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Abstract
Precise measurement or estimation of evaporation losses is extremely important for the development of water resource

management strategies and its effective implementation, particularly in drought-prone areas for increasing agricultural

productivity. Evaporation can either be measured directly using evaporimeters, or it can be estimated by means of

empirical models with the help of climatic factors influencing evaporation process. In general, variations in climatic factors

such as temperature, humidity, wind speed, sunshine and solar radiation influence and control the evaporation process to a

great extent. Due to the highly nonlinear nature of evaporation phenomenon, it is invariably very difficult to model the

evaporation process through climatic factors especially in diverse agro-climatic situations. The present investigation is

carried out to examine the potential of deep neural network architecture with long short-term memory cell (Deep-LSTM) to

estimate daily pan evaporation with minimum input features. Depending upon the availability of climatic data Deep-LSTM

models with different input combinations are proposed to model daily evaporation losses in three agro-climatic zones of

Chhattisgarh state in east-central India. The performance of the proposed Deep-LSTM models are compared with com-

monly used multilayer artificial neural network and empirical methods (Hargreaves and Blaney–Criddle). The results of the

investigations in terms of various performance evaluation criteria reveal that the proposed Deep-LSTM structure is able to

successfully model the daily evaporation losses with improved accuracy as compared to other models considered in this

study.
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Abbreviations
EP Pan evaporation

Deep-LSTM Deep neural network architecture with long

short-term memory cell

ACZs Agro-climatic zones

MLANN Multilayer artificial neural network

Tmax Maximum temperature

Tmin Minimum temperature

RHI Relative humidity morning

RHII Relative humidity afternoon

WS Wind speed

BSS Bright sunshine hours

SD Standard deviation

ET0 Reference evapotranspiration

CV Coefficient of variation

R Correlation coefficient

RMSE Root-mean-square error

R2 Coefficient of determination

EF Efficiency factor

AIC Akaike information criterion

Symbols used
gt Input node at time t

tanh Hyperbolic tangent function

xt Input to the memory cell at time t
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Wgx Weight matrix between input layer of the

network and input node of the memory cell

ht-1 Hidden state input at time t - 1

Wgh Weight matrix between hidden states at

different time steps

biasinput node Bias to the input node

it Input gate at time t

r Sigmoidal activation function

st Internal state at time t

st-1 Internal state at time t-1

biasinput gate Bias to the input gate

ft Forget state at time t

� Point-wise linear operator

Wfx Weight matrix between forget gates and

input layer

Wfh Weight matrix between forget gates and

hidden states

ht Final output of memory cell at time t

biasforget Bias for the forget gate

Ot Output gate at time t

Wox Weight matrix between output gates and

input layers

Woh Weight matrix between output gates and

hidden states

biasoutput gates Bias for the output gate

1 Introduction

Agricultural production is mainly dependent on the effec-

tive utilization of the available water resources, especially

under drought-prone, dry, sub-humid and semi-arid cli-

matic regions. For efficient water resource management,

measurement or accurate estimation of evaporation losses

is extremely important [1, 2]. The pan evaporation (EP) is

considered as most valuable input for determining crop

water requirement, irrigation scheduling, rainfall runoff

modeling, computation of balance parameters, etc., to

ensure judicious use of available water resources. Evapo-

ration is a surface phenomenon in which liquid water gets

converted to a gaseous form below its boiling point. The

state of climatic variables such as temperature, humidity,

wind speed and sunshine surrounding the evaporating

water surface hugely influences the process of evaporation

from the water bodies. Higher temperature increases the

kinetic energy of water particles at the surface, and the

inter-particle space between water particles also gets

increased. As a result, the inter-particle force of attraction

between the water particles at the water surface decreases,

and because of that, liquid water gets converted into gas-

eous form and gets evaporated. Another climatic factor that

influences the evaporation process is humidity which is a

measure of water vapor present in the air. When air

humidity is less, more amount of water vapor gets

accommodated in the air and thereby the rate of evapora-

tion from the evaporating surface increases with the

decrease in air humidity. Wind speed is another climatic

factor which triggers the evaporation process. When wind

speed increases, it carries away greater amount of water

vapor present in the air surrounding the water surface and

hence the amount of water vapor that can be accommo-

dated in the air increases and thereby more water particles

get converted into gaseous form and the rate of evaporation

increases.

Evaporation is measured precisely using Class A evap-

oration pan standardized by the National Weather Service

of the USA. Installation and maintenance of such equip-

ment for recording evaporation on a daily basis is a cum-

bersome task and requires a skilled workforce [3].

Alternatively, it is often estimated using different climatic

variables affecting the evaporation process through an

empirical approach. Due to the highly complex physical

and nonlinear nature of the evaporation process, it is fur-

thermore difficult to model evaporation through empirical

methods as well [4]. Moreover, empirical model developed

for one agro-climatic situation may not perform well in

other situations and needs recalibration of model coeffi-

cients before its implementation. Attempts are made by

researchers to model evaporation process and to develop

several empirical formulae in the past which are discussed

in the literature [5–10]. Among empirical methods, evap-

oration estimates obtained through Penman equation are

considered as most precise, and therefore, it is widely used

and globally accepted. However, application of Penman

method is limited as it requires other climatic inputs such

as net radiation and vapor pressure deficit.

Considering the limitations associated with both mea-

surement and empirical approaches discussed so far for

evaporation estimation, in the recent past researchers

employed several data-driven computational intelligence

and machine learning techniques with different optimiza-

tion algorithms and have provided some alternate machine

learning solutions to the problem with different input

combinations of available climatic variables such as tem-

perature, humidity, wind speed, sunshine, solar radiation

and vapor pressure [11–22]. A comprehensive review of

the available literature has been carried out, and significant

results of some of the recently published research articles

are discussed briefly in this section. In a study carried out

by Deo et al. [23] monthly evaporative losses had been

estimated using three machine learning techniques, namely

relevance vector machine (RVM), extreme learning

machine (ELM) and multivariate adaptive regression

spline, using meteorological parameters as predictor vari-

able and RVM was found to be the best predictor among
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these. Wang et al. [24] have investigated the potential of

multilayer perceptron (MLP), generalized regression neural

network (GRNN), fuzzy genetic (FG), least square support

vector machine (LSSVM), multivariate adaptive regression

spline (MARS) and adaptive neuro-fuzzy inference sys-

tems with grid partition (ANFIS-GP) for estimating evap-

oration and compared the results with regression methods

in different climates of China. They have found that

heuristic technique generally performed better than

regression and empirical methods. The MLP ranked first

concerning accuracy among other complex nonlinear

heuristic models considered in this study. In another

investigation carried out by Wang et al. [25], daily EP is

estimated using fuzzy genetic (FG), least square support

vector regression (LSSVR), multivariate adaptive regres-

sion spline (MARS), M5 model tree (M5Tree) and multiple

linear regression (MLR) for eight stations around Dongting

Lake basin in China. Investigations suggest that FG and

LSSVR provide better performance over other machine

learning techniques. Monthly EP has been estimated by

Malik et al. [26] in the Indian central Himalayas region,

employing MLPNN, co-active neuro-fuzzy inference sys-

tem (CANFIS), radial basis neural network (RBNN) and

self-organizing map neural network (SOMNN). Gamma

test is used for the selection of appropriate input combi-

nation. They reported the superiority of CANFIS over other

techniques. Tezal and Buyukyildiz [27] have studied the

applicability of MLP, RBFN and e-support vector regres-
sion (SVR) using different training algorithms. Both ANNs

and SVR with a scaled conjugate gradient (SCG) learning

have performed better as compared to empirical methods.

In one of the studies, Kisi et al. [28] have explored the

potential of decision tree-based machine learning methods

such as Chi-square automatic interaction detector (CHAID)

and classification and regression tree (CART) and com-

pared these with the neural network model for daily EP

estimation in Turkey. Comparison of results show that

neural networks performed better as compared to other

models in different scenarios. The conjugate gradient

optimization method is employed to calibrate three non-

linear mathematical models in a few locations of Iran by

Keshtegar et al. [29]. The results indicate that proposed

models ranked higher than adaptive neuro-fuzzy inference

system (ANFIS) and M5 model tree (M5Tree) models.

Goyal et al. [30] have examined the applicability of ANN,

LSSVR, fuzzy logic (FL) and ANFIS techniques in esti-

mating daily EP, and the results are compared with

empirical methods suggested by Hargreaves and Samani

(HGS) and the Stephens–Stewart (SS). Investigation

unveils that daily evaporation can be modeled successfully

and more accurately by FL and LSSVR techniques which

are superior to traditional approaches. In addition, machine

learning and evolutionary techniques have been

successfully implemented in various other fields including

biomedical science for prediction of proteins’ secondary

structure [31], load frequency controller design and

renewable distributed generations [32–34] and for solving

second-order boundary value problems and fuzzy differ-

ential equations [35–38].

It is learnt from the literature review that among dif-

ferent machine learning methods applied so far, ANNs with

appropriate learning algorithm have proven potentially

capable of modeling evaporation process in diverse loca-

tions and have performed better than more complex

structures. Prediction task is nonlinear in nature, and hence,

the adaptive model for prediction should have nonlinear

characteristics. Out of different ANN structures reported in

the literature, the Deep-LSTM is capable of capturing

higher-order nonlinear features. The Deep-LSTM is a stack

of LSTM units where different orders of nonlinear feature

representation are captured by LSTM unit at different

depths, which explores the inherent features of time series

over longer time period to attain improved prediction

performance [39, 40]. Since nonlinear features are more

suited for nonlinear prediction, the Deep-LSTM is a better

candidate for prediction of daily EP. Hence, Deep-LSTM is

employed for prediction purpose in this paper.

The methodology section provides detailed description

about the study locations, data sets, architecture and

implementation of Deep-LSTM neural network, MLANN

and empirical methods (Blaney–Criddle and Hargreaves)

considered in this paper. Simulation study and the results

obtained are elaborated in the subsequent section. Finally,

the contribution of the study is summarized in the con-

cluding section at the end.

2 Methodology

2.1 Study area

The present investigation is carried out for three repre-

sentative stations: Raipur, Jagdalpur and Ambikapur, from

three distinct agro-climatic zones (ACZs) of Chhattisgarh

state in east-central India (Fig. 1). ACZ refers to a land unit

in terms of its major climate and growing period which is

climatically suitable for certain range of crops and culti-

vars. The climate of Chhattisgarh is dry and sub-humid in

general with potential evaporation losses being more than

the average annual rainfall of the state, which is about

1400 mm. Raipur is located in Chhattisgarh plains ACZ

with average annual of about 1200 mm, whereas Jagdalpur

and Ambikapur are located in Bastar plateau and Northern

hills ACZs with an average annual rainfall of 1400 mm and

1600 mm, respectively. Long-term daily weather data on

maximum temperature (Tmax), minimum temperature
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(Tmin), morning and afternoon relative humidity (RHI and

RHII), wind speed (WS), bright sunshine hours (BSS) and

EP (EP) are collected from meteorological observatories

located at respective stations. All these meteorological

observatories are well maintained and certified by the India

Meteorological Department, Govt. of India. The details

about data sets are given in Table 1. Descriptive statistics

of the data sets considered for this investigation are pre-

sented in Table 2.

2.2 Deep-LSTM architecture

Deep neural networks are a class of recursive feedforward

networks, which can extract and learn features which are

deeply embedded in the data. Deep networks are broadly

categorized into two classes: classical and modern deep

networks. Recently, deep learning techniques have been

successfully employed in natural language processing [41],

sequence learning [42] and time series predictions such as

financial market and wind forecasting [43, 44]. Deep net-

works differ from other feedforward networks in terms of

independence of the connecting nodes. In traditional

Fig. 1 Location map of the

study area
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feedforward network, nodes receive input from the previ-

ous node only and are independent of all other nodes. In

deep networks, the nodes are massively interdependent and

share weights which signify the idea of long-term depen-

dencies. In other words, the current node receives input not

only from the previous node but also from many other

previous nodes. There may be nodes which have self-

connection loops as well, which signifies interconnected

hidden states for the same node in the time domain. The

long-term dependency on the input requires the network to

keep previous states in memory. Conventional recurrent

networks face a vanishing gradient problem while dealing

with the need for storing information about long-term

inputs. The vanishing gradient problem is a condition in

which the input between different hidden states at different

time steps decreases exponentially. Long short-term

memory (LSTM) networks are a class of recurrent net-

works which handle vanishing gradient problem efficiently.

Table 1 Data sets used for the

study
Perimeters Raipur Jagdalpur Ambikapur

Latitude (�North) 21.14 19.08 23.12

Longitude (�East) 81.38 82.01 83.20

Altitude (m) 289 564 604

Total number of patterns 12,783 9131 6210

Patterns used for training (80%) 10,277 7305 4968

Period of the training data set 1981–2008 1993–2013 1999–2011

Patterns used for testing (20%) 2556 1826 1242

Period of the testing data set 2009–2015 2013–2017 2012–2015

Table 2 Descriptive statistics of

daily climatic variables of

Raipur, Jagdalpur and

Ambikapur

Station Maximum Minimum Range Mean SD CV R

Tmax (�C)
Raipur 47.6 15.4 32.2 32.7 5.3 16.1 0.90

Jagdalpur 44.4 18.0 26.4 30.9 4.3 13.8 0.85

Ambikapur 45.6 15.6 30.0 30.3 5.4 17.9 0.79

Tmin (�C)
Raipur 34.1 3.6 30.5 19.8 6.0 30.3 0.49

Jagdalpur 32.5 1.0 31.5 18.3 5.8 31.9 0.31

Ambikapur 31.9 0.4 31.5 17.7 6.6 36.9 0.48

RHI (%)

Raipur 100 9 91 79.4 18.8 23.7 - 0.86

Jagdalpur 100 21 79 86.3 11.6 13.4 - 0.74

Ambikapur 100 19 81 78.9 18.8 23.8 - 0.78

RHII (%)

Raipur 100 3 97 44.2 24.1 54.5 - 0.53

Jagdalpur 100 3 97 49.5 23.1 46.7 - 0.54

Ambikapur 100 5 95 46.4 23.9 51.6 - 0.49

WS (kmph)

Raipur 31.4 0.1 31.3 5.5 3.9 70.7 0.36

Jagdalpur 22.3 0.1 22.2 4.8 2.7 57.1 0.24

Ambikapur 16.3 0.0 16.3 3.6 2.3 63.2 0.38

BSS hours

Raipur 12.0 0.0 12.0 6.9 3.4 49.2 0.33

Jagdalpur 12.0 0.0 12.0 6.4 3.4 53.8 0.44

Ambikapur 12.3 0.0 12.3 7.2 3.3 45.3 0.34

EP (mm)

Raipur 21.5 0.1 21.4 5.5 3.5 64.5 1.00

Jagdalpur 15.2 0.0 15.2 4.2 2.4 55.6 1.00

Ambikapur 14.8 0.0 14.8 4.6 2.5 53.8 1.00
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LSTM networks have been successfully applied in natural

language processing. In this study, we have constructed a

deep recurrent network comprising of layers of LSTM

networks subsequently named as Deep-LSTM network.

The synthesized network suitably utilizes the advantages of

hugely successful deep networks and LSTM recurrent

networks. Deep-LSTM networks [45] manage the vanish-

ing gradient problem by incorporating the idea of memory

cells. Deep-LSTM neural network consists of some internal

contextual state cells that act as long-term or short-term

memory cells. The output of Deep-LSTM neural network is

dependent on the state of these cells. This feature assists

the network for the prediction purpose because such task

needs the historical context of inputs, rather only the last

input. The working mechanism of Deep-LSTM networks is

solely dependent upon the memory cell. Memory cells have

different subunits with different objectives as shown in

Fig. 2. The working principle of Fig. 2 is dealt in brief.

The input node gt receives input xt, from the input layer

of the deep network and from the previous hidden states

ht-1 of the node itself in time steps. The data to be pre-

dicted are nonlinear in nature. Hence, the model which is

used to predict nonlinear output should have nonlinear

element. The sigmoid is a nonlinear function and helps

improve prediction accuracy. Therefore, the weighted sum

of xt and ht-1 is passed through a tanh function, as given in

Eq. 1.

gt ¼ tanh xt �Wgx þ ht�1Wgh þ biasinput node
� �

ð1Þ

The input gate (it) is similar to the input node as this also

receives the same inputs as the input node. This is a unit

sigmoidal activation function. It is termed as input gate as

it blocks the flow of inputs from other nodes to the current

node, if its net value is zero. It allows the values to pass

through if the net value is one. Its operation is represented

by Eq. 2.

it ¼ r xt �Wgx þ ht�1Wgh þ biasinput gate
� �

ð2Þ

The internal state st is a node with a self-loop recurrent

edge of unit weight and a linear activation function, which

is updated using Eq. 3.

st ¼ i
t
� g

t
þ st�1 ð3Þ

The forget state (ft) is a subunit to reinitiate the internal

state of the memory cell and is formulated as Eq. 4.

ft ¼ r xt:Whx þ ht�1Wfh þ biasforget
� �

ð4Þ

Finally, the output gates Ot perform the task given in

Eq. 5.

Ot ¼ r xt �Wox þ ht�1Woh þ biasoutput gate
� �

ð5Þ

The final output of the memory cell is computed using

Eq. 6.

ht ¼ tanh stð Þ � Ot ð6Þ

where st ¼ g
t
� it þ st�1 � f

t

The network architecture of Deep-LSTM used for sim-

ulation study is shown in Table 3. The output layer has

only one node and hence not provided in this table.

2.3 Multilayer artificial neural network (MLANN)

A commonly used neural network structure, MLANN

suggested by Haykin [46] consists of an input layer, one

Fig. 2 A block diagram of an LSTM network
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intermediate hidden layer and an output layer. An N-5-1

structure of MLANN, with N the number of input nodes,

five neurons in the hidden layer and one neuron at the

output layer, is considered in this study. The training of the

weights of different layers is carried out by conventional

backpropagation algorithm. Basically, there are two passes

through the different layers of the network: forward pass

and the backward pass. The forward pass produces an

estimated output. The output error term in a modified form

is backpropagated from last layer to input layer to adjust

the connecting bias and weights of different layers. The

specifications of the MLANN structure used in this study

are given in Table 4.

2.4 Hargreaves method

Hargreaves et al. [47] have suggested computing the

potential atmospheric evaporative demand termed as ref-

erence evapotranspiration (ET0) with maximum and mini-

mum temperatures as

ET0 ¼ 0:0023RaTd0:5 Tm þ 17:8ð Þ ð7Þ

where Ra = water equivalent of extra-terrestrial radiation

(mm day-1), Td = difference between maximum and

minimum temperatures (�C), and Tm = mean temperature

(�C).

2.5 Blaney–Criddle method

Blaney–Criddle empirical equation reported in FAO irri-

gation and drainage paper no. 24 [48] is used to compute

reference evapotranspiration (ET0) with available data on

temperature, humidity, wind speed and sunshine hours. The

empirical equation is given as

ET0 ¼ aþ b p 0:46T þ 8:13ð Þ½ � ð8Þ

where a = 0.0043 RHII - (n/N) - 1.41, b = ao ? a1
RHII ? a2(n/N) ? a3Ud ? a4RHII(n/N) ? a5RHminUd,

ET0 = reference evapotranspiration in mm day-1,

T = (Tmax?Tmin)/2) = mean daily temperature in �C, p =

mean daily percentage of total annual daytime hours, n/N=

ratio of possible to actual sunshine hours, RHmin = mini-

mum daily relative humidity in percentage, Ud = daytime

wind at 2 m height (ms-1), a0 = 0.81917, a1 = 0.0040922,

a2 = 1.0705, a3 = 0.065649, a4 = 0.0059684, and

a5 = 0.0005967.

3 Performance evaluation criteria

The performance of the proposed prediction model is

evaluated by computing root-mean-square error (RMSE),

coefficient of determination (R2) and model efficiency

factor (EF) [49] between desired and estimated values of

evaporation for the data sets considered. These are defined

as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

i¼1

ðOutest � OutobsÞ2
vuut ð9Þ

R2 ¼
PT

i¼1 Outobs � Outobs
� �

Outest � Outest
� �� �2

PT
i¼1 Outobs � Outobs

� �2PT

i¼1

Outest � Outest
� �2

ð10Þ

EF ¼ 1�
PT

i¼1 Outest � Outobsð Þ2
PT

i¼1 ðOutobs � OutobsÞ2
�1�EF� 1ð Þ

ð11Þ

where Outobs and Outest represent the desired and estimated

evaporation values, respectively. T is the total number of

input patterns, and i denotes the number of particular

instances of input patterns. RMSE value should be close to

0, and R2 and EF values should be near to 1.

4 Simulation study and results

To estimate the daily evaporation with the help of data, the

Deep-LSTM and MLANN models are simulated in Python

and MATLAB, respectively, with different input combi-

nations as shown in Table 5. The number followed by

model name represents the number of input parameters.

Availability of consistent long-term weather data has

always been one of the significant constraints in deciding

input combination. Hence, the correlation coefficient

between daily climatic factors influencing evaporation

Table 3 Architecture of LSTM

model
LSTM layer nodes Dense layer-1 nodes Dense layer-2 nodes Batch size Epoch

32 20 20 72 300

Table 4 Architecture of MLANN models used

Parameters MLANN

Number of input features N = 2, 4, 5 and 6

Number of neurons in the hidden layer 5

Number of neurons in the output layer 1

Activation function Hyperbolic tangent (tanh)
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process and EP values (Table 2) forms the basis for

selection of input combinations. The main focus of this

study is to make effective utilization of available climatic

data and to model the daily evaporation process with

minimum input parameters with higher accuracy.

A significantly large number of available daily input

patterns, i.e., 17–35 years of daily weather data, are used

for simulation study for each of the data sets as shown in

Table 1. To attain consistency, each data set is normalized

between 0 and 1 before presenting to the model for training

and testing and then renormalized to its original unit for

final comparison between actual and estimated outputs.

Xk�Xminð Þ= Xmin�Xmaxð Þ ð12Þ

where Xk = kth sample value of the input parameter, Xmin =

minimum of the input parameter, and Xmax = maximum of

the input parameter.

Training of the proposed models with desired input

combination is done with 80% of the available data for

model development, and the remaining 20% data are used

to test the model performance. In order to train the

MLANN model, the first pattern is given as input to

neural network, and after the forward pass and estimation

process, the final output is obtained at the output node.

All the training patterns are applied sequentially. The

process continues till the remaining input patterns are

exhausted. The outputs corresponding to each input pat-

tern are compared with the desired output to produce

error term. The change in weights in each path is calcu-

lated using backpropagation learning algorithm. The

change in weight of each path of the model is stored for

every input. Then the average change in weight in each

path is calculated. The weights are then updated by

adding the average change in weight of each path. This

constitutes one iteration. The same process is continued

for 5000 iterations. The value of the convergence coeffi-

cient (l) is fixed at 0.01 as it provides better training.

This completes one experiment, and the same experiment

is repeated for ten independent times. For steady-state

estimation of different weights, in each iteration, the root-

mean-square error (RMSE) is computed using error value

of each pattern. The training process is stopped when the

RMSE value achieves the best possible minimum value.

After the training process is over, the weights and biases

at each layer of the neural network are fixed according to

final iteration. To validate the prediction performance of

this model, test patterns are fed sequentially. For each test

pattern, the estimated output is obtained and compared

with the desired values using performance evaluation

measures RMSE, R2 and EF for each of the models and

data sets. Model parameters during training are optimized

to minimize the RMSE toward zero and maximize the R2

and EF toward one for achieving improved performance.

Similarly, the Deep-LSTM is trained for three different

data sets used for the study with the same basic config-

uration as given in Table 3. The network has one LSTM

layer, two dense layers and one output layer. Hyperbolic

tangent function (tanh) is used for activation and hard

sigmoid function for recurrent activation, both of which

are default in LSTM layer. For output layer sigmoid

activation function is used. Default ‘glorut uniform,’ for

kernel initializers and bias initializers as ‘zeros’ are used

for LSTM layer. For better convergence, Adam optimiz-

ers [50] with default parameter settings (b1 = 0.9,

b2 = 0.999 and learning rate = 0.01) have been used.

Layer_1 or Layer_2 regularization is not used as previous

studies have found that model performance does not

improve with regularization for sequence learning prob-

lem [51, 52]. Dropout affected the performance of the

model. Hence, subsequently, dropout is not preferred in

any of the layers. All the architectures that have been

implemented for this study are achieved by using open-

source software library Tensorflow [53], Keras high-level

neural networks API [54] and scikit-learn [55] on a Dell

PowerEdge T130 server, set to CPU execution. The

stopping criterion used during training phase is attainment

of minimum and consistent root-mean-square error. The

training is stopped when the RMSE attains a possible

minimum value and then remains almost constant.

Test performance based on evaluation criteria consid-

ered for the proposed models is shown in Table 6. It is

observed from the inferences that marked improvement has

been observed in terms of RMSE, R2 and EF with the

proposed Deep-LSTM models over conventional MLANN

and empirical models for each of the data sets. The RMSE

values at Raipur improved from 1.21 to 0.98 with a Deep-

LSTM model against the RMSE values 1.40–1.15 with

MLANN with increasing number of input features. The

magnitude of improvement is less with the increasing

number of input features. In the other two locations

Table 5 Input data combination

used in Deep-LSTM, MLANN

and empirical models

Model Input combination Number of inputs

Deep-LSTM-2, MLANN-2 and Hargreaves Tmax, Tmin 2

Deep-LSTM-4 and MLANN-4 Tmax, Tmin, RHI, RHII 4

Deep-LSTM-5 and MLANN-5 Tmax, Tmin, RHI, RHII, WS 5

Deep-LSTM-6, MLANN-6 and Blaney–Criddle Tmax, Tmin, RHI, RHII, WS, BSS 6
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Jagdalpur and Ambikapur the improvement in RMSE

values obtained with Deep-LSTM models is only slightly

better as compared to MLANN models for all four input

feature combinations. At Jagdalpur the RMSE values

improved from 1.09 to 0.97 with Deep-LSTM model fol-

lowed by 1.08 to 1.03 with MLANN models with

increasing number of input features. Similar trend in

RMSE values is observed in Ambikapur also where it

improved from 1.07 to 0.93 for Deep-LSTM models fol-

lowed by 1.12 to 0.96 with MLANN models as the number

of input features increased.

With regard to R2 and EF, both improved marginally

with Deep-LSTM models over MLANN models; how-

ever, higher values of R2 and EF ranging from 0.865 to

0.915 and 0.826 to 0.915, respectively, with increasing

number of input combinations for neural network model

(Deep-LSTM and MLANN) at Raipur are noticeable and

encouraging. A similar trend is observed at Jagdalpur also

with a comparatively lower magnitude of R2 and EF

ranging from 0.727 to 0.769 and 0.708 to 0.768, respec-

tively, with increasing number of input features for neural

network models. Further, the magnitude of R2 and EF at

Ambikapur is even less as compared to other two stations.

However, R2 and EF improved from 0.670 to 0.716 and

0.481 to 0.638, respectively, for different neural network

models with increasing number of input features. The

performance of both Deep-LSTM and MLANN models is

superior to empirical methods in terms of RMSE, R2 and

EF in all the three locations. Deep-LSTM model ranked

top among the models as it performed better in all three

objectives (RMSE, R2 and EF) in most cases and at least

two objectives in some cases under different scenarios of

input combinations. The difference in magnitudes of

RMSE values at Raipur, Jagdalpur and Ambikapur is

Table 6 Comparison of test

performance of neural network

(Deep-LSTM and MLANN) and

empirical models (Blaney–

Criddle and Hargreaves) for

daily EP estimation at Raipur,

Jagdalpur and Ambikapur

Station Models Test performance

RMSE (mm/day) R2 EF Rank

Raipur Deep-LSTM-2 1.21 0.873 0.870 1

MLANN-2 1.40 0.865 0.826 2

Hargreaves 2.42 0.636 0.482 3

Deep-LSTM-4 1.21 0.873 0.870 1

MLANN-4 1.33 0.869 0.843 2

Deep-LSTM-5 1.02 0.908 0.908 1

MLANN-5 1.16 0.905 0.882 2

Deep-LSTM-6 0.98 0.915 0.915 1

MLANN-6 1.15 0.908 0.882 2

Blaney–Criddle 1.99 0.725 0.649 3

Jagdalpur Deep-LSTM-2 1.09 0.733 0.708 1

MLANN-2 1.08 0.727 0.717 2

Hargreaves 1.56 0.508 0.403 3

Deep-LSTM-4 1.04 0.750 0.735 1

MLANN-4 1.05 0.744 0.732 2

Deep-LSTM-5 1.00 0.757 0.755 1

MLANN-5 1.03 0.749 0.743 2

Deep-LSTM-6 0.97 0.769 0.768 1

MLANN-6 1.03 0.762 0.739 2

Blaney–Criddle 1.27 0.605 0.604 3

Ambikapur Deep-LSTM-2 1.07 0.670 0.526 1

MLANN-2 1.12 0.671 0.481 2

Hargreaves 1.27 0.418 0.388 4

Deep-LSTM-4 0.99 0.712 0.596 1

MLANN-4 1.00 0.702 0.585 2

Deep-LSTM-5 0.94 0.699 0.635 1

MLANN-5 0.99 0.701 0.598 2

Deep-LSTM-6 0.93 0.716 0.638 1

MLANN-6 0.96 0.709 0.617 2

Blaney–Criddle 1.12 0.597 0.479 3
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observed mainly because of difference in agro-climatic

situation of the respective ACZ. The low R2 and EF at

Jagdalpur and Ambikapur as compared to Raipur may be

associated with the variation in correlation coefficient

between climatic factors and EP in respective station.

Availability of less number of input patterns for model

Fig. 3 a–h Comparison of observed and estimated daily EP and their relationship for Deep-LSTM-6, MLANN-6 and empirical models (Blaney–

Criddle and Hargreaves) at Raipur
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development may also be one of the reasons for poor

predictive performance of the proposed models at Jag-

dalpur and Ambikapur as compared to Raipur.

Comparison between observed and predicted daily EP

for Deep-LSTM-6, MLANN-6, Blaney–Criddle and Har-

greaves models at Raipur, Jagdalpur and Ambikapur during

Fig. 4 a–h Comparison of observed and estimated daily EP values and their relationship for Deep-LSTM-6, MLANN-6 and empirical models

(Blaney–Criddle and Hargreaves) at Jagdalpur
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the testing phase is shown in Figs. 3a–d, 4a–d and 5a–d,

respectively. Relationship between observed and predicted

values of daily EP for Deep-LSTM6, MLANN-6 and

Blaney–Criddle models at Raipur, Jagdalpur and

Ambikapur is also shown in Figs. 3e–h, 4e–h and 5e–h,

respectively. It is observed that, pictorially, it is difficult to

Fig. 5 a–h Comparison of observed and estimated daily EP values and their relationship for Deep-LSTM-6, MLANN-6 and empirical models

(Blaney–Criddle and Hargreaves) at Ambikapur
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differentiate the performance of Deep-LSTM-6 and

MLANN-6 on a daily scale; however, daily estimates

obtained through Deep-LSTM-6 and MLANN-6 models

seem to be in close agreement with the observed ones in

most of the cases as compared to empirical models in all

stations. The empirical models either underestimate (at

Raipur) or overestimate (at Jagdalpur and Ambikapur)

daily EP and are unable to predict peak evaporation rates

during summer season. Further, smaller intercept values

close to zero indicate that the proposed Deep-LSTM-6

estimate exhibits a close relationship with observed evap-

oration in most cases as compared to other models.

5 Statistical studies for model selection

For selection of appropriate regression models among the

models under investigation, two statistical analyses,

namely paired-t test and Akaike information criterion

(AIC), have been conducted and the results obtained are

discussed:

5.1 Paired t test

In order to further examine the performance of models

under consideration a paired t test is conducted to test the

null hypothesis that the pairwise difference between

squared errors obtained for different models has a mean

equal to zero or no significant difference exists in estimated

outputs of compared models. The alternate hypothesis says

that the difference among estimated outputs of compared

model is statistically significant. The t test returns ‘h’ and

‘p’ values as result. The h value equivalent to 0 and a

corresponding p value greater than 0.05 approves or, in

other words, fail to reject the null hypotheses, which

indicates that statistically no significant difference exists

between the mean squared error obtained with Deep-LSTM

and compared models, whereas h = 1 and p\ 0.05

approve the rejection of null hypotheses at the 95% sig-

nificance level. This indicates the fact that there exists a

significant difference between the estimated output of

compared models. Comparative paired t test statistics

(p and h values) for Deep-LSTM with equivalent (in terms

of the number of input features) MLANN and empirical

models are shown in Table 7. It is observed that in most of

the cases h value of 1 and p value less than 0.05 approve

the fact that Deep-LSTM-produced estimated outputs are

significantly different than equivalent model. However,

h value of 0 and p value greater than 0.05 at Jagdalpur

indicate that it is not possible to prove that there exists any

significant difference between Deep-LSTM-2 and

MLANN-2 predictions. Similarly, h = 0 and p greater than

0.05 at Jagdalpur and Ambikapur indicate there is hardly

any difference between the performance of Deep-LSTM-4

and MLANN-4 at these locations.

5.2 Akaike information criterion (AIC)

The AIC is widely used for model selection for regression

problems [56, 57]. The AIC values are computed with the

help of mean squared error (MSE) between observed and

estimated evaporations for each model and using following

Eq. (13).

AIC ¼ N � log MSEð Þ þ 2 � k ð13Þ

where N = number of observations and k = number of

parameters.

The AIC values for Deep-LSTM and corresponding

MLANN and empirical models are shown in Table 8. The

lower AIC values represent the better models. It is also

seen that in all cases AIC values obtained with Deep-

LSTM models are lower as compared to other models. The

difference in magnitude for different data sets, i.e., Raipur,

Jagdalpur and Ambikapur, is due to the difference in the

number of observations considered for testing the models.

6 Conclusion

This study is carried out to assess the potentiality of Deep-

LSTM structure for estimation of daily EP losses under

different agro-climatic situations with the help of climatic

Table 7 Pair t test statistics for

Deep-LSTM with

corresponding MLANN and

empirical models for different

data sets

Models Data sets

Raipur Jagdalpur Ambikapur

h p h p h p

Deep-LSTM-2/MLANN-2 1 2.085e-45 0 0.162 1 0.002

Deep-LSTM-2/Hargreaves 1 6.372e-70 1 3.970e-63 1 1.298e-06

Deep-LSTM-4/MLANN-4 1 1.047e-33 0 0.533 0 0.093

Deep-LSTM-5/MLANN-5 1 7.917e-36 1 0.004 1 4.202e-35

Deep-LSTM-6/MLANN-6 1 9.300e-49 1 1.065e-11 1 6.634e-06

Deep-LSTM-6/Blaney–Criddle 1 1.775e-78 1 1.355e-42 1 1.846e-09
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data influencing the evaporation process. The investigation

has led to the following conclusions:

• Both Deep-LSTM and MLANN models are capable of

estimating the daily EP with different input

combinations.

• Deep-LSTM models performed better compared to

MLANN and empirical models in all scenarios.

• Statistical inferences based on paired t test and AIC also

suggest that the Deep-LSTM models are superior to the

MLANN and empirical models for different input

combinations.

• Depending on the availability of the climatic data

appropriate Deep-LSTM model can be adopted for

estimating daily EP for the stations where direct

measurement of evaporation is not done. In future

other deep learning-based neural network structures

may be applied to predict the nonlinear processes such

as evaporation and reference evapotranspiration.
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