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Abstract
Correct segmentation of stroke lesions from magnetic resonance imaging (MRI) is crucial for neurologists and patients.

However, manual segmentation relies on expert experience and is time-consuming. The complicated stroke evolution

phase and the limited samples pose challenges for automatic segmentation. In this study, we propose a novel deep

convolutional neural network (Res-CNN) to automatically segment acute ischemic stroke lesions from multi-modality

MRIs. Our network draws on U-shape structure, and we embed residual unit into network. In Res-CNN, we use residual

unit to alleviate the degradation problem and use multi-modality to exploit the complementary information in MRIs.

Before training the model, we use data fusion and data augmentation methods to increase the number of training images.

Seven neural networks are extensively evaluated on two acute ischemic stroke datasets. Res-CNN shows good performance

compared with other six networks both in single modality and multi-modality. Furthermore, compared with the gold

standard segmentation manually labeled by two neurologists on a local test dataset, our network achieves the best results in

seven neural networks. The average Dice coefficient and Hausdorff distance of our method are 74.20% and 2.33 mm,

respectively. Our proposed network may provide a useful tool for segmentation lesion of acute ischemic stroke.
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1 Introduction

The World Health Organization (WHO) is an assessment of

the global disease status which shows that stroke is the

second leading cause of death all over the world. Stroke

prevents blood to reach brain regions; it is a cause of death

and disability. Accurate quantification and automatic seg-

mentation of the stroke lesions can provide insightful

information for neurologists. It is an important metrics for

planning treatment strategies, monitoring disease progres-

sion and predicting patient outcome [1]. However, stroke is

a complex small blood vessel disease. Stroke not only has a

variety of types (ischemic stroke, sub-acute ischemic

stroke, ischemic penumbra, chronic stroke), but also has

many similar diseases, such as white matter hyperintensi-

ties (WMHs), multiple sclerosis (MS) and so on [2–6]. In

addition, the location, shape and size of stroke lesions are

variable. All of these pose challenges for stroke lesions

segmentation.

In the last decade, manual segmentation of stroke

lesions plays an important role in assessing clinical prog-

nosis. It can help track down disease evolution phase and

assess the treatment effectiveness [1]. However, manual

segmentation is a tedious process. For neuroscientists, it is

time-consuming and laborious to segment large numbers of

MRI images. The quality of segmentation depends on the

subjective experience of neuroscientists [7]. In this regard,
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automatic segmentation method shows great advantages. It

can provide a series of consistent measurements and

quantitative analyses for image segmentation. For example,

Cardoso et al. [8] proposed a template-based multimodal

and applied it to brain image classification. They offered a

robust way to identify abnormal patterns in medical ima-

ges. Ledig et al. [9] proposed a framework for segmenta-

tion of magnetic resonance brain images. They used multi-

atlas to improve the performance of the framework. Rekik

et al. [10] proposed a common categorization pattern to

analyze the ischemic stroke images, which was beyond

those basic thresholding techniques. Hevia et al. [11]

combined the region segmentation and edge detection

method as a segmentation technology, which can segment

cerebral infarction regions from diffusion-weighted imag-

ing (DWI) images in acute ischemic stroke. Most of these

methods are unsupervised methods or classification meth-

ods, which depend on multi-atlas labels or artificial

corrections.

In recent years, many supervised and efficient segmen-

tation methods are proposed, which are based on machine

learning methods and deep learning methods [12]. These

methods are superior to the conventional methods in the

tasks of segmentation. For example, Rajini et al. presented

a method to detection of ischemic stroke from computed

tomography (CT) images. They used support vector

machine (SVM), k-nearest neighbor (k-NN), artificial

neural network (ANN) to classify normal brain and

ischemic brain, respectively. The method was demon-

strated to improve efficiency and accuracy of clinical

practice [13]. Griffis et al. [14] used probabilistic tissue

segmentation and image algebra to create feature maps

encoding information about missing and abnormal tissue in

T1-weighted (T1-w) images and used naive Bayes classi-

fier to identify stroke lesions. Chen et al. proposed a

semantic segmentation network (EDD Net), which was

based on convolutional neural network (CNN). This net-

work was used to segment stroke lesions in DWI images

and tried to achieve optimal lesion segmentation in all

scales [15]. Zhang et al. proposed a fully convolutional

neural network (FCN) to segment stroke lesions from DWI

images. The network could utilize contextual information

and learn discriminative features in an end-to-end way

[16]. Liu et al. proposed a residual-structured fully con-

volutional network (Res-FCN) to automatically segment

ischemic stroke lesions from multi-modality MRIs. In Res-

FCN, the residual block could capture features from large

receptive fields for the network [17].

Different input modality sequences are used in lesions

segmentation methods. The selections of modality

sequences are directly related to the performance of seg-

mentation method. The common MRI sequences include

T1, T1-w, T2, T2-weighted (T2-w), DWI, apparent

diffusion coefficient (ADC) and fluid attenuation inversion

recovery (FLAIR). Chen et al. only used DWI sequence as

input to segment acute ischemic lesions. Their network was

validated on a large real clinical dataset. The average Dice

coefficient (DC) of segmentation results was 0.67 [15].

Havaei et al. proposed a CNN to segment sub-acute and

ischemic lesions. Their network used DWI, FLAIR and T2

as inputs, and the DC of two segmentation tasks was 0.35

and 0.54, respectively [18]. Kamnitsas et al. and Liu et al.

used two or more than two MRI sequences as inputs for

stroke segmentation lesions [17, 19]. In their experiments,

these modality sequences were more conducive to the

improvement of network performance than other

sequences.

There is a serious change about lesion density, size and

shape during the first hours or days of stroke, which

determine the state of lesions in MRI sequences [20, 21].

Most stroke segmentation methods pay more attention to

change network structure. However, most of these methods

rarely analyze the characteristics of MRI sequences, which

is an important factor in stroke evolution phase. Only a few

stroke studies have given the details of evolution phases as

inclusion and exclusion criteria [22, 23]. In addition, the

traditional CNN models usually need thousands of training

images, which is beyond the scope of medical image

analysis tasks. As it is known, for small sample datasets, it

can cause the vanishing gradient problem when a network

has deep layers.

The goal of this study is to validate a robust and auto-

matic CNN framework for acute ischemic stroke lesion

segmentation, which is based on multi-modality MRI

sequences. To achieve this goal, we investigate the per-

formance of our method across two different datasets. In

this paper, our main contributions can be summarized as

follows:

(1) Our method, called Res-CNN, combines similar

U-shape architecture with residual units. This net-

work could alleviate the vanishing gradient problem.

(2) According to the characteristics of MRI modalities in

acute ischemic stroke evolution phase, we fuse T2 to

DWI (DWI-T2) as a complementary modality and

we use augmentation methods to increase the number

of training images. We use DWI and DWI-T2 as

input multi-modality to improve the performance of

lesion segmentation.

(3) Extensive experiments on two acute ischemic stroke

datasets: a public dataset stroke penumbra estimation

(SPES) of Ischemic Stroke Lesion Segmentation

(ISLES) 2015 challenge and a local hospital clinical

dataset (LHC). Compared with other methods, our

network achieves the state-of-the-art performance on
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SPES challenge, and it is closed to the segmentations

from neurologists in LHC.

The rest of this paper is organized as follows. We first

describe two MRI datasets, describe data preprocessing and

augmentation methods, and then, we detail the proposed

Res-CNN network framework in Sect. 2. Experiments and

results are demonstrated in Sect. 3. We further discuss and

analyze our study in Sect. 4. Finally, conclusions are drawn

in Sect. 5.

2 Material and methods

2.1 Datasets

Our goal is to segment the lesions of acute ischemic stroke

with conventional image sequences. In order to validate the

robustness and generalizability of the method, the proposed

Res-CNN framework is only trained on SPES dataset and

tested on SPES and LHC datasets, respectively. All

patients in both two datasets were treated for acute

ischemic stroke.

For SPES, stroke MRIs are scanned on either 3.0T or

1.5T MRI system (Siemens Magnetom Trio or Siemens

Magnetom Avanto) [24]. Each patient has seven medical

modality images [T1 contrast-enhanced (T1c), T2, DWI,

cerebral blood flow (CBF), cerebral blood volume (CBV),

time-to-peak (TTP) and time-to-max (Tmax)]. In SPES, all

modality sequences of a patient correspond to the infarct

core label. The labels are the ground truth segmentation

map which are manually drawn on DWI images.

In SPES, coregistered and preprocessed methods were

preprocessed by the organizers [24], including intensity

range standardization, skull-stripped sequences, constant

resolution, bias field correction, isotropic voxel-spacing

and affine registration to montreal neurological institute

(MNI) space [25]. There is no further processing that is

applied to the MRIs of SPES. In our study, we used 30

brain samples with ground truth infarct core labels in SPES

dataset and with DWI and T2 conventional modalities.

The MRIs in LHC were a subset of acute ischemic

stroke patients from a local hospital stroke in 2016. The

scans were obtained from Philips Achieve 3.0T MRI sys-

tem with following acquisition parameters: field strength:

3.0T; matrix size: 230 9 230 9 18; slice thickness: 6 mm;

field of view: 230 mm 9 230 mm; slices: 18; slice spacing:

1.0–1.5 mm; echo time: 87 ms; pixel size in x–y plane: 0.9

9 0.9 or 1.51 9 1.90 mm; repetition time: 23 ms. All

samples in LHC are used as test data with DWI and T2

modalities. The brain of infants and adolescents is still

growing, and the brain structure is not stable. There are

some similar brain diseases for the elderly, such as WMH,

MS, and other small vessel diseases [6] are commonly

observed in MRIs [26]. Distinguishing similar diseases is

not the purpose of our study. In LHC, we excluded patients

at younger or older age, and the age of our patients is

between 20 and 50. Finally, we got 29 samples. Each

sample contained 18 2D image slices. The stroke infarcts

were found in 3–4 slices in each sample. We selected 3

slices from each sample, which contained stroke infarcts.

In the end, we got 87 images as testing images.

2.2 Data preprocessing

The MRIs in LHC were acquired from different scanners

under different parameters settings in routine clinical

examination. Images were stored in DICOM format with

DWI, T1 and T2 modality sequences. Most raw MRIs

contain noises, which makes rendering appear dusty or

hazy. Several pre-processing steps must be conducted

before experiments. First, we used SPM12 software to

convert DICOM format images into NIfTI format images.

Second, during the early onset of acute ischemic stroke,

DWI modality is a sensitive and specific modality for

diagnosis [27–30]. Images with T2 and T1 modalities were

coregistered to the DWI images by using a six-parameter

rigid body registration method [31]. Third, MRI sequences

were skull-stripped by MRIcron software (BET2) [32]. We

extracted brain with manual correction, and then, we re-

coregistered MRI sequences to DWI again. In the end, all

MRIs were smoothed by Gaussian method.

2.3 Multi-modality and data augmentation

In the field of MRIs analysis, multiple MRIs are used to

examine different lesion tissues. The information about

multi-modality images is complementary, and it can pro-

vide more comprehensive information for diagnosis, such

as Moeskops et al. [33] used T1, T1-IR and T2-FLAIR

imaging modalities in automatic brain structure segmen-

tation, Menze et al. 2015 used T1, T1c, T2 and T2-FLAIR

imaging modalities in brain tumor segmentation task [24],

Maier et al. [23] used T1-w, T2-w, DWI and FLAIR

imaging modalities in brain lesion analysis. The perfor-

mances of these methods are much better than that of

single-modality methods in the image analysis tasks.

In the process of clinical diagnosis, some MRI modali-

ties play major roles in diagnosis of the acute ischemic

stroke [27, 30, 34]. In the early stages of stroke, DWI

modality is more sensitive in the diagnosis of stroke than

other MRI sequences [27, 30]. T2 modality usually is used

to distinguish the ischemic core and other impaired tissues

[30, 34]. We investigate DWI and T2 modalities, and we

fuse T2 image to DWI image space to generate a com-

plementary image using structured and sparse canonical
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correlation analysis (ssCCA) technique [35], the new

image is DWI-T2. From Fig. 1, it can be seen that the

lesion tissues are enhanced in DWI-T2 modality.

In most MRI analysis tasks, compared with other vision

datasets, the sample sizes of MRI datasets are smaller, such

as a large-scale ontology of images dataset ‘‘ImageNet’’

[36] and the dataset in skin lesion classification [37]. Most

medical MRI datasets have a limited number of samples,

and the number of scanned lesions is also limited. How-

ever, deep learning models need a large number of images

for training a huge number of parameters in the model. If

training data are generated by slicing images or lesion

instance patches, the amount of samples is far from the

requirements for deep learning model. Chatfield et al.

showed that data augmentation techniques can be applied

to deep learning methods, and those techniques result in an

analogous performance boost [38, 39]. In our study, all

samples are in 3D form. Each 3D sample has more than 60

2D image slices in SPES. However, not all image slices

contain stroke infarcts. We excluded the slices of hemor-

rhagic stroke. In addition, we also excluded the slices,

which do not contain stroke infarct in MRI sequence. Of 30

samples, one only contains 14 slices of stroke infarct. For

keeping the balance on the number of image slices for each

sample, we selected 14 2D images from each sample,

which contained stroke infarcts. In the end, we got 420 (14

9 30) 2D image slices. In our study, for increasing the

number of training images, we performed data augmenta-

tion on training 2D images. Each image was rotated 0�,
90�, 180� and 270�, respectively. Then, we used flip and

mirror mapping methods to augment the number of images

[40, 41]. One image becomes eight images. However, there

are redundant images in the flipped images. For example,

an image was rotated 180�, and then, it turned into the

original image after mirror mapping operation. We exclu-

ded redundant images. As a result, we can obtain 1680 2D

images in each modality. It should note that data aug-

mentation only was performed on training images in SPES.

The number of test images did not augment. For our

experiments, we randomly select 25 samples as cross-val-

idation training samples and the remaining five as testing

samples in SPES. So in each experiment, there are about

1344 2D image slices for training and 90 2D image slices

for testing.

2.4 Res-CNN network

As reported in the study of He and Sun, when deep net-

works start converging, the degradation problem has been

exposed [42, 43]. In this study, we proposed a novel

automatic segmentation network (Res-CNN) to alleviate

the degradation problem. The architecture of Res-CNN is

illustrated in Fig. 2. The detail of network structure is

shown in Table 1. It composes of 10 convolution layers, 4

residual units, 4 concatenation layers (Concat), 4 decon-

volution layers (Deconv), and some batch normalization

layers (BN), leaky rectified linear units (LReLU) [44].

Some BN and LReLU are embedded in the residual units.

BN layers are used to reduce internal covariance shift,

which would help improve the performance of the training

process. LReLU layers are utilized as the activation func-

tions for nonlinear transformation. LReLU layers allow a

Fig. 1 DWI-T2 modality
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small, nonzero gradient when the unit is not active, i.e.,

f ðxÞ ¼ x; if x[ 0

0:01x; otherwise
:

�

Res-CNN consists of two symmetrical paths. The left

side is a contracting path, which is used to obtain context

information. The right side is an expansive path, which is

used to achieve precise positioning. The architecture of

contracting path mainly follows that of the typical convo-

lutional network. The lowest layer of contracting path

obtains the resolution size of input convolution size by a

factor of 1/8. The expansive path of Res-CNN not only

extracts features, but also expands the spatial support of

lower resolution features by up-sampling. The forward

features are copied from the contracting part of the network

to expansive part by horizontal connections [45]. We use

horizontal connections to gather fine-grained details,

otherwise it would be lost in the contracting path. This

method also improves the quality of final contour predic-

tion. In our network, every layer in the expansive path

consists of an up-sampling of the feature map. A decon-

volution layer follows an up-sampling with a 2 9 2 kernel

size. The concatenation layers have the correspondingly

feature map from contracting path to expansive path.

Finally, the feature maps were computed by three convo-

lution layers. The kernel size of the first convolution layers

was set to 3 9 3; the kernel size of the last convolution

layer was set to 1 9 1. We obtain the probability of a pixel

belonging to the foreground region or background region

with a wise sigmoid function and convert the resulting

output map. We produce the segmentation result with the

same size as the input MRI.

The architecture of residual unit is shown in Fig. 3, and

there are two pathways for information propagating. One is

an direct pathway from Rl to Rlþ1, and another is an

indirect pathway with successive layers from Rl to Rlþ1.

Two pathways are merged before output. In each residual

unit, there has an input feature (Rl) and a transformed

feature (includes two repeated BNs, LReLUs and convo-

lution layers). Then, two features are integrated together as

the feature Rlþ1, and information can be transmitted

directly in forward and backward directions [46]. The

residual unit in Fig. 3 can be expressed in the following

general form:

Rlþ1 ¼ Rl þ FðRl;WlÞ; ð1Þ

where Rl is the input feature and Rlþ1 is the output result of

the l-th residual unit. Wl ¼ fWl;kj1� k�Kg is a set of

weights, which is associated with the l-th residual unit. The

F() is the residual function.

With Eq. (1), the RL (L[ l� 1) can be derived in a

recursive way as follows:

RL ¼ Rl þ
XL�1

i¼l

FðRi;WiÞ; ð2Þ

where l is a shallower unit and L is a deeper unit.
PL�1

i¼l FðÞ
denotes the summarized units between l and L� 1, it is a

residual function. Equation (2) shows that any deeper

feature RL can be expressed as any superimposed Rl with a

residual function
PL�1

i¼l FðÞ. According to the chain rule of

back propagation [47], we get the derivatives as:

oe
oRl

¼ oe
oRL

oRL

oRl

¼ oe
oRL

1þ o

oRl

XL�1

i¼l

FðRi;WiÞ
 !

; ð3Þ

where e denotes the loss function of residual units. oe
oRl

represents information without concerning any weight

layers, it ensures that information is directly propagated

back to any shallower unit l. o
oRl

PL�1
i¼l FðRi;WiÞ represents

that propagation passes through the weight layers. Equa-

tions (2) and (3) reveal that the information can be directly

propagated backward and forward from one unit to another

in the network [46].

Fig. 2 Detail of the architecture of Res-CNN
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In this study, we used DWI and DWI-T2 as input, and

the output segment images were activated by the sigmoid

function, which outputs the probability of each pixel

belonging to the foreground or the background. However,

compared with the background, lesions occur in very small

region of MRIs. This can lead to a serious bias in the

prediction results [48]. In this study, we only care about the

lesions of segmentation results, which are not background.

We use S(X, Y) to measure the parts of lesions, which

overlap between the predicted segmentation and the ref-

erence ground truth. S(X, Y) can be written as:

SðX; YÞ ¼ 1� 2 Zj j þ k

Xj j þ Yj j þ k
; ð4Þ

where X and Y denote the ground truth image and predicted

segmentation image, respectively. For each element Xij in

X, if it belongs to the area of lesion, Xij is set to 1, otherwise

Xij is set to 0. For each element Yij in Y, if it belongs to the

area of predicted lesion, Yij is set to 1, otherwise Yij is set to

0. Z also denotes an image, in which the value of the ele-

ment in position (i, j) will be set to 1 only when both Xij

and Yij are equal to 1. Zij is an element in Z. That is to say

Zij ¼ bXijþYij
2

c. Xj j is a function which counts the number of

elements with ’1’ in image X.

If there is no lesion in X and Y, both Xj j and Yj j are 0. In
this case, the denominator in Eq. (4) will be 0. To solve the

problem, we add a small k in denominator and numerator

of Eq. (4). Generally, both Xj j and Yj j are more than 100 if

they are not equal to 0. So we set the value of k in Eq. (4) to

0.5, which has very little influence on the result of S(X, Y).

In this study, we proposed a novel loss function

L(TX, PY) which can be written as:

LðTX; PYÞ ¼ 1

N

XN
i¼l

SðTXi; PYiÞ; ð5Þ

where N is the number of 2D images. TX is a set of ground

truth images, and PY is a set of predicted segmentation

images. TXi and PYi are images in TX and PY, respec-

tively. TXi is the ground truth of the ith image, PYi is the

predicted result of the ith image.

2.5 Implementation details

In this study, we proposed a Res-CNN framework to seg-

ment acute ischemic stroke lesions. In order to utilize more

contextual information, we used DWI and DWI-T2

modality sequences to strengthen the pixel feature infor-

mation. All MRIs are unified with the 160 9 160 pixel size

using the ITK tools.1 The multi-modality architecture used

Table 1 Architecture of Res-CNN

Layers Architectures Output

Input Images (160 9 160) 160 9 160 9 1

Conv1 Conv(3 9 3) BN/LReLU

Maxpooling Strdes = 2

80 9 80 9 32

Residual unit 1 BN;LReLU;Convð1� 1Þ
BN;LReLU;Convð3� 3Þ

� �
80 9 80 9 32

Conv2 Conv(3 9 3) BN/LReLU

Maxpooling Strdes = 2

40 9 40 9 64

Residual unit 2 BN;LReLU;Convð1� 1Þ
BN;LReLU;Convð3� 3Þ

� �
40 9 40 9 64

Conv3 Conv(3 9 3) BN/LReLU

Maxpooling Strdes = 2

20 9 20 9 128

Residual unit 3 BN;LReLU;Convð1� 1Þ
BN;LReLU;Convð3� 3Þ

� �
20 9 20 9 128

Conv4 Conv(3 9 3) BN/LReLU

Maxpooling Strdes = 2

10 9 10 9 256

Residual unit 4 BN;LReLU;Convð1� 1Þ
BN;LReLU;Convð3� 3Þ

� �
5 9 5 9 512

Deconv1 Conv(2 9 2) Up-sampling 10 9 10 9 256

Concatenate [Conv4,Deconv1] 10 9 10 9 512

Conv5 Conv(3 9 3) LReLU 10 9 10 9 256

Deconv2 Conv(2 9 2) Up-sampling 20 9 20 9 128

Concatenate [Conv3,Deconv2] 20 9 20 9 256

Conv6 Conv(3 9 3) LReLU 20 9 20 9 128

Deconv3 Conv(2 9 2) Up-sampling 40 9 40 9 64

Concatenate [Conv2,Deconv3] 40 9 40 9 128

Conv7 Conv(3 9 3) LReLU 40 9 40 9 64

Deconv4 Conv(2 9 2) Up-sampling 80 9 80 9 32

Concatenate [Conv1,Deconv4] 80 9 80 9 64

Conv8 Conv(3 9 3) LReLU 80 9 80 9 32

Conv9 Conv(3 9 3) Upsamping 160 9 160 9 16

Conv10 Conv(1 9 1) Sigmoid 160 9 160 9 1

Output Segmentation map 160 9 160 9 1

Fig. 3 Architecture of residual

unit

1 https://itk.org/.
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in our neural network is shown in Fig. 4. The network uses

DWI and DWI-T2 modality sequences as inputs.

Our network was implemented using Python based on

Keras library. We chose six other medical image segmen-

tation models for comparison, including the U-net [45],

EDD Net [15], FCN [49], FC_ResNet (Fully Convolutional

Residual Network) [50], Res-FCN [17] and FCN ?

FCN_ResNet [51]. Since each network has its own char-

acteristics, it is difficult to completely reproduce the original

model for different databases. When adapting the candidate

network into our dataset, we used the same input image size.

All comparison methods retain their original network

structure. More specifically, the adapted U-net has con-

catenations between left-side layers and right-side layers.

The adapted EDD Net retains the featured deconvolution

and unpooling layers. The adapted FCN network is still in

the fully convolutional configurations. The adapted

FC_ResNets preserves residual blocks and additional

shortcut paths. The adapted Res-FCN preserves the unique

structures (Global Convolutional Network and Boundary

Refinement) based on FCN. The adapted FCN ?

FCN_ResNet uses a FCN to obtain pre-normalized images

and uses FCN_ResNet to generate a segmentation predic-

tion. No post-processing operations are used in any

architecture.

3 Experiments and results

3.1 Evaluation metrics

In this study, we used two metrics to evaluate our method

on two datasets: Dice coefficient (DC) [52] and Hausdorff

distance (HD) [53, 54].

DC is main metric in the segmentation task. It is a

statistic used for computing the similarity of two sets. DC

score denotes the spatial overlap between the segmentation

with the reference ground truth. A larger value indicates

superior segmentation accuracy. The DC value is given as:

DCðA;BÞ ¼ 2 A
T
Bj j

Aj j þ Bj j � 100%; ð6Þ

where A is the set of reference ground truths and B is the

set of segmentation results. HD is another metric, which

measures the maximum surface distance between two sets

(the prediction segmentation results and the ground truth).

It is defined as follows:

HDðAs;BsÞ ¼ max max
a2As

min
b2Bs

dða; bÞ;max
b2Bs

min
a2As

dðb; aÞ
� �

;

ð7Þ

where As and Bs are two nonempty sets of surface points,

and a and b are the points of As and Bs sets, respectively.

d(a, b) or d(b, a) indicates the Euclidean distance between

the points a and b. s is the number of points in two sets A

and B (s� 1). The lower HD value implies the better

segmentation performance.

3.2 Multi-modality and segmentation methods

To evaluate the efficacy of multi-modality, we test the

signal-modality and multi-modality on Res-CNN and other

six networks, respectively: U-net, EDD Net, FCN,

FC_ResNet, Res-FCN and FCN ? FCN_ResNet. We per-

formed the experiments five times. At each time, we ran-

domly selected 25 samples as cross-validation training

samples and the remaining five as testing samples in SPES.

The training samples were transformed to 2D image slices.

Fig. 4 Multi-modality

architecture of Res-CNN
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Then, the 2D training images were screened, and we per-

formed data augmentation on 2D training images. The

method of data augmentation is explained in Sect. 2.3. In

each experiment, there are about 1344 2D image slices for

training and 90 2D image slices for testing. All experi-

ments were conducted under fair conditions, including the

same data augmentation strategies. All experiments used

the same images for training and testing, respectively. The

results of the segmentation are shown in Table 2. In gen-

eral, the DC scores and HD values of multi-modality are

better than those of the single modality of seven methods.

Compared with the other six methods, in terms of the main

metric DC scores our network has the best performance

both in single modality and multi-modality. For single

modality, the performance of EDD Net is ranked the sec-

ond. The difference of HD values between EDD Net and

our network is very small. However, the DC score of our

network is almost 3% higher than that of EDD Net. For

multi-modality, the performance of FCN ? FCN_ResNet is

ranked the second. The HD value of FCN ? FCN_ResNet

is lower than that of ours. However, the main metric DC

score of our model is 4% higher than that of FCN ?

FCN_ResNet, which means that our network has a better

segmentation performance.

3.3 Comparison with manual segmentation

In order to investigate the relative accuracy of our proposed

segmentation network, we used the best weight of each

model (U-net, EDD Net, FCN, FC_ResNet, Res-FCN, FCN

? FCN_ResNet and our network) to test LHC dataset,

respectively. Then, we compared the segmentation results

with gold standard which were manually labeled by two

experienced neurologists on DWI modality. In the testing

of LHC dataset, we used the 2D MRI images as testing

inputs, and used DC and HD as metrics.

We compared the lesion segment images generated by

each method with two manual references, respectively. The

test results are shown in Table 3. Obviously, the results of

Res-CNN achieved better performance than that of other

models. As the main evaluation metric of image segmen-

tation, the DC scores of the six methods on multi-modality

are better than those of single modality, except the method

FCN. In both single modality and multi-modality, the DC

scores of our network achieve the highest scores, which

indicates our network has better segmentation performance

than other six methods. The HD value of our network is

0.01 mm higher than that of FCN ? FCN_ResNet in single

modality. However, our network gets the highest DC val-

ues among all 7 methods both in single modality and multi-

modality. In conclusion, the segmentation results of our

network have higher agreement with the two manual labels.

Figure 5 shows the segmentation results of 6 out of 54

test images, which are the results of segmentation methods

and manual references. Compared with manual references,

most segmentation methods can segment large lesions well.

From top to bottom, the first row is original images. The

rows 2–7 are restored images which are segmented by 7

methods. Last 2 rows are gold standard manual labels

which are segmented by two neurologists. The red arrows

Table 2 Results of stroke

segmentation of different

methods on SPES (DC: %,

HD:mm)

Methods DWI DWI ? (DWI - T2)

Single modality Multi-modality

Avg. DC Avg. HD Avg. DC Avg. HD

U-net 42.47 (± 9.97) 2.63 (± 0.31) 52.41 (± 25.83) 2.64 (± 0.30)

EDD Net 81.43 (± 6.96) 1.84 (± 0.30) 82.27 (± 9.68) 1.72 (± 0.29)

FCN 39.27 (± 16.39) 2.51 (± 0.39) 46.17 (± 11.74) 2.34 (± 0.41)

FC_ResNet 49.70 (± 7.64) 2.72 (± 0.23) 62.93 (± 3.97) 2.39 (± 0.21)

Res-FCN 80.48 (± 2.68) 2.27 (± 0.24) 83.40 (± 4.51) 1.74 (± 0.19)

FCN ? FCN_ResNet 76.58 (± 2.78) 2.51 (± 0.31) 84.23 (± 3.25) 1.49 (± 0.34)

Ours 83.94 (± 2.46) 1.61 (± 0.24) 88.43 (± 2.43) 1.63 (± 0.19)

The average values and standard errors on 95% confidence interval. The best results are shown in bold

Table 3 Results of stroke segmentation of different methods on LHC

(DC: %, HD:mm)

Methods DWI DWI ? (DWI - T2)

Single modality Multi-modality

Avg. DC Avg. HD Avg. DC Avg. HD

U-net 54.71 2.74 58.84 2.84

EDD Net 63.97 2.81 72.97 2.51

FCN 64.62 2.82 59.89 2.91

FC_ResNet 65.03 2.61 66.23 2.51

Res-FCN 65.81 2.70 72.25 2.41

FCN ? FCN_ResNet 67.31 2.55 72.31 2.38

Ours 70.24 2.56 74.20 2.33

The best results are shown in bold
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Fig. 5 Six image cases of automated vs. manually segmented on multi-modality (DWI ? (DWI - T2)). Red arrows point to lesions and blue

arrow point to noisy point
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point to true lesions in the original images and the blue

arrows point to noisy points. It can be observed from the

contrast images that most methods can well identify the

location of lesions. However, there is a difference in the

number and size of the lesions for 7 methods. As shown in

the second row, the segmentation result of U-net has lots of

noisy points. FCN has a good segmentation result for large

lesions as shown column 1–5, but not good on small or

multiple lesions as shown in column 6. FC_ResNet is an

extension of FCN and residual units. The segmentation

lesions of FC_ResNet are much larger than FCN, and

FC_ResNet is more sensitive to small lesions than FCN,

which is shown in the last column of the 4th and fifth rows.

It can be seen from Table 2 and Table 3 that the perfor-

mance of EDD Net, Res-FCN and FCN ? FCN_ResNet is

close to that of our network. However, in these 6 images,

Res-FCN and FCN ? FCN_ResNet show more noisy

points than EDD Net and our network. As shown in the last

column of Fig. 5, for multiple lesions, EDD Net, Res-FCN

and FCN ? FCN_ResNet cannot detect all lesions. Com-

pared with EDD Net, Res-FCN and FCN ? FCN_ResNet ,

our network performs better in segmentation of mutiple

lesions. As shown in the last 3 rows of Fig. 5, the seg-

mentation results of the our network are the closest to the

manual references.

3.4 The robustness of the networks

As shown in Table 3, we get the segmentation performance

of seven networks on multi-modality MRIs of LHC. In

descriptive statistics, we use a box plot (boxplot) to

graphically depict the test results. The spacing between

different parts of the box indicates the degree of dispersion

in the data, and the individual points are shown as outliers.

With in the box, bold line denotes the median value, the

first quartile is represented by the lower line and the third

quartile is represented by the upper line [55]. Figure 6

shows the distribution of DC values across 0 and 1, and

Fig. 7 shows the distribution of HD values between 0 and

4. As shown in Fig. 6, compared with the other 6 methods,

the median line of the box of our network is higher and the

length of the whisker plots box is shorter, which means that

Res-CNN has more accurate segmentation results on the

same test set. The height of our network box is much

shorter than other six boxes, which indicates that the dis-

persion of segmentation results is more concentrated. As

shown in Fig. 7, the box height of FCN, FCN_ResNet, Res-

FCN, FCN ? FCN_ResNet and our network is similar.

However, the median line and lower line of our network’s

box are lower than those of other four boxes, which implies

that the segmentation results of our network are more

proximity with the labels provided by neurologists.

4 Discussion

In this paper, we have proposed a Res-CNN network to

segment the acute ischemic stroke lesions using multi-

modality MRI sequences. It achieves better performance

compared to the six classical CNN methods. We have done

extensive experiments to verify the effect of the multi-

modality in our network.

The architecture of Res-CNN mainly follows the

U-shape which is based on CNN network proposed by

Ronneberger et al. in 2015. In U-shape architecture, the

authors used up-sampling operators to replace unpooling

operators and used skip connections to directly connect

opposing contracts. The loss rate of the model can be

greatly reduced and thus the performance increases effec-

tively. In our network, we used residual units replace the

down-sampling in contracting path. The residual unit is

used to optimize the architecture of each convolution layer.

It not only makes network easer gradient backpropagation,

but also improves optimization convergence speed. Recti-

fied linear unit (ReLU) [44] is an important part of original

U-net. However, ReLU units can be fragile during training.

When a large gradient flows through, ReLU may cause

neurons never active, which means that ReLU units can

irreversibly die during training. In our network, we used

leaky rectified linear unit (LReLU) instead of ReLU.

LReLU allows a small, nonzero gradient. When a unit is

not active, LReLU sacrifices hard-zero sparsity for a gra-

dient which is potentially more robust during optimization

Fig. 6 DC scores on 7 methods on LHC

Fig. 7 HD values on 7 methods on LHC
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[56, 57]. At the same time, we used concatenation to

reduce the complexity of the network architecture, it does

not have negative impact on the performance of the

network.

In clinical practice, it is very important for neurologists

and patients to detect the location, shape and size of the

lesions. In the fusion terminology, a ‘‘modality’’ is defined

as a single image contrast [35]. Different modality

sequences play different roles in the diagnosis process. In

our study, there are three single-modalities: DWI, T2 and

DWI - T2. DWI ? T2 denotes a multi-modality com-

bining DWI and T2, and DWI ? (DWI - T2) denotes a

multi-modality combining DWI and DWI-T2. In our

experiment, multi-modality sequences DWI ? (DWI - T2)

are selected as inputs in our network Res-CNN. As shown

in Tables 2 and 3, in contrast to single modality, multi-

modality helps to improve the performance of the seg-

mentation method in most time. In our experiments, the

advantage of using two image modalities can reduce the

effects of distortions and noises which are found in a single

modality. As shown in Figs. 8 and 9, we compared the DC

scores of single modality and multi-modality in two data-

sets based on Res-CNN. On the whole, the height of red

box of multi-modality is little shorter than that of blue box

of single modality. The length of the whisker plots box of

multi-modality is much shorter, and the median values in

the red box is higher. We also compared the performance

of different modalities in our network, which is shown in

Table 4. In our experiments, compared with DWI, DWI -

T2 and DWI ? T2, we choose multi-modality which has a

better performance both in two datasets.

There are some small lesions in LHC, as shown in

Fig. 5. Compared with other methods, EDD Net and our

network have a better performance on small lesion seg-

mentation. However, there is still a far distance from per-

fect segmentation. In image segmentation tasks, U-net,

FCN, FC_ResNet, Res-FCN and FCN ? FCN_ResNet use

the bilinear interpolation strategy as the sampled method to

implement coarse feature mapping. However, the bilinear

interpolation strategy makes network difficult to recon-

struct small lesions based on weak activation [15]. To

reduce the impact of small lesions, EDD Net takes the

recorded pooling masks and the unpooling strategy. In Res-

CNN, we used the residual unit and concatenation strategy

to handle this problem. In the future work, we should pay

attention to the small lesion segmentation. We would draw

unsupervised spectral feature selection (USFS) method to

extract more local features from MRIs [58].

In the experimental stage, we have recorded the com-

putational cost of each model. All models were trained and

tested on NVIDIA GeForce Titan X Pascal CUDA GPU

processor. The results are shown in Table 5. Although the

average training times of different models are different, the

time gaps between different models on testing are very

small.

5 Conclusions

In this paper, we proposed a Res-CNN network to auto-

matically segment acute stroke lesions in multi-modality

MRIs. We analyzed the characteristics of the MRI modality

Fig. 8 DC of Res-CNN Single modality vs. Multi-modality on SPES

(DWI vs. DWI ? (DWI - T2))

Fig. 9 DC of Res-CNN Single modality vs. Multi-modality on LHC

(DWI vs. DWI ? (DWI - T2))

Table 4 Results of

segmentation of different

images modalities on 2 datasets

(DC: %, HD:mm)

Datasets DWI DWI - T2 DWI ? T2 DWI ? (DWI - T2)

Avg. DC Avg. HD Avg. DC Avg. HD Avg. DC Avg. HD Avg. DC Avg. HD

SPES 84.83 1.52 67.42 2.21 56.65 3.21 89.14 1.51

LHC 70.24 2.56 68.20 2.73 60.20 3.02 74.20 2.33

The best results are shown in bold
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based on ischemic stroke evolution phase, and we used

multi-modality elegantly integrated into our network to

improve the model capability. We evaluated the perfor-

mance of the network on both datasets. The experimental

results showed that our method outperformed other well

established and state-of-the-art segment methods in terms

of overlap with the ground truth on both datasets. In the

future, further improvements could be made by collecting

more MRI samples and using 3D convolutions. We would

also try to analyze stroke disease by combining brain net-

works and hyper-graph techniques [59–62].
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