appl Soft Comput 66:330–345

31. Raja MAZ, Ahmed T, Shah SM (2017) Intelligent computing

strategy to analyze the dynamics of convective heat transfer in

MHD slip flow over stretching surface involving carbon nan-

otubes. J Taiwan Inst Chem Eng 80:935–953

32. Raja MAZ, Niazi SA, Butt SA (2017) An intelligent computing

technique to analyze the vibrational dynamics of rotating elec-

trical machine. Neurocomputing 219:280–299. https://doi.org/10.

1016/j.neucom.2016.09.032

33. Zameer A et al (2017) Intelligent and robust prediction of short

term wind power using genetic programming based ensemble of

neural networks. Energy Convers Manag 134:361–372

34. Majeed K, Masood Z, Samar R, Raja MAZ (2017) A genetic

algorithm optimized Morlet wavelet artificial neural network to

study the dynamics of nonlinear Troesch’s system. Appl Soft

Comput 56:420–435

Neural Computing and Applications (2020) 32:6253–6282 6281

123

https://doi.org/10.1016/j.neucom.2016.09.032
https://doi.org/10.1016/j.neucom.2016.09.032


35. Ahmad I et al (2016) Bio-inspired computational heuristics to

study Lane–Emden systems arising in astrophysics model.

SpringerPlus 5(1):1866

36. Raja MAZ, Zameer A, Khan AU, Wazwaz AM (2016) A new

numerical approach to solve Thomas–Fermi model of an atom

using bio-inspired heuristics integrated with sequential quadratic

Programming. SpringerPlus 5(1):1400

37. Akbar S et al (2017) Design of bio-inspired heuristic techniques

hybridized with sequential quadratic programming for joint

parameters estimation of electromagnetic plane waves. Wireless

Pers Commun 96(1):1475–1494

38. Naderi E, Azizivahed A, Narimani H, Fathi M, Narimani MR

(2017) A comprehensive study of practical economic dispatch

problems by a new hybrid evolutionary algorithm. Appl Soft

Comput 61:1186–1206

39. Ara A et al (2018) Wavelets optimization method for evaluation

of fractional partial differential equations: an application to

financial modelling. Adv Differ Equ 2018(1):8

40. Li X, Ding F (2013) Signal modeling using the gradient search.

Appl Math Lett 26(8):807–813

41. Zhou L, Li X, Xu H, Zhu P (2016) Multi-innovation stochastic

gradient method for harmonic modelling of power signals. IET

Signal Proc 10(7):737–742

42. Chaudhary NI, Zubair S, Raja MAZ (2017) A new computing

approach for power signal modeling using fractional adaptive

algorithms. ISA Trans 68:189–202

43. Storn R, Price K (1997) Differential evolution—a simple and

efficient heuristic for global optimization over continuous spaces.

J Glob Optim 11(4):341–359

44. Diab DM, El Hindi KM (2017) Using differential evolution for

fine tuning naı̈ve Bayesian classifiers and its application for text

classification. Appl Soft Comput 54:183–199

45. Sakr WS, El-Sehiemy RA, Azmy AM (2017) Adaptive differ-

ential evolution algorithm for efficient reactive power manage-

ment. Appl Soft Comput 53:336–351

46. Feng ZK, Niu WJ, Zhou JZ, Cheng CT, Zhang YC (2017)

Scheduling of short-term hydrothermal energy system by parallel

multi-objective differential evolution. Appl Soft Comput

61:58–71

47. Rajesh K, Kannan S, Thangaraj C (2016) Least cost generation

expansion planning with wind power plant incorporating emis-

sion using differential evolution algorithm. Int J Electr Power

Energy Syst 80:275–286

48. Fateh MF et al (2017) Biologically inspired computing frame-

work for solving two-point boundary value problems using dif-

ferential evolution. Neural Comput Appl 28(8):2165–2179

49. Ara A et al (2018) Numerical simulation for Jeffery–Hamel flow

and heat transfer of micropolar fluid based on differential evo-

lution algorithm. AIP Adv 8(1):015201

50. Das S, Mullick SS, Suganthan PN (2016) Recent advances in

differential evolution—an updated survey. Swarm Evolut Com-

put 27:1–30

51. Piotrowski AP (2017) Review of differential evolution population

size. Swarm Evolut Comput 32:1–24

52. Jebaraj L, Venkatesan C, Soubache I, Rajan CCA (2017)

Application of differential evolution algorithm in static and

dynamic economic or emission dispatch problem: a review.

Renew Sustain Energy Rev 77:1206–1220

53. Das S, Suganthan PN (2011) Differential evolution: a survey of

the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

54. Mitchell M (1998) An introduction to genetic algorithms. MIT

Press, Cambridge

55. Coley DA (1999) An introduction to genetic algorithms for sci-

entists and engineers. World Scientific Publishing Company
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