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Abstract
The recognition of staining patterns present in human epithelial type 2 (HEp-2) cells helps to diagnose connective tissue

disease. In this context, the paper introduces a robust method, termed as CanSuR, for automatic recognition of antinuclear

autoantibodies by HEp-2 cell indirect immunofluorescence (IIF) image analysis. The proposed method combines the

advantages of a new sequential supervised canonical correlation analysis (CCA), introduced in this paper, with the theory

of rough hypercuboid approach. While the proposed CCA efficiently combines the local textural information of HEp-2

cells, derived from various scales of rotation-invariant local binary patterns, the relevant and significant features of HEp-2

cell for staining pattern recognition are extracted using rough hypercuboid approach. Finally, the support vector machine,

with radial basis function kernel, is used to recognize one of the known staining patterns present in IIF images. The

effectiveness of the proposed staining pattern recognition method, along with a comparison with related approaches, is

demonstrated on MIVIA, SNP and ICPR HEp-2 cell image databases. An important finding is that the proposed method

performs significantly better than state-of-the art methods, on three HEp-2 cell image databases with respect to both

classification accuracy and F1 score.

Keywords HEp-2 cell staining pattern recognition � Local binary pattern � Canonical correlation analysis �
Support vector machine

1 Introduction

Autoimmune diseases are a group of disorders where the

immune system of the affected individual malfunctions and

the tissues are attacked by autoantibodies. One aspect of

these diseases is the formation of self-antigens or autoan-

tibodies. There are two general groups of autoimmune

diseases, namely, organ specific and non-organ specific. In

organ specific, a specific organ can be attacked, while in

non-organ specific, multiple organ systems can be attacked

by the autoantibodies. Hashimoto’s thyroiditis is an

example of organ-specific autoimmune disease where the

thyroid gland is damaged by autoantibodies. An example of

a systemic autoimmune disease is systemic lupus erythe-

matosus where the autoantibodies can attack any organ in

the body. One of the standard examples of autoimmune

disorders is connective tissue diseases (CTDs), which are

characterized by a chronic inflammatory process concern-

ing connective tissues.

The antinuclear antibody (ANA) test is used to predict

the presence of autoantibodies in nucleus of the cell. The

ANAs are used as markers to detect certain chronic

immuno-inflammatory diseases. The detection as well as

quantitation of ANAs is pivotal to the diagnosis of many

autoimmune diseases [2, 36]. The presence of ANAs can

be determined by indirect immunofluorescence (IIF) [11].

The knowledge about the localization of autoantigens is

provided by the IIF, which has become a standard method

to predict the presence of ANA in patient serum. The most

used cell substrate for IIF demonstration of ANA is human

epithelial type 2 (HEp-2) cell [21, 38, 44]. Various staining

patterns of ANAs, namely, centromere, cytoplasmic, golgi,

homogeneous, nucleolar, speckled and other mixed

& Pradipta Maji

pmaji@isical.ac.in

Ankita Mandal

amandal@isical.ac.in

1 Biomedical Imaging and Bioinformatics Lab, Machine

Intelligence Unit, Indian Statistical Institute, Kolkata, India

123

Neural Computing and Applications (2020) 32:16471–16489
https://doi.org/10.1007/s00521-019-04108-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8288-8917
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04108-w&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04108-w


patterns, can provide useful information to diagnose CTDs,

as different patterns are associated with different autoim-

mune diseases and/or autoantigens [1, 26, 38]. So, accurate

classification of these staining patterns is very essential. In

real-life analysis, this process suffers from low-throughput

and inter and/or intra-laboratory variance. Visual evalua-

tion of IIF test is quite time-consuming, and subjective to

the skill of experts [16]. At least two experts must examine

each ANA specimen under a fluorescence microscope.

Computer-aided diagnosis (CAD) systems are used to

overcome the shortcomings of manual test procedure by

determining the staining patterns of a given HEp-2 cell

image automatically [10, 40]. Both time and effort may be

reduced by the automation of staining pattern classification

of HEp-2 cell images. The automated method can make IIF

analysis faster, easier and more reliable. Machine learning

techniques are widely used to develop the CAD systems in

the field of medicine. The goal of the CAD systems is to

recognize one of the known staining HEp-2 patterns pre-

sent in the IIF images. In recent past, some efforts on IIF

image analysis using CAD systems have been done.

However, a fully automated system to serve the purpose is

yet to be developed [10, 16]. There are several approaches

present in the literature, either to automate individual

stages or the entire IIF diagnostic procedure. Such proce-

dures consist of mainly five steps, namely, acquisition of

images, segmentation of images, detection of mitosis,

classification of fluorescence intensity and recognition of

staining patterns. Soda et al. [35] reported an autofocus

function to deal with photobleaching effect during image

acquisition. Using a set of textural and shape features

obtained from the images, the quality of fluorescence

images has been evaluated in [17]. Based on statistical

features, fluorescence intensity classification has been

performed in [34]. Rough segmentation of HEp-2 cells

from IIF images has been addressed in [3, 4, 33]. In [22],

an automatic pattern recognition system using fully con-

volutional network has been proposed to simultaneously

address the segmentation and classification problem of

HEp-2 specimen images. Another framework has been

developed in [12] for the classification of HEp-2 cell

images by utilizing deep convolutional neural networks. A

superpixel-based Hep-2 cell classification technique has

been introduced in [8], based on sparse codes of image

patches.

Textural features can be used to capture the information

of surface of the HEp-2 cells, which have unpredictably

ambiguous texture. The inherent textures in different HEp-

2 cell types are quite different from each other. Moreover,

the visual resemblance among the cells of different classes

increases the ambiguity of IIF image analysis. These dif-

ficulties create limitations of HEp-2 pattern recognition

using CAD systems. To characterize a cell image, several

local texture descriptors, namely, local binary pattern

(LBP) [29], rotation-invariant LBP (LBPri) [30], completed

LBP [15], co-occurrence of adjacent LBPs [28] and rota-

tion-invariant co-occurrence of adjacent LBPs [27], are

used in [5], while the concept of gradient-oriented co-oc-

currence of LBP has been introduced in [40]. In [9], a

combination of morphological features and textural fea-

tures extracted using LBPs is used for automatic mitotic

cell recognition. In [19], the similarity-based watershed

algorithm with marker techniques has been used to seg-

ment HEp-2 cells, while learning vector quantization has

been used to identify the patterns. Strandmark et al. [37]

have developed an automatic method, based on random

forests, which classifies an HEp-2 cell image. On the other

hand, Cordelli et al. [6] have proposed a method which is

independent from the color model used and showed that a

gray-scale representation based on the HSI model better

exploits information for IIF image analysis. In [39], an

automated HEp-2 cell staining pattern recognition method

has been proposed by using morphological features. To

capture local textural information, a modified version of

uniform LBPs descriptor is incorporated in this research

work. Wiliem et al. [45] have proposed a system for cell

classification, comprising of nearest convex hull classifier

and a dual-region codebook-based descriptor. In [5], an

HEp-2 cell classification approach has been reported based

on subclass discriminant analysis. In order to encode gra-

dient and textural characteristics of the depicted HEp-2

patterns, Theodorakopoulos et al. [40] have proposed a new

descriptor, based on co-occurrence of uniform LBPs along

directions dictated by the orientation of local gradient.

Nosaka et al. [27] have developed a method, which inte-

grates the advantages of both support vector machine

(SVM) and rotation-invariant co-occurrence among adja-

cent LBPs image features. In [32], an automatic HEp-2 cell

classification approach has been introduced by combining

multiresolution co-occurrence texture and large regional

shape information.

The integration of multiple scales of same local textural

features may provide better recognition of HEp-2 patterns.

Due to the drastic variation of different scales and noisy

nature of input HEp-2 cell images, the naive integration

usually gives poor performance, which reflects in the

insufficient and inaccurate staining pattern representation

of these images. Multiple scales of unique cell image, on

the other hand, may contain complementary information.

The linkages between attributes of each HEp-2 cell images

can be made by using these multiple scales of unique

sample cell. The combination of multiple scales of a unique

HEp-2 cell image would have more discriminatory and

complete information of the inherent properties of that cell

by generating improved system performance than
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individual scale. Hence, a proper integration method is

needed to incorporate the information of local textural

descriptors obtained at multiple scales. In this background,

canonical correlation analysis (CCA) [18] or its several

variants [7, 14, 42] provide an effective way of capturing

the correlation among different multidimensional data sets.

Recently, some new supervised CCA have been proposed

[24, 25], which perform significantly better than the

existing CCA-based approaches. However, these methods

are known to have high computational complexity, which

renders their application in many real-life data analysis

such as classification of HEp-2 cell patterns.

In this regard, the paper presents a new method, termed

as CanSuR, for automatic recognition of antinuclear

autoantibodies by HEp-2 cell IIF image analysis. It judi-

ciously integrates the advantages of canonical correlation

analysis, support vector machine and rough hypercuboid

approach. The proposed staining pattern recognition

method has two main steps, namely feature extraction and

classification. The feature extraction step consists of two

levels. At first, the local textural features are extracted from

HEp-2 cell images, and then combined using a novel

sequential canonical correlation analysis (CCA). To inte-

grate two multidimensional variables, consisting of local

features at different scales, the proposed supervised CCA

extracts features sequentially by maximizing the correla-

tion between canonical variables, significance among the

features and their individual relevance with respect to HEp-

2 cell images. The theory of rough hypercuboid approach is

used for computing both significance and relevance mea-

sures. Finally, the SVM with radial basis function kernel is

used to recognize one of the known staining patterns pre-

sent in IIF images. In this context, it should be mentioned

that both proposed CCA and supervised CCA, introduced

in [25] and termed as FaRoC, can extract features

sequentially from two multidimensional variables. But, the

proposed method explores large search space with signifi-

cantly lesser amount of time than FaRoC. The effectiveness

of the proposed staining pattern recognition method, along

with a comparison with related approaches, is demon-

strated on MIVIA, SNP and ICPR HEp-2 cell image

databases.

2 A novel sequential supervised CCA

A novel feature extraction algorithm for multimodal data

sets, termed as sequential CCA, is introduced in this sec-

tion. It extracts maximally correlated and most significant

as well as relevant latent features sequentially from two

multidimensional variables X 2 Rp�n and Y 2 Rq�n. If
the number of features p and q of X and Y, respectively, is

larger than the number of samples n, that is, n\\ðp; qÞ,
then the covariance matrices Cxx and Cyy become ill-

conditioned. In the current work, a fast and supervised

sequential CCA is proposed to address the singularity issue

of covariance matrices while integrating the information of

two multidimensional data sets. The proposed CCA obtains

two directional basis vectors wx 2 Rp and wy 2 Rq such

that the correlation between canonical variables U ¼
wx

TX and V ¼ wy
TY is maximum, and the extracted

feature A ¼ UþV is most relevant and significant. The

correlation coefficient between the canonical variables is

given as follows:

Jðwx;wyÞ ¼ max
wx;wy

UVT ¼ max
wx;wy

wx
TCxywy

subject to, UUT ¼ wx
TCxxwx ¼ 1;

and VVT ¼ wy
TCyywy ¼ 1:

ð1Þ

To incorporate the above two constraints into correlation

coefficient-based objective function, the Lagrange multi-

plier is used in (1), which leads to

Lðk1; k2Þ ¼ wx
TCxywy �

k1
2
ðwx

TCxxwx � 1Þ

� k2
2
ðwy

TCyywy � 1Þ;
ð2Þ

where k1 and k2 are Lagrange multipliers. Differentiating

L with respect to wx and wy and setting the vectors of

derivative to zero, we obtain

dL
dwx

¼ Cxywy �
k1
2
ðCxxwx þ Cxx

TwxÞ ¼ 0

) Cxywy ¼ k1Cxxwx;

ð3Þ

and
dL
dwy

¼ Cxy
Twx �

k2
2
ðCyywy þ Cyy

TwyÞ ¼ 0

) Cyxwx ¼ k2Cyywy:

ð4Þ

Multiplying (3) and (4) by wx
T and wy

T , respectively, we

obtain

wx
TCxywy ¼ k1wx

TCxxwx ¼ k1; ð5Þ

and wy
TCyxwx ¼ k2wy

TCyywy ¼ k2: ð6Þ

The correspondence between the Lagrange multipliers k1
and k2 can be established using (5) and (6),

k1 ¼ ðwx
TCxywyÞT ¼ wy

TCyxwx ¼ k2: ð7Þ

From (7), it can be seen that the correlation coefficient

between two canonical variables U ¼ wx
TX and V ¼
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wy
TY is same with the Lagrange multipliers k1 ¼ k2 ¼ k.

Hence, (3) and (4) can be rewritten as

Cxywy ¼ kCxxwx ) wy ¼ kC�1xyCxxwx; ð8Þ

and Cyxwx ¼ kCyywy ) wx ¼ kC�1yxCyywy: ð9Þ

Using (4) and (8), we obtain

Cyxwx ¼ kCyywy ¼ k2CyyCxy
�1Cxxwx

) C�1xxCxyC
�1
yyCyxwx ¼ k2wx:

ð10Þ

Similarly, using (3) and (9), we obtain

Cxywy ¼ kCxxwx ¼ k2CxxC
�1
yxCyywy

) C�1yyCyxC
�1
xxCxywy ¼ k2wy:

ð11Þ

Hence, (10) and (11) lead to the following generalized

eigenvalue problem:

C�1xxCxyC
�1
yyCyx 0

0 C�1yyCyxC
�1
xxCxy

2
4

3
5 wx

wy

" #

¼ k2
wx

wy

" #
;

)
H 0

0 ~H

" #
wx

wy

" #
¼ k2

wx

wy

" #
;

ð12Þ

where H ¼ C�1xxCxyC
�1
yyCyx

and ~H ¼ C�1yyCyxC
�1
xxCxy:

ð13Þ

2.1 Proposed CCA

In real-life high-dimensional multimodal data analysis, the

number of features is larger than the number of samples,

which makes the covariance matrices Cxx and Cyy non-

invertible. Regularized CCA (RCCA) [42] adds regular-

ization parameters rx and ry to the diagonal elements of the

covariance matrices Cxx and Cyy to make them invertible.

On the other hand, in fast RCCA (FRCCA) [7], the values

of off-diagonal elements of the matrices Cxx and Cyy are

reduced by using shrinkage parameters sx and sy to deal

with the singularity issue of these matrices. Both regular-

ization parameters (rx and ry) and shrinkage parameters

(sx and sy) are used to correct the noise present in X and

Y. In the proposed method, both regularization and

shrinkage are done simultaneously to take care of the sin-

gularity problem of Cxx and Cyy. Here, rx and ry are

varied within a range ½rmin; rmax�, where the common

differences are dx and dy for rx and ry, respectively, and

rmin 6 rx; ry 6 rmax. On the other hand, sx and sy can be

computed as

sx ¼
P

i 6¼j V̂ð½Cxx�ijÞP
i 6¼j ½C2

xx�ij
; and sy ¼

P
i 6¼j V̂ð½Cyy�ijÞP

i 6¼j ½C2
yy�ij

;

ð14Þ

where V̂ð½Cxx�ijÞ and V̂ð½Cyy�ijÞ are the unbiased empir-

ical variance of ½Cxx�ij and ½Cyy�ij, respectively. Hence,
to deal with the singularity issue, the covariance matrices
~Cxx and ~Cyy can be redefined as follows:

~Cxx ¼ Ĉxx þ ðrx þ ðk� 1ÞdxÞI
and ~Cyy ¼ Ĉyy þ ðry þ ðl� 1ÞdyÞI

ð15Þ

where ½Ĉxx�ij ¼
ð1� sxÞ½Cxx�ij; where i 6¼j
½Cxx�ij; where i¼j

(
ð16Þ

and ½Ĉyy�ij ¼
ð1� syÞ½Cyy�ij; where i 6¼j
½Cyy�ij; where i¼j

(
ð17Þ

where 8k 2 f1; 2; . . .; txg and 8l 2 f1; 2; . . .; tyg. The

parameters tx and ty denote the number of possible values

of rx and ry, respectively. As rx and ry are varied within a

range and followed arithmetic progression, there exists a

relation between the eigenvalues of covariance matrices

corresponding to the first and the t-th regularization

parameters for both multidimensional variables X andY as

follows [24]:

½Ĉxx þ ðrx þ ðk� 1ÞdxÞI� ¼ WxðKx þ ðk� 1ÞdxIÞWT
x;

ð18Þ

½Ĉyy þ ðry þ ðl� 1ÞdyÞI� ¼ WyðKy þ ðl� 1ÞdyIÞWT
y:

ð19Þ

Here, Kx and Ky are the diagonal matrices, where diagonal

elements are the eigenvalues of ½Ĉxx þ rxI� and

½Ĉyy þ ryI�, respectively, and the corresponding

orthonormal eigenvectors are in the columns of Wx and

Wy. The theoretical analysis, reported in [25], gives

assistance to compute the matricesH and ~H with ðk; lÞ-th
regularization parameters of rx and ry, that is, Hkl and

~Hkl, as follows:

Hkl ¼ Wx½Kx þ ðk� 1ÞdxI��1WT
xCxy

Wy½Ky þ ðl� 1ÞdyI��1WT
yCyx;

ð20Þ

and ~Hkl ¼ Wy½Ky þ ðl� 1ÞdyI��1WT
yCyx

Wx½Kx þ ðk� 1ÞdxI��1WT
xCxy:

ð21Þ

The inverse of the diagonal matrices ½Kx þ ðk� 1ÞdxI�
and ½Ky þ ðl� 1ÞdyI� can be computed as
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½Kx þ ðk� 1ÞdxI��1

¼ K�1x � K�1x ðk� 1ÞdxIK
�1
x ðI þ ðk� 1ÞdxIK

�1
x Þ
�1

¼ K�1x � K�1x ðk� 1ÞdxK
�1
x ðI þ ðk� 1ÞdxK

�1
x Þ
�1

¼ K�1x � K�1x rk;

ð22Þ

½Ky þ ðl� 1ÞdyI��1

¼ K�1y � K�1y ðl� 1ÞdyIK
�1
y ðI þ ðl� 1ÞdyIK

�1
y Þ
�1

¼ K�1y � K�1y ðl� 1ÞdyK
�1
y ðI þ ðl� 1ÞdyK

�1
y Þ
�1

¼ K�1y � K�1y rl;

ð23Þ

where rk ¼ ðk� 1ÞdxK
�1
x ðI þ ðk� 1ÞdxK

�1
x Þ
�1;

ð24Þ

and rl ¼ ðl� 1ÞdyK
�1
y ðI þ ðl� 1ÞdyK

�1
y Þ
�1: ð25Þ

Hence, using (22) and (23), the matrix H of (20) becomes

Hkl¼Wx½K�1x �K�1x rk�WT
xCxyWy½K�1y �K�1y rl�WT

yCyx

¼WxK
�1
x WT

xCxyWyK
�1
y WT

yCyxþZkl¼H11þZkl;

ð26Þ

where Zkl ¼ WxK
�1
x ½rkW

T
xCxyWyK

�1
y rl

�rkW
T
xCxyWyK

�1
y �WT

xCxyWyK
�1
y rl�WT

yCyx:
ð27Þ

Similarly, using (22) and (23), the matrix ~H of (21)

becomes

~Hkl¼Wy½K�1y �K�1y rl�WT
yCyxWx½K�1x �K�1x rk�WT

xCxy

¼WyK
�1
y WT

yCyxWxK
�1
x WT

xCxyþ ~Zkl¼ ~H11þ ~Zkl;

ð28Þ

where ~Zkl ¼ WyK
�1
y ½rlW

T
yCyxWxK

�1
x rk

�rlW
T
yCyxWxK

�1
x �WT

yCyxWxK
�1
x rk�WT

xCxy:
ð29Þ

The nonzero eigenvalues of Hkl and ~Hkl are same [13],

and the t-th eigenvector wyt of ~Hkl can be obtained from

the t-th eigenvector wxt of Hkl as wyt ¼ ~C�1yyCyxwxt.

So, one of the matrices Hkl and ~Hkl is sufficient to

compute the eigenvectors of both of them. Hence, either

Hkl or ~Hkl will be computed by using (26) or (28),

respectively, depending on whether p 6 q or p[ q, where

8k 2 f1; 2; . . .; txg and 8l 2 f1; 2; . . .; tyg.
In practical analysis, K = minðp; qÞ is large enough,

and a small subset of extracted features is sufficient to

perform a certain task. Hence, the objective of the proposed

work is to find out a reduced subset of most significant and

relevant extracted features. The sequential generation of

each eigenvector of Hkl and ~Hkl would help to evaluate

the quality of each extracted feature individually. The

theoretical analysis reported next, based on deflation

method [43], gives assistance to compute ðtþ 1Þ-th basis

vectors, which are the eigenvectors of matrices Hklðtþ
1Þ and ~Hklðtþ 1Þ. Thus, the matrices Hklðtþ 1Þ and
~Hklðtþ 1Þ can be computed as follows:

Hklðtþ 1Þ ¼Hklð1Þ �
Xt
m¼1

qmklwxmklwxmkl
T

¼H11 þZkl �
Xt
m¼1

qmklwxmklwxmkl
T ;

ð30Þ

and ~Hklðtþ 1Þ ¼ ~Hklð1Þ �
Xt
m¼1

qmklwymkl
wymkl

T

¼ ~H11 þ ~Zkl �
Xt
m¼1

qmklwymkl
wymkl

T ;

ð31Þ

where qtkl denotes eigenvalue of Hklðtþ 1Þ or
~Hklðtþ 1Þ, 8t 2 f1; 2; . . .;K� 1g, K = minðp; qÞ,
8k 2 f1; 2; . . .; txg, and 8l 2 f1; 2; . . .; tyg. Finally, the

most correlated D ð\\KÞ features Atkl ¼ wxtkl
TXþ

wytkl
TY are extracted from two multidimensional vari-

ables X and Y.

The objective of this work is to extract not only the

correlated features but also the most relevant and signifi-

cant features. Let us assume that the set C contains all the

t-th correlated features which are extracted using ðk; lÞ-th
regularization parameters of rx and ry. If t ¼ 1, the most

relevant feature from the set C is selected and is included

into another set S, initially which is empty, that is, S ;.
If t[ 1, the feature which has maximum relevance

(among the features of C) and significance (with respect to

the features of S) is selected from the set C and is included

to S. Following objective function is used to select the

most relevant and significant feature from the set C when

t[ 1:

cAtkl
ðDÞ þ 1

t� 1

X
A~t2S

rfAtkl;A ~tgðD;AtklÞ: ð32Þ

To compute both significance and relevance of an extracted

feature, rough hypercuboid-based hypercuboid equivalence

partition matrix [23] is used in the current work. The rel-

evance cAtkl
ðDÞ of a feature Atkl with respect to the class

label or decision attribute D is determined as follows [23]:

cAtkl
ðDÞ ¼ 1� 1

n

Xn
j¼1

vjðAtklÞ; ð33Þ
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cAtkl
ðDÞ ¼

1 if Atkl totally depends onD;

0 if Atkl does not depend onD;

�
ð34Þ

and cAtkl
ðDÞ 2 ð0; 1Þ if Atkl partially depends on D. The

confusion vector for the feature Atkl is denoted as

VðAtklÞ ¼ ½v1ðAtklÞ; . . .; vjðAtklÞ; . . .; vnðAtklÞ�
ð35Þ

where vjðAtklÞ ¼ minf1;
Xc
i¼1

hijðAtklÞ � 1g; ð36Þ

the matrix HðAtklÞ ¼ ½hijðAtklÞ�c�n is termed as

hypercuboid equivalence partition matrix of the feature

Atkl [23], where

hijðAtklÞ ¼
1 if Li 6 OjðAtklÞ 6 Ui

0 otherwise

�
ð37Þ

represents the membership of sample Oj in the i-th class

bi, and c denotes the number of classes. According to the

decision attribute D, the interval of the i-th class bi is

denoted by ½Li;Ui�. Each row of the c� n hypercuboid

equivalence partition matrix HðAtklÞ denotes a hyper-

cuboid equivalence class. The joint relevance

cfAtkl;A ~tgðDÞ of the feature set fAtkl;A~tg can be used to

compute the significance of the feature Atkl as follows:

rfAtkl;A ~tgðD;AtklÞ ¼ cfAtkl;A ~tgðDÞ � cA ~t
ðDÞ: ð38Þ

The joint relevance cfAtkl;A ~tgðDÞ of feature set

fAtkl;A~tg is depended on c� n hypercuboid equiva-

lence partition matrix HðfAtkl;A~tgÞ corresponding to

the set fAtkl;A~tg. Thus, the matrices HðAtklÞ and

HðA~tÞ are used to compute the matrix HðfAtkl;A~tgÞ,
where

HðfAtkl;A~tgÞ ¼ HðAtklÞ \HðA~tÞ; ð39Þ

and hijðfAtkl;A~tgÞ ¼ hijðAtklÞ � hijðA~tÞ: ð40Þ

2.2 Computational complexity

Let us assume that K ¼ minðp; qÞ and M ¼ maxðp; qÞ,
where the number of extracted featuresD\\K. The total

time complexity to compute two covariance matrices Cxx

and Cyy is ðOðK2nþM2nÞ ¼ÞOðM2nÞ, whereas the

computational cost to calculate cross-covariance matrix

Cxy is OðKMnÞ. The shrinkage parameters sx and sy can

be computed with time complexity

ðOðK2nþM2nÞ ¼ÞOðM2nÞ. On the other hand, the

eigenvalues Kx and Ky, along with corresponding eigen-

vectors Wx and Wy, can be calculated with computational

complexity ðOðK3 þM3Þ ¼ÞOðM3Þ. Hence, the total

time complexity to compute Cxx
�1 and Cyy

�1 is

ðOðK3 þM3Þ ¼ÞOðM3Þ.
Depending on p 6 q or p[ q, one of the matrices H11

or ~H11 has to be computed; hence, computational cost to

compute H11 or ~H11 is ðOðK3 þK2Mþ
KM2 þM3Þ ¼ÞOðM3Þ. Similarly, the computational

complexity of the matrix rk or rl is OðKÞ. Hence, the
time complexity to compute matrix Zkl or ~Zkl is

ðOðK3 þK2MþKM2Þ ¼ÞOðKM2Þ. Now, the time

complexity to calculate the first basis vector of first mul-

tidimensional variable is OðK2Þ, whereas the ðtþ 1Þ-th
basis vector of first multidimensional variable can be

computed with computational cost ðOðM3 þKM2þ
tK2Þ ¼ÞOðM3Þ, where 8t 2 f1; 2; . . .;K� 1g. On the

other hand, each basis vector of the second multidimen-

sional variable can be computed with time complexity

ðOðKM2 þKMÞ ¼ÞOðKM2Þ. The total time com-

plexity for computing canonical variables is ðOðKnþ
MnÞ ¼ÞOðMnÞ. The computational complexity to extract

a feature is OðnÞ. The time complexity to compute both

relevance and significance of a feature is same, which is

OðcnÞ. Hence, the total complexity to extract all highest

relevant features among all ðtx � tyÞ combination of reg-

ularization parameters is ðOðtxtyðK2 þKM2 þMnþ
nþ cnÞÞ ¼ÞOðtxtyKM2Þ.

The complexity to extract all the ðtþ 1Þ-th features, by

maximizing both relevance and significance, among all

ðtx � tyÞ candidate features is ðOðtxtyðM3 þKM2 þ
Mnþ nþ cnÞÞ ¼ ÞOðtxtyM3Þ. The selection of a feature

from ðtx � tyÞ candidate features by maximizing relevance

and significance has complexity OðtxtyÞ. So, total com-

plexity to compute all D maximally relevant and signifi-

cant features is ðOðtxtyðKM2 þM3ðD� 1ÞÞ þ txtyDÞ ¼
ÞOðtxtyM3DÞ. Hence, the overall computational com-

plexity of the proposed sequential supervised CCA algo-

rithm is ðOðM2nþKMnþM3 þKþKM2þ
txtyM

3DÞÞ, that is OðtxtyM3DÞ.

3 CanSuR: a new method for HEp-2 cell
classification

This section presents a new method, termed as CanSuR, for

staining pattern recognition of HEp-2 cell images. The

proposed method has two stages, namely, extraction of

features from HEp-2 cell images and classification of cells

based on the extracted features using support vector

machine (SVM). The feature extraction step of the pro-

posed method has two levels. In the first level, rotation-
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invariant local binary patterns (LBPris) [30] are extracted

directly from the input cell image. The sets of LBPri feature

vectors, corresponding to scales Sx and Sy of all HEp-2

cells, form two modalities X 2 Rp�n and Y 2 Rq�n,
respectively. Here, each row in X and Y represents one of

the LBPri feature vectors, and each column represents one

of the n samples. These extracted feature sets X and Y are

integrated in the second level using the proposed sequential

CCA method. The proposed sequential CCA extracts

maximally correlated, most relevant and significant fea-

tures from two multidimensional data sets X and Y. In the

proposed HEp-2 cell staining pattern recognition method,

henceforth termed as CanSuR, a set of maximally corre-

lated and most significant as well as relevant latent local

features is first extracted for each set of training data, and

then, SVM is trained using this feature set. After the

training, the information of training feature set is used to

generate the test set and then the class label of the test

sample is predicted using the SVM. The basic steps of the

proposed methodology are outlined next:

1. Compute LBPris using scale Sx and scale Sy for each

HEp-2 cell image to record the local textural features

and generate two data sets X and Y.

2. Apply the proposed sequential CCA on X and Y to

extract maximally correlated, most significant and

relevant latent local features.

3. Recognize the staining pattern of HEp-2 cell images

using SVM based on extracted features set.

A graphical representation of the proposed HEp-2 cell

classification methodology is shown in Fig. 1. The detail

description of each step is presented next.

3.1 Step I: generation of local textural features

To generate the local textural features of each HEp-2 cell

images, gray scale and rotation-invariant local binary tex-

ture operator LBPri is used. For a monochrome texture

image, the local binary texture T can be defined as [30]

T ¼ tðgc; g0; . . .; gL�1Þ; ð41Þ

where gc and gl, 8l 2 f0; 1; 2; . . .;L � 1g denote the gray

values of the center and neighbor pixels of the circularly

symmetric neighborhood with radius R. To achieve gray-

scale invariance, the gray value of the center pixel gc has to

be subtracted from the gray values of neighbor pixels

glðl ¼ 0; . . .;L � 1Þ, so

T ¼ tðgc; g0 � gc; g1 � gc; . . .; gL�1 � gcÞ: ð42Þ

It is assumed that the difference ðgl � gcÞ does no depend

on gc. Hence, (42) can be factorized as follows:

T � tðgcÞtðg0 � gc; g1 � gc; . . .; gL�1 � gcÞ: ð43Þ

The overall luminance of the image tðgcÞ does not relate to
local image texture and does not provide any useful

information for texture analysis. Therefore, the original

joint gray level distribution T is dependent on joint dif-

ference distribution tðg0 � gc; g1 � gc; . . .; gL�1 � gcÞ [31],

T � tðg0 � gc; g1 � gc; . . .; gL�1 � gcÞ: ð44Þ

The occurrence of various patterns in the neighborhood of

each pixel in a L-dimensional histogram is recorded by this

operator. In all directions, the differences are zero for

constant regions and high for a spot. The highest difference

is recorded in the gradient direction for a slowly sloped

edge. On the other hand, any change in mean luminance

does not affect the signed difference ðgl � gcÞ. Hence, the
joint difference distribution is invariant against gray-scale

shifts. Thus, invariance with respect to the scaling of gray

scale is achieved by considering the signs of the differences

only,

T � tðsðg0 � gcÞ; sðg1 � gcÞ; . . .; sðgL�1 � gcÞÞ;

where sðxÞ ¼
1; x > 0

0; x\0:

� ð45Þ

For each sign sðgl � gcÞ, a binomial factor 2l is assigned to

produce a unique number that characterizes the spatial

structure of the local image texture. The gray values gl will

move along the perimeter of the circle around g0, when the

image is rotated, and produce different binary patterns for

the same texture. To assign a unique identifier to each

rotation-invariant local binary pattern, the following for-

mula is used:

LBPri ¼ min ROR
XL�1
l¼0

sðgl � gcÞ2l; i
 !

ji ¼ 0; 1; . . .;L � 1

( )
;

ð46Þ

where RORðx; iÞ performs a circular bit-wise right shift

on the L-bit number x i times.

3.2 Step II: integration of local textural features

The sets of LBPri feature vectors, corresponding to scales

Sx and Sy of all HEp-2 cells, form two modalities X 2
Rp�n and Y 2 Rq�n, respectively. To integrate the infor-

mation of these rotation-invariant local binary feature

vector sets X and Y, the proposed supervised sequential

CCA is used. Here, the number of LBPri features of X and

Y is same, that is, p ¼ q and n is the number of HEp-2 cell

images. The proposed data integration method extracts

latent features those are maximally correlated and most

significant as well as relevant from LBPri feature vector
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sets X and Y. It obtains two directional basis vectors wx

and wy such that the correlation between canonical vari-

ables U ¼ wx
TX and V ¼ wy

TY is maximum, and the

extracted feature A ¼ UþV is most relevant and

significant.

3.3 Step III: SVM for staining pattern
classification

The support vector machine (SVM) [41] is used, in the

present work, to classify the staining patterns of HEp-2 cell

images by drawing an optimal hyperplane in the feature

vector space. This hyperplane defines a boundary that

maximizes the margin between data samples belonging to

different classes. In the current study, the SVM uses radial

basis function kernel to generate nonlinear decision

boundary among different classes. The SVM is trained with

the correlated, relevant and significant features generated

for the training HEp-2 cell set and using the information of

training feature set, and the staining pattern present in test

HEp-2 cell is predicted.

4 Performance analysis and discussions

The performance of the proposed HEp-2 cell image clas-

sification method, termed as CanSuR, is presented in this

section, along with a comparison with related approaches.

The proposed method CanSuR consists of mainly three

stages, namely, generation of local features using rotation-

invariant LBP (LBPri), integration of multiple scales of

LBPri using the proposed sequential supervised CCA, and

classification of HEp-2 cell images using SVM with radial

basis function kernel (SVMR). So, the performance of

LBPri is compared with that of several local texture

descriptors, namely, LBP [29] and rotation-invariant uni-

form LBP (LBPriu2) [30]. Similarly, the performance of

proposed sequential CCA is compared with that of several

multimodal data integration methods, namely, CCA [18],

regularized CCA (RCCA) [42] and CuRSaR [24]. The

comparative performance analysis between SVMR and

other classifiers, such as extreme learning machine (ELM)

[20], SVM with linear kernel (SVML) and SVM with

polynomial kernel (SVMP), is also done in the current

study.

The performance of different methods is studied with

respect to various scales of LBP 8-neighborhood such as 1

(S1), 2 (S2) and 3 (S3). Both classification accuracy and F1

score on test sets are reported in this section to establish the

performance of proposed method as well as existing

approaches. To analyze the statistical significance of the

proposed method, with respect to different existing meth-

ods, both tenfold cross-validation and training–testing are

performed. For each data set, LBP, LBPri and LBPriu2

provide 256, 36 and 10 features, respectively. So, in case of

naive integration between two scales of LBP, LBPri and

LBPriu2, the total number of features used for the analysis is

twice the number of features of individual scale. On the

other hand, fifteen top-ranked extracted features are con-

sidered for different data integration methods, namely,

CCA, RCCA, CuRSaR and proposed CCA. In the proposed

data integration method, the value of two shrinkage

parameters sx and sy is considered as 0.0001.

4.1 Description of data sets

This section provides some basic information about the

data sets used for benchmarking the activity. These data

sets are (i) ICPR 2012 HEp-2 cell classification contest

data, termed as MIVIA image database [10]; (ii) ICPR

2014 HEp-2 cell classification contest data, termed as ICPR

image database; and (iii) SNP HEp-2 database [45].

(i) MIVIA database This data set contains 1455 cells

from 28 images among which four images are

belonging to cytoplasmic, fine speckled and

nucleolar patterns, five images are belonging to
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coarse speckled and homogeneous, and six cen-

tromere images are there. The images have 24 bits

color depth with uncompressed 1388 � 1038

pixels resolution. The data set contains 721 and

734 cell images in training and test sets,

respectively.

(ii) ICPR database This data set contains 13596 cell

images almost equally distributed with respect to

six different patterns, namely, centromere, homo-

geneous, nucleolar, speckled, nuclear membrane

and golgi. The set contains 6797 and 6799 cell

images in training and test sets, respectively.

(iii) SNP database This database has five pattern

classes, namely, centromere, homogeneous, coarse

speckled, fine speckled and nucleolar. From 40

specimen images, there are 1884 cell images

extracted. The specimen images are divided into

training and testing sets with 20 images each (4

images for each pattern). In total, there are 869

and 937 cell images extracted for training and

testing.

The cell images from the above data sets were captured

in different laboratory settings (e.g., different assays and

microscope configurations). For instance, SNP HEp-2 used

objective lens magnitude 20�, while MIVIA HEp-2 used

40�. The robustness of the proposed method as well as

existing approaches is studied through the evaluation on

these three data sets. Table 1 indicates the number of

training and testing cells with respect to different HEp-2

patterns of these three data sets, which are used to evaluate

the performance of the proposed algorithm as well as

existing methods.

4.2 Importance of rotation-invariant LBP

Ideally, when an HEp-2 cell image is rotated, the pattern

operator should produce a unique binary pattern for the

same texture. In other words, the pattern operator should be

rotation invariant. Figure 2a, b compares the performance

of rotation-invariant LBP (LBPri) with that of LBP, con-

sidering three scales, namely, S1, S2 and S3 using SVML

and SVMR, respectively. The results reported in Fig. 2a

show that LBPri provides better classification accuracy of

the SVML than LBP in most of the cases. For SNP data set,

the LBPri attains classification accuracy of 0.465, 0.529

and 0.577, with respect to three scales, namely, S1, S2 and

S3, respectively, which are better than that obtained using

LBP. On the other hand, for MIVIA data set, LBPri per-

forms better than LBP for scales S2 and S3, where it

achieves classification accuracy of 0.608 and 0.579,

respectively. However, for scale S1, LBP performs better

than LBPri. The SVML classification accuracy obtained

using LBP for scale S1 is 0.466, whereas the accuracy

obtained using LBPri is 0.437. In case of ICPR data set,

LBPri performs better than LBP only for scale S3, while the

performance is comparable in other two cases. The clas-

sification accuracy obtained using LBPri with respect to

scales S1, S2 and S3 is 0.5935, 0.664 and 0.709, respec-

tively. On the other hand, the SVML classification accuracy

obtained using LBP with respect to scales S1, S2 and S3 is

0.5944, 0.675 and 0.708, respectively. The results reported

in Fig. 2b show that LBPri achieves better classification

accuracy using SVMR than LBP in all the cases. For

MIVIA data set, the LBPri attains classification accuracy of

0.482, 0.561 and 0.559 with respect to three scales, namely,

S1, S2 and S3, respectively, which are better than that

obtained using LBP. In case of ICPR data set, the SVMR

classification accuracy obtained using LBPri with respect to

scales S1, S2 and S3 is 0.683, 0.765 and 0.801, which are

better than that obtained using LBP. On the other hand, for

SNP data set, LBPri performs better than LBP for all the

scales S1, S2 and S3, where it achieves classification

accuracy of 0.442, 0.527 and 0.583, respectively. The

results reported in Fig. 2a, b demonstrate that LBPri, which

is rotation-invariant LBP, performs better than LBP in 6

and 9 cases out of total 9 cases each using linear kernel and

radial basis function kernel of SVM, respectively. All the

results reported here thus establish the fact that LBPri

Table 1 Description of data sets used

Different data sets Different staining patterns Number of cells

Training Test

MIVIA Homogeneous 150 180

Cytoplasmic 58 51

Coarse speckled 109 101

Fine speckled 94 114

Centromere 208 149

Nucleolar 102 139

ICPR Homogeneous 1247 1247

Speckled 1415 1416

Nuclear membrane 1104 1104

Nucleolar 1299 1299

Centromere 1370 1371

Golgi 362 362

SNP Homogeneous 172 188

Coarse speckled 166 187

Fine speckled 188 191

Nucleolar 194 188

Centromere 149 183
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performs better than LBP, irrespective of the datasets,

scales and SVM kernels used.

Similarly, Fig. 2c, d compares the performance of LBPri

with that of LBPriu2 at different scales using linear kernel

and radial basis function kernel, respectively, considering

three HEp-2 cell data sets. At scale S1, the LBP
riu2 provides

SVML classification accuracy of 0.407, 0.559 and 0.466, on

MIVIA, ICPR and SNP data sets, respectively, while it

attains SVM linear kernel accuracy of 0.578, 0.620 and

0.520, respectively, for scale S2. On the other hand, LBPriu2

achieves 0.601, 0.642 and 0.537 classification accuracy at

scale S3 using linear kernel. Similarly, the SVMR classifi-

cation accuracy obtained using LBPriu2 with respect to

scale S1 are 0.548, 0.694 and 0.446 on MIVIA, ICPR and

SNP data sets, respectively. On the other hand, for scale S2,

LBPriu2 achieves 0.540, 0.767 and 0.490 accuracy using

SVM radial basis function kernel on MIVIA, ICPR and

SNP data sets, respectively. For scale S3, the SVMR clas-

sification accuracy obtained using LBPriu2 with respect to

MIVIA, ICPR and SNP data sets is 0.486, 0.790 and 0.542,

respectively. All the results reported in Fig. 2c, d validate

that the LBPri performs better than LBPriu2 in 7 cases and 5

cases out of total 9 cases each, using linear kernel and

radial basis function kernel of SVM, respectively. Hence,

these results can establish the fact that LBPri performs

better than LBPriu2, irrespective of the scales, datasets and

SVM kernels used. Based on the analysis reported in

Fig. 2, the LBPri is considered as the textural feature

extraction operator in the current research work, as it can

extract rotation-invariant local binary patterns more accu-

rately from HEp-2 cell images than both LBP and LBPriu2.

4.3 Optimum scale for proposed method

In order to find out the optimum value of scale parameter

for the proposed method, extensive experimentation is

performed on each data set and corresponding results are

reported in Fig. 3. Figure 3 compares the performance of

different scales of LBPri operator using both linear kernel

and radial basis function kernel of SVM. The results

reported in Fig. 3 show that for both ICPR and SNP data,

LBPri provides highest SVML and SVMR classification

accuracy with respect to scale S3. It achieves highest SVML

classification accuracy of 0.709 and 0.577 with respect to
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Fig. 2 Comparative performance analysis of LBP-LBPri and LBPriu2-LBPri (top: MIVIA; middle: ICPR; and bottom: SNP)
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scale S3 for ICPR and SNP data, respectively. Similarly,

the highest SVMR classification accuracy with respect to

scale S3 is 0.801 and 0.583 using ICPR and SNP data,

respectively. On the other hand, the highest SVML and

SVMR classification accuracy obtained using LBPri with

respect to scale S2 is 0.608 and 0.561, respectively, for

MIVIA data set. All the results reported here also confirm

that LBPri attains better classification accuracy with respect

to scales S2 and S3 than scale S1 for both linear kernel and

radial basis function kernel. Hence, integration of these two

scales, namely, S2 and S3, may provide better recognition

of HEp-2 patterns. In this regard, the optimum scale for the

proposed method is considered as S2 þ S3.

Using the naive integration of scales S2 and S3, that is

S2 þ S3, the SVML achieves classification accuracy of

0.584, 0.770 and 0.545, for MIVIA, ICPR and SNP data

sets, respectively, whereas the classification accuracy using

radial basis function kernel is 0.582, 0.826 and 0.589, for

MIVIA, ICPR and SNP data sets, respectively. The results

reported in Table 2 establish the fact that both SVML and

SVMR classification accuracy on ICPR data set is increased

from 0.709 to 0.770 and 0.801 to 0.826, respectively. But,

for MIVIA and SNP data sets, the SVML classification

accuracy of S2 þ S3 lies in between that of scales S2 and S3,

although the SVMR classification accuracy of S2 þ S3 is

increased from 0.561 to 0.582 and 0.583 to 0.589, for

MIVIA and SNP data sets, respectively. Similar results can

also be found in Table 2 for both LBP and LBPriu2. All

these results indicate that naive integration, which is direct

concatenation, of these two scales is not enough for inte-

grating the information of two scales. Due to the drastic

variation of two scales and noisy nature of the input HEp-2

cell images, naive integration usually gives poor perfor-

mance, which causes insufficient and inaccurate staining

pattern representation of the images. Moreover, multiple

scales of unique cell image may contain complementary

information. The linkages between attributes of each HEp-

2 cell images can be made by using these multiple scales of

unique sample cell. The combination of multiple scales of a

unique HEp-2 cell image would have more discriminatory

and complete information of the inherent properties of that

cell by generating improved system performance than

individual scale. Hence, a proper integration method is

needed to incorporate the local textural feature information

obtained at multiple scales.

To integrate the information of two scales, namely, S2
and S3, of LBP

ri operator, the proposed sequential CCA is

used in the current research work. Figure 4 demonstrates

the results obtained using integrated scales of S1 þ S2, S1 þ
S3 and S2 þ S3, using both linear kernel and radial basis

function kernel of SVM, where the proposed sequential

CCA is used to integrate the information of two scales. All

the results reported in Fig. 4 establish the fact that the

integrated information of scales S2 and S3 performs sig-

nificantly better than that of other integrated scales, irre-

spective of the number of extracted features, SVM kernels

and data sets used. The results reported in Fig. 4 also show

that the proposed data integration method provides highest

SVML classification accuracy of 0.507, 0.594 and 0.610,

respectively, with respect to three aforementioned inte-

grated scales on MIVIA data set. On the other hand, the

highest SVMR classification accuracy of 0.564, 0.616 and

0.636 is obtained using integrated scales S1 þ S2, S1 þ S3
and S2 þ S3 on MIVIA data set. Similarly, the highest F1

score for both SVML and SVMR is 0.510, 0.584, 0.613 and

0.562, 0.625, 0.651, respectively, for all the combined

scales of S1 þ S2, S1 þ S3 and S2 þ S3. For ICPR data set,

the integrated scales of S1 þ S2, S1 þ S3 and S2 þ S3 obtain

highest SVML classification accuracy and F1 score of

0.539, 0.692, 0.742 and 0.525, 0.663, 0.708, respectively.

Similarly, the highest SVMR classification accuracy and F1

score obtained using scales S1 þ S2, S1 þ S3 and S2 þ S3
are 0.702, 0.766, 0.851 and 0.681, 0.742, 0.825, respec-

tively, on ICPR data set. On the other hand, the above-

mentioned three integrated scales attain highest SVML

classification accuracy and F1 score of 0.486, 0.572, 0.593

and 0.482, 0.586, 0.592, respectively, for SNP data set.

Likewise, the highest SVMR classification accuracy and F1

score achieved using scales S1 þ S2, S1 þ S3 and S2 þ S3
are 0.541, 0.557, 0.631 and 0.539, 0.579, 0.637, respec-

tively, on SNP data set. However, Table 2 reports the

classification accuracy and F1 score for fifteen top-ranked

features, which may be different from the best values

shown in Fig. 4.

4.4 Performance of different methods

This section provides the comparative performance analy-

sis, in terms of classification accuracy and F1 score, of

different existing data integration methods considering

several classifiers. Results are reported on three HEp-2 cell

image databases. To incorporate the information of
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Table 2 Classification accuracy and F1 score on different data sets for training–testing

Different classifiers Different methods ELM SVML SVMP SVMR

MIVIA ICPR SNP MIVIA ICPR SNP MIVIA ICPR SNP MIVIA ICPR SNP

Accuracy LBP 0.475 0.724 0.492 0.549 0.726 0.537 0.312 0.656 0.347 0.538 0.798 0.525

LBPri 0.598 0.811 0.519 0.584 0.770 0.545 0.564 0.753 0.592 0.582 0.826 0.589

LBPriu2 0.549 0.809 0.512 0.584 0.702 0.530 0.302 0.769 0.466 0.546 0.819 0.525

CCA 0.357 0.590 0.498 0.381 0.533 0.522 0.409 0.563 0.470 0.448 0.638 0.546

RCCA 0.567 0.664 0.433 0.579 0.385 0.439 0.575 0.596 0.455 0.413 0.680 0.481

CuRSaR 0.462 0.631 0.453 0.422 0.426 0.501 0.553 0.589 0.449 0.360 0.664 0.505

Proposed CCA 0.549 0.799 0.561 0.608 0.742 0.585 0.545 0.743 0.560 0.605 0.834 0.602

F1 score LBP 0.453 0.701 0.484 0.539 0.710 0.532 0.395 0.655 0.400 0.506 0.774 0.524

LBPri 0.589 0.800 0.507 0.591 0.755 0.542 0.571 0.722 0.592 0.593 0.799 0.590

LBPriu2 0.563 0.792 0.508 0.585 0.684 0.533 0.352 0.740 0.470 0.570 0.800 0.518

CCA 0.359 0.562 0.509 0.378 0.515 0.529 0.378 0.541 0.483 0.458 0.597 0.546

RCCA 0.562 0.633 0.446 0.576 0.376 0.454 0.580 0.571 0.467 0.452 0.649 0.483

CuRSaR 0.478 0.596 0.460 0.450 0.409 0.518 0.563 0.564 0.457 0.411 0.633 0.508

Proposed CCA 0.514 0.770 0.567 0.600 0.708 0.582 0.527 0.708 0.559 0.602 0.801 0.607
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Fig. 4 Performance of proposed method at different scales for training–testing (top: MIVIA; middle: ICPR; and bottom: SNP)
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rotation-invariant local binary pattern (LBPri) at scales S2
and S3, the CCA, RCCA, CuRSaR and the proposed

sequential CCA method are used. Figure 5 depicts the

variation of F1 score and classification accuracy obtained

using both linear kernel and radial basis function kernel of

SVM over different number of extracted features. From the

results reported in Fig. 5, it can be seen that the proposed

data integration method provides highest classification

accuracy as well as highest F1 score for training–testing,

integrating the local textural features of LBPri at scales S2
and S3, irrespective of the number of extracted features,

SVM kernels and data sets used.

Table 2 compares the HEp-2 cell staining pattern F1

score and classification accuracy of the proposed as well as

different existing methods for training–testing. The results

corresponding to naive integration of scales S2 and S3 for

LBP, LBPri and LBPriu2 are also studied in this table, where

the number of features which are extracted by the naive

integration of LBP, LBPri and LBPriu2 is 512, 72 and 20,

respectively. On the other hand, the classification accuracy

and F1 score of top fifteen features, which are extracted by

using CCA, RCCA, CuRSaR and the proposed sequential

CCA method, are reported in this table. All the results

confirm that the proposed data integration method provides

highest classification accuracy and F1 score of the SVM

with radial basis function kernel on ICPR and SNP data

sets. For MIVIA data set, the proposed data integration

method achieves highest classification accuracy and F1

score of the SVM with linear kernel and radial basis

function kernel, respectively.

All the results reported in Fig. 5 and Table 2 establish

the fact that the proposed method can extract most relevant

and significant features for HEp-2 cell staining pattern

classification, which are also maximally correlated between

two scales S2 and S3. To optimize the regularization

parameters in the proposed data integration method, the

rough hypercuboid approach is used. It helps to extract

more relevant and significant local features than other

multimodal data integration methods. In effect, the pro-

posed method can facilitate higher HEp-2 cell pattern

classification accuracy than other methods. Moreover, it

can explore large search space to extract features

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14  16

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14  16

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0  2  4  6  8  10  12  14  16

F
1 

S
co

re

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0  2  4  6  8  10  12  14  16

F
1 

S
co

re

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10  12  14  16

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  2  4  6  8  10  12  14  16

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0  2  4  6  8  10  12  14  16

F
1 

S
co

re

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0  2  4  6  8  10  12  14  16

F
1 

S
co

re

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 0  2  4  6  8  10  12  14  16

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

(a) SVM with linear kernel

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 0  2  4  6  8  10  12  14  16

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

(b) SVM with radial basis
function kernel

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 0  2  4  6  8  10  12  14  16

F
1 

S
co

re

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

(c) SVM with linear kernel

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 0  2  4  6  8  10  12  14  16

F
1 

S
co

re

Number of Extracted Features

CCA
RCCA

CuRSaR
Proposed

(d) SVM with radial basis
function kernel

Fig. 5 Comparative performance analysis of different data integration methods for training–testing (top: MIVIA; middle: ICPR; and bottom:

SNP)
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sequentially from two multidimensional scales with sig-

nificantly lesser amount of time than FaRoC [25]. Both

FaRoC and proposed CCA extract features sequentially

from two multidimensional variables, but the proposed

CCA takes lesser amount of time than FaRoC. Figure 6

compares the execution time of FaRoC with proposed data

integration method. It confirms that the execution time of

the proposed sequential feature extraction method, pre-

sented in Sect. 2, is significantly lower than that of existing

FaRoC.

4.5 Statistical significance analysis

This section presents the statistical significance analysis of

staining pattern recognition of HEp-2 cell images using

different multimodal data integration methods. To study

the statistical significance of both accuracy and F1 score,

tenfold cross-validation is performed. Figure 7 presents the

variation of both tenfold accuracy and F1 score, for fifteen

top-ranked extracted features. From the results presented in

Fig. 7, it is clearly observed that both F1 score and clas-

sification accuracy for the proposed method increase while

the number of generated features increases. Also, the F1

score and classification accuracy of the proposed algo-

rithm, obtained using tenfold cross-validation, are signifi-

cantly higher as compared to existing CCA, RCCA and

CuRSaR, irrespective of the number of extracted features,

classifiers and data sets used.

The comparative performance analysis of different data

integration algorithms is also studied in Fig. 8, which

shows the box and whisker plots for classification accuracy

and F1 score obtained using tenfold cross-validation, on

each HEp-2 cell data set using both linear kernel and radial

basis function kernel of SVM. The lower and upper

boundaries of each box represent the 75th percentile or

lower quartile and 25th percentile or upper quartile,

respectively, whereas the median is denoted by the central

line. The whiskers are the two lines outside the box that

extend to the highest and lowest observations. The outliers

are plotted individually, and denoted as ‘?’. It represents

the test cross-validation set for which a method obtains

worse tenfold F1 score or classification accuracy than for

the other test cross-validation sets of the same HEp-2 cell

data set.

Wilcoxon signed-rank test (one-tailed), paired-t test

(one-tailed) and Friedman test are used to compute the p

values for statistical significance analysis. In case of ten-

fold cross-validation, the means and standard deviations of

the classification accuracy and F1 score of the ELM,

SVML, SVMP and SVMR rules are computed for all data

sets. Tests of significance are performed for the inequality

of means obtained using the proposed method and other

related algorithms compared. Since both mean pairs and

variance pairs are unknown and different, a generalized

version of t-test, termed as Behrens–Fisher problem in

hypothesis testing, is used here. On the other hand, Wil-

coxon signed-rank test computes the differences between

the proposed method and other related algorithms using F1

score and accuracy for each observation. The p values are

computed by using positive and negative ranks of absolute

differences. Friedman test is a nonparametric statistical test

which is used to detect the differences between the pro-

posed method and other related algorithms by ranking

procedure.

Table 3 reports the means and standard deviations of

tenfold cross-validation F1 score and accuracy for all the

methods using several classifiers. The p values of existing

data integration methods are also recorded in this table with

respect to the proposed sequential CCA method for three

HEp-2 cell data sets. The highest mean values are pointed

in bold in this table. All the results presented in Table 3

establish the fact that the proposed HEp-2 cell staining

pattern recognition method, which mainly consists of the

proposed sequential CCA and SVM with radial basis

function kernel, attains best mean classification accuracy as

well as F1 score, irrespective of the data integration

methods, classifiers and data sets used. Out of total 216

cases, the proposed method attains significantly better

p values (marked in bold) than other methods in 139 cases

and better but not significant p values (marked in italics) in

66 cases, considering 95% confidence level.

5 Conclusion and discussions

The main contribution of this paper lies in developing a

methodology, termed as CanSuR, which can be used to

diagnose connective tissue disease by recognizing the

staining patterns present in HEp-2 cells. When an HEp-2

cell image is rotated, the pattern operator should be rotation
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invariant such that it should produce a unique binary pat-

tern for the same texture. In this context, the proposed

method uses rotation-invariant local binary pattern as tex-

ture descriptor operator to extract important features from

HEp-2 cell images. On the other hand, integration of two

scales may provide better recognition of HEp-2 patterns.

But, naive integration, which is the direct concatenation of

two scales, may not be effective for integrating important

information of two scales. A proper multimodal data

integration method is thus needed to incorporate the

information of two scales. In this regard, a new supervised

CCA algorithm is proposed in the current research work to
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Fig. 7 Comparative performance analysis of different data integration methods for tenfold cross-validation (top: MIVIA; middle: ICPR; and

bottom: SNP)
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Fig. 8 Box and whisker plots for different data integration methods (top: MIVIA; middle: ICPR; and bottom: SNP)
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integrate the information of two scales. Finally, support

vector machine with radial basis function kernel is used to

recognize one of the known staining patterns present in IIF

images. The proposed method takes into account the merits

of rough hypercuboid approach and supervised CCA.

While the proposed CCA helps to integrate local textural

descriptors obtained from multimodal sources, the rough

hypercuboid facilitates to extract significant and relevant

features for HEp-2 pattern recognition. The effectiveness

of the proposed method, along with a comparison with

related approaches, has been demonstrated on several

publicly available HEp-2 cell image databases.

The proposed method is basically the realization of

computer-aided diagnosis system for the analysis of IIF

images. The results produced by the proposed technique

can be used to support the scientists’ subjective analysis. In

effect, it may lead to prediction accuracy on test samples

being consistent across laboratories and more reliable. So,

one can use the proposed system to automatically identify

the patterns present in the specimen HEp-2 cell images, in

order to address the shortcomings of manual test procedure.

Both scientific and industrial societies may be interested

about the proposed method for automatic IIF image pattern

analysis as it will reduce high labor costs and increase the

reliability especially in the presence of photo-effect which

bleaches the tissues severely in a few seconds. The pro-

posed method may also avoid ambiguous results caused by

subjective analysis and provide more efficient analysis

report.
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