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Abstract
Current oil prices and global financial situations underline the need for the best engineering practices to recover remaining

hydrocarbons. A good understanding of the elastic behavior of the reservoir rock is extremely imperative in avoiding the

severe well drilling problems such as wellbore in-stability, differential sticking, kicks, and many more. Therefore, it is

plausible to have a good estimation of the rock elastic behavior for successful well operations. This study presents a

generalized empirical model to predict static Poisson’s ratio of the carbonate rocks. Petrophysical well logs were used as

inputs, and the laboratory measured static Poisson’s ratio was used as an output. Three supervised artificial intelligence

(AI) techniques were used, viz. artificial neural network (ANN), support vectors regression, and adaptive network-based

fuzzy interference system. An extensive prediction comparison was made between these three AI techniques. Based on the

lowest average absolute percentage error (AAPE) and highest coefficient of determination (R2), the ANN model proposed

to be the best model to predict static Poisson’s ratio. To transform black box nature of AI model into a white box, ANN-

based empirical correlation is also developed to predict the static Poisson’s ratio. Comparison of the developed empirical

correlation with previously established approaches to find static Poisson’s ratio on an unseen published dataset revealed

that the equation of ANN can predict the static Poisson’s ratio with implicitly less AAPE and with high R2 value. The

proposed model with the empirical correlation can assist geo-mechanical engineers to predict the static Poisson’s ratio in

the absence of core data. The novelty of the new equation is that it can be used without the need of any AI software.

Keywords Static Poisson’s ratio � Carbonate rocks � Triaxial tests � Well logs � Artificial intelligence � Particle swarm

optimization � Mathematical model

Abbreviations
APE Absolute percentage error

AAPE Average absolute percentage error

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural network

CC Correlation coefficient

FFNN Feedforward neural network

LVDT Linear variable differential transducer

MLP Multilayer perceptron

PR Poisson’s ratio

RBF Radial basis function

RMSE Root mean square error

SVR Support vectors regression

UCS Unconfined compressive strength

List of symbols
b1 Bias between input and hidden layer of neural

network

b2 Bias between hidden and output layer of neural

network

c1 Cognitive parameter 0� c1 � 1:2ð Þ
c2 Cognitive parameter 0� c2 � 1:2ð Þ
Edyn Dynamic Young’s modulus (MPsi)

Estatic Static Young’s modulus (MPsi)

Ed Dynamic Young’s modulus (MPsi)

i Index for neurons

j Index for number of input parameters

n Iteration number

Nh Total number of neurons
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PRdyn Dynamic Poisson’s ratio

PRstatic Static Poisson’s ratio

P-wave Compressional wave

pi Particle i position at any iteration

pbi Particle best solution

pgb Global best solution

Rhob Bulk density (g/cc)

R2 Coefficient of determination

S-wave Shear wave

w Weight 0�w� 1:2ð Þ
vi Weight 0�w� 1:2ð Þ
w1 Weights vector between input and hidden layer

of neural network

w2 Weights vector between hidden and output layer

of neural network

x Input parameters

y Output variable

ro Activation function between hidden and output

layer of FFNN

rL Activation function between input and hidden

layer of FFNN

Dtc Compressional wave transit time (ls/ft)
Dts S-wave transit time (ls/ft)
q Bulk density (g/cc)

mdyn Dynamic Poisson’s ratio

1 Introduction

Characterization of petroleum-bearing rocks needs a very

high degree of accuracy. Minor error can lead to enormous

loss of money and man-hours. On the contrary, a slight

improvement in the prediction scenarios can have expo-

nential improvement on production and exploration pro-

jects [1–5]. Current predictive models are fulfilling the

basic needs of the petroleum industry, but there is an ever

going quest for improved and better results [6]. AI tools

once optimized for training can predict required feature

more accurately than the nonlinear regression methods

[7–10]. Some of the domains of the petroleum engineering

in which AI techniques brought improvements include

porosity–permeability predictions [11–14], hydraulic flow

unit identification [15], geomechanics parameters estima-

tion [16–22], geophysical well logs estimation [9, 23], well

test parameters estimation [24, 25], asphaltene prediction

[26, 27], water saturation prediction [28, 29], and many

other oil and gas applications.

Elastic parameters are required to determine the in situ

stresses of the rock which in turn are needed to construct

the geo-mechanical earth models [30–34]. Determining

elastic parameters of the rock is very substantial in mini-

mizing the risk associated with the oil and gas well drilling.

Their accurate estimation helps in well placement opti-

mization, calculating safe mud weight window, handling

wellbore stability, optimizing fracturing operations, etc.

[35–37]. These factors contribute to maximize the hydro-

carbon recovery. Inaccurate estimation of the elastic

parameters can falsely steer to wrong economic decisions

and unsuitable field development strategies [9, 16, 38, 39].

Retrieving core samples and conducting laboratory

experiments on them under a simulated reservoir condition

is the accurate way to measure the in situ rock mechanical

parameters, but this approach is very expensive as well as

time-consuming [9, 17, 19, 40]. Often majority of the wells

completed have very limited rock mechanical data. Alter-

natively, well log data are always recorded and readily

available. Then, the correlations are developed between the

elastic parameters obtained from the rock mechanical tests

on the retrieved core sample and the available petrophys-

ical well logs such as bulk density, neutron porosity, and

sonic logs [41].

The correlations derived from the petrophysical logs are

used to produce continuous static Poisson’s ratio profile

throughout the depth of interest [17, 30, 39]. However, core

samples are taken from limited intervals, and the applica-

bility of these correlations is mostly narrow [16, 38]. Often

the calibration of dynamic Poisson’s ratio profiles is carried

out by computing the difference between the static Pois-

son’s ratio and the dynamic Poisson’s ratio of the selected

core samples. This difference is added to the dynamic

Poisson’s ratio profiles to shift them near the points of

static Poisson’s ratio values [19, 40, 42]. This technique is

very expensive and only limited to the sections where the

core samples were obtained. Most important aspect of this

relationship is that most of the time the scatter is too large

to come up with a reasonable relationship and this rela-

tionship does not work for the entire interval in the case of

lithology heterogeneity especially in carbonate reservoirs.

In the absence of the core data and other direct down-

hole strength measurement, static Poisson’s ratio is esti-

mated from the well log data using empirical correlations.

D’Andrea et al. [43] investigated the effect of ultrasonic

wave transit time on static Poisson’s ratio for different rock

specimens and found that static Poisson’s ratio decreases

with the increase in transit time. Kumar et al. [44] applied

nonlinear regression technique to predict static Poisson’s

ratio using P-wave and S-wave velocities. Phani [45]

investigated the effect of shear wave velocity on static

Poisson’s ratio for materials with different pore size dis-

tributions. He found that materials containing needle-like

and spherical shaped pores show that Poisson’s ratio

decreases with the decrease in S-wave velocity. Edimann

et al. [46] and Kumar et al. [44] found that increase in

porosity of the rock results in higher Poisson’s ratio. They

developed a correlation to predict static Poisson’s ratio

8562 Neural Computing and Applications (2019) 31:8561–8581

123



using porosity. Al-Shayea [47] investigated the impact of

micro-cracks and lithological variations on static Poisson’s

ratio values. He also correlated confining pressure with the

static Poisson’s ratio. Singh and Singh [48] used neuro-

fuzzy approach to predict Poisson’s ratio of sandstone and

shale rocks. The input parameters of their model were

uniaxial and triaxial strength parameters. Shalabi et al. [49]

related static Poisson’s ratio with rock hardness and

unconfined compressive strength (UCS) using linear

regression technique. Their correlation is valid for shale

rocks only. Al-Anazi and Gates [50] used SVR to estimate

static Poisson’s ratio. The input variables of their SVR

model were rock porosity, bulk density, pore pressure,

minimum horizontal stress, overburden stress, P-wave

velocity, and S-wave velocity.

With the reference of vast literature review and to the

authors’ knowledge, till now, no significant work has been

done to formulate empirical correlation to estimate the

static Poisson’s ratio directly from petrophysical well logs

for carbonate rocks. Most of the reported correlations in the

literature were built using nonlinear regression technique

which may not be generalized for unseen datasets [51]. On

the down side, most of the AI models reported in the lit-

erature to predict static Poisson’s ratio are black boxes

[16, 50]. Therefore, the objectives of this study are to: (1)

develop a generalized model using AI tools to predict the

static Poisson’s ratio from the commonly available con-

ventional well logs such as bulk density, P-wave transit

time, and S-wave transit time; (2) formulate tangible

mathematical expression from the AI model to transform

black box into white box to predict static Poisson’s ratio of

carbonate rocks.

2 Materials and methods

2.1 Log data analysis

Petrophysical well log data were taken from ten wells. The

well logs data include neutron porosity, bulk density,

P-wave transit time, and S-wave transit time. The petro-

physical log data were picked from the reservoir depth

where the cores were available for static tests. Lithology

cross-plot of neutron porosity and bulk density shows that

most of the samples lie in limestone formation with a low

percentage of sandstone and dolomite and with no gas

effects as shown in Fig. 1. The range of bulk density was in

between 2.00 and 3.05 g/cc, P-wave transit time between

44 and 97 ls/ft, and S-wave transit time between 73 and

170 ls/ft. A complete statistical description of the data

used for training is given in Table 1.

2.2 Laboratory experiments

Core data were generated from the experiments performed

using triaxial compressional tests. A total of 120 samples

were tested to measure static Poisson’s ratio. Extra care

was taken to select homogeneous and sound samples free

from any in situ cracks or weak stylolites. The dimensions

of the prepared core samples were approximately 300 length
and 1.500 diameter. The samples were prepared by cutting

along the length of the reservoir core using a disk saw. The

end faces of each core samples were carefully sliced and

grounded parallelly to ensure fine smoothening. The fine

smoothening is very essential; otherwise, it would have

affected the experiment adversely by not allowing the pulse

to transmit through the specimen because of air gap present

in between crystal holder and specimen. To clean the core

samples, toluene was used, and samples were then vacuum-

dried in oven at 60 �C. Triaxial experiments were per-

formed by placing the core sample axially while keeping a

constant confining pressure corresponding to the effective

in-situ horizontal stress. Each experiment was performed

under dried and unsaturated condition. The samples were

tested under room temperature, and confining pressures

range from 1000 to 1500 psi. The samples were jacketed

inside a heat-resistant rubber tubing. The rubber-jacketed

core sample was then positioned between the steel end cap

platens. Vacuum was used to remove any trapped air

between steel end cap platens and jacketed sample. Using

aluminum wires, the sample was then tightly secured with

the end cap platens. After that, linear variable differential

transducers (LVDTs) were mounted on the jacketed sam-

ple. The axial displacement was recorded using two

LVDTs instrumented on the hardened steel platens oppo-

site to each other with the help of an LVDT holder. The

Fig. 1 Lithology cross-plot between neutron porosity and bulk

density of the training data used for static Poisson’s ratio model
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radial displacement was measured using radial LVDT fixed

at the center along the length of the sample.

The confining pressure was increased to the required

stage using desired rate in psi/sec by loading instrumented

assembly in the confining chamber. The sample was loaded

axially, after reaching the required value of confining

pressure. The loading piston was lowered at a displacement

rate of 0.025 mm/min. This displacement rate enabled the

operator to complete the test according to the recom-

mended practice of the American Society of Testing and

Materials (ASTM D 2664-86, ASTM D 3148-93) and the

International Society of Rock Mechanics (ISRM Suggested

Methods, 13-127) [52]. During the loading phase, axial and

radial displacements were recorded using LVDTs and the

load on the sample was recorded using a load cell. Data

acquisition was carried out using computer-controlled

software. The stress–strain responses were generated for all

samples, and elastic parameters (Poisson’s ratio and

Young’s modulus) were calculated at 50% of the maximum

peak stress. Figure 2 shows the stress–strain curve for one

of the sample. A tangent line was drawn on axial stress–

strain curve (right side) at 50% of peak stress which is 8000

psi. The slope of this line yields static Young’s modulus.

On radial stress–strain curve (left side), another tangent

line was drawn, and the slope of this line yields static

Poisson’s ratio. This procedure was repeated for all 120

samples.

2.3 Core and log data depth matching

Depth measured from well log values using wireline cables

is usually not the same as the core depth, measured using

drill strings. To remove any depth discrepancy, the first

step taken was to match the log and the core depths. To

achieve this, the petrophysical well log (neutron porosity)

and laboratory measured values of core porosity were

plotted together to visualize the difference between the log

and the core depths. If there was any depth shift needed,

then the correction was added or subtracted to the log

depth, as given by Eq. (1)

DepthLog ¼ DepthCore � DepthShift ð1Þ

Table 1 Training data statistics

Parameters Max Min Mean Range SD Skewness Kurtosis

Bulk density, q (g/cc) 3.05 2.0 2.682 0.753 0.120 - 0.326 0.980

Compressional wave transit time, Dtc (ls/ft) 96.886 44.375 51.683 37.511 5.910 1.946 5.376

Shear wave transit time, DtS (ls/ft) 170.496 73.187 95.922 73.309 10.089 1.190 3.491

Static Poisson’s ratio 0.475 0.167 0.379 0.22 0.1186 - 0.533 0.829

Fig. 2 Laboratory determination of static Poisson’s ratio from the stress–strain curve
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After that, depth column was removed to bring all the

data on one set.

2.4 Correlation coefficient study

All AI models are data driven. The optimum way to select

best input parameters is to find the relative importance by

studying the correlation coefficient (CC) between inputs

and the output parameter. The value of CC between the

pair of two variables always lies in between - 1 and 1.

A CC value close to ‘- 1’ shows the strong inverse rela-

tionship between a pair of two variables, while a value

close to ‘1’ shows the strong direct relationship between

the two variables. A CC value of zero shows that no

relationship exists between the two variables. In this study,

Pearson CC is used to find the relative importance between

inputs and the static Poisson’s ratio. The definition of

Pearson CC is given in ‘‘Appendix A’’. Figure 3 shows the

CC of P-wave transit time, S-wave transit time, bulk den-

sity, and neutron porosity with the static Poisson’s ratio.

P-wave transit time, S-wave transit time, and neutron

porosity show an inverse relation with static Poisson’s

ratio, while bulk density shows a direct relation with static

Poisson’s ratio. P-wave transit time has the highest CC of

- 0.37, while static Poisson’s ratio, bulk density, and

S-wave transit times have moderate CC of 0.35 and 0.29

with static Poisson’s ratio. Neutron porosity has the lowest

CC of - 0.19 with the static Poisson’s ratio. Due to the low

CC of neutron porosity with the static Poisson’s ratio, this

input parameter was not used in the predictive modeling of

static Poisson’s ratio.

2.5 Data stratification

Dataset was divided randomly into two parts. 70% of the

dataset was utilized for the training of the model, while the

remaining 30% of the dataset was kept separate for the

testing of the trained model. Data were stratified randomly

by the MATLAB in a way that the testing data bounded

within the limits of the training dataset. This splitting

process ensured that the testing data fall within the range of

training data. Figure 4 shows the location of the data points

for both the training and testing.

2.6 Design and implementation of the artificial
intelligence techniques

2.6.1 Artificial neural network (ANN)

An ANN is a supervised data learning AI technique which

is based on natural learning features of biological neurons

found in human brain [54, 55]. ANN stands on the ele-

mental information processing units called as neurons.

Each neuron in the system is linked to a system of nodes,

and the resulting structure looks like a biological neurons

network [56]. Every connection has an associated weight

[57, 58]. Several studies [39, 59, 60] suggested that back-

propagation feedforward neural network is more robust

than the multilayer perceptron (MLP). A typical ANN

model comprises of an input layer, one or more hidden

layers and an output layer. Signals are received by the input

layer, transferred to the hidden layer(s) where they are

processed, and then sent to the output layer. The hidden

layer processes each dataset based on a transfer function.

This function is based on different mathematical forms

such as tan-sigmoid form expressed as r xð Þ ¼
ð2=1þ e�2xÞ � 1, the log-sigmoid form expressed as

r xð Þ ¼ 1=1þ e�x, or the linear function which is com-

monly implemented in multilayer networks trained by the

backpropagation algorithm. Optimization of the number of

layers and neurons is recommended since having too many

neurons in the system can result in over-fitting or memo-

rization problem. Having a fewer number of neurons in the

system can result in under-fitting [53, 61].

Fig. 3 Relative importance of the petrophysical well logs with the

static Poisson’s ratio

Fig. 4 Location of data points used for training and testing of the

static Poisson’s ratio models
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2.6.2 Adaptive network-based fuzzy interference systems
(ANFIS)

ANFIS is a supervised data learning technique, based on

fuzzy logic to translate input data to the output by a

combination of interconnected neural networks, initiated

by Jang in 1993 [62]. It is a learning technique which uses

Sugeno fuzzy inference system [62–64]. It is based on the

application of conventional Boolean logic, i.e., zeros and

ones, which describes the principle of truthiness

[62, 64, 65]. The steps needed to apply for a typical ANFIS

model are as follows: define inputs and an output variable;

declare fuzzy sets; define fuzzy rules; create and train the

network [66, 67]. In ANFIS, the important parameter is

cluster radius which plays a vital role in the predictive

performance. Cluster radius defines the number of if–then

rules. Smaller value of cluster radius generates higher

number of rules, while larger value of cluster radius gen-

erates smaller number of rules. In principle, higher number

of rules causes the problems like overprediction and

memorization [63].

2.6.3 Support vector regression (SVR)

SVR is a supervised learning technique that can be used for

regression problems. SVR has a special feature of trans-

forming a dataset into n-dimensional feature space by

increasing the space of training examples in an optimum

hyperplane [12, 68]. SVR’s performance relies on several

factors that must be tuned properly to obtain an optimum

predictive model. The use of SVR as related to oil and gas

is both interesting and challenging because of scarcity of

data as in geomechanics. It therefore becomes difficult to

find enough dataset for training and testing of the model.

The SVR has been used frequently in the past for the

prediction of petroleum-related parameters [1–3, 26, 39,

69–74].

A linear regression-based function for SVR modeling

can be expressed as Eq. (2)

f xð Þ ¼ wTxþ b ð2Þ

with input parameters xk 2 RNxn and output value yk 2 Rn

for N given training points. The empirical risk factor is

given by

Remp ¼
1

N

XN

j¼1

yk � wTx� b
�� ��

e
ð3Þ

with Vapnik’s e-insensitive loss function defined as

y� f xð Þj je¼
0; y� f xð Þj je � e
y� f xð Þj � e; otherwise

�
ð4Þ

This problem can be reformulated in dual space as

maxJD a; a�ð Þ ¼ � 1

2

XN

j;l¼1

ak � a�k
� �

a1 � a�1
� �

xTk xl

� e
XN

j¼1

ak þ a�k
� �

þ
XN

j¼1

yk ak � a�k
� �

ð5Þ

subject to

PN

k¼1

ak � a�k
� �

ak; a�k 2 0; c½ �

8
<

:

where ak; a�k � 0 are Lagrange multipliers.

Once the Lagrange multipliers are computed, the linear

hypersurface regression function is given by Eq. (6)

f xð Þ ¼
XN

j¼1

ak � a�k
� �

xTk xþ b ð6Þ

with

w ¼
XN

j¼1

ak � a�k
� �

xk ð7Þ

The training points with all nonzero values of ak are

assigned to the free support vectors, which allows the

computation of the bias term b.

The nonlinear hyperplane regression equation can be

given by Eq. 8

f xð Þ ¼
XN

j¼1

ak � a�k
� �

K x; xKð Þ þ b ð8Þ

where ak, a�k are the solution of the quadratic programming

problem in Eq. (8) and b is computed as a mean value for

the free support vectors. The solution obtained will be

unique and global if the kernel functions are positive and

definite.

2.6.4 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a computational

technique that optimizes a given objective function by

iterative method, originally applied by Kennedy and

Eberhart [75]. A PSO technique is developed on the basis

of inspiration earned from the social movements of various

living organisms such as fish flocking and birds schooling

[76, 77]. It is a stochastic optimization algorithm, compu-

tationally efficient and very simple to implement. PSO sets

the best function evaluation particle as the global best and

initializes each particle location as its local best. After

initialization, PSO moves to the next iteration where by

each particle in the swarm updates its velocity iteratively

[78], using Eq. (9)

vi nþ 1ð Þ ¼ wvi nð Þ þ c1 	 rand 0; 1½ � 	 pbi � pi nð Þ
� �� �

þ c2 	 rand 0; 1½ � 	 pgb � pi nð Þ
� �� �

ð9Þ
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where w weight 0�w� 1:2ð Þ; vi weight 0�w� 1:2ð Þ; c1
cognitive parameter 0� c1 � 1:2ð Þ; c2 cognitive parameter

0� c2 � 1:2ð Þ; n iteration number; pbi particle best solution;

pgb global best solution; pi particle i position at any

iteration.

The inertia term in the particle velocity equation

wvi nð Þð Þ ensures that the particle moves toward its original

direction, while its weight wð Þ ensures that the particle rate
of acceleration moves toward its original direction. The

cognitive component c1 	 rand 0; 1½ � 	 pbi � pi nð Þ
� �

mem-

orizes the particles’ previous best solution. The social

component c2 	 rand 0; 1½ � 	 pgb � pi nð Þ
� �

moves the par-

ticle toward the global best fitness. New position for each

candidate solutions in the solution search space is gener-

ated by sum of the current position and velocity:

pi nþ 1ð Þ ¼ pi nð Þ þ vi nð Þ ð10Þ

Objective function is evaluated to update the local best

for each particle and then global best particle if the current

best is better than the previous iteration. The whole process

of velocity and particle position updating is repeated after

objective function is evaluated to determine new improved

quality solutions until a stopping criterion of maximum

number of iteration is reached. Figure 5 summarizes the

workflow adopted in this study to reach to the optimum

model for the prediction of static Poisson’s ratio. Steps

related to the model testing and development of ANN

equation are given in the next sections.

3 Prediction of static Poisson’s ratio using
artificial intelligence methods

A total of 120 data points were divided randomly into two

sets with the proportion of 0.7:0.3. The set with 70% of the

data (84 data points) was utilized for training of models,

and the second set with 30% of the data (36 data points)

was used to test the prediction competencies of trained

models.

Three AI techniques, namely, ANN, ANFIS, and SVR,

were implemented to develop models to predict static

Poisson’s ratio. A comparison was made between these

three techniques based on the lowest AAPE and the highest

R2 between actual and predicted values. In ANN, two types

of models were investigated, namely, feedforward neural

network (FFNN) and radial basis function of neural net-

work (RBF). In ANFIS too, two types of ANFIS models

were studied, namely, Genfis-1 (Grid Partitioning) and

Genfis-2 (Subtractive clustering). In SVR, two types of

kernel functions were studied, namely, polynomial and

Gaussian. Based on highest R2 and lowest AAPE, FFNN,

Genfis-2, and polynomial SVR were selected as best ANN,

ANFIS, and SVR types to predict static Poisson’s ratio.

For ANN, several runs were executed with various

values of the model parameters. At every run, the param-

eters changed were learning rate, number of hidden layers

with corresponding number of neurons, and different

transfer functions. The SVR components of the model were

tuned by optimizing several parameters, viz. kernel func-

tion, lambda, regularization parameters, epsilon, and kernel

options. For ANFIS, in Genfis-2 the sensitivity of cluster

radii was performed to reach the optimum model. The

proposed model(s) were tuned by optimizing their several

parameters by using particle swarm optimization. The

complete list of AI techniques with optimizing parameters

with their ranges is given in Table 2.

From PSO optimizer, optimized values of AI model

parameters were obtained. The optimized FFNN model

was based on three input layers, one hidden layer, and one

output layer. In ANN, the optimum hidden layer number of

neurons was found to be 20. Optimum transfer functions

between input hidden layer were found to be tan-sigmoid,

Fig. 5 Workflow of the proposed research study to model static

Poisson’s ratio
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and between hidden output layer found to be pure linear.

Optimum learning algorithm found was backpropagation

Levenberg–Marquardt with an optimum learning rate of

0.12. Hagan and Menhaj [79] also proved that the perfor-

mance of FFNN with Levenberg–Marquardt learning

algorithm is better than other learning algorithms in ANN.

Figure 6 shows the architecture of the optimized FFNN

model to predict static Poisson’s ratio. The optimized

Genfis-2 model was based on three input parameters and

the one output parameter. Optimum cluster radius was

found to have a value of 0.3. The optimized SVR model

consists of three input parameters and one output param-

eter. Optimum kernel function was found to be the

‘Gaussian’ type with kernel options value of 3.0. Optimum

value of regularization parameter was found to have a

value of 4500. Optimum epsilon value found was 0.05 with

an error tolerance of 1 9 10-3. Multiple realizations were

performed during the use of each AI technique to avoid

them to get stuck at local minima.

On comparing the performance of all three models

(ANN, ANFIS, and SVR), it was observed that during

training, PSO-optimized ANN model yielded lowest AAPE

and highest R2 compared to PSO-optimized ANFIS and

SVR, as shown in Fig. 7. During the testing on unseen data,

PSO-optimized ANN also outperformed PSO-optimized

ANFIS and SVR by show casing less AAPE and high R2

values, as shown in Fig. 8. Table 3 lists the comparison of

results for both training and testing of all three methods.

Figure 9 shows the performance cross-plot by three models

on overall data.

From the comparison analysis, it can be clearly

observed that on the given set of the data, the developed

ANN model was very generalized and can give good

results on any unseen data within the range defined in

Table 1. Therefore, ANN with three input parameters is

suggested here as the best model for the prediction of static

Poisson’s ratio.

4 Development and validation
of an equation of ANN

A FFNN model is created by a series of layers. Hidden

layer neuron uses its weight w1, and bias b1, and its

parameters are described by Eq. (11)

Table 2 Summary of optimized parameters used for each technique in this study

AI techniques Parameters Ranges Optimized

values

Feedforward neural network (FFNN) Number of inputs 3–4 3

Number of hidden layers 1–3 1

Number of output layers 1 1

Number of neurons in the

hidden layer

5–30 20

Hidden layer transfer

function

Tan-sigmoid, Log-Sigmoid, and Pure Linear Tan-sigmoid

Output layer transfer

function

Pure Linear Pure Linear

Learning rate 0.01–0.9 0.12

Network training algorithm Levenberg–Marquardt, Bayesian Regularization,

Resilient Backpropagation, Scaled Conjugate

Gradient, Gradient Descent, Variable Learning

Rate Gradient Descent, Polak-Ribiére

Conjugate Gradient, and BFGS Quasi-Newton

Levenberg–

Marquardt

Adaptive network-based fuzzy inference

system (ANFIS)

Type Grid Partitioning and Subtractive Clustering Subtractive

clustering

Value of radius 0.1–0.9 0.3

Support vectors regression (SVR) Kernel function Polynomial, Gaussian, and Radial Basis

Function

Gaussian

Kernel option 1.0–9.0 3.0

Regularization parameter, C 500–5000 4500

e-tube (epsilon) 0.01–0.05 0.05

Lambda 1.0 9 10-1–1.0 9 10-5 1.0 9 10-3
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rL
XNP

j¼1

w1j xj þ b1

 !
ð11Þ

where NP is the total number of inputs, x are the input

parameters, and rL is the transfer function between the

input and the hidden layer. The output of the whole net-

work can be expressed as in Eq. (12):

lP uð Þ ¼ ro
XNh

i¼1

w2irL
XNP

j¼1

w1i;j xj þ b1i

 !
þ b2

" #
ð12Þ

where Nh are the optimized number of neurons in the

hidden layer, ro is the transfer function between the hidden

layer and the output layer, and u is a vector denoting the

network parameters w1, w2, b1, and b2. In this study, ANN

model is trained with three input variables (q, DtC, and
DtS), with one hidden layer having twenty number of

neurons, tan-sigmoid as an activation function between

input and hidden layer, and pure linear as an activation

function between hidden and output layer. Figure 10 shows

the architecture of the trained ANN for the prediction of

static Poisson’s ratio. An empirical expression is developed

based on weights and biases of the trained ANN model.

These extracted weights and biases are given in Table 4.

Weights between the input layer and the hidden layer are a

matrix which are referred as w1, and weights between the

hidden layer and the output layer are a vector referred as

w2. Biases between the input layer and the hidden layer are

a vector referred as b1, and bias between the hidden layer

and the output layer is a scalar referred as b2. The proposed

equation of ANN of the static Poisson’s ratio can be written

more specifically as in Eq. (13)

PRstaticn

¼ ro
XNh

i¼1

w2irL w1i;1qn þ w1i;2DtCn
þ w1i;3DtSn þ b1i

� �
þ b2

" #

ð13Þ

where rL xð Þ ¼ ð2=1þ e�2xÞ � 1, ro xð Þ ¼ x

The black box nature of ANN has been transformed into

a white box by mining the weights and biases. This will

allow the users of this paper to apply ANN-based mathe-

matical model to predict static Poisson’s ratio by simply

plugging in the required input variables (q, DtC, and DtS)
without the need of using AI software. Previously, artificial

intelligence/machine learning-based models [80–86] were

all black boxes in nature. In all these papers, authors

mentioned only the approach they have used to train their

models.

4.1 Procedure to use new equation of ANN
for the prediction of static Poisson’s ratio

The following three steps are required for using the new

equation to predict static Poisson’s ratio.

Step 1 Normalize input parameters (q,DtC, and DtS)
between - 1 and 1. Input parameters are denoted here by

‘x.’ Normalization is needed to match the results from

MATLAB ANN and equation of ANN. The difference of

prediction from MATLAB ANN function and coding ANN

(weights from MATLAB) is due to the normalization of

input and output data. To get the same results with equation

of ANN as from MATLAB ANN, normalization of input

and output is required. The normalization of input is done

by Eq. (14).

Inputnorm ¼ Inputmax � Inputminð Þ x� xminð Þ
xmax � xmin

þ Inputmin

ð14Þ

Inputmin ¼ �1; Inputmax ¼ 1; x is the input parameter,

xmax is the maximum value of the trained input parameter,

and xmin is the minimum value of trained input parameter.

xmax and xmin for each input parameters (q, DtC, and DtS)

Fig. 6 Architecture of the trained FFNN model to predict static

Poisson’s ratio

Neural Computing and Applications (2019) 31:8561–8581 8569

123



are given in Table 1. To perform the normalization for

(q,DtC, and DtS), Eqs. (15)–(17) can be used.

qn ¼ 2	 q� 2:01

3:05� 2:01

� 	
� 1 ð15Þ

DtCn
¼ 2	 DtC � 44:375

96:887� 44:375

� 	
� 1 ð16Þ

DtSn ¼ 2	 DtS � 73:187

170:496� 73:187

� 	
� 1 ð17Þ

Fig. 7 Prediction of static Poisson’s ratio using three different AI techniques: ANN, ANFIS, and SVR (training comparison)

Fig. 8 Prediction of static Poisson’s ratio using three different AI techniques: ANN, ANFIS, and SVR (testing comparison)
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Step 2 To apply Eq. (13), weights and biases are needed

which are given in Table 4. The sequence of parameters

that goes into the model is given as: bulk density, P-wave

and S-wave transit times

Step 3 Equation (13) gives static Poisson’s ratio in

normalized form in the range of [- 1 1]. It should be

reversed back to original values by using Eq. (20).

Output ¼ ymax � yminð Þ Outputnorm � �1ð Þð Þ
1� �1ð Þ þ ymin ð18Þ

ymax and ymin values (minimum and maximum values of

static Poisson’s ratio) are given in Table 1. Therefore,

Eq. (18) becomes

PRStatic ¼
0:475� 0:167ð Þ PRstaticn þ 1ð Þ

2
þ 0:167 ð19Þ

PRStatic ¼ 0:154 � PRstaticn þ 0:321 ð20Þ

4.2 Validation

The newly proposed equation of ANN to predict static

Poisson’s ratio is validated by three methods, namely, field

validation, validation on published data, and validation by

comparing the results with commonly used methods in the

industry to predict static Poisson’s ratio.

4.2.1 Field validation

To validate the proposed model, the data from three sep-

arate wells were used. These data were not used in the

training of the model.

Case 1

The input well log data consist of bulk density, P-wave

transit time, and S-wave transit time. Laboratory data

consist of measured static Poisson’s ratio using triaxial

compressional tests. Lithology cross-plot of bulk density

and neutron porosity is shown in Fig. 10 which depicts that

most of the data in well no. 1 lie in limestone formation,

with some percentage in dolomite and sandstone regions.

Figure 11 shows the petrophysical well log data of well no.

1 for an interval of 1000 ft. The range of bulk density is in

between 2.2 and 3.0 g/cc, the range of P-wave transit time

is 40–70 ls/ft, and the range of S-wave transit time is

80–120 ls/ft. This well has thirteen core data points. The

comparison of equation of ANN predicted and actual lab-

oratory measured static Poisson’s ratio for well no. 1 is

given in Fig. 12 which shows that equation of ANN pre-

dicted the static Poisson’s ratio for an interval of 1000 ft

with R2 of 0.9.

Table 3 Training and testing

performances of AI methods
AI type (70% Data) training set (30% Data) testing set

AAPE CC R2 AAPE CC R2

Artificial neural network (ANN) 2.1 0.979 0.96 2.1 0.979 0.96

Adaptive neuro-fuzzy inference system (ANFIS) 3.3 0.959 0.92 3.6 0.964 0.91

Support vector regression (SVR) 5.3 0.916 0.84 6.3 0.916 0.84

Fig. 9 Cross-plot comparison of the three different AI techniques on

the overall data (training and testing)

Fig. 10 Bulk density and neutron porosity lithology cross-plot of the

well no. 1
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Table 4 Weights and biases of the new proposed equation of ANN

Hidden layer neurons

(Nh)

Weights between input and hidden layer (w1) Weights between hidden

and output layer (w2)

Hidden layer

biases (b1)

Output layer

bias (b2)
q DtC DtS

1 1.4608 - 2.2688 2.3926 0.2646 - 4.1265 - 1.0122

2 2.9955 - 1.6475 0.3497 0.6757 - 4.2921

3 1.7545 - 2.0612 - 2.0405 0.2994 - 3.2633

4 2.9798 - 0.0147 2.4064 - 0.6677 - 1.6081

5 1.9785 2.0895 - 2.3664 - 0.1202 - 2.3964

6 0.2681 - 3.5618 - 1.0838 0.1861 - 1.7342

7 - 1.2556 - 0.2136 - 3.6060 - 0.7493 - 1.0947

8 - 3.4445 1.9341 0.7707 - 0.4598 1.1417

9 1.5266 2.2339 - 1.9755 - 0.2148 - 0.2744

10 - 2.7268 2.4850 - 1.5566 0.3788 0.5799

11 - 2.0131 1.5304 2.6408 - 0.5060 - 0.9799

12 - 3.4888 1.0297 1.9019 - 0.8081 - 0.9367

13 - 2.7109 2.9644 0.3595 0.5450 - 0.8551

14 - 2.7064 0.0478 - 0.0428 0.7256 - 1.0741

15 2.4447 1.3262 2.5858 - 0.4331 1.4715

16 - 0.7694 1.3039 - 3.3695 - 1.2325 - 1.5224

17 - 0.6782 2.0970 1.2218 - 1.3940 - 3.9001

18 0.5834 - 1.0022 - 3.3840 - 0.0178 - 2.3194

19 2.1312 2.7246 - 1.1741 - 0.7072 3.5660

20 - 1.2186 - 0.5271 - 3.6543 0.2265 - 3.6358

Fig. 11 A suite of petrophysical well log data for well no. 1. Track 1 represents bulk density log, track 2 represents P-wave transit time log, and

track 3 represents S-wave transit time log
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Case 2

Well no. 2 lithology cross-plot between bulk density and

neutron porosity is shown in Fig. 13 which indicates that

most of the data lie in limestone formation, with some part

in an anhydrite and dolomite regions. Anhydrites regions

have zero porosity and density up to 3.0 g/cc. Input data of

well no. 2 are given in Fig. 14. This well has five static

Poisson’s ratio values measured in the laboratory.

Figure 15 shows that equation of ANN predicted these five

values with R2 of 0.8.

Case 3

Well no. 3 lithology cross-plot between bulk density and

neutron porosity is shown in Fig. 16 which indicates very

scattered data, but majority of the data lie in the limestone

formation, with some part in anhydrite and sandstone

zones. Figure 17 shows the petrophysical well log input

data for Well No. 3 for an interval of 400 ft. This well has

four measured static Poisson’s ratio values. Figure 18

shows the continuous profile of static Poisson’s ratio for

Well no. 3, including the accurate prediction of four lab-

oratory measured static Poisson’s ratio values with R2 of

0.91.

4.2.2 Validation on published data

The new proposed equation of ANN is also tested on the

published data by D’Andrea et al. [43]. In their work, 49

rock samples from different regions were tested for

obtaining tensile strength, P-wave and S-wave velocities,

Young’s modulus, and Poisson’s ratio. Figure 19 shows the

input parameters, actual static Poisson’s ratio, and pre-

dicted static Poisson’s ratio values. From the analysis of

Fig. 19, it is observed that new proposed equation of ANN

can predict the static Poisson’s ratio with AAPE of 6.5%

and RMSE of 0.0228.

Fig. 12 Static Poisson’s ratio prediction using proposed equation of ANN on well no. 1

Fig. 13 Bulk density and neutron porosity lithology cross-plot of the

well no. 2
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Fig. 14 A suite of petrophysical well log data for well no. 2. Track 1 represents bulk density log, track 2 represents P-wave transit time log, and

track 3 represents S-wave transit time log

Fig. 15 Static Poisson’s ratio prediction using proposed equation of ANN on well no. 2
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4.2.3 Validation by comparison with common methods
of estimating static Poisson’s ratio

It is customary in the petroleum industry to generate a

continuous profile of the static Poisson’s ratio for the whole

reservoir section by obtaining different correlations. These

correlations are obtained by relating petrophysical well

logs such as neutron porosity, bulk density, P-wave transit

time, and S-wave transit times with the laboratory mea-

sured values of the static Poisson’s ratio of the core sam-

ples. The core samples are obtained from the offset wells of

the same field.

In this study, this approach of determining static Pois-

son’s ratio is tested against the results of the new proposed

equation of ANN. Figure 20 shows the linear cross-plots of

the static Poisson’s ratio with the dynamic Poisson’s ratio,

bulk density, P-wave transit time, and S-wave transit time.

Figure 20a shows the relationship between static Poisson’s

ratio and dynamic Poisson’s ratio having R2 of 0.026,

Fig. 20b shows the linear relation between static Poisson’s

ratio and bulk density with R2 of 0.1, Fig. 20c shows the

linear relation between static Poisson’s ratio and P-wave

transit time with R2 of 0.1, and Fig. 20d shows the rela-

tionship between static Poisson’s ratio and S-wave transit

time with R2 of 0.08.

Equations (21)–(24) are developed by correlating with

these petrophysical well logs. These linear correlations

were developed on the same dataset that was used for the

training of the AI models.

PRStatic ¼ 0:2416PRDyn þ 0:2314 ð21Þ
Fig. 16 Bulk density and neutron porosity lithology cross-plot of well

no. 3

Fig. 17 A suite of petrophysical well log data for well no. 3. Track 1 represents bulk density log, track 2 represents P-wave transit time log, and

track 3 represents S-wave transit time log
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PRStatic ¼ 0:1686qþ 0:1358 ð22Þ
PRStatic ¼ 0:4526� 0:0025DtC ð23Þ
PRStatic ¼ 0:4523� 0:0041DtS ð24Þ

The dynamic Poisson’s ratio is calculated using Eq. 25.

PRdyn ¼
V2
P � 2V2

S

2 V2
P � V2

S

� � ð25Þ

VP is the velocity of P-wave in km/s, and VS is the

velocity of S-wave in km/s.

Figure 21 shows continuous profiles of static Poisson’s

ratio obtained from Eqs. (21)–(24). The profiles generated

from PRdyn, P-wave transit time, and S-wave transit time

show under-estimated values, while the profile generated

from bulk density shows over-estimated values. From these

correlations, the static Poisson’s ratio profiles generated did

not match with any laboratory determined static Poisson’s

ratio values, while the new proposed equation of ANN

matched with almost every actual data point. Figure 21

shows the AAPE bar chart for each correlation, demon-

strating the high accuracy of proposed equation of ANN.

5 Conclusions and recommendations

The predictive efficiency of AI techniques (ANN, ANFIS,

and SVR) to model static Poisson’s ratio is investigated in

this study. The results reveal that

1. ANN performed better than ANFIS and SVR by giving

less AAPE and high R2.

2. By the development of equation of ANN, the black box

nature of an ANN is converted into a white box by

obtaining tangible weights and biases from the trained

ANN model.

3. Equation of ANN can predict the static Poisson’s ratio

using three commonly available petrophysical well

Fig. 18 Static Poisson’s ratio prediction using proposed equation of ANN on Well No. 3

Fig. 19 Static Poisson’s ratio prediction using proposed equation of

ANN on published data by D’Andrea et al. [43]
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Fig. 20 Linear relation of static Poisson’s ratio with petrophysical

well logs. a Relationship between static Poisson’s ratio and dynamic

Poisson’s ratio. b Relationship between static Poisson’s ratio and bulk

density. c Relationship between static Poisson’s ratio and P-wave

transit time. d Relationship between static Poisson’s ratio and S-wave

transit time

Fig. 21 Validation comparison of new equation of ANN against linear correlations (Eqs. 21–24) to predict static Poisson’s ratio
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logs namely, bulk density, P-wave, and S-wave transit

times

4. Equation of ANN provides better static Poisson’s ratio

estimations compared to available methods as shown

by lower AAPE and higher R2.

5. Equation of ANN can be used in wells with no static

Poisson’s ratio data or the wells with cased hole, where

estimation of the static Poisson’s ratio is not possible.

6. The new equation of ANN can be used for the

prediction in new wells without the need of any AI

software.

7. The new equation can give the real-time values of

static Poisson’s ratio of carbonate rocks wherever the

real-time logs are available.

8. From overall results produced, it can be said that AI

techniques can be used as a cost-effective alternative in

terms of saving the number of experiments to calculate

static Poisson’s ratio.

In this study, the core samples tested were in dry con-

dition and the equation of ANN developed is valid for dry

conditions. It is recommended to conduct the same testing

under saturated condition and observe the difference of

static Poisson’s ratio values in both dry and saturated

conditions, and the model performance in saturated con-

ditions. Also, more AI techniques can be explored such as

decision trees, type 2 fuzzy logic, and functional networks.
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Appendix A

Average absolute percentage error (AAPE) is defined as

follows:

AAPE ¼

P
PRstaticmeasured � PRstaticpredicted
� �

jj � 100
PRstaticmeasured

���
���

k

ð26Þ

Root mean square error (RMSE) is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
PRstaticmeasured � PRstaticpredicted
� �2

k

s

ð27Þ

where PRstaticmeasured is the measured value of PRstatic

and PRstaticpredicted is the estimated value from the models.

k is the total number of data points.

Pearson correlation coefficient CC is defined as follows:

CC ¼ k
P

xy�
P

xð Þ
P

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
P

x2ð Þ �
P

yð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
P

b2
� �

�
P

bð Þ2
q ð28Þ

where x and y are two variables.

Coefficient of determination R2 is defined as follows:

R2 ¼ k
P

xy�
P

xð Þ
P

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
P

x2ð Þ �
P

yð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
P

b2
� �

�
P

bð Þ2
q

0

B@

1

CA

2

:

ð29Þ
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