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Abstract
Handwritten document recognition has been an active domain of research in the field of computer vision for several years

since 1914 with the development of handheld scanner for reading printed texts called ‘‘optophone’’. In India, which has

several different scripts in one document page, identifying them is a must to automate process: document understanding.

We propose a novel technique in integrating convolutional neural networks (CNNs) for script identification. We combined

small individually trainable small CNNs, and used several different levels of variation in the architectures of the individual

CNNs. Such a collection of individually trainable modules vary with respect to the input image size, CNN’s depth and

wavelet transformation. In our test, we used publicly available dataset of size 11K words (1K per script) from 11 different

Indic Scripts: Bangla, Devanagari, Gujarati, Gurumukhi, Kannada, Malayalam, Oriya, Roman, Tamil, Telugu and Urdu.

Several ensemble strategies were implemented such as max-voting and probabilistic voting are used in addition to other

conventional approaches like feature concatenation. We achieved a maximum accuracy of 95.04%, and it outperforms the

accuracy of the state-of-the-art techniques like AlexNet by 2.9% and more importantly, benchmark techniques as (for script

identification) on the dataset by more than 4%.

Keywords Convolutional neural network � Deep learning � Haar wavelet transform � Document analysis �
Indic script recognition � More

1 Introduction

Optical Character Resolution (OCR) techniques convert

printed and/or handwritten document images into machine

encoded text. Along this process, script recognition task is

a must in case we face multi-script document images that

come from multi-lingual country like India, where several

different scripts are available in one document such as

postal documents and bank checks (see Fig. 1). Due to

shared ancestry, many Indian scripts have lots of common

attributes and shapes among them. These common shapes

across various scripts pose a serious challenge in this

domain of research. A traditional handwritten script

recognition task takes an image containing a handwritten

chunk of text as an input and the scripts that they belong to

at the output. The purpose of the problem is not to rec-

ognize content, rather it deals with script identification. Our

method involves word-level Indic script identification.

Implementing a word-level approach, rather than a page-
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level approach, allows us to tackle multi-lingual documents

since, more often a single page contains several scripts

from line to line and/or from word to word. Our proposal

involves combination of individually trainable small con-

volutional neural networks (CNNs). We provide a thorough

study over design choices and performance of different

combination strategies. In what follows, we discuss perti-

nent references from the literature (Sect. 1.1), and specific

details of our contribution (see Sect. 1.2). Section 2

describes the various modules of our architecture. Sec-

tion 3 explains the various experimentations performed.

These experimentations have been thoroughly analyzed in

Sect. 4. Each design choices have been scrutinized to

understand their impact on the architecture. Finally, three

combination approaches have been compared and their

performance was fared against the benchmarks and some

state-of-the-art architectures. In Sect. 5, we conclude our

findings.

1.1 Related works

OCR techniques dealing with handwritten script identifi-

cation has a rich literature [13–15, 22, 26–28, 40, 44]. More

often, document recognition systems were script specific

[9, 27, 36]. In 2002, an approach for word-level script

identification was proposed for Tamil and Roman scripts,

where a set of Gabor filters was used to distinguish two

printed scripts [11]. Unlike printed scripts, handwritten

script identification is found to be difficult in several

aspects, such as variants in the properties of different

writing instruments, variety in the style of handwriting

among various writers, as well as variety in the style of a

single writer during different points of time, situation and

emotional conditions. All these make each handwritten

sample unique in their own way, thus providing ample

challenge to researchers. The availability of a Indic

numeral dataset that is composed of Devanagari, Bangla

and Oriya numerals accelerated the research in this domain

[4]. Many feature-based approaches were available [5]

since then. Clonal selection algorithms [12], texture-based

features [7, 8], appearance-based (by using ‘‘Matra’’) [3],

fractal-based features, component-based features and

topological features [34, 35] are some of the notable fea-

tures implemented in this respect. Other methods included

application of probabilistic models like hidden Markov

model (HMM) [37] and support vector machine (SVM)

[45]. Another direction of research involved the use of

Wavelet transforms [16]. Especially, discrete wavelet

transforms proved to be a potent method [15]. Wavelet

transform very much like Fourier transform (FT) is used to

transform a signal from the time domain to the frequency

domain. FT [6, 42] does not work well with non-stationary

signals as it does not successfully provide information

about what frequencies are present at what time. To

overcome this shortcoming, Wavelet transform (WT) [10]

and short time Fourier transform (STFT) [30] were con-

ceived. Neural networks (NNs), in general, were also

considered in this domain [38]. A plethora of research has

been conducted at various levels of data [25] like page-

level [24], block-level [23], line-level [32] etc. These

micro-level approaches allowed to deal with documents

containing texts with more than one script. Our methods

deal with even a smaller level of recognition that is the

word level. Not much research exists in such a micro-level

[29, 33, 39, 41]. While feature-based showed its worth, the

onset of deep learning techniques [18–20] set an entirely

new benchmark for computation vision problems. Usage of

hand-crafted features was a major setback for the previ-

ously mentioned techniques. Deep learning techniques

excel in finding the optimum representation of visual data.

Hence, deep learning methodologies [1, 2, 21] started

surfacing to solve these challenges. However, deep learn-

ing techniques tend to be very computationally expensive.

Due to the large sizes of the NNs and millions of floating

Fig. 1 Samples of multi-script document images
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point operations, it normally relies on GPU-based parallel

computations that use thousands of CUDA computational

cores. Bigger models tend to require bigger GPUs and

hence more costly hardware, on the other hand smaller

model compromises on performance. One of the compre-

hensive data known by the name PHDIndic_11 dataset [24]

has been made publicly available, and it contains 11 dif-

ferent Indic scripts. This provides us with an extremely

challenging problem to deal with.

1.2 Our contribution

Feature-based approaches may not be generic enough since

feature selection requires domain experts (to some extent).

For a multi-script document images, difficulty has been

more pronounced and it may require several experts (with

a-priori information about scripts). Straight-forward use of

CNNs have proved to be quite robust for a various hand-

written document classification problem. With increasing

trend of problem complexity, CNN architectures tend to be

hardware intensive. Keeping such issues in mind, our

contribution is mainly focused in extracting more infor-

mation from a set of individually trainable linear CNN

architectures that are relatively small in size. The primary

advantage of such small CNNs is that it can be trained in

comparatively less hardware intensive environment. Subtle

variations were taken into consideration (in CNNs) on

three specific grounds: (a) CNN’s depth; (b) wavelet

transformation (input image); and (c) scaling (scale input

images to different sizes). We observed and provided how

each of these variations affects the performance. We ana-

lyzed our method from two different phases. In the first

phase, we hierarchically combined individual CNNs to see/

observe how these variations contribute to the overall

performance (i.e., accuracy). In our second phase, for script

identification, different combination strategies were tested

namely, max-voting, probabilistic voting that is based on

the outputs of the individual CNNs and feature

concatenation.

2 Materials and methods

As mentioned in Sect. 1.2, we have used a number of small

CNNs in our work. There are two main branches of

experiments. First, with normal inputs and secondly with

inputs transformed using Haar Wavelet transformation.

Firstly, wavelet transformation will be discussed showing

how they were used to transform the inputs. After that, we

explain CNN architectures used in the process. Finally, a

discussion on the various ensemble techniques will con-

clude our entire set of models. In Fig. 2, a complete

flowchart of how all these modules combine to create the

different architectures is shown.

2.1 Image representation: wavelet transform
(WT)

WTs are used most widely as a dimensionality reduction

tool for high-dimensional data and they achieve this by

converting a signal from the time domain representation to

the frequency domain representation. In the frequency

domain representation, we can neglect certain low-fre-

quency components and reconstruct a signal which is very

much alike the original signal using high-frequency com-

ponents alone. However, during the process, noise is

smoothened out [31] and rich contours which are crucial

for script identification are left behind. Discrete Wavelet

transform (DWT) has an inherent advantage of conceiving

both frequency and location information(location in time

space). To use DWT, we first resize input image to 128�
128 and then we think of this image as a 2D time signal, to

which we cascade multiple levels of 2D DWT, from the

family of HWTs [43]. The coefficients C1 obtained by

doing a single-level two-dimensional Haar wavelet

decomposition on an image I0 can be expressed as:

C1 ¼WHWTðI0Þ ¼ WIWT

¼
L

H

� �
I0

L

H

� �T
¼ LI0L

T LI0H
T

HI0L
T HI0H

T

� �

¼
AI1 DH

I1

DV
I1

DD
I1

" #
:

ð1Þ

The top half L of the wavelet transformation kernel W is

composed of low-pass or averaging filters like

ð
ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2Þ. The bottom half H is composed of high-

pass or difference kernels like ð�
ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2Þ. Every

decomposition divides the image into four parts as shown

above, where AIk is the approximation coefficient and DH
Ik
,

DV
Ik
, and DD

Ik
are the horizontal, vertical and diagonal detail

coefficients of the k-th level transform. We can get the

higher level coefficients Ck by a decomposing the

approximation coefficient of the previous level as shown

below,

Ck ¼ WHWTðAIk�1
Þ: ð2Þ

The image can be reconstructed using all the coefficients

obtained by the multilevel decomposition using inverse

Haar wavelet transform.

I ¼ W�1
HWTðCÞ ¼ WTCW : ð3Þ

At every level, the approximation coefficient becomes a

quarter of the size of the image with each edge being
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halved. With an input of 128� 128 we can consider cas-

cading a maximum of 7 such levels of decomposition. For

our purpose, the final approximation coefficient AI7 is

ignored during the reconstruction by setting it to zero. This

allows us to remove a lot background noise and force the

network to focus only on important aspects. The decom-

position and reconstruction process can be visualized as in

Fig. 3. Some samples of reconstructed images are shown

in Fig. 6. The 128� 128 input image were then further

rescaled to 32� 32 and 64� 64 thus resulting in 3 dif-

ferent scales of input for both raw and WT inputs. These

pathways of experimentations have been named using a

specific convention which will be discussed in Sect. 2.2.

2.2 Overview: convolutional neural network
architectures

CNNs have been more realistic since the LeNet [20]

proved its worth for the MNIST digit dataset. The popu-

larity of CNNs was further boosted with the application of

the AlexNet [18] over the 1000 class ImageNet object

recognition challenge. CNN broadly consists of three dif-

ferent types of layers, namely convolutional layer (CL),

pooling layer (PL), and fully connected layer (FCL). The

CL has a set of filters, where parameters can be modified as

training proceeds in such a way that they are able to pro-

vide different feature maps from the input. The PL is

mainly used to reduce redundancy of the input and lesser

memory requirement in higher layers. In our case, we

performed max pooling at the pooling layers. The FCL is a

multi-layer perceptron (MLP) that takes a feature vector as

an input, which is produced after a sequence of convolution

and pooling, and returns the output as soft-max probabili-

ties for each of the scripts (i.e., 11 scripts in our dataset).

Together, CL and PL are referred to as a convolutional

block hereafter. We have used two different CNN archi-

tectures with two and three convolutional blocks, respec-

tively, and our CNN architectures are shown in Fig. 4.

2.3 Nomenclature

As mentioned in Sect. 1.2, we have three specific param-

eters to work on different types of CNNs, and in general,

we call it by CNNW;S;D, where the factors that govern the

changes/variations can be explained below.

Fig. 2 Workflow: a broad overview of different modules in the approach

Fig. 3 Decomposition and reconstruction of input image using a seven level Haar wavelet transform
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1. Transformation (W): W refers to whether or not the

HWT has been used for having a reconstructed version

of the raw image from the seven level detailed

components as mentioned in Sect. 2.1. W can take

one of the two values: HWT or RAW, where the

former one refers to HWT presence and the latter one

refers to HWT absence.

2. Scale (S): S refers to the size of the input image. It can

take values of 32, 64, 128 representing resolutions

32� 32, 64� 64 and 128� 128, respectively. Input

image size will control the intermediate size of the

activation maps, and thus the number of weights in the

FCL.

3. Depth (D): D refers to the number of convolutional

block in our CNN architecture. In our study, one of

values: 2 or 3, representing two- or three-levels of

convolution and pooling can be used.

An illustration of the various architecture is shown in

Fig. 5.

2.4 Justification for variations

While CNNs are more preferred as end-to-end solutions,

we have used an ensemble of 12 networks with 3 main

variations, namely transformation, scale and depth. One of

our main focus is to keep the individual networks small.

That creates lots of constraints in the learning capability.

Each variation addresses such a constraint and their

combination boost the features combination which are

relevant to the current problem domain.

2.4.1 Reason for wavelet transformation

Discrete Wavelet Transform (DWT) has been used in our

approach as a dimensionality reduction tool. DWT at single

level of decomposition performs two operations to reduce

the size of the input image, i.e. an averaging function and

difference function at each pixel with respect to each of its

neighboring pixels. The averaging function generates what

is known as an approximation coefficient and the differ-

ence creates the detail coefficient. For the purpose of script

identification, the contours play a crucial role and hence the

detail coefficients are better suited for the purpose of

classification, and the approximation coefficients repre-

sents a compressed version of the original image. We

continue this process to multiple levels of decomposition to

capture detail coefficients at higher levels of granularity.

The wavelet transformation, in practice, suppresses back-

ground noise [31] and separates the text from the back-

ground. The increase in homogeneity definitely affects the

quality of features learnt. A bilateral filter might have a

similar effect, however, since we are using networks that

are shallow in nature and operates under constrained

resources the network may not have a luxury to learn such

a filter. In that case, a forced transformation boosts the

performance. Especially in case of problems like script

recognition from handwritten text background noise can

Fig. 4 Architecture of the two- and three-layer CNNs
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affect the learning process significantly. Hence, a combi-

nation of spatial features with high-frequency components

can yield better performance. Some examples of recon-

structed images from the detail coefficients of a 7-level

Haar wavelet transform are shown in Fig. 6. Here, we can

see how the background low-frequency components are

removed and the highest information is near the contours of

the text.

2.4.2 Reason for different scales of inputs

As CNNs are mostly used in case of extracting the

important features from a large set of inputs, using a wide

variety of input sizes to the CNNs will lead to extracting

varied sets of features which can be used in the classifi-

cation process. As the filters in the convolution layers of a

CNN have a limited view of the input image at a particular

layer, varying the size of the input image will thus change

the sensory region of the kernels with respect to input and

hence the training process is enhanced by using varied

input sizes. The sensory area affected by the kernels of the

different layers of the two proposed networks with respect

to the image of a native resolution of 128� 128 is shown

in Table 1. To obtain such a wide variety of possible inputs,

generally deeper networks are used with more convolu-

tional layers. Due to constraints on computational resour-

ces to train extremely deep networks, we have separately

trained multiple CNNs of small depth and incrementally

ensembled them to achieve a similar result.

2.4.3 Reason behind using multiple networks of different
depths

The depth of network mainly defines two things. Firstly,

the complexity of features, and secondly the sensory region

of the kernel with respect to the input image. Since by

varying the scales of the input we have attained a variety of

sizes in terms of sensory regions we do not need to build

very deep networks. Secondly, script of handwritten words

can be recognized by a variety of features of different

levels of complexity. While some part of a text may be a

simple line or curve, while other parts have a more com-

plicated structure. Hence, networks of two different depths

Fig. 5 The different variations in the networks

Fig. 6 Input images (top) and

their reconstruction (below from

detail coefficients of 7-level

Haar wavelet transform
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are used and combined later to capture both kinds of

features.

2.5 Classification

Each of the CNNs (aforementioned) produces an output of

a 11 dimensional soft-max probabilities. They can indi-

vidually be trained. The final classification has been done

using two main techniques. The first technique uses

ensemble techniques on these 12 individual soft-max out-

puts, and the second technique uses the layer before the

soft-max layer in the individual CNNs. Each CNN has a

1024 dimensional feature vector connecting to the soft-max

layer. These 12 separate 1024 dimensional feature vectors

were concatenated and plugged as an input to separate

MLP that produced an output of the unified 11 soft-max. In

what follows, we will discuss them in detail.

2.5.1 Ensemble module

The ensemble module expects as input, vectors of size 11,

representing soft-max probabilities (trained CNN for each

image) and produces as output the predicted class label.

Using features, we then combine the CNNs into a single

model using one of the two methods: max-voting

scheme or probabilistic voting scheme.

1. Max-voting scheme (CNNmax): As mentioned before,

corresponding to each CNN, we get a vector of length

eleven as output which represents the probability

scores, and the predicted class label by the CNN is

the class which has the maximum probability score

from all the scores generated. Of all the predictions

made by the ten different CNNs, for a particular image,

the one prediction which was made the most number of

times is the output predicted class label by our

ensemble model. Alternately, if for each CNNW ; S;D,

we have the output probability scores as probW;S;D,

then the predicted class by this CNN, classW;S;D will

be,

classW;S;D ¼ argmax
i

probW;S;D½i�; 8i 2 ½1; 11�
� �

:

Each CNN casts its vote as classW;S;D for a particular

label, and the label with the maximum number of votes

is the output of the model. The final class classfinal can

then be expressed as:

classfinal ¼ modeðclassW;S;DÞ:

2. Probabilistic voting scheme (CNNprob): It is similar to

CNNmax. However, instead of evaluating the class

label predicted by each CNN, we perform an element-

wise average for each probability score. Alternately, if

for each CNNW ; S;D, we have the output probability

scores as probW;S;D, then the average soft-max scores

over the ten possible CNNs probavg is,

probavg ¼
1

N

X
W ; S;DprobW;S;D;

where W 2 HWT;RAWf g, S 2 f32; 64; 128g and D

2 f2; 3g. From the average score, we can then evaluate

the predicted class label with the maximum probability

score,

classfinal ¼ argmax
i

probavg½i�; 8i 2 ½1; 11�f g:

The aforementioned ensemble schemes are graphically

illustrated in Fig. 7.

2.6 CNN as a feature extractor (CNNfeat)

In second set of experiment, we used each trained CNN for

feature extraction. As mentioned in the earlier section,

preceding the soft-max layer of each CNN has a FCL with

1024 neurons. This layer can be treated as a feature vector

of size 1024. For this method, we concatenated all features,

which is then used as an input for MLP. Alternately, for

each image, the output feature vector generated by

CNNW;S;D be featW;S;D, then the concatenated feature

vector can be expressed as:

featVector ¼
[

W ; S;DfeatW;S;D;

where W 2 HWT;RAWf g, S 2 f32; 64; 128g and D

2 f2; 3g. This feature vector has been fed as an input to

MLP that is composed of 4 layers: input layer with 10,240

neurons, first hidden layer with 1024 neurons, second

hidden layer with 512 neurons and an output soft-max layer

with 11 neurons. Note that each CNN was trained indi-

vidually beforehand, and the extracted features were used

Table 1 Sensory area of the

kernels with respect to unscaled

input

Original scale Input scale CNN2 CNN3

Layer1 Layer2 Layer1 Layer2 Layer3

128 128 5� 5 10� 10 7� 7 10� 10 12� 12

128 64 10� 10 20� 20 14� 14 20� 20 24� 24

128 32 20� 20 40� 40 28� 28 40� 40 48� 48
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to train this second MLP separately. For better under-

standing, a visual representation of our architecture is

provided in Fig 8. After MLP has been trained, test

features (new test images) can be used to evaluate soft-max

scores prob, from which we obtain the predicted label

(classfinal) as:

Fig. 7 a Max-voting scheme and b probabilistic voting scheme are illustrated

Fig. 8 CNNs can be used as

feature extractor: the

penultimate layer of the CNNs

produces a feature vector of size

1024� 1
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classfinal ¼ argmax
i

prob½i�; 8i 2 ½1; 11�f g:

3 Experiments

In the previous section, it has been mentioned that a variety

of CNN architectures were used. Using the convention as

mentioned Sect. 2.3, the parameters of W, S and D will

take the values as shown in Table 2.

The first phase of our test justifies the purpose of the

individual CNNs by showing how much each of them can

contribute. We will perform hierarchical combination of

the CNNs to see how each of the parameters individually

can affect our performance. Once the parameter selection

procedure is justified, we will compare how far ensemble

methods boost the peformance.

3.1 Dataset

The dataset we have used to evaluate our approach for

word-level script identification, consists of a total of 11,000

words, spread across 11 different Indic scripts: Bangla,

Devanagari, Gujarati, Gurumukhi, Kannada, Malayalam,

Oriya, Roman, Tamil, Telugu, and Urdu. Grayscale sam-

ples were obtained from the PHD_Indic_11 dataset [24].

To generate a separate training and testing sets, we divide

our dataset in a 4:1 ratio, with 8800 images in the training

set and 2200 images in the testing set. We have five dif-

ferent variations of the dataset that will be inputs for two

different architectures of CNN (two- and three-layer). In

addition, six variations in scale include 32� 32, 64� 64

and 128� 128 for both raw and wavelet transformed

image.

3.2 Training

Using our training set, each of the CNNs in our model

(CNNW;S;D) has been trained separately using images that

are provided with or without wavelet transformation (W), at

different scale (S) and depths (D). In each CNNW;S;D, the

second FCL has 1024 neurons and at training time we

applied dropout to this layer with a probability of 0.5 and

added a final output layer with 11 neurons. The output from

the final layer is further passed through an eleven way soft-

max function that generates class probabilities for each of

the 11 different classes, given an input image. The class

with the highest probability is the predicted output. For

updating weights of the CNNs during back-propagation,

we used the Adam optimizer [17] , with learning rate as

1� 10�4 , b1 as 0.9 and b2 as 0.999. Training has been

done using batches of 50 images, and training accuracy was

calculated as the ratio of successfully classified images to

the total number of images in a batch.

3.3 Experimental setup

We performed two major experimental tests. The first test

deals with a parameter selection, and the second test

focuses on the combination schemes. To train individual

CNNs, we used a machine with Intel Core2Quad Q6600,

4GB RAM, and a NVIDIA GT 730 Graphics card with

4GB of DDR3 VRAM.

1. Parameter selection:

In this setup, we address to measure the perfor-

mance for each individual CNNs to check their

individual contributions. Furthermore, the individual

CNNs were hierarchically ensembled to further estab-

lish the contribution of each individual parameter.

While ensembling a group of individual CNNs the

label for the ensembled model was equal to the label

with the highest soft-max value across all the individ-

ual CNNs in consideration. The first level of ensemble

was among CNNs with same input representation (W)

and scale (S) but different depth (D). This is denoted

later as CNNðW;SÞ. The second level of combination

was for CNNs with same input representation but

different input scale or sizes. Here, we have used 3

different scales, namely, 32, 64, and 128. At first two of

the three scales have been combined resulting in the

models referred to as CNNðW;S1 S2Þ, where S1; S2 2
f32; 64; 128g such that S1 6¼ S2. Furthermore all the

three scales for a specific transformation were com-

bined to form the model CNNðWÞ.

2. Combination schemes: After CNN architectures are

justified, two different ensemble schemes and a

conventional feature concatenation scheme (with the

use of MLP) were used. We have, (a) max-voting

scheme (denoted by CNNmax), (b) a probabilistic

voting scheme (denoted by CNNprob) and (c) conven-

tional feature concatenation scheme (denoted by

Table 2 Possible values of the parameters: W, S and D that define the

CNN architecture

Parameters Values (explanation)

Transformation (W) HWT (presence of HWT)

RAW (absence of HWT)

Scale (S) 32 (32� 32, input image size)

64 (64� 64, input image size)

128 (128� 128, input image size)

Depth (D) 2 (2 convolutional blocks)

3 (3 convolutional blocks)
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CNNfeat). Notethat three ensemble techniques were

described in Sect. 2.5.1.

4 Results and analysis

This section involves calculation of accuracy, precision,

recall and f-measure for all individual CNNs as well as

their corresponding hierarchical combinations. The second

experiment appends the previous statistics (results) with

the accuracy, precision, recall and f-measure for all the

three combination strategies. The results are provided in

Table 3, where individual small CNN modules are denoted

by CNNW;S;D along with their hierarchical combinations

denoted by CNNW;S(Combination across depths),

CNNW;S1 S2(Combination of two different scales) and

CNNW(Combination across all different scales), and the

three combination strategies namely CNNmax, CNNfeat and

CNNprob. Figure 9 shows a graphical representation for

better understanding, where we observed that CNNprob

performed the best with an accuracy of 95.45%, precision

of 95.36%, recall of 95.32% and f-measure of 95.33%.

4.1 Analysis

First phase of analysis deals with parameter selection (of

the individual architectures), and the second phase dis-

cusses the results from three different combination

strategies.

4.1.1 Effect of variation

If we look at the trend in Fig. 10, we notice that whenever

we combined two or more lower level CNNs (to obtain a

higher level), we gained in accuracy. This signifies that

each of the individual architecture does have their unique

contribution and therefore they are complimentary to each

other. CNNW;S shows its gain over the average of all cor-

responding CNNW;S;D, and CNNW shows its gain over the

average of all CNNW;S. There is however an anomaly when

considering partial combination of 2 different scales

(CNNW;S1 S2) in case of wavelet transformed inputs. While

combining scales 64 and 128 for wavelet transformed

images, the performance dropped due to the poor perfor-

mance of the largest scale in Wavelet transformed images.

Finally, CNNprob shows its gain over the average of all

CNNW.

Secondly, to see the effect varying depth factor, we take

a look into Fig. 11a. While using raw images as input we

observed that an increase depth has more effect for larger

input image sizes. However, due to loss of information and

induced sparsity after HWT, depth has lesser effect for

larger input image sizes. The loss of information from

HWT has also a negative impact in the accuracy as shown

in Fig. 11b. We also observed that for medium sized

inputs, specifically 64� 64, HWT actually shows a nega-

tive loss or a gain in accuracy. However, HWT fails for

higher sizes of input image. It can also be seen in Fig. 11c,

where it shows an increase in accuracy with the increase in

input image size. While raw images tend to perform better

with higher resolution (or big size) of inputs, wavelet

transformed images performed better with medium sized

inputs. The fact can clearly be seen in the extreme fall of

accuracy when 128� 128 images were considered over

64� 64 (in case of wavelet transformed images). In addi-

tion, in Fig. 11c, the impact is larger for a deeper archi-

tecture if we use raw images and vice-versa for wavelet

transformed images. This confirms our observation in

Fig. 11a. In short, our observations may be summarized as

follows:

1. Architectures with higher depth can handle larger

inputs better for raw images;

2. For wavelet transformed images, higher depth has a

negative impact on accuracy for larger inputs;

3. Wavelet transformation is particularly useful inputs of

medium size and has an adverse effect for larger input

sizes;

4. Raw images tend to work well at a larger resolution.

4.1.2 Integrating small CNNs

As shown in Fig. 10, integrating small CNNs has a positive

effect on the overall performance. It is interesting to ana-

lyze various combination strategies. We have demonstrated

the performance of the three combination methodologies:

CNNmax, CNNfeat, and CNNprob in Table 3, and in Fig. 12

(for a closer look). The probabilistic voting technique

provides better performance as compared to other schemes:

max-voting and feature concatenation. The mean of prob-

abilities works better than an MLP trained on the con-

catenated features because the twelve networks have been

trained individually. The learned features have a lot of

redundant information and hence the concatenated feature

is not up to the mark. Had the networks been combined and

back-propagated against a common loss function the learnt

features would have been much better. It is definitely a

valid way of training the networks and would also provide

good results however our goal is to combine small net-

works that can be individually trained on cheap hardware

with constraints on the available compute capability. The

proposed work was carried out using a Nvidia GT 730 with

4GB of DDR3 Memory. The graphics card costs only
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around 90 dollars in the current US market. Thus, our

proposed system is extremely useful for creating cheap

systems. In addition, we have also performed correlation

analysis using the Pearson’s and Spearman’s correlation

coefficient. Correlation analysis is performed between the

three ensembled models (CNNmax, CNNfeat, and CNNprob)

Table 3 Accuracy, precision, recall and f-measure for all variations of CNNs along with their hierarchical combinations and the three ensemble

modules
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and the individual CNNs (CNNðW;S;DÞ) used in the

ensembling process, to see how alike the different CNNs

are in making predictions. The value of the coefficients lies

between �1 to þ1 and the higher the value of the corre-

lation coefficient, the more likely the models in question

are likely to predict the same output for a given input

image. In Table 4, one can see combined models have

much more correlated outputs as compared to the smaller

architectures. What this signifies is that the concepts

learned by combined networks have reached a much more

saturated region as compared to the individual networks.

The individual networks have learnt different concepts and

hence were open to improvement upon ensembling.

Finally, class specific precision, recall and f-measure are

provided (for CNNprob architecture) in Table 5, where

Bangla script proved to be the most difficult script to rec-

ognize, while Telugu stood easiest i.e., better recognition

performance.

Fig. 9 Performance comparison: accuracy, precision, recall and f-measure for different variations of individual CNN modules and ensemble

modules

Fig. 10 Performance evaluation (in terms of accuracy) by combining architectures
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4.2 Comparative study

Till now the performance of our system has been theoret-

ically justified. Further, the proposed system is compared

with the baseline algorithm reported in [24]. Note that the

baseline algorithm relied on feature-based approaches. The

algorithm has been applied on the currently used cropped

word dataset for a fair comparison. In addition, we have

shown our superiority over the LeNet and the AlexNet that

have proven track record for performing on handwritten

Fig. 11 Effect of variation of parameters, W,S,D 2: a gain of a 3 layered network over a 2 layered network; b Loss due to application of Haar

wavelet transformation; and c gain (in accuracy) for a CNN with respect to the immediate smaller resolution

Fig. 12 Performance

evaluation: accuracy, precision,

recall and f-measure for all three

combination strategies:

CNNmax, CNNprob and CNNfeat
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datasets. While performing analysis on the currently used

dataset, using AlexNet and Lenet, we have resized the

images in our datasets to conform to the expected input size

of both the above mentioned models respectively. Our

individually trainable modules are more comparable to the

LeNet in terms of size. Though considerably larger, the

AlexNet fails to beat our proposed ensemble approach.

Table 6 shows how our approach attests the fact.

5 Conclusion

We have presented an improved word-level handwritten

Indic script identification technique, where a set of small

convolutional neural networks are combined. In our CNN’s

architecture, individually trainable modules that vary with

respect to the input image size, CNN’s depth and wavelet

transformation have been employed as three different

levels of variation. We have implemented several ensemble

strategies such as max-voting and probabilistic voting and

conventional approaches like feature concatenation.

Thanks to small individually trainable CNNs, unlike con-

ventional approaches, we have used a GTX 730, with 4GB

of DDR3 VRAM for training, which is typically a house-

hold level GPU. Using publicly available dataset of size

11K words (1K per script) from 11 different Indic Scripts:

Table 4 Pearson’s and

Spearman correlation

coefficientsa for all individual

small CNNs and the three

combined CNNs with respect to

the three combined CNNs

aThe chromatic scale depicts higher values in green and lower values in red

Table 5 Performance evaluationa: precision, recall and f-measure for

each class using combination strategy: CNNprob

aThe chromatic scale depicts higher values in green and lower values

in yellow

Table 6 Comparison with baseline method and state-of-the-art

algorithms

Approach Accuracy (%)

Obaidullah et al. 2017 [24] 91.00

LeNet 1998 [20] 82.00

AlexNet 2012 [18] 92.14

Our method (CNNmax) 95.00

Our method (CNNprob) 95.45

Our method (CNNfeat) 94.68
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Bangla, Devanagari, Gujarati, Gurumukhi, Kannada,

Malayalam, Oriya, Roman, Tamil, Telugu and Urdu, we

have achieved a maximum script identification accuracy of

95.04%. Our performance outperforms the accuracy of the

state-of-the-art techniques like AlexNet by 2.9% and more

importantly, benchmark techniques (for script identifica-

tion) on the dataset by more than 4%.
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