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Abstract
Artificial neural network (ANN) aimed to simulate the behavior of the nervous system as well as the human brain. Neural

network models are mathematical computing systems inspired by the biological neural network in which try to constitute

animal brains. ANNs recently extended, presented, and applied by many research scholars in the area of geotechnical

engineering. After a comprehensive review of the published studies, there is a shortage of classification of study and

research regarding systematic literature review about these approaches. A review of the literature reveals that artificial

neural networks is well established in modeling retaining walls deflection, excavation, soil behavior, earth retaining

structures, site characterization, pile bearing capacity (both skin friction and end-bearing) prediction, settlement of

structures, liquefaction assessment, slope stability, landslide susceptibility mapping, and classification of soils. Therefore,

the present study aimed to provide a systematic review of methodologies and applications with recent ANN developments

in the subject of geotechnical engineering. Regarding this, a major database of the web of science has been selected.

Furthermore, meta-analysis and systematic method which called PRISMA has been used. In this regard, the selected papers

were classified according to the technique and method used, the year of publication, the authors, journals and conference

names, research objectives, results and findings, and lastly solution and modeling. The outcome of the presented review

will contribute to the knowledge of civil and/or geotechnical designers/practitioners in managing information in order to

solve most types of geotechnical engineering problems. The methods discussed here help the geotechnical practitioner to

be familiar with the limitations and strengths of ANN compared with alternative conventional mathematical modeling

methods.
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1 Introduction

Because of a large number of complicated problems in

most engineering applications, engineers depend on com-

putational intelligence as well as soft computing analysis

instead of following huge complicated calculations [1, 2].

In engineering problems, much sophisticated statistical

analysis and mathematical modeling are introduced in

order to solve engineering problems [3–5]. Challenges

associated with the reliable engineering design solution and

development of technology complicated the geotechnical

engineering environment even more [6, 7]. Certainly,

investigating the engineering properties of rock and soil

masses show uncertain and varied behavior due to their

imprecise and complex natures. On the other hand, many

other materials in the field of civil engineering (e.g., steel,

timber, and concrete) show far more homogeneity and

isotropy. The artificial neural networks (ANNs), based on

the sophisticated mathematical models and advanced

software tools, can help to assess all the reliable choices

available with respect to a predefined project outcome

[8, 9]. The ANN, however, need to be used along with one

optimization algorithm to reduce the rate of error especially
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in complex problems such as compressed sensing [10].

ANN offers the required tools for geotechnical engineers,

working in large consultant companies, to make a fast and

in most cases better decisions to improve the quality of

their performance and to reduce risks [11]. Numerous

researchers have discussed the operation and structure of

ANNs (e.g., Wang [12], Choobbasti et al. [13], Gandomi

and Alavi [14], Mukhlisin et al. [15], Lian et al. [16],

Salsani et al. [17], Bahrami et al. [18], Mert [19], Moayedi

and Rezaei [20]). As an alternative and effective approach,

which has been proved to have a degree of success and

reliability [21], is mainly based on the data alone to define

the parameters and structure of the model [8]. The ANN

was used in numerous academic subjects and projects, such

as risk assessment [22, 23], health and medical [24], image

processing [25, 26], mathematics [27–30], early warnings

related to geotechnical problems [31], geosciences and

remote sensing [32], business and management [33], civil

engineering [14, 34–36] and particularly to the geotechni-

cal engineering as the main concern for this study [32, 37].

In recent years some scholars have successfully

attempted to generate, extend and present the new utility

determining tools and approaches, as well as ANNs

methods and techniques into the field of civil engineering.

This interesting topic has been reviewed several times by

researchers such as Flood and Kartam [38], Flood and

Kartam [39], Adeli [3], Lu et al. [40], Lazarevska et al. [34]

and Li and Hao [41]. Indeed, the use of ANNs method in

the geotechnical engineering problems, as the first multi-

criteria assessment method, was presented in the early

1990s by Bolt [42]. Different subjects have been studied

using the ANNs method such as faults modeling [42],

underground openings [43], braced excavation [44], pile

integrity testing [45], pile bearing capacity [20, 46–56],

predicting geotechnical parameters [1, 57–59], modeling

tunnel boring machine (TBM) performance [60], kinematic

soil pile interaction response parameters [61], slope sta-

bility [62]. There are very few research studies that clas-

sified and reviewed the ANNs application for these

approaches in various areas such as; principles and

understanding of NNs in civil engineering [3], shallow

foundations [63], pile foundations [64], corrosion moni-

toring [65]. Various approaches have been suggested

regarding the previous findings on the ANN application in

geotechnical engineering. However, the conducted surveys

were limited to specific subjects such as pile foundation

[66], shallow foundation [63] or general subject of

geotechnical engineering [8] and did not keep up with the

new challenges and changing situation in the field of

geotechnical engineering. Thus, the authors think that there

is an absence of a systematic review from the recently

published studies performed in the highlighted area. Also,

the authors believe that there is a great demand for a

comprehensive review paper, combining the available

methods as well as current studies.

2 Literature review and distribution
of the papers

Since the early 1900s, and up to the date of writing this

paper, there are more than 4000 research scholar articles in

the field of geotechnical engineering which indexed in the

web of science (WOS). Distribution of papers published in

the considered area, based on the source title, is presented

in Table 1. In this regard, when the search narrows to the

application of ANNs in the subject of geotechnical engi-

neering only 152 articles, with a very limited number of

source title, remained. Distribution of papers, based on the

source title, in the use of ANN-based models in geotech-

nical engineering, is tabulated in Table 2. Figure 1 shows

the subject of ANN application in the field of geotechnical

engineering based on both total publications by year and

sum of times cited by year. It can be seen that the number

Table 1 Distribution of papers in the subject of geotechnical engi-

neering based on the source title

Number Name of journal N %

1 P I Civil Eng-Geotech 293 7.31

2 J Geotech Geoenvironj Geotech Geoenviron 203 5.07

3 Engineering Geology 201 5.02

4 Canadian Geotechnical Journal 119 2.97

5 Soils and Foundations 113 2.82

6 Computers and Geotechnics 97 2.42

7 Geotechnique 91 2.27

8 Int J Geomech 70 1.75

9 Geotechnical Testing Journal 63 1.57

10 Soil Dyn Earthq Eng 61 1.52

11 Environmental Geotechnics 56 1.40

12 B Eng Geol Environ 55 1.37

13 J Mater Civil Eng 54 1.35

14 Rock and Soil Mechanics 51 1.27

15 Int J Numer Anal Metint J Numer Anal Met 50 1.25

16 Environmental Earth Sciences 43 1.07

17 Geotechnical and Geological Engineering 42 1.05

18 Arabian Journal of Geosciences 40 1.00

19 Int J Phys Model Geoint J Phys Model Geo 39 0.97

20 Q J Eng Geol Hydrogen 38 0.95

21 Tunn Undergr Sp Tech 38 0.95

22 P I Civil Eng-Ground Improvement 37 0.92

23 P I Civil Eng-Civil Engineering 36 0.90

24 Bautechnik 35 0.87

25 Applied Clay Science 33 0.82

496 Neural Computing and Applications (2020) 32:495–518

123



of publications has increased sharply from one publication

in the year 2000 to twenty-two publications in the Year

2017. ANN-based methods have been applied increasingly

as an effective methods in most geotechnical engineering

subjects, including: tunneling [67, 68], mathematical con-

stitutive modeling [69], underground openings [70, 71],

geo-material properties [72, 73], bearing capacity of pile

[20, 53, 64]; slope stability [47, 74–79]; liquefaction

[80, 81], earth retaining structures [82, 83], soil swelling

[84, 85], classification of soils [86, 87] and site character-

ization [88, 89]. Indeed, the fundamentals of modern ANN

and hybrid ANN methods were developed (in some cases

Table 2 Distribution of papers

in the subject of ANN

application in geotechnical

engineering based on the source

title

Number Name of journal N %

1 Computers and Geotechnics 12 7.90

2 Arabian Journal of Geosciences 6 3.95

3 Geotechnical and Geological Engineering 5 3.29

4 Neural Computing Applications 5 3.29

5 Engineering with Computers 4 2.63

6 Environmental Earth Sciences 4 2.63

7 Int J Numer Anal Met 4 2.63

8 J Comput Civil Eng 4 2.63

9 Scientia Iranica 4 2.63

10 Soils and Foundations 4 2.63

11 Engineering Computations 3 1.97

12 Engineering Geology 3 1.97

13 Geomechanics and Engineering 3 1.97

14 Measurement 3 1.97

15 Natural Hazards 3 1.97

16 Acta Geotechnica 2 1.32

17 Advances in Engineering Software 2 1.32

18 Canadian Geotechnical Journal 2 1.32

19 Computer-Aided Civil and Infrastructure Engineering 2 1.32

20 Computers Geosciences 2 1.32

21 Disaster Advances 2 1.32

22 Environmental Geology 2 1.32

23 Expert Systems with Applications 2 1.32

24 Geoscience Frontiers 2 1.32

25 Geotechnique 2 1.32
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generated) in the 2000s and 1960s. The research and

development of ANN methods increased between 2010 and

2017, but as presented in Fig. 1, it seems that the expo-

nential (here means rapid increase) growth of this process

continued. ANN application in pile bearing capacity pre-

diction (both skin friction and end-bearing capacities),

modeling soil behavior, earth retaining structures and

excavations, site characterization, liquefaction, slope sta-

bility, and classification of soils are reviewed in this sec-

tion. To make readers familiar with the geotechnical

interest of research scholar authors listed the journals that

mostly publish on the subject of geotechnical engineering

(see Table 1). On the other hand, the distribution of papers

in the subject of ANN application in geotechnical engi-

neering according to the source title (see Table 2) is

illustrated.

2.1 ANN application in modeling soil behavior

AttohOkine and Fekpe [90] employed adaptive NNs to

model strength properties of local lateritic soils. They

compared the results from generalized adaptive NNs

(GANN) with some of the traditional back-propagation NN

(BPNN) approaches for modeling the in situ soil strength

properties based on raw California bearing ratio (CBR)

data. Their results showed the GANN seems to be more

effective. Zhu et al. [91] used recurrent NN (RNN) to

model shearing characteristics of residual soil. The network

was able to determine volumetric strains during shearing

courses and abrupt changes in axial. Pal [92] modeled

seismic liquefaction potential using a support vector

machine (SVM). In this study, the data were collected from

several field tests such as standard penetration test (SPT

value) and cone penetration test (CPT) and utilized to

assess the liquefaction potential using the SVM-based

classification approach. The author concluded that the

complex relationship between the liquefaction potential

and different soil parameters can effectively be presented

using the SVM. Pala et al. [93] employed the ANNs to

analyses the dynamic soil-structure interaction of build-

ings. They used the back-propagation (BP) algorithm. The

results showed that the solution time is quite fast and the

analysis and modeling stages are minimized. The NNs has

shown excellent performance for the solution of soil-

structure interaction problems.

Nazzal and Tatari [94] and Park et al. [95] used genetic

algorithms and ANN, respectively, to propose a practical

model and predict the resilient modulus of subgrade soils.

They concluded that the ANN-based predictive models

work as a simple and reliable mathematical tool. Groholski

and Hashash [96] developed of a framework for extracting

dynamic soil performance and pore water pressure

response from field data collected in downhole array test

(after ASTM D7400). To represent pore water pressure

generation during cyclic loading they introduced an ANN-

based constitutive model. As a result, the successful pre-

sentation of the established model is well demonstrated.

Distribution of the papers in the subject of ANN applica-

tion in soil behavior according to publication years,

research areas of their publication and source title is listed

in Table 3.

2.2 ANN application in pile capacity prediction

Different techniques of ANN, along with experimental

experiments, applied in other studies such as Moayedi and

Rezaei [20] and Mosallanezhad and Moayedi [53], Nazir

et al. [97] and Moayedi [98] to predict pile bearing

capacity, pile settlement, pile skin friction and/or pile end-

bearing capacity. One of the most basic researches on the

pile is provided by Chan et al. [99]. They have released a

training dataset using back-propagation neural network to

develop a prediction model for the evaluation of the skin

friction as well as end-bearing capacity in piles. After

comparison between the generated networks, they generate

more reliable outputs than a pile driving. In this regard,

Ismail and Jeng [100] established a HON-PILE model

(high-order neural network model) in order to model the

load-settlement behavior of piles. Indeed, a total number of

121 research scholar articles on the applicability of ANNs

on the pile bearing capacity (both lateral and axial) were

indexed in the WOS (see Table 4). It can be seen that

almost 86% of the publications are listed in the category of

‘‘engineering geology,’’ ‘‘engineering civil’’ and ‘‘geo-

sciences multidisciplinary.’’

2.3 ANN application in earth retaining structures

Research on the earth retaining structures has been always

one of the main interests between the geotechnical engi-

neers. Countries such as Peoples R China (20.743%), USA

(12.384%), England (6.502%), Japan (5.882%), France

(5.623%), Italy (4.664%), Canada (4.025%) provided the

most published articles on the subject of retiming structures

in the WOS. However, when it comes to the ANN appli-

cability, there are very few studies on the applicability of

the neural network on the estimation of retaining structures

behaviors. Studies such as Li et al. [101] and Chen and

Wang [102] worked on the deformation prediction of the

pile-anchor retaining structure. Li et al. [101] investigated

on the application of neural network to predict displace-

ment of deep foundation pit retaining structure. Their

research indicated that the soft computing method is a

useful and valid method for prediction of deformation in

the foundation pit. Similarly, Chen and Wang [102] used

ANN to predict the deformation characteristics of pile-
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anchor structure (one of the established retaining system)

in deep foundation pit. Distribution of the papers on the

applicability of the ANNs in earth retaining structures as

well as excavation according to the source title is tabulated

in Table 5.

The ANN was also used to formalize and synthesize

data derived from FE modeling studies. Up to the date of

writing this article, there are 48 research scholars indexed

in the WOS on the use of the neural network on excava-

tions. In general, the input parameters used in the provided

models were the wall stiffness, the soil layer thickness/

excavation width ratio, excavation width, soil unit weight,

soil undrained shear strength, the height of excavation, and

undrained soil modulus/shear strength ratio [103, 104]. The

maximum wall deflection was selected as the only output.

For instance in braced excavation and in soft clay Goh

et al. [44] established an ANN model to estimate maximum

wall deflections (normally in the top of the wall). The

results produced high accuracy with coefficients of corre-

lation equivalent to 0.984 and 0.967 for the training and

testing datasets, respectively.

Table 3 Distribution of the papers in the subject of ANN application in geotechnical engineering based on the publication years, research areas

of their publication and source title

Number Publication years Research areas Source title

Publication

years

n % Name of research areas N % Name of source title N %

1 2016 35 10.87 Engineering 190 59.01 Computers and Geotechnics 12 3.73

2 2011 29 9.01 Geology 76 23.60 Neural Computing Applications 9 2.80

3 2015 29 9.01 Computer Science 72 22.36 Int J Numeri Anal Met 8 2.48

4 2017 29 9.01 Environmental Sciences Ecology 27 8.39 Int J Geomech 7 2.17

5 2014 27 8.39 Water Resources 25 7.76 Canadian Geotechnical Journal 5 1.55

6 2012 22 6.83 Mechanics 24 7.45 Engineering Applications of Artificial

Intelligence

5 1.55

7 2013 19 5.90 Agriculture 22 6.83 Engineering Geology 5 1.55

8 2010 17 5.28 Materials Science 19 5.90 Remote Sensing of Environment 5 1.55

9 2008 15 4.66 Remote Sensing 17 5.28 Soils and Foundations 5 1.55

10 2009 15 4.66 Construction Building

Technology

11 3.42 Computers and Electronics in Agriculture 4 1.24

11 2006 12 3.73 Imaging Science Photographic

Technology

11 3.42 Engineering Computations 4 1.24

12 2002 11 3.42 Mathematics 11 3.42 Environmental Earth Sciences 4 1.24

13 2005 9 2.80 Science Technology Other

Topics

8 2.48 Expert Systems with Applications 4 1.24

14 2007 8 2.48 Automation Control Systems 7 2.17 Journal of Civil Engineering and

Management

4 1.24

15 2018 8 2.48 Chemistry 7 2.17 J Geotech Geoenvironj Geotech

Geoenviron

4 1.24

16 2004 7 2.17 Geochemistry Geophysics 6 1.86 Journal of Rock Mechanics and

Geotechnical Engineering

4 1.24

17 1998 6 1.86 Transportation 6 1.86 Applied Soft Computing 3 0.93

18 2003 6 1.86 Energy Fuels 5 1.55 Arabian Journal of Geosciences 3 0.93

19 2001 5 1.55 Physics 5 1.55 Geomechanics And Engineering 3 0.93

20 1999 4 1.24 Thermodynamics 5 1.55 Journal of Adhesion Science and

Technology

3 0.93

21 1995 3 0.93 Operations Research

Management Science

4 1.24 J Mater Civil Eng 3 0.93

22 2000 3 0.93 Physical Geography 4 1.24 KSCE Journal of Civil Engineering 3 0.93

23 1997 2 0.62 Marine Freshwater Biology 3 0.93 Remote Sensing 3 0.93

24 Meteorology Atmospheric

Sciences

3 0.93 Soil Dyn Earthq Eng 3 0.93

25 Electrochemistry 2 0.62 Tunn Undergr Sp Tech 3 0.93
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Kwon and Wilson [105] used NNs to explore the impact

of a deep excavation on other adjacent excavations. They

applied NNs to investigate the influence of each parameter

and the deformation increase on the deformation variation

derived from extensometer measurements. Jan et al. [106]

also investigated the use of ANN prediction model in the

deep excavation. To collect the required data for training

and verification, eighteen different case histories of deep

excavations, with a minimum of four and maximum of

seven excavation (construction) stages, were selected. The

results of simulation show that not only the ANN can

determine the maximum deflection of the diaphragm wall

but also it can predict the location and the magnitude which

the maximum deformations occur. Chua and Goh [107]

used Bayesian NNs to determine wall deformation behavior

in a deep excavation. It is found that the trained model could

be used as a reliable and simple prediction tool. They could

calculate the maximum wall deformation. Huang et al.

[108] investigated the ANN-based reliability analysis for

deep excavation. Chern et al. [109] applied a neural network

to predict successfully lateral wall deflection in the top–

down excavation. Yu et al. [110] used ANNs in artificial

intelligent prediction model in order to calculate shallow

settlement adjacent to the excavation of a foundation pit.

2.4 ANN application in site characterization

In all geotechnical engineering problems, site characteri-

zation is known as an important step that needs to be

considered. It is essential to explore the subsurface before

doing any project analysis. Many researchers such as

Huang and Siller [111], Yilmaz et al. [112], Garcia-Fer-

nandez and Jimenez [113], Orhan et al. [114], Kim et al.

[115], Cao et al. [116], Wang [117], Aladejare and Wang

[118] and Roy and Jakka [119] worked on this subject.

Several researchers also applied ANNs to improve the

estimation of the site characterization. For example, in

order to represent the data obtained from borehole Huang

and Siller [111] developed a fuzzy set-based model which

uses to infer the subsurface profile. Bagtzoglou and Hos-

sain [88] used RBFN for hydrologic inversion. The RBFN

was used as a reliable method in the context of site char-

acterization. In this regard, Samui and Sitharam [120]

employed a relevance vector machine and least-square

(LS) SVM based on corrected SPT data in order to estimate

site characterization. Samui and Sitharam [121] modeled

site characterization using ANN and Kriging. An extensive

number of data (2700 field SPT values) were collected

from SPTs in 3D subsurface of Bangalore, India.

Table 4 Distribution of the

papers on the applicability of

the ANNs in pile capacity based

on the research areas

Number Research areas N (from 121) % of 121

1 Engineering Geological 40 33.06

2 Engineering Civil 38 31.41

3 Geosciences Multidisciplinary 31 25.62

4 Computer Science Interdisciplinary Applications 23 19.01

5 Computer Science Artificial Intelligence 14 11.57

6 Construction Building Technology 9 7.44

7 Engineering Ocean 9 7.44

8 Engineering Mechanical 8 6.61

9 Materials Science Multidisciplinary 8 6.61

10 Mechanics 8 6.61

Table 5 Distribution of the

papers on the applicability of

the ANNs in earth retaining

structures as well as excavation

based on the source title

Number Source title Record count % of 48

1 Computers and Geotechnics 5 10.42

2 Tunneling and Underground Space Technology 4 8.33

3 Applied Mechanics and Materials 3 6.25

4 Automation in Construction 2 4.17

5 J Comput Civil Engj Comput Civil Eng 2 4.17

6 J Geotech Geoenviron 2 4.17

10 Advanced Materials Research 1 2.08

11 AIP Conference Proceedings 1 2.08

12 Canadian Geotechnical Journal 1 2.08

13 Computing In Civil Engineering 1 2.08

14 Engineering Geology 1 2.08
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2.5 ANN application in liquefaction

Soil liquefaction defined as a phenomenon whereby a

partially or fully saturated soil (in most cases sands) sub-

stantially loses stiffness and strength in response to a

specifically applied stress. In this regard, the applied

stresses usually are induced by earthquake shaking causing

the soil to behave like a liquid (with no shear strength). The

liquefaction often leads to extensive damage and very high

defamation to most infrastructures. The reason behind such

large deformation is that the soil will lose its basic shear

strength due to an increase in the pore pressure. Indeed, the

soil liquefaction is introduced as one of the multicriteria

tasks to assess in geotechnical earthquake engineering.

Many experts stated that the assessment of soil liquefac-

tion, due to a lot of variables, is the most complicated

phenomena in geotechnical engineering [122–126].

Table 6 presents the distribution of the papers on the

applicability of the ANNs in liquefaction evaluation. As

one of the earliest researches on the use of ANN in liq-

uefaction assessment, Goh [127] used ANN to solve the

complex relationship between different soil parameters and

seismic loading applied in order to explore liquefaction

potential. The network model was trained using 13 case

recorded real-world earthquakes. The study included eight

input variables (SPT value, the mean grain size, the fines

content, the earthquake magnitude, the equivalent dynamic

shear stress, the total and effective stress, and the maxi-

mum horizontal acceleration at ground surface) and only

one output variable. The output was assigned a no lique-

faction (binary value of 0) and, for sites with extensive or

moderate liquefaction potential (value of 1). The results

gained by the proposed neural network model were com-

pared with the conventional mathematical method that

further developed by Seed et al. [128]. In comparison with

the success rate of 84% from the method presented by Seed

et al. [128], the study revealed that the ANN model gave

reliable predictions in 95% of cases. Goh [129], Juang et al.

[130], Liu et al. [131] and Chern and Lee [81] used ANN to

evaluate liquefaction resistance based on raw CPT data.

The results from the neural network showed a minimum

success rate of 94%, which is acceptable in comparison

with previous evaluation method presented by Shibata and

Teparaksa [132] with a success rate of 84%. Wang and

Rahman [133] presented a neural network-based model for

liquefaction phenomena caused by horizontal ground

Table 6 Distribution of the

papers on the applicability of

the ANNs in liquefaction

assessment based on the source

title

Number Source title Record count % of 160

1 Soil Dyn Earthq Eng 14 8.75

2 Computers and Geotechnics 6 3.75

3 J Geotech Geoenvironj Geotech Geoenviron 6 3.75

4 Int J Numer Anal Met 5 3.13

5 Canadian Geotechnical Journal 4 2.50

6 Environmental Earth Sciences 4 2.50

7 Journal of Geotechnical Engineering Asce 4 2.50

8 Natural Hazards 4 2.50

9 B Eng Geol Environ 3 1.88

10 Geotechnical and Geological Engineering 3 1.88

11 Int J Geomech 3 1.88

12 Int. Offshore and Polar Engineering Conference Proceedings 3 1.88

13 Journal of Marine Science and Technology Taiwan 3 1.88

14 Ieee Int. Joint Conf. On Nn Proce. Vols 1 10 2 1.25

15 Computers Geosciences 2 1.25

16 Earthquake Engineering and Engineering Vibration 2 1.25

17 Engineering Applications of Artificial Intelligence 2 1.25

18 Engineering Computations 2 1.25

19 Engineering Geology 2 1.25

20 European Journal of Environmental and Civil Engineering 2 1.25

21 Expert Systems with Applications 2 1.25

22 Geotechnical Special Publication 2 1.25

23 Ieee Int. Joint Conference on NNS 2 1.25

24 Int. Journal of Civil Engineering 2 1.25

25 Journal of Coastal Research 2 1.25
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displacement. Young-Su and Byung-Tak [134] used ANNs

to predict liquefaction resistance of sands. Hsu et al. [135]

applied ANN to model liquefaction resistance. In their

study, a total of 217 sets of shear wave velocity data, 31

from Taiwan after 1999 and 186 from the previous reports

and studies, were collected and synthesized. Zhang et al.

[136] evaluated soil liquefaction based on multivariate

adaptive regression splines and capacity energy concept.

On the other hand, many others also investigated the use

of SVM method in landslide assessment. For instance, Pal

[92] employed SVM-based modeling to assess liquefaction

potential induced by seismic loading. The data were col-

lected from actual SPT and CPT field data. In fact, SVMs

can provide better performance and required few user-de-

fined parameters in comparison with the ANN approach.

Similarly, Goh and Goh [137] explored the use of SVM in

geotechnical engineering with the main focus on seismic

liquefaction data. They trained and tested the SVM model

based on a relatively large data set comprising 226 field

records of CPT measurements and liquefaction perfor-

mance. The results of classification showed that the overall

success rate for the entire data set is 98%.

2.6 ANN application in slope stability

The slope stability analysis has been always a big challenge

for geotechnical engineers. This is of course because of a

wide variety of variables affecting the slope stability.

Indeed, for most civil engineers working with software

(i.e., include many details and variables) is not usually

acceptable. Researchers such as Lu and Rosenbaum [138],

Li and Liu [139], Liu et al. [140], Zhang et al. [36],

Aghajani et al. [141], Rahul et al. [142], Gordan et al.

[143], Kostic et al. [11] and Li et al. [144] studied on the

subject of ANN application in slope stability. In their

approaches, the input parameters were horizontal profile,

gradient, location, height, vertical profile, soil texture,

geological origin, the direction of slopes, depth of weath-

ering, vegetation, maximum precipitation hour, and maxi-

mum daily precipitation. The slope failure potential was

taken as the main output. Table 7 presents the distribution

of the papers on the applicability of the ANNs in slope

stability based on the source title.

Most practical applications prove that the estimation of

slope stability analysis using ANN is achievable. In this

regard, a well-trained neural network learning system

reveals an extremely fast convergence, a better general-

ization and a high degree of accuracy for the slope stability

problems. Lu and Rosenbaum [138] employed Grey and

ANNs systems for the prediction of slope stability. Li and

Liu [139] used AI forecast procedures for the slope sta-

bility. Liu et al. [140] applied a fast robust NN model

called Extreme Learning Machine (ELM) to find a solution

for the prediction of slope stability problems. After com-

paring several ANN techniques, the results prove that, in

most of the common slope stability analysis, the ELM act

as a helpful way to the genetic algorithm and the GRNN-

based models. Gordan et al. [143] combined Particle

Swarm Optimization (PSO) and neural network to predict

slope stability induced by seismic loading. Kostic et al.

[11] developed a model for prediction slope stability based

on the ANNs. In this regard, they employed multilayer

feed-forward network. The obtained results indicated a

high level of statistical reliability.

2.7 ANN application in landslides assessment

The use of ANN in landslide susceptibility mapping is

indeed well established. Perhaps the most well-known

applicability of the ANN is in the subject of landslides

[16, 35]. Indeed, the use of ANNs method in the landslide

hazard mapping problems, as one of the multicriteria

evaluation method, was introduced in the late 1990s by

Yamagami et al. [145], Cai et al. [146] and Kobayashi et al.

[147]. Different subjects have been studied using the ANNs

method in landslide such as risk assessment [148], sus-

ceptibility analysis [149, 150], prediction [151, 152],

earthquake-induced/triggering [153, 154], susceptibility

mapping by geographical information system [155, 156].

Figure 2 shows the applicability of the NN in the subject of

landslide based on both total publications by year and sum

of times cited by year (Fig. 2). It can be seen that the

number of publications has increased sharply from 10

publications in the year 2005 to 85 publications in the year

2016. Similarly, the number of citations per year raised to

3200 citations per year. This is showing that the subject is

still one of the main interests of the researchers. Table 8

presents the distribution of the papers on the applicability

of the ANNs in landslide assessment.

3 Research methodology

For the presented review study a new technique called

PRISMA method, proposed by Moher et al. [157] was

used. It is important to note that the PRISMA statement has

two different parts; (1) systematic reviews and (2) meta-

analysis. This method is well described in Shamseer et al.

[158] and Mardani et al. [159]. Systematic reviews found

out about research topics in order to provide summaries

from the objectives and what has been written in the lit-

erature [157]. Generally, the systematic review part tries to

present a full overview of research scholars performed on a

specific subject (here it was applicability of ANNs in

geotechnical engineering) until the present date. However,

when it comes to the meta-analysis part, it offers main
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findings of statistical approach from previously published

works. The main objective of the PRISMA method is to

assist practitioners and researchers in finding a complete,

simple, and clear literature review [158, 160]. There are

many good examples of previous studies which used the

PRISMA method in various fields. In overall they intend to

present a comprehensive review of the most recent pub-

lished articles as a literature review [158, 160, 161]. In our

review study, we considered three main steps (1) search in

articles indexed in WOS, (2) selection of the eligible

Table 7 Distribution of the

papers on the applicability of

the ANNs in the subject of slope

stability based on the source

title

Number Name of source titles Record count % of 299

1 Engineering Geology 14 4.68

2 Environmental Earth Sciences 13 4.35

3 Natural Hazards 12 4.01

4 Computers and Geotechnics 8 2.68

5 Lecture Notes in Computer Science 8 2.68

6 Applied Mechanics and Materials 6 2.01

7 Neurocomputing 6 2.01

8 Neural Networks 5 1.67

9 Advanced Materials Research 4 1.34

10 Arabian Journal of Geosciences 4 1.34

11 Eng Geol Environ 4 1.34

12 Asian Journal of Control 3 1.00

13 Computers Geosciences 3 1.00

14 Earth Surface Processes and Landforms 3 1.00

15 Geomorphology 3 1.00

16 IEEE Transactions on NN. 3 1.00

17 IEEE Transactions on NN. and Learning Systems 3 1.00

18 J Comput Civil Eng. 3 1.00

19 Landslides 3 1.00

20 Mathematical Problems in Engineering 3 1.00

21 Physical Review E 3 1.00

22 Rock and Soil Mechanics 3 1.00

23 Applied Ocean Research 2 0.67

24 Applied Soft Computing 2 0.67

25 Carpathian Journal of Earth and Environmental Sciences 2 0.67
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published articles, and (3) extraction of datasets and sum-

marizing the data [159].

4 Literature search

The database of WOS was used to provide a systematic

review of applications and methodologies of ANN-based

models in the subject of geotechnical engineering. The

most recent published papers were found based on the

searching several keywords such as bearing capacity, pile,

retaining structures, excavation, site characterization, liq-

uefaction, liquefaction susceptibility, slope stability, land-

slides and different ANN-based model approaches use in

the field of geotechnical engineering. We have chosen

those articles from the literature which were published

between 2010 and 2018. In this regard, and according to

our strategy search, a total of 734 scholarly papers were

extracted. In the next step, and after a double check, we

duplicated articles with repeated information. As a result,

108 papers were selected (see Fig. 3). Then, to remove the

duplicated articles from the selected list, we eliminated 22

records due to duplicates. In the end, screened papers were

selected based on different structures of the papers such as

titles, keywords, topics, abstracts, and studies that were

unrelated to the topic of this review were removed.

Search in WOS for ANN approach in soil 
behavior (n=323)

Search in WOS for ANN approach in pile 
bearing capacity (n=121)

Search in WOS for ANN approach in earth 
retaining structures (n=48)

Search in WOS for ANN approach in site 
characterization (n=222)

Search in WOS for ANN approach in 
liquefaction(n=160)

Search in WOS for ANN approach in slope 
stability (n=299)

Search in WOS for ANN approach in 
landslides (n=737)Id

en
tif

ic
at

io
n

Search in WOS for ANN approach in 
geotechnical engineering (n=734)

Removed records due to duplicates (n=108)

Screened records based on abstract review 
(n=325)

Assessed full-text articles for eligibility (n=196)

Studies included in qualitative synthesis (n=26)

Included articles for meta-analysis (n=294)

Excluded records based on 
abstract review (n=27)

Excluded full-text articles, with 
reasons (n=22)

Identified papers in references 
(n=8)

Sc
re

en
in

g
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ig
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ty

In
cl
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ed

Fig. 3 Flowchart of the study in regard to the (i) identification, (ii) screening, (iii) eligibility, and (iv) included of articles
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4.1 ANN

The ANN is known as a tool to model the multicriteria and

complex systems involved in approximation problems. The

theoretical background of the ANN is comprehensively

discussed by Hill et al. [162], and Wang [12]. Tables 9 and

10 are listed the distribution of papers in the subject of

ANN applicability in the field of geotechnical engineering

based on the research areas and source title, respectively. A

typical structure of most neural network-based models

Table 9 Distribution of papers

in the subject of ANN

applicability in the field of

geotechnical engineering based

on the research areas

Number Research areas N %

1 Engineering Geological 56 36.60

2 Engineering Civil 39 25.49

3 Geosciences Multidisciplinary 38 24.84

4 Computer Science Interdisciplinary Applications 26 16.99

5 Engineering Multidisciplinary 16 10.46

6 Computer Science Artificial Intelligence 15 9.80

7 Materials Science Multidisciplinary 12 7.84

8 Mathematics Interdisciplinary Applications 8 5.23

9 Mechanics 8 5.23

10 Water Resources 8 5.23

11 Environ. Science 7 4.58

12 Eng. Mechanical 6 3.92

13 Geochemistry Geophysics 6 3.92

14 Construction Building Technology 5 3.27

15 Engineering Electrical Electronic 5 3.27

16 Eng. Environ. 4 2.61

17 Computer Science Information Systems 3 1.96

18 Engineering Industrial 3 1.96

19 Mining Mineral Processing 3 1.96

20 Operations Research Management Science 3 1.96

Table 10 Distribution of papers

in the subject of ANN

applicability in the field of

geotechnical engineering based

on the source title

Number Name of journal title N %

1 Computers and Geotechnics 9 5.88

2 Applied Mechanics and Materials 6 3.92

3 Arabian Journal of Geosciences 5 3.27

4 Environmental Earth Sciences 4 2.61

5 Neural Computing Applications 4 2.61

6 Proceedings and Monographs In Engineering Water And Earth Sciences 4 2.61

7 Advanced Materials Research 3 1.96

8 Engineering Computations 3 1.96

9 Engineering with Computers 3 1.96

10 Geomechanics And Engineering 3 1.96

11 Geotechnical and Geological Engineering 3 1.96

12 Scientia Iranica 3 1.96

13 Soils and Foundations 3 1.96

14 Advances in Engineering Software 2 1.31

15 Expert Systems with Applications 2 1.31

16 Geoscience Frontiers 2 1.31

17 Int. Journal of Civil Engineering 2 1.31

18 J Comput Civil Eng 2 1.31

19 Measurement 2 1.31

20 Natural Hazards 2 1.31
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consists of a number of nodes (or processing elements,

PEs), that are typically arranged in form of several layers:

one or more hidden layers, an output layer and an input

layer [8]. A general flowchart for the ANN models is

shown in Fig. 4.

4.2 FFNN

FFNN is a simple NN model used for modeling numerous

nonlinear phenomena [164, 165]. As established by Hornik

[164] it is a standard multilayer FFNN which are able to

give a prediction value, in a very specific and satisfying

sense, to any measurable function. One interesting capa-

bility of FFNN method is to pre-mapping the input data

before sending it to the hidden layer for further processing.

The selected data set for the training the network is firstly

multiplied by Wh (a specific weight matrix). The results

will later be added to a bias vector (bh). As in the final step,

a transfer function will be applied (e.g., during the data

processing in the hidden layer). In fact, the process of

network training is a modification of the introduced weight

matrixes and bias vectors. This is because the outcome of

the trained network needs to be minimized (the distance

between both training data and network results). The

increase in the number of neurons and layers, for instance,

to get a better result, is not desirable. This is because such

an increase can lead to a more complex network which

later produces problems in both convergence and training

of the networks. In this regard, the FFNN method is well

described in the literature. For instance, several good

examples of using the FFNN technique in the subject of

geotechnical engineering are in Han et al. [166], Uncuoglu

et al. [167], Lian et al. [168] and Protopapadakis et al.

[169]. The FFNN method has been very popular among the

researchers. Figure 5 shows the recent use of FFNN

method in the scholar papers between 1999 and 2017. In

this regard, the total publications by year increased to about

550 publications (indexed in the web of science only) and

the summation of times cited by year.

Select the number of 
training cycle

Select the number of 
neurons for hidden layer

Select input transfer 
func�on

Select output transfer 
func�on

ANN 
developmentStart

Is R2 
acceptable?

Calculate 
RMSE and 

MRDM
End

Yes

No

Fig. 4 A general flowchart for the ANN models [163]
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4.3 RBFN

RBFN is another widely used MLP network. The RBFN is

also well recommended because of its less time consuming

during the training of the networks. The structure of an

RBFN is like a single layer feed-forward network as shown

in Fig. 6. The structure of the RBFN and its application in

the subject of geotechnical engineering is well described in

Mustafa et al. [170], Shu and Gong [171], Kang et al. [172]

and Moayedi and Hayati [74]. The only difference is that in

this function (e.g., in all the hidden layers) a radial basis

(also called radbas) function is used in comparison with the

FFNN function which it was a sigmoid function. The

RBFN can simply be defined as Eq. (1).

radbas xð Þ ¼ exp �x2
� �

ð1Þ

The RBFN method has been employed successfully in

various research areas. Distribution of papers in the subject

of RBFN applicability based on the research areas is tab-

ulated in Table 11. However, the use of RBFN in the field

of geotechnical engineering is still remained unknown. In

recent years, there are very few studies use RBFN in the

field of geotechnical engineering; modeling free-surface

seepage flow [173], reliability analysis [174], predicting

rock mass deformation modulus [175], three-dimensional

simulations of tensile cracks [176], reliability analysis of

geotechnical engineering [177], groutability prediction of

permeation grouting [178, 179].

4.4 GRNN

GRNN includes four separate layers: the first layer is the

input layer where the data will be introduced to the network

and prepared for the training. The second layer is the

pattern layer which follows a specific pattern function.

Thirdly, it is the summation layer and finally, the results are

generated from the output layer. The use of GRNN has

been widely used in the subject of civil engineering and

more particularly in the field of geotechnical engineering.

Many researchers such as Ibric et al. [180], Pal and Deswal

[181], Jiang et al. [182], Goorani and Hamidi [183] and

Rajesh and Choudhury [184] used the GRNN through their

studies. In this regard, the structure and application of

GRNN are also well discussed in Cigizoglu and Alp [185]

and Li et al. [186]. In training the neural network, linear

activation and RBFN are used in both output and hidden

layers. Each pattern layer unit is associated with the two

different neurons in the summation layer (called D and

S summation neurons). D summation neuron is used to

calculate un-weighted outputs of pattern neurons, while

S summation neuron computes the sum of weighted

responses of the pattern layer [187].

Fig. 6 The structure of a FFNN, b GRNN and c RBFN models
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0

i ¼
Pn

i¼1 yi � exp�D x; xið Þ
Pn

i¼1 exp�D x; xið Þ ð2Þ

The term D is Gaussian function and it is defined in

Eq. (3):

D x; xið Þ ¼
Xm

k¼1

xi � xik

r

� �2

ð3Þ

where n the training pattern’s number, m the number of

elements applied in the input vector, yi the weight con-

nection (connection between the ith neuron in the pattern

layer and the neuron in the S summation), D the defined

Gaussian function, xk and xik are the jth elements of x and

xi, respectively.

A search in the topic of GRNN shows a total number of

1771 articles in different research areas. Distribution of

research scholar papers in the subject of GRNN applica-

bility based on the research areas is listed in Table 12.

However, similar to the RBFN, the applicability of the

GRNN method in the field of civil engineering is still

considered a new topic. There are only a few studies that

use the GRNN in the field of geotechnical engineering;

compressive strength analysis of reinforced soil [188],

slope stability inference [36, 140], lateral load bearing

capacity modeling of piles [189], determination of ultimate

bearing capacity of concrete driven piles in sand [190],

expansive soil characterization [191] and three-dimen-

sional site characterization [89].

4.5 Adaptive neuro-fuzzy inference system
(ANFIS)

ANFIS is one of the strong learning systems for prediction of

complex functions. ANFIS was first proposed by Jang and

Sun [192]. Among fuzzy inference systems, it is one of the

most commonly used training systems. In fact, ANFIS uses a

Takagi–Sugeno fuzzy inference system (FIS). The structure

and procedure of the ANFIS are presented and discussed by

Jang [193]. General use of ANFIS in geotechnical engineer-

ing is well described in other studies such as Cabalar et al.

[194]. However, the most common use of ANFIS is in the

subject of landslide susceptibility mapping [195, 196],

through landslide risk management [197, 198], rock-cutting

trencher [199], constitutive modeling [200], prediction of

uniaxial strength of rocks [201], liquefaction prediction [202],

swelling potential [203], and permeability estimation [204].

Table 11 Distribution of papers

in the subject of RBFN

applicability based on the

research areas

Number Name of research areas N %

1 Engineering 1933 45.14

2 Computer Science 1836 42.88

3 Mathematics 911 21.28

4 Automation Control Systems 380 8.87

5 Mechanics 231 5.40

6 Physics 227 5.30

7 Telecommunications 168 3.92

8 Materials Science 152 3.55

9 Chemistry 136 3.18

10 Instruments Instrumentation 122 2.85

11 Imaging Science Photographic Technology 119 2.78

12 Neurosciences Neurology 119 2.78

13 Optics 117 2.73

14 Operations Research Management Science 102 2.38

15 Science Technology Other Topics 69 1.61

16 Robotics 68 1.59

17 Energy Fuels 61 1.43

18 Mathematical Computational Biology 58 1.36

19 Radiology Nuclear Medicine Medical Imaging 55 1.28

20 Acoustics 47 1.10

21 Environmental Sciences Ecology 47 1.10

22 Geology 44 1.03

23 Water Resources 41 0.96

24 Remote Sensing 40 0.93

25 Thermodynamics 40 0.93
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4.6 Imperialist competitive algorithm (ICA)

The imperialist competitive algorithm function (also called

ICA) is a global method of search population-based that

was firstly proposed by Atashpaz-Gargari and Lucas [205]

an followed by many other researchers such as Ahmadi

et al. [206], Marto et al. [207], Mosallanezhad and

Moayedi [53] and Moayedi and Armaghani [50]. The ICA

has been used in many optimization problems. This is

because it involves a procedure similar to many other

evolutionary algorithms such as those used by Thangave-

lautham et al. [208], Manouchehrian et al. [209], Lian et al.

[210] and Gandomi and Kashani [211]. The imperialist

competitive algorithm begins with a candidate solution (or

initial population), which, along with the imperialist

competitive algorithm itself, consists of many countries

[205]. In this step, all countries are separated into two main

categories (shown in Fig. 7): (1) some of the best countries

which called imperialists) and (2) the remaining countries

which called colonies. In order to make an empire, first, the

colonies required to be distributed through the best coun-

tries (called here imperialists or stronger countries). The

distribution of the colonies is according to the relative

strength of the countries in which the stronger countries

could get a higher number of colonies. This competition

will continue as the empires intend to expand their terri-

tories and control over more colonies. At the end of the

competition algorithm (as mentioned by title imperialist

competitive algorithm), the stronger empires expanded

their power by taking control of weaker colonies. The

process is like variables with higher relevancy could

impact more on the output layer. Once a predefined stop-

ping criterion is satisfied, the process will stop. A more

detailed description of the designed steps in the imperialist

competitive algorithm alone is discussed the literature by

researchers such as Ghorbani and Jokar [212], and Al

Dossary and Nasrabadi [213]. An overview of the imperi-

alist competitive algorithm is depicted in Fig. 8.

Table 12 Distribution of papers in the subject of GRNN applicability

based on the research areas

Number Name of research areas N %

1 Computer Science 693 39.13

2 Engineering 675 38.11

3 Environmental Sciences Ecology 130 7.34

4 Mathematics 112 6.32

5 Water Resources 107 6.04

6 Geology 90 5.08

7 Automation Control Systems 85 4.80

8 Energy Fuels 83 4.69

9 Chemistry 82 4.63

10 Materials Science 81 4.57

11 Operations Research Management Science 76 4.29

12 Physics 53 2.99

13 Neurosciences Neurology 50 2.82

14 Science Technology Other Topics 48 2.71

15 Agriculture 46 2.60

16 Imaging Science Photographic Technology 46 2.60

17 Telecommunications 45 2.54

18 Meteorology Atmospheric Sciences 39 2.20

19 Business Economics 33 1.86

20 Instruments Instrumentation 33 1.86

Fig. 7 The schematic procedure

of imperialist competitive

algorithm to take control of the

weaker colony [205]
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5 Articles eligibility

For the purpose of eligibility, in this step of review, we

independently reviewed each of the full text. However, the

selected articles were shortlisted in the last step of the

review. The shortlisted articles were selected according to

the main objectives of this review paper on the subject of

applicability of soft computing and ANN-based techniques

in the field of geotechnical engineering. In this regard

manuscript that applied ANN (e.g., any source of neural

network modeling approach) in the subject of geotechnical

engineering were chosen. Noteworthy, editorial notes,

book chapters, master and doctoral dissertations, unpub-

lished working papers, a non-English language written

papers and textbooks were not involved. In addition, sev-

eral previous studies have employed other techniques such

as geostatistical, limit equilibrium, FE etc.; therefore, in

this step also we did not include those studies. At the end of

article eligibility decision, we selected 196 articles which

used directly the ANN models in the geotechnical engi-

neering. These articles could meet the considered selection

criteria.

6 Summarizing and data extraction

In this step of review, some required data was collected and

finally 196 articles were summarized and reviewed. In

flowing, all selected papers were categorized into different

application areas including; engineering, geology, com-

puter science, water resources, environmental sciences,

ecology, mechanics, materials science, geochemistry geo-

physics, mathematics, construction building technology,

meteorology atmospheric sciences, mining mineral pro-

cessing, instruments instrumentation, oceanography, sci-

ence technology other topics, transportation and operations

research management science (see Table 13). In addition,

articles were reviewed and summarized according to vari-

ous criteria such as journals and conferences names, the

year of publication, authors, the method and technique

used, research objectives, solution and modeling, and

results and findings.

7 Conclusion

This review paper discussed the applications and theory

with several ANN recent developments in the subject of

geotechnical engineering. The ANN is introduced as a

reliable tool for complex problems. The authors believe the

ANN-based model, as a user-friendly and time-saving, is a

good alternative to the FEM and conventional

mathematical modeling. This is because, normally, prob-

lems in the field of geotechnical engineering evolve with

many variables which make it hard to be modeled using

conventional mathematical methods. Since the ANN-based

methods are able to (1) rank the variables and alternatives,

(2) evaluate stronger and weaker criteria, and (3) per-

forming the comparative analysis, recently, ANN research

interest increased largely in the geotechnical problems. In

contrast, it is important to note that the neural networks

have begun to replace by deep structured learning.

Throughout this review paper, the use of ANN in the

subject of geotechnical engineering were categorized into

twenty-five research areas. Apart from the research areas,

articles were classified according to the authors, source

titles (either journal or conferences names), the year of

publication, research areas, the used technique, solution

and modeling, and outcomes.
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