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Abstract

The recognition of staining patterns present in human epithelial type 2 (HEp-2) cells helps to diagnose connective tissue
disease. In this context, the paper introduces a robust method, termed as CanSuR, for automatic recognition of antinuclear
autoantibodies by HEp-2 cell indirect immunofluorescence (IIF) image analysis. The proposed method combines the
advantages of a new sequential supervised canonical correlation analysis (CCA), introduced in this paper, with the theory
of rough hypercuboid approach. While the proposed CCA efficiently combines the local textural information of HEp-2
cells, derived from various scales of rotation-invariant local binary patterns, the relevant and significant features of HEp-2
cell for staining pattern recognition are extracted using rough hypercuboid approach. Finally, the support vector machine,
with radial basis function kernel, is used to recognize one of the known staining patterns present in IIF images. The
effectiveness of the proposed staining pattern recognition method, along with a comparison with related approaches, is
demonstrated on MIVIA, SNP and ICPR HEp-2 cell image databases. An important finding is that the proposed method
performs significantly better than state-of-the art methods, on three HEp-2 cell image databases with respect to both
classification accuracy and F1 score.

Keywords HEp-2 cell staining pattern recognition - Local binary pattern - Canonical correlation analysis -
Support vector machine

1 Introduction

Autoimmune diseases are a group of disorders where the
immune system of the affected individual malfunctions and
the tissues are attacked by autoantibodies. One aspect of
these diseases is the formation of self-antigens or autoan-
tibodies. There are two general groups of autoimmune
diseases, namely, organ specific and non-organ specific. In
organ specific, a specific organ can be attacked, while in
non-organ specific, multiple organ systems can be attacked
by the autoantibodies. Hashimoto’s thyroiditis is an
example of organ-specific autoimmune disease where the
thyroid gland is damaged by autoantibodies. An example of
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a systemic autoimmune disease is systemic lupus erythe-
matosus where the autoantibodies can attack any organ in
the body. One of the standard examples of autoimmune
disorders is connective tissue diseases (CTDs), which are
characterized by a chronic inflammatory process concern-
ing connective tissues.

The antinuclear antibody (ANA) test is used to predict
the presence of autoantibodies in nucleus of the cell. The
ANAs are used as markers to detect certain chronic
immuno-inflammatory diseases. The detection as well as
quantitation of ANAs is pivotal to the diagnosis of many
autoimmune diseases [2, 36]. The presence of ANAs can
be determined by indirect immunofluorescence (IIF) [11].
The knowledge about the localization of autoantigens is
provided by the IIF, which has become a standard method
to predict the presence of ANA in patient serum. The most
used cell substrate for IIF demonstration of ANA is human
epithelial type 2 (HEp-2) cell [21, 38, 44]. Various staining
patterns of ANAs, namely, centromere, cytoplasmic, golgi,
homogeneous, nucleolar, speckled and other mixed
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patterns, can provide useful information to diagnose CTDs,
as different patterns are associated with different autoim-
mune diseases and/or autoantigens [1, 26, 38]. So, accurate
classification of these staining patterns is very essential. In
real-life analysis, this process suffers from low-throughput
and inter and/or intra-laboratory variance. Visual evalua-
tion of IIF test is quite time-consuming, and subjective to
the skill of experts [16]. At least two experts must examine
each ANA specimen under a fluorescence microscope.

Computer-aided diagnosis (CAD) systems are used to
overcome the shortcomings of manual test procedure by
determining the staining patterns of a given HEp-2 cell
image automatically [10, 40]. Both time and effort may be
reduced by the automation of staining pattern classification
of HEp-2 cell images. The automated method can make IIF
analysis faster, easier and more reliable. Machine learning
techniques are widely used to develop the CAD systems in
the field of medicine. The goal of the CAD systems is to
recognize one of the known staining HEp-2 patterns pre-
sent in the IIF images. In recent past, some efforts on IIF
image analysis using CAD systems have been done.
However, a fully automated system to serve the purpose is
yet to be developed [10, 16]. There are several approaches
present in the literature, either to automate individual
stages or the entire IIF diagnostic procedure. Such proce-
dures consist of mainly five steps, namely, acquisition of
images, segmentation of images, detection of mitosis,
classification of fluorescence intensity and recognition of
staining patterns. Soda et al. [35] reported an autofocus
function to deal with photobleaching effect during image
acquisition. Using a set of textural and shape features
obtained from the images, the quality of fluorescence
images has been evaluated in [17]. Based on statistical
features, fluorescence intensity classification has been
performed in [34]. Rough segmentation of HEp-2 cells
from IIF images has been addressed in [3, 4, 33]. In [22],
an automatic pattern recognition system using fully con-
volutional network has been proposed to simultaneously
address the segmentation and classification problem of
HEp-2 specimen images. Another framework has been
developed in [12] for the classification of HEp-2 cell
images by utilizing deep convolutional neural networks. A
superpixel-based Hep-2 cell classification technique has
been introduced in [8], based on sparse codes of image
patches.

Textural features can be used to capture the information
of surface of the HEp-2 cells, which have unpredictably
ambiguous texture. The inherent textures in different HEp-
2 cell types are quite different from each other. Moreover,
the visual resemblance among the cells of different classes
increases the ambiguity of IIF image analysis. These dif-
ficulties create limitations of HEp-2 pattern recognition
using CAD systems. To characterize a cell image, several
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local texture descriptors, namely, local binary pattern
(LBP) [29], rotation-invariant LBP (LBP™) [30], completed
LBP [15], co-occurrence of adjacent LBPs [28] and rota-
tion-invariant co-occurrence of adjacent LBPs [27], are
used in [5], while the concept of gradient-oriented co-oc-
currence of LBP has been introduced in [40]. In [9], a
combination of morphological features and textural fea-
tures extracted using LBPs is used for automatic mitotic
cell recognition. In [19], the similarity-based watershed
algorithm with marker techniques has been used to seg-
ment HEp-2 cells, while learning vector quantization has
been used to identify the patterns. Strandmark et al. [37]
have developed an automatic method, based on random
forests, which classifies an HEp-2 cell image. On the other
hand, Cordelli et al. [6] have proposed a method which is
independent from the color model used and showed that a
gray-scale representation based on the HSI model better
exploits information for IIF image analysis. In [39], an
automated HEp-2 cell staining pattern recognition method
has been proposed by using morphological features. To
capture local textural information, a modified version of
uniform LBPs descriptor is incorporated in this research
work. Wiliem et al. [45] have proposed a system for cell
classification, comprising of nearest convex hull classifier
and a dual-region codebook-based descriptor. In [5], an
HEp-2 cell classification approach has been reported based
on subclass discriminant analysis. In order to encode gra-
dient and textural characteristics of the depicted HEp-2
patterns, Theodorakopoulos et al. [40] have proposed a new
descriptor, based on co-occurrence of uniform LBPs along
directions dictated by the orientation of local gradient.
Nosaka et al. [27] have developed a method, which inte-
grates the advantages of both support vector machine
(SVM) and rotation-invariant co-occurrence among adja-
cent LBPs image features. In [32], an automatic HEp-2 cell
classification approach has been introduced by combining
multiresolution co-occurrence texture and large regional
shape information.

The integration of multiple scales of same local textural
features may provide better recognition of HEp-2 patterns.
Due to the drastic variation of different scales and noisy
nature of input HEp-2 cell images, the naive integration
usually gives poor performance, which reflects in the
insufficient and inaccurate staining pattern representation
of these images. Multiple scales of unique cell image, on
the other hand, may contain complementary information.
The linkages between attributes of each HEp-2 cell images
can be made by using these multiple scales of unique
sample cell. The combination of multiple scales of a unique
HEp-2 cell image would have more discriminatory and
complete information of the inherent properties of that cell
by generating improved system performance than
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individual scale. Hence, a proper integration method is
needed to incorporate the information of local textural
descriptors obtained at multiple scales. In this background,
canonical correlation analysis (CCA) [18] or its several
variants [7, 14, 42] provide an effective way of capturing
the correlation among different multidimensional data sets.
Recently, some new supervised CCA have been proposed
[24, 25], which perform significantly better than the
existing CCA-based approaches. However, these methods
are known to have high computational complexity, which
renders their application in many real-life data analysis
such as classification of HEp-2 cell patterns.

In this regard, the paper presents a new method, termed
as CanSuR, for automatic recognition of antinuclear
autoantibodies by HEp-2 cell IIF image analysis. It judi-
ciously integrates the advantages of canonical correlation
analysis, support vector machine and rough hypercuboid
approach. The proposed staining pattern recognition
method has two main steps, namely feature extraction and
classification. The feature extraction step consists of two
levels. At first, the local textural features are extracted from
HEp-2 cell images, and then combined using a novel
sequential canonical correlation analysis (CCA). To inte-
grate two multidimensional variables, consisting of local
features at different scales, the proposed supervised CCA
extracts features sequentially by maximizing the correla-
tion between canonical variables, significance among the
features and their individual relevance with respect to HEp-
2 cell images. The theory of rough hypercuboid approach is
used for computing both significance and relevance mea-
sures. Finally, the SVM with radial basis function kernel is
used to recognize one of the known staining patterns pre-
sent in IIF images. In this context, it should be mentioned
that both proposed CCA and supervised CCA, introduced
in [25] and termed as FaRoC, can extract features
sequentially from two multidimensional variables. But, the
proposed method explores large search space with signifi-
cantly lesser amount of time than FaRoC. The effectiveness
of the proposed staining pattern recognition method, along
with a comparison with related approaches, is demon-
strated on MIVIA, SNP and ICPR HEp-2 cell image
databases.

2 A novel sequential supervised CCA

A novel feature extraction algorithm for multimodal data
sets, termed as sequential CCA, is introduced in this sec-
tion. It extracts maximally correlated and most significant
as well as relevant latent features sequentially from two
multidimensional variables # € /™" and ¥ € R7*". If
the number of features / and ¢ of 2" and %, respectively, is

larger than the number of samples n, that is, n< < (4, ¢),
then the covariance matrices 4., and €, become ill-
conditioned. In the current work, a fast and supervised
sequential CCA is proposed to address the singularity issue
of covariance matrices while integrating the information of
two multidimensional data sets. The proposed CCA obtains
two directional basis vectors «, € R” and <« , € N such
that the correlation between canonical variables % =
w,"Z and 7" = s0,"% is maximum, and the extracted
feature .o/ = % + " is most relevant and significant. The
correlation coefficient between the canonical variables is
given as follows:

I ew,,e0,) = max Uy'T = max wf%ww’,/

subject to, AU = 10,7 €, 00, =1,

and vV =02,"%,,0,=1

(1)

To incorporate the above two constraints into correlation
coefficient-based objective function, the Lagrange multi-
plier is used in (1), which leads to

)ul

L 12) = 0, 6y, =5

(w,rT(gfwmf -1
. @
—Ez(wyT(ngy —1);

where A, and 7, are Lagrange multipliers. Differentiating
& with respect to «, and <, and setting the vectors of
derivative to zero, we obtain

0L h .,
_(3401, =C, 0, — X (€0 +%b,." w,)=0 3)
= Co e, =0C 0.
0L T Iy ,
and - = (g;,.y, Wy — 5 ((gw,w, + (gw ‘()y) =0
= b o0 = gz(gww%

(4)

Multiplying (3) and (4) by ¢, T and 7, respectively, we

v o

obtain
T T .
W, (gmya}y = lla)x € 0, = )vl, (5)
T T 1
and w, (g%,wf = }wa (g,ﬂ/w«y = A. (6)

The correspondence between the Lagrange multipliers 4;
and 4, can be established using (5) and (6),

=, C,,0,) =w,"C,.m, = (7)

From (7), it can be seen that the correlation coefficient
between two canonical variables # = «, "% and ¥ =
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wyT@ is same with the Lagrange multipliers 1 = 1, = 4.
Hence, (3) and (4) can be rewritten as

%:rywy =16,,w, = w, = i%j;%mwf, (8)
and .0, =1%,,0,= 0w, =26,%6,,w, (9
Using (4) and (8), we obtain
2 ~1
C oty =06 ,,00,=2"6,,6., C.ow, (10)

2
w, = ANw,.

=%,'%,,¢%,

yy " I*
Similarly, using (3) and (9), we obtain

_ _ 12¢ —1
Copevy = 0G0, = 126,,6,'6,,0,

(11)
=% lg

-1 __ 12
vy y,(g”(g, w, = Aw

vy y*

Hence, (10) and (11) lead to the following generalized
eigenvalue problem:

0 t,,€,:C,, 0y | Ly
- r] (12)
é{}y
l# 0 w’I/ w-’l‘,
= i _ |
0 H “y w,

where # = (5;;(5 (gfil(gw

o po—1 w—1
and A =%, %,.6..%.,,.

2.1 Proposed CCA

(13)

In real-life high-dimensional multimodal data analysis, the
number of features is larger than the number of samples,
which makes the covariance matrices ¢, and €, non-
invertible. Regularized CCA (RCCA) [42] adds regular-
ization parameters t,. and r,, to the diagonal elements of the
covariance matrices 6., and €, to make them invertible.
On the other hand, in fast RCCA (FRCCA) [7], the values
of off-diagonal elements of the matrices %, and € y are
reduced by using shrinkage parameters 4, and 4, to deal
with the singularity issue of these matrices. Both regular-
ization parameters (r, and v,) and shrinkage parameters
(5. and 4,,) are used to correct the noise present in 2" and
%. In the proposed method, both regularization and
shrinkage are done simultaneously to take care of the sin-
gularity problem of €., and ¢,,. Here, v, and r, are
varied within a range [v,..,,Y,..], Where the common
differences are «, and «, for r, and 1, respectively, and
Yoin S Xy X, K 1,4, On the other hand, 4, and 5, can be
computed as

@ Springer

R SN I
Fr gyl
(14)

where V([%,.,]..) and V([%

by W]u) are the unbiased empir-

ical variance of [%,,],; and [¢ W](/,/., respectively. Hence,
to deal with the singularity issue, the covariance matrices
(g,,,,,,. and @W can be redefined as follows:

G, =C,, + (@, +#—-1)d)I

i 5 (15)
and¥%,,=%,,+ (v, + (/- 1)d,)I

R (1-29,)%,.];; where/#;
NP (AN TC
zzli )y ‘=7
. (1— %)[%W]/j; where /#;
and [67/7/]//‘ = [(g } . where /= / (17)
yyli g 7

where V£ € {1,2,...,t,} and V/ € {1,2,...,t,}. The
parameters t,. and t,, denote the number of possible values
of r,, and r,
range and followed arithmetic progression, there exists a
relation between the eigenvalues of covariance matrices
corresponding to the first and the #-th regularization
parameters for both multidimensional variables 2 and % as
follows [24]:

(G4 (1, + (£ = D)) =P (A, + (£ — 1) 1)PT;
(18)

%, + (t, + (=) ) =¥, (A, + (/= 1),D)¥T].
(19)

respectively. As r, and r,, are varied within a

Here, A, and A, are the diagonal matrices, where diagonal
elements are the eigenvalues of [(g,, +1.1] and
[(é 4y 1,0, respectively, and  the
orthonormal eigenvectors are in the columns of ¥, and
¥,. The theoretical analysis, reported in [25], gives

corresponding

assistance to compute the matrices # and # with (£, /)-th
regularization parameters of 1, and t,, that is, 4, and

jfg/, as follows:

Hey =P A, +(#-1)d, 1'%,

- (20)
VA, + (=) )G,
and Ay =V, [A,+(-1)d,07'VE,, o

YA, + (-1 1)V,

The inverse of the diagonal matrices [A, + (£ — 1) 1]
and [A4, + (/ — 1) ] can be computed as
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(A, + (£ =Dt 1)7

= A = AR = DL AT+ (£ = 1) JATH !
= A AT f -V AU+ (= 1)L AT
=4 AV

(22)
A, + (=) 0"
= A = AN =) JA) (I + (0= 1) A1)
=4, - A; (¢ =), A I+ (0 = 1) A,
_ 41 -1 .
- Af/ - y %

(23)
where V= (4 — 1) A NI+ (£ — 1), A7)

(24)
and V, = (/ - 1)d2//1;;1(1 + (/ - 1)‘{‘%/1;1)71 (25)

Hence, using (22) and (23), the matrix 2 of (20) becomes

Hyr =V (A = ANV, WA - 'v/] 1%,.
:'Pw/l;l q’f(gfyq//A lPZ(g;/T +Zhr =511+ 4
(26)
where %4 =V, AV VE,,¥,4)'V,
(27)

-v¥e,, YA -ve,, YA,

zy L y’ly

Similarly, using (22) and (23), the matrix H of (21)
becomes

%g{:lp [/171
=y A 'ply

7y /J/’"

—A;V/]‘P;‘gﬂ'l’ A AV,
'PWA; 'Pi(gw +Zy=Hn+Z

(28)
where 74 = ¥, A [V, V1%, ¥, AV,

y Y

VA e, VATV AYE

yx & xfty yx

(29)
-V, Wng

zy-

The nonzero eigenvalues of J# 4, and H 4, are same [13],
and the /-th eigenvector ¢, of H 4, can be obtained from

the /-th eigenvector cv,., of # 4 as cw, %M% Yt

So, one of the matrices 4, and .7/;/ is sufficient to
compute the eigenvectors of both of them. Hence, either
Hy or H g will be computed by using (26) or (28),
respectively, depending on whether 4 < ¢ or s > ¢, where
V£e{l,2,..,t,} and ¥/ € {1,2,...,t,}.

In practical analysis, " = min(z,¢) is large enough,
and a small subset of extracted features is sufficient to
perform a certain task. Hence, the objective of the proposed
work is to find out a reduced subset of most significant and
relevant extracted features. The sequential generation of

each eigenvector of # 4, and # 4, would help to evaluate
the quality of each extracted feature individually. The
theoretical analysis reported next, based on deflation
method [43], gives assistance to compute (£ + 1)-th basis
vectors, which are the eigenvectors of matrices J# 4/ (Z +
1) and # 4 (/4 1). Thus, the matrices # 4 (¢ + 1) and
H 4y (¢ + 1) can be computed as follows:

7/
Hgr(d+1)=H4(1 Z Do b1 ok Ot
= 1
, (30)
=Hn+ZLy— Z Do bt bt Ot
4/Z:l
5 R /
and Hyu(d+1)=H4u(1) — Z p/”wg/a)w,%//)ymﬁT
= 1
- #11 + gé! - me{/é{)/mé’/ /mley
= 1
(31)
where p,, denotes eigenvalue of # 4 (/+1) or
Hy(2+1), Yee{l,2,...4 —1}, A = min(p,yp),
V£e{1,2,...,t,.}, and V/ € {1,2,...,1,}. Finally, the

most correlated & (< <A") features .7,z = 140" X +

oy /T@ are extracted from two multidimensional vari-
ables 2" and %.

The objective of this work is to extract not only the
correlated features but also the most relevant and signifi-
cant features. Let us assume that the set C contains all the
Z-th correlated features which are extracted using (4, /)-th
regularization parameters of v, and r,. If # = 1, the most
relevant feature from the set C is selected and is included
into another set S, initially which is empty, that is, S « §.
If /> 1, the feature which has maximum relevance
(among the features of C) and significance (with respect to
the features of S) is selected from the set C and is included
to S. Following objective function is used to select the
most relevant and significant feature from the set C when
4> 1:

1
Vet (D) +—— Z Ot it (D 147).
4 1.,0/,E§

(32)

To compute both significance and relevance of an extracted
feature, rough hypercuboid-based hypercuboid equivalence
partition matrix [23] is used in the current work. The rel-
evance 7, (D) of a feature ./ 4, with respect to the class
label or decision attribute [ is determined as follows [23]:
D)=1- %;U/‘(&/wg/);

Vet 1 (33)
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1 if o/ ;4 totally depends on D;

Vy]u/([D) = { 0

and y,,, (D) € (0,1) if .o/ ;4 partially depends on D. The
confusion vector for the feature .«7,,, is denoted as
V(A 14r) = [01(A 140) - - 50 (A 14r)s - - s on(A 140)]

(35)

. (34)
if 7,4, does not depend on D;

where v,(/ 14r) = min{1,> " f;;(A14r) =1}, (36)
=1

the matrix H(.oZss) = [/ (A 14/)] is

cXn
hypercuboid equivalence partition matrix of the feature

oA ;4 [23], where

1 if L, <O, (L) <U;
. ) — 2 7 4 12
& (o r4) {0 otherwise

termed as

(37)

represents the membership of sample € in the /-th class
f., and ¢ denotes the number of classes. According to the
decision attribute D), the interval of the /-th class f5, is
denoted by [L,,U,]. Each row of the ¢ x n hypercuboid
equivalence partition matrix H(.</,4,) denotes a hyper-
cuboid equivalence class. The joint relevance
V(s 4 (D) Of the feature set {.o7 4/, </ ;} can be used to
compute the significance of the feature .«7,,, as follows:

Ver,(D)- (38)

of feature set

Ot st (D5 L 140) = Vit .0 (D) —

The joint relevance 7y, (D)
{ s4s,;} is depended on c x n hypercuboid equiva-
lence partition matrix H({</,4,.2/;}) corresponding to
the set {</,4,/;}. Thus, the matrices H(o/,4) and
H(.7;) are used to compute the matrix H({.7 147, ;}),
where

H({&//,{/, JZ/;}) = H(&/M/) N H(&/;); (39)
and %,;/,;({Jf/,g/, %;}) = %;/(,Sf/,{/) X %,/(Q/;) (40)

2.2 Computational complexity

Let us assume that " = min(4, ¢) and .# = max(z, ¢),
where the number of extracted features 2 < < .. The total
time complexity to compute two covariance matrices %,
and %,, is (O(A*n+ .4*n) =)O(M*n), whereas the
computational cost to calculate cross-covariance matrix
%.., is O(A n). The shrinkage parameters 5, and s, can
be computed with time complexity
(O(A*n + M°n) =)O(A*n). On the other hand, the
eigenvalues A, and 4,, along with corresponding eigen-
vectors ¥, and ¥, can be calculated with computational

complexity (O(# > + .4%) =)O(4?). Hence, the total

@ Springer

time complexity to compute %, '

(O + 4%) =)O(AM*).
Depending on s < ¢ or /4 > ¢, one of the matrices #;

and %W_' is

or # 11 has to be computed; hence, computational cost to
compute Ay or Ay s (0(9{3 + A2+
KM? + .#°) =)O(4*). Similarly, the computational
complexity of the matrix V4 or V, is O(4"). Hence, the
time complexity to compute matrix %4, or 3;,5/ is
(O(AH> + A2+ A M*) =)O(H M?). Now, the time
complexity to calculate the first basis vector of first mul-
tidimensional variable is O(#%), whereas the (7 -+ 1)-th
basis vector of first multidimensional variable can be
computed with computational cost (O(#> + A >+
(A =)O(AM?), where V7 € {1,2,...,4 —1}. On the
other hand, each basis vector of the second multidimen-
sional variable can be computed with time complexity
(O(AHM* + A M) =)O(H A*). The total time com-
plexity for computing canonical variables is (O(A 'n+
AMn) =)O(An). The computational complexity to extract
a feature is O(n). The time complexity to compute both
relevance and significance of a feature is same, which is
O(cn). Hence, the total complexity to extract all highest
relevant features among all (f, x t,) combination of reg-
ularization parameters is (O(t,t,(#> + A M* + Mn +
n+ cn)) =)O(t,t, 4 M%)

The complexity to extract all the (¢ + 1)-th features, by
maximizing both relevance and significance, among all
(t, x t,) candidate features is (O(t,t,(.4° + A AM*
AMn+n+ cn)) = )O(t,t,.4°). The selection of a feature
from (t, x t,) candidate features by maximizing relevance
and significance has complexity O(t.t,). So, total com-
plexity to compute all & maximally relevant and signifi-
cant features is (O(t,t,, (A 4> + .47 (27— 1)) +1,1,2) =
)JO(t,t,.4° 7). Hence, the overall computational com-
plexity of the proposed sequential supervised CCA algo-
rithm  is  (O(M*n+ Hdn+ AP+ A+ H M+
t.t,.4°%7)), that is O(t,t,.4°P).

3 CanSuR: a new method for HEp-2 cell
classification

This section presents a new method, termed as CanSuR, for
staining pattern recognition of HEp-2 cell images. The
proposed method has two stages, namely, extraction of
features from HEp-2 cell images and classification of cells
based on the extracted features using support vector
machine (SVM). The feature extraction step of the pro-
posed method has two levels. In the first level, rotation-
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invariant local binary patterns (LBP"s) [30] are extracted
directly from the input cell image. The sets of LBP" feature
vectors, corresponding to scales S, and S, of all HEp-2

cells, form two modalities Z € R**" and # € R’*",
respectively. Here, each row in 2 and % represents one of
the LBP" feature vectors, and each column represents one
of the n samples. These extracted feature sets 4 and % are
integrated in the second level using the proposed sequential
CCA method. The proposed sequential CCA extracts
maximally correlated, most relevant and significant fea-
tures from two multidimensional data sets Z and %. In the
proposed HEp-2 cell staining pattern recognition method,
henceforth termed as CanSuR, a set of maximally corre-
lated and most significant as well as relevant latent local
features is first extracted for each set of training data, and
then, SVM is trained using this feature set. After the
training, the information of training feature set is used to
generate the test set and then the class label of the test
sample is predicted using the SVM. The basic steps of the
proposed methodology are outlined next:

1. Compute LBP"s using scale S, and scale S, for each
HEp-2 cell image to record the local textural features
and generate two data sets Z and %.

2. Apply the proposed sequential CCA on 2 and % to
extract maximally correlated, most significant and
relevant latent local features.

3. Recognize the staining pattern of HEp-2 cell images
using SVM based on extracted features set.

A graphical representation of the proposed HEp-2 cell
classification methodology is shown in Fig. 1. The detail
description of each step is presented next.

3.1 Step I: generation of local textural features

To generate the local textural features of each HEp-2 cell
images, gray scale and rotation-invariant local binary tex-
ture operator LBP" is used. For a monochrome texture
image, the local binary texture . can be defined as [30]

7 =18 805+ 9z-1); (41)

where g, and g,, V/ € {0,1,2,...,£ — 1} denote the gray
values of the center and neighbor pixels of the circularly
symmetric neighborhood with radius #. To achieve gray-
scale invariance, the gray value of the center pixel g, has to
be subtracted from the gray values of neighbor pixels
g,(/=0,..,L—1), s0

f:t(gtvgo_gﬁgl il ITRRRTE | _gc)- (42)

It is assumed that the difference (g, — g.) does no depend
on g.. Hence, (42) can be factorized as follows:

T = t(g)t(8) — 86,91 — Ges -+ 9z — G- (43)

The overall luminance of the image t(g.) does not relate to
local image texture and does not provide any useful
information for texture analysis. Therefore, the original
joint gray level distribution 7 is dependent on joint dif-
ference distribution t(g; — gc, 8y — Ges - -+, 8,y — 8¢) [31],

T ~1t(8) — 8,8, — Ger- - 81 — Gc)- (44)

The occurrence of various patterns in the neighborhood of
each pixel in a £-dimensional histogram is recorded by this
operator. In all directions, the differences are zero for
constant regions and high for a spot. The highest difference
is recorded in the gradient direction for a slowly sloped
edge. On the other hand, any change in mean luminance
does not affect the signed difference (g, — g.). Hence, the
joint difference distribution is invariant against gray-scale
shifts. Thus, invariance with respect to the scaling of gray
scale is achieved by considering the signs of the differences
only,

T = t(f’(go - gt)vs(gl - gt)v e '75(9,/371 - gt));

I, x>0
where s(x) = 0 -0
, x<0.

(45)

For each sign (g, — g.), a binomial factor 2/ is assigned to
produce a unique number that characterizes the spatial
structure of the local image texture. The gray values g, will
move along the perimeter of the circle around g, when the
image is rotated, and produce different binary patterns for
the same texture. To assign a unique identifier to each
rotation-invariant local binary pattern, the following for-
mula is used:

L-1
LBP" = min{ROR (Z s(a, — gc)2/,z> lf=0,1,...L~1 }§

/=0

(40)

where ROR(x,7) performs a circular bit-wise right shift
on the £-bit number x ¢ times.

3.2 Step IlI: integration of local textural features

The sets of LBP" feature vectors, corresponding to scales
S, and §, of all HEp-2 cells, form two modalities 2" €
R and ¥ € R7™", respectively. To integrate the infor-
mation of these rotation-invariant local binary feature
vector sets Z and %, the proposed supervised sequential
CCA is used. Here, the number of LBP" features of 2 and
% is same, that is, /2 = ¢ and n is the number of HEp-2 cell
images. The proposed data integration method extracts
latent features those are maximally correlated and most
significant as well as relevant from LBP" feature vector
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Fig. 1 Block diagram of the proposed method for HEp-2 cell classification

sets 2 and %. It obtains two directional basis vectors <,
and <, such that the correlation between canonical vari-

ables % = ¢«," % and V" = c0,"% is maximum, and the
extracted feature &/ =% + v~ is most relevant and
significant.

3.3 Step lll: SVM for staining pattern
classification

The support vector machine (SVM) [41] is used, in the
present work, to classify the staining patterns of HEp-2 cell
images by drawing an optimal hyperplane in the feature
vector space. This hyperplane defines a boundary that
maximizes the margin between data samples belonging to
different classes. In the current study, the SVM uses radial
basis function kernel to generate nonlinear decision
boundary among different classes. The SVM is trained with
the correlated, relevant and significant features generated
for the training HEp-2 cell set and using the information of
training feature set, and the staining pattern present in test
HEp-2 cell is predicted.

4 Performance analysis and discussions

The performance of the proposed HEp-2 cell image clas-
sification method, termed as CanSuR, is presented in this
section, along with a comparison with related approaches.
The proposed method CanSuR consists of mainly three
stages, namely, generation of local features using rotation-
invariant LBP (LBP"), integration of multiple scales of
LBP" using the proposed sequential supervised CCA, and
classification of HEp-2 cell images using SVM with radial
basis function kernel (SVMg). So, the performance of
LBP" is compared with that of several local texture
descriptors, namely, LBP [29] and rotation-invariant uni-
form LBP (LBP"?) [30]. Similarly, the performance of
proposed sequential CCA is compared with that of several

@ Springer

multimodal data integration methods, namely, CCA [18],
regularized CCA (RCCA) [42] and CuRSaR [24]. The
comparative performance analysis between SVMpg and
other classifiers, such as extreme learning machine (ELM)
[20], SVM with linear kernel (SVMp) and SVM with
polynomial kernel (SVMp), is also done in the current
study.

The performance of different methods is studied with
respect to various scales of LBP 8-neighborhood such as 1
(51), 2 (S») and 3 (S3). Both classification accuracy and F1
score on test sets are reported in this section to establish the
performance of proposed method as well as existing
approaches. To analyze the statistical significance of the
proposed method, with respect to different existing meth-
ods, both tenfold cross-validation and training—testing are
performed. For each data set, LBP, LBP" and LBP"2
provide 256, 36 and 10 features, respectively. So, in case of
naive integration between two scales of LBP, LBP" and
LBP"2  the total number of features used for the analysis is
twice the number of features of individual scale. On the
other hand, fifteen top-ranked extracted features are con-
sidered for different data integration methods, namely,
CCA, RCCA, CuRSaR and proposed CCA. In the proposed
data integration method, the value of two shrinkage
parameters 4, and 4, is considered as 0.0001.

4.1 Description of data sets

This section provides some basic information about the
data sets used for benchmarking the activity. These data
sets are (i) ICPR 2012 HEp-2 cell classification contest
data, termed as MIVIA image database [10]; (ii) ICPR
2014 HEp-2 cell classification contest data, termed as [CPR
image database; and (iii) SNP HEp-2 database [45].

(i) MIVIA database This data set contains 1455 cells
from 28 images among which four images are
belonging to cytoplasmic, fine speckled and
nucleolar patterns, five images are belonging to
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coarse speckled and homogeneous, and six cen-
tromere images are there. The images have 24 bits
color depth with uncompressed 1388 x 1038
pixels resolution. The data set contains 721 and
734 cell images in training and test sets,
respectively.

(i1)) ICPR database This data set contains 13596 cell
images almost equally distributed with respect to
six different patterns, namely, centromere, homo-
geneous, nucleolar, speckled, nuclear membrane
and golgi. The set contains 6797 and 6799 cell
images in training and test sets, respectively.

(iii) SNP database This database has five pattern
classes, namely, centromere, homogeneous, coarse
speckled, fine speckled and nucleolar. From 40
specimen images, there are 1884 cell images
extracted. The specimen images are divided into
training and testing sets with 20 images each (4
images for each pattern). In total, there are 869
and 937 cell images extracted for training and
testing.

The cell images from the above data sets were captured
in different laboratory settings (e.g., different assays and
microscope configurations). For instance, SNP HEp-2 used
objective lens magnitude 20x, while MIVIA HEp-2 used
40x. The robustness of the proposed method as well as
existing approaches is studied through the evaluation on
these three data sets. Table 1 indicates the number of
training and testing cells with respect to different HEp-2
patterns of these three data sets, which are used to evaluate
the performance of the proposed algorithm as well as
existing methods.

4.2 Importance of rotation-invariant LBP

Ideally, when an HEp-2 cell image is rotated, the pattern
operator should produce a unique binary pattern for the
same texture. In other words, the pattern operator should be
rotation invariant. Figure 2a, b compares the performance
of rotation-invariant LBP (LBP") with that of LBP, con-
sidering three scales, namely, Si, S» and S3 using SVMp
and SVMg, respectively. The results reported in Fig. 2a
show that LBP" provides better classification accuracy of
the SVM; than LBP in most of the cases. For SNP data set,
the LBP" attains classification accuracy of 0.465, 0.529
and 0.577, with respect to three scales, namely, S;, S, and
S3, respectively, which are better than that obtained using
LBP. On the other hand, for MIVIA data set, LBP" per-
forms better than LBP for scales S, and S3, where it
achieves classification accuracy of 0.608 and 0.579,
respectively. However, for scale S|, LBP performs better

Table 1 Description of data sets used

Different data sets  Different staining patterns ~ Number of cells

Training  Test

MIVIA Homogeneous 150 180
Cytoplasmic 58 51
Coarse speckled 109 101
Fine speckled 94 114
Centromere 208 149
Nucleolar 102 139
ICPR Homogeneous 1247 1247
Speckled 1415 1416
Nuclear membrane 1104 1104
Nucleolar 1299 1299
Centromere 1370 1371
Golgi 362 362
SNP Homogeneous 172 188
Coarse speckled 166 187
Fine speckled 188 191
Nucleolar 194 188
Centromere 149 183

than LBP". The SVM, classification accuracy obtained
using LBP for scale S; is 0.466, whereas the accuracy
obtained using LBP" is 0.437. In case of ICPR data set,
LBP" performs better than LBP only for scale S5, while the
performance is comparable in other two cases. The clas-
sification accuracy obtained using LBP" with respect to
scales Sy, S and S5 is 0.5935, 0.664 and 0.709, respec-
tively. On the other hand, the SVM, classification accuracy
obtained using LBP with respect to scales S, S> and S is
0.5944, 0.675 and 0.708, respectively. The results reported
in Fig. 2b show that LBP" achieves better classification
accuracy using SVMy than LBP in all the cases. For
MIVIA data set, the LBP" attains classification accuracy of
0.482, 0.561 and 0.559 with respect to three scales, namely,
S1, S» and 3, respectively, which are better than that
obtained using LBP. In case of ICPR data set, the SVMg
classification accuracy obtained using LBP" with respect to
scales S;, S> and S3 is 0.683, 0.765 and 0.801, which are
better than that obtained using LBP. On the other hand, for
SNP data set, LBP" performs better than LBP for all the
scales Sy, S, and S3, where it achieves classification
accuracy of 0.442, 0.527 and 0.583, respectively. The
results reported in Fig. 2a, b demonstrate that LBP", which
is rotation-invariant LBP, performs better than LBP in 6
and 9 cases out of total 9 cases each using linear kernel and
radial basis function kernel of SVM, respectively. All the
results reported here thus establish the fact that LBP"
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Fig. 2 Comparative performance analysis of LBP-LBP" and LBP™2-LBP" (top: MIVIA; middle: ICPR; and bottom: SNP)

performs better than LBP, irrespective of the datasets,
scales and SVM kernels used.

Similarly, Fig. 2c, d compares the performance of LBP"
with that of LBP""? at different scales using linear kernel
and radial basis function kernel, respectively, considering
three HEp-2 cell data sets. At scale S}, the LBP™2 provides
SVM| classification accuracy of 0.407, 0.559 and 0.466, on
MIVIA, ICPR and SNP data sets, respectively, while it
attains SVM linear kernel accuracy of 0.578, 0.620 and
0.520, respectively, for scale S,. On the other hand, LBP""?
achieves 0.601, 0.642 and 0.537 classification accuracy at
scale S5 using linear kernel. Similarly, the SVMy classifi-
cation accuracy obtained using LBP™? with respect to
scale S; are 0.548, 0.694 and 0.446 on MIVIA, ICPR and
SNP data sets, respectively. On the other hand, for scale S5,
LBP"™2 achieves 0.540, 0.767 and 0.490 accuracy using
SVM radial basis function kernel on MIVIA, ICPR and
SNP data sets, respectively. For scale S3, the SVMy clas-
sification accuracy obtained using LBP"™? with respect to
MIVIA, ICPR and SNP data sets is 0.486, 0.790 and 0.542,
respectively. All the results reported in Fig. 2c, d validate
that the LBP" performs better than LBP™2 in 7 cases and 5
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cases out of total 9 cases each, using linear kernel and
radial basis function kernel of SVM, respectively. Hence,
these results can establish the fact that LBP" performs
better than LBP™2, irrespective of the scales, datasets and
SVM kernels used. Based on the analysis reported in
Fig. 2, the LBP" is considered as the textural feature
extraction operator in the current research work, as it can
extract rotation-invariant local binary patterns more accu-
rately from HEp-2 cell images than both LBP and LBP"“2,

4.3 Optimum scale for proposed method

In order to find out the optimum value of scale parameter
for the proposed method, extensive experimentation is
performed on each data set and corresponding results are
reported in Fig. 3. Figure 3 compares the performance of
different scales of LBP" operator using both linear kernel
and radial basis function kernel of SVM. The results
reported in Fig. 3 show that for both ICPR and SNP data,
LBP" provides highest SVM and SVMy classification
accuracy with respect to scale S3. It achieves highest SVM[,
classification accuracy of 0.709 and 0.577 with respect to
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scale S3 for ICPR and SNP data, respectively. Similarly,
the highest SVMy classification accuracy with respect to
scale S3 is 0.801 and 0.583 using ICPR and SNP data,
respectively. On the other hand, the highest SVM and
SVMy classification accuracy obtained using LBP" with
respect to scale S, is 0.608 and 0.561, respectively, for
MIVIA data set. All the results reported here also confirm
that LBP™ attains better classification accuracy with respect
to scales S, and S3 than scale S; for both linear kernel and
radial basis function kernel. Hence, integration of these two
scales, namely, S, and S3, may provide better recognition
of HEp-2 patterns. In this regard, the optimum scale for the
proposed method is considered as S, + S3.

Using the naive integration of scales S, and S3, that is
S> + 83, the SVMp achieves classification accuracy of
0.584, 0.770 and 0.545, for MIVIA, ICPR and SNP data
sets, respectively, whereas the classification accuracy using
radial basis function kernel is 0.582, 0.826 and 0.589, for
MIVIA, ICPR and SNP data sets, respectively. The results
reported in Table 2 establish the fact that both SVMy, and
SVMp classification accuracy on ICPR data set is increased
from 0.709 to 0.770 and 0.801 to 0.826, respectively. But,
for MIVIA and SNP data sets, the SVM,, classification
accuracy of S, + 53 lies in between that of scales S, and S3,
although the SVMy classification accuracy of S, + S5 is
increased from 0.561 to 0.582 and 0.583 to 0.589, for
MIVIA and SNP data sets, respectively. Similar results can
also be found in Table 2 for both LBP and LBP™2. All
these results indicate that naive integration, which is direct
concatenation, of these two scales is not enough for inte-
grating the information of two scales. Due to the drastic
variation of two scales and noisy nature of the input HEp-2
cell images, naive integration usually gives poor perfor-
mance, which causes insufficient and inaccurate staining
pattern representation of the images. Moreover, multiple
scales of unique cell image may contain complementary
information. The linkages between attributes of each HEp-
2 cell images can be made by using these multiple scales of
unique sample cell. The combination of multiple scales of a
unique HEp-2 cell image would have more discriminatory
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Fig. 3 Performance analysis of LBP" for MIVIA, ICPR and SNP data
sets at different scales

and complete information of the inherent properties of that
cell by generating improved system performance than
individual scale. Hence, a proper integration method is
needed to incorporate the local textural feature information
obtained at multiple scales.

To integrate the information of two scales, namely, S,
and S3, of LBP" operator, the proposed sequential CCA is
used in the current research work. Figure 4 demonstrates
the results obtained using integrated scales of S| + S,, S1 +
S3 and S, + S3, using both linear kernel and radial basis
function kernel of SVM, where the proposed sequential
CCA is used to integrate the information of two scales. All
the results reported in Fig. 4 establish the fact that the
integrated information of scales S, and S; performs sig-
nificantly better than that of other integrated scales, irre-
spective of the number of extracted features, SVM kernels
and data sets used. The results reported in Fig. 4 also show
that the proposed data integration method provides highest
SVM_ classification accuracy of 0.507, 0.594 and 0.610,
respectively, with respect to three aforementioned inte-
grated scales on MIVIA data set. On the other hand, the
highest SVMR classification accuracy of 0.564, 0.616 and
0.636 is obtained using integrated scales S| + S, S; + 53
and S, 4+ S3 on MIVIA data set. Similarly, the highest F1
score for both SVM;, and SVMy, is 0.510, 0.584, 0.613 and
0.562, 0.625, 0.651, respectively, for all the combined
scales of S; + S», S; + 83 and S, + S5. For ICPR data set,
the integrated scales of S| + S, S| + 53 and S, + S5 obtain
highest SVM[, classification accuracy and F1 score of
0.539, 0.692, 0.742 and 0.525, 0.663, 0.708, respectively.
Similarly, the highest SVMR classification accuracy and F1
score obtained using scales S; + S», S; + 83 and S + S3
are 0.702, 0.766, 0.851 and 0.681, 0.742, 0.825, respec-
tively, on ICPR data set. On the other hand, the above-
mentioned three integrated scales attain highest SVMp,
classification accuracy and F1 score of 0.486, 0.572, 0.593
and 0.482, 0.586, 0.592, respectively, for SNP data set.
Likewise, the highest SVMy classification accuracy and F1
score achieved using scales S; + S,, S1 4+ 83 and S, + S5
are 0.541, 0.557, 0.631 and 0.539, 0.579, 0.637, respec-
tively, on SNP data set. However, Table 2 reports the
classification accuracy and F1 score for fifteen top-ranked
features, which may be different from the best values
shown in Fig. 4.

4.4 Performance of different methods

This section provides the comparative performance analy-
sis, in terms of classification accuracy and F1 score, of
different existing data integration methods considering
several classifiers. Results are reported on three HEp-2 cell
image databases. To incorporate the information of
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Table 2 Classification accuracy and F1 score on different data sets for training—testing

Different classifiers Different methods ELM SVML SVMp SVMg

MIVIA ICPR SNP MIVIA ICPR SNP MIVIA ICPR SNP MIVIA ICPR SNP

Accuracy LBP 0475  0.724 0492 0549 0.726 0.537 0312  0.656 0347 0.538  0.798 0.525
LBP" 0598  0.811 0.519 0584  0.770 0.545 0564  0.753 0592 0.582  0.826 0.589
LBPH2 0.549  0.809 0.512 0584  0.702 0530 0302 0.769 0466 0.546  0.819 0.525
CCA 0.357  0.590 0.498 0.381 0.533 0522 0.409 0563 0470 0.448  0.638 0.546
RCCA 0.567  0.664 0433 0579 0385 0439 0.575 0596 0455 0413  0.680 0.481
CuRSaR 0462  0.631 0453 0422 0426 0501 0.553 0.589 0.449 0360 0.664 0.505
Proposed CCA 0.549  0.799 0.561 0.608 0.742 0.585 0.545 0.743 0.560 0.605  0.834 0.602
F1 score LBP 0453 0.701 0484 0539 0710 0532 0.395 0.655 0.400 0506 0.774 0.524
LBP" 0.589  0.800 0.507 0.591 0.755 0.542 0.571 0.722 0592 0.593  0.799 0.590
LBP*2 0563  0.792 0.508 0.585  0.684 0.533 0352 0.740 0470 0570 0.800 0.518
CCA 0359  0.562 0.509 0378  0.515 0529 0378  0.541 0483 0458  0.597 0.546
RCCA 0562  0.633 0446 0576 0376 0454 0580 0571 0467 0452  0.649 0.483
CuRSaR 0478  0.596 0460 0450 0409 0518 0563  0.564 0457 0.411 0.633 0.508

Proposed CCA 0514  0.770 0.567 0.600 0.708 0.582 0.527  0.708 0.559 0.602 0.801 0.607
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rotation-invariant local binary pattern (LBP") at scales S,
and S3, the CCA, RCCA, CuRSaR and the proposed
sequential CCA method are used. Figure 5 depicts the
variation of F1 score and classification accuracy obtained
using both linear kernel and radial basis function kernel of
SVM over different number of extracted features. From the
results reported in Fig. 5, it can be seen that the proposed
data integration method provides highest classification
accuracy as well as highest F1 score for training—testing,
integrating the local textural features of LBP" at scales S,
and 3, irrespective of the number of extracted features,
SVM kernels and data sets used.

Table 2 compares the HEp-2 cell staining pattern F1
score and classification accuracy of the proposed as well as
different existing methods for training—testing. The results
corresponding to naive integration of scales S, and Sz for
LBP, LBP" and LBP™ are also studied in this table, where
the number of features which are extracted by the naive
integration of LBP, LBP" and LBP"™2 is 512, 72 and 20,
respectively. On the other hand, the classification accuracy
and F1 score of top fifteen features, which are extracted by

using CCA, RCCA, CuRSaR and the proposed sequential
CCA method, are reported in this table. All the results
confirm that the proposed data integration method provides
highest classification accuracy and F1 score of the SVM
with radial basis function kernel on ICPR and SNP data
sets. For MIVIA data set, the proposed data integration
method achieves highest classification accuracy and F1
score of the SVM with linear kernel and radial basis
function kernel, respectively.

All the results reported in Fig. 5 and Table 2 establish
the fact that the proposed method can extract most relevant
and significant features for HEp-2 cell staining pattern
classification, which are also maximally correlated between
two scales S, and S3. To optimize the regularization
parameters in the proposed data integration method, the
rough hypercuboid approach is used. It helps to extract
more relevant and significant local features than other
multimodal data integration methods. In effect, the pro-
posed method can facilitate higher HEp-2 cell pattern
classification accuracy than other methods. Moreover, it
can explore large search space to extract features
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sequentially from two multidimensional scales with sig-
nificantly lesser amount of time than FaRoC [25]. Both
FaRoC and proposed CCA extract features sequentially
from two multidimensional variables, but the proposed
CCA takes lesser amount of time than FaRoC. Figure 6
compares the execution time of FaRoC with proposed data
integration method. It confirms that the execution time of
the proposed sequential feature extraction method, pre-
sented in Sect. 2, is significantly lower than that of existing
FaRoC.

4.5 Statistical significance analysis

This section presents the statistical significance analysis of
staining pattern recognition of HEp-2 cell images using
different multimodal data integration methods. To study
the statistical significance of both accuracy and F1 score,
tenfold cross-validation is performed. Figure 7 presents the
variation of both tenfold accuracy and F1 score, for fifteen
top-ranked extracted features. From the results presented in
Fig. 7, it is clearly observed that both F1 score and clas-
sification accuracy for the proposed method increase while
the number of generated features increases. Also, the F1
score and classification accuracy of the proposed algo-
rithm, obtained using tenfold cross-validation, are signifi-
cantly higher as compared to existing CCA, RCCA and
CuRSaR, irrespective of the number of extracted features,
classifiers and data sets used.

The comparative performance analysis of different data
integration algorithms is also studied in Fig. 8§, which
shows the box and whisker plots for classification accuracy
and F1 score obtained using tenfold cross-validation, on
each HEp-2 cell data set using both linear kernel and radial
basis function kernel of SVM. The lower and upper
boundaries of each box represent the 75th percentile or
lower quartile and 25th percentile or upper quartile,
respectively, whereas the median is denoted by the central

100

FaRoC
90 Proposed mmmmms |

80 + q
70 + 4
60 + 4
50 4

40 b <

Execution Time (second)

30 - q

20 1
10 | 1

MIVIA ICPR SNP

Fi

g. 6 Execution time of proposed CCA and FaRoC

@ Springer

line. The whiskers are the two lines outside the box that
extend to the highest and lowest observations. The outliers
are plotted individually, and denoted as ‘+’. It represents
the test cross-validation set for which a method obtains
worse tenfold F1 score or classification accuracy than for
the other test cross-validation sets of the same HEp-2 cell
data set.

Wilcoxon signed-rank test (one-tailed), paired-7 test
(one-tailed) and Friedman test are used to compute the p
values for statistical significance analysis. In case of ten-
fold cross-validation, the means and standard deviations of
the classification accuracy and F1 score of the ELM,
SVM;, SVMp and SVMp rules are computed for all data
sets. Tests of significance are performed for the inequality
of means obtained using the proposed method and other
related algorithms compared. Since both mean pairs and
variance pairs are unknown and different, a generalized
version of f-test, termed as Behrens—Fisher problem in
hypothesis testing, is used here. On the other hand, Wil-
coxon signed-rank test computes the differences between
the proposed method and other related algorithms using F1
score and accuracy for each observation. The p values are
computed by using positive and negative ranks of absolute
differences. Friedman test is a nonparametric statistical test
which is used to detect the differences between the pro-
posed method and other related algorithms by ranking
procedure.

Table 3 reports the means and standard deviations of
tenfold cross-validation F1 score and accuracy for all the
methods using several classifiers. The p values of existing
data integration methods are also recorded in this table with
respect to the proposed sequential CCA method for three
HEp-2 cell data sets. The highest mean values are pointed
in bold in this table. All the results presented in Table 3
establish the fact that the proposed HEp-2 cell staining
pattern recognition method, which mainly consists of the
proposed sequential CCA and SVM with radial basis
function kernel, attains best mean classification accuracy as
well as F1 score, irrespective of the data integration
methods, classifiers and data sets used. Out of total 216
cases, the proposed method attains significantly better
p values (marked in bold) than other methods in 139 cases
and better but not significant p values (marked in italics) in
66 cases, considering 95% confidence level.

5 Conclusion and discussions

The main contribution of this paper lies in developing a
methodology, termed as CanSuR, which can be used to
diagnose connective tissue disease by recognizing the
staining patterns present in HEp-2 cells. When an HEp-2
cell image is rotated, the pattern operator should be rotation



Neural Computing and Applications (2020) 32:16471-16489

16485

o o
as 0s
> 08
=] ® o7 4
o = P
8 o § . o 0" i
o 06 o
c
_2 06 E 06 (‘j’) 8 o
g i) oo L oos
£ oo T o8
a = 04
3 = 0t
°© / a .
O / © ai 03
f CCA -+ o 4 CCA -+ CCA -+ o / CCA -+
r"' RCCA -+~ 03 e RCCA ~#- J RCCA - i RCCA -
03 CuRSaR CuRSaR 02 A CuRSaR 02 4 CuRSaR
M Proposed —=— . Proposed —s— i Proposed —=— ‘ Proposed ——
o 2 4 6 8 10 12 1 16 o 0 2 4 3 8 10 12 14 16 o 2 4 6 8 10 12 1 16 0 2 4 6 8 10 12 14 1€
Number of Extracted Features Number of Extracted Features Number of Extracted Features Number of Extracted Features
07 08 o 08
> >
8 o g o o
3 5
D 05 D o5
8 8 5 2
<< o < o 3
< c [ R o
S S o T -
= = e
g o @ . 0t
S =
73 03
& o« 2 0z
[5) CCA - o ®» CCA -+ CCA -+ 02 CCA -
RCCA -~ RCCA -4~ 01 RCCA -~ RCCA -~
CuRSaR CuRSaR CuRSaR CuRSaR
0z Proposed —=— ozf ¢ Proposed —s— Proposed —=— 01 Proposed ——
I R S R R TR TR A R R S R TR TR TR S T
Number of Extracted Features Number of Extracted Features Number of Extracted Features Number of Extracted Features
o o o
§ P
= o 06 o
3 o @
o 3
g g = g . g o
S < 3 3 o
= S o 0 n
s kel — s -
2 ] w w o
@ 04 E ” .
° 2 M
(&) ]
03 CCA -+ O o CCA -+ 02 CCA -+ CCA -+
RCCA -~ RCCA -4~ RCCA -~ 02 2' RCCA -~
CuRSaR CuRSaR CuRSaR CuRSaR
. Proposed —=— Proposed —s— o Proposed —=— o Proposed ——

o 2 4 g g 10 2 14 16

Number of Extracted Features

(a) SVM with linear kernel

0 2 0 3 g 0 12 14

Number of Extracted Features

(b) SVM with radial basis
function kernel

3

o 2 4 6 s 10 2 14

Number of Extracted Features

(¢) SVM with linear kernel

16

o 2 4 O s 10 2 18 e

Number of Extracted Features

(d) SVM with radial basis

function kernel

Fig. 7 Comparative performance analysis of different data integration methods for tenfold cross-validation (top: MIVIA; middle: ICPR; and

bottom: SNP)

Classification Accuracy

oe =S 0 % %; %ﬁ o = == o % %} %1 -
02 > 02 02 02
o
00 S o o0 o
10 § 10 10 ° 10
= — = 2 —
o . 2w z ® o S —_—
. — = == e —_ = == -
E= = F S o Gosf == = - B oo
04 E 04 ‘03 04 E 04
[7]
12}
% © % 5 5
[$)
08 08 ﬁ 08 08 ¢
o B B3 %ﬁ ? ol = = =S ol E3 = %1 ? wl = = =S :

con

(a) SVM with linear kernel

oA Cunsam Proposed

Gon = Cumsan Proposed

(b) SVM with radial
basis function kernel

(¢) SVM with linear kernel

Gon RooA CumsaR CoA CumsaR

(d) SVM with radial basis
function kernel

Proposed RooA Proposed

Fig. 8 Box and whisker plots for different data integration methods (top: MIVIA; middle: ICPR; and bottom: SNP)

invariant such that it should produce a unique binary pat-
tern for the same texture. In this context, the proposed
method uses rotation-invariant local binary pattern as tex-
ture descriptor operator to extract important features from
HEp-2 cell images. On the other hand, integration of two
scales may provide better recognition of HEp-2 patterns.

But, naive integration, which is the direct concatenation of
two scales, may not be effective for integrating important
information of two scales. A proper multimodal data
integration method is thus needed to incorporate the
information of two scales. In this regard, a new supervised
CCA algorithm is proposed in the current research work to

@ Springer
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Table 3 (continued)

F1 score

Accuracy

Different algorithms

Different classifiers

Data sets

Wilcoxon:p

Friedman:p

Paired-7:p

SD

Mean

Wilcoxon:p

Friedman:p

Paired-#:p

SD

Mean

5.3E—-01 1.0E-01

1.3E-01

0.102
0.108
0.075

1.2E—01 0.647

5.3E-01

1.4E—-01

0.100
0.108
0.077

0.649

CuRSaR

0.714

0.714

Proposed CCA

CCA

1.8E—-02

2.1E-01

1.9E-02

2.3E-02 0.615

2.1E-01

2.1E-02

0.617

SVML

2.3E-02

5.8E-02

0.068 1.8E—-02

5.8E-02 2.3E-02 0.617

0.069 1.8E-02

0.617

RCCA

3.7E-02

5.8E-02

0.091 3.5E-02

5.8E-02 5.7E-02 0.621

0.091 3.6E—02

0.623

CuRSaR

0.104
0.070

0.719

0.103
0.073

0.719

Proposed CCA

CCA

2.3E-02

5.8E-02

1.8E—02

2.3E-02 0.615

5.8E-02

1.9E-02

0.609

SVMp

1.4E-02

5.8E-02

0.047 9.3E-03

5.8E-02 1.2E-02 0.630

0.049 8.9E—-03

0.618

RCCA

5.3E—-01 84E—-02

0.094 7.0E—02

5.3E-01 84E—-02 0.638

7.1E-02

0.096
0.108

0.055

0.629

CuRSaR

0.105
0.054

0.723

0.716

Proposed CCA

CCA

2.3E-02

5.8E-02

2.1E-02

2.3E-02 0.676

5.8E-02

2.3E—-02

0.675

SVMr

3.7E-02

5.8E-02

0.057  3.6E—02

5.8E-02 4.6E—-02 0.699

0.057  3.9E-02

0.697

RCCA

2.1E-01 7.0E—-02

8.0E-02

1.2E—01 0.694 0.077
0.761

2.1E-01

0.077 9.0E-02

0.693

CuRSaR

0.098

0.098

0.758

Proposed CCA

integrate the information of two scales. Finally, support
vector machine with radial basis function kernel is used to
recognize one of the known staining patterns present in IIF
images. The proposed method takes into account the merits
of rough hypercuboid approach and supervised CCA.
While the proposed CCA helps to integrate local textural
descriptors obtained from multimodal sources, the rough
hypercuboid facilitates to extract significant and relevant
features for HEp-2 pattern recognition. The effectiveness
of the proposed method, along with a comparison with
related approaches, has been demonstrated on several
publicly available HEp-2 cell image databases.

The proposed method is basically the realization of
computer-aided diagnosis system for the analysis of IIF
images. The results produced by the proposed technique
can be used to support the scientists’ subjective analysis. In
effect, it may lead to prediction accuracy on test samples
being consistent across laboratories and more reliable. So,
one can use the proposed system to automatically identify
the patterns present in the specimen HEp-2 cell images, in
order to address the shortcomings of manual test procedure.
Both scientific and industrial societies may be interested
about the proposed method for automatic IIF image pattern
analysis as it will reduce high labor costs and increase the
reliability especially in the presence of photo-effect which
bleaches the tissues severely in a few seconds. The pro-
posed method may also avoid ambiguous results caused by
subjective analysis and provide more efficient analysis
report.
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