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Abstract
Selecting a subset of relevant features is crucial to the analysis of high-dimensional datasets coming from a number of

application domains, such as biomedical data, document and image analysis. Since no single selection algorithm seems to

be capable of ensuring optimal results in terms of both predictive performance and stability (i.e. robustness to changes in

the input data), researchers have increasingly explored the effectiveness of ‘‘ensemble’’ approaches involving the com-

bination of different selectors. While interesting proposals have been reported in the literature, most of them have been so

far evaluated in a limited number of settings (e.g. with data from a single domain and in conjunction with specific selection

approaches), leaving unanswered important questions about the large-scale applicability and utility of ensemble feature

selection. To give a contribution to the field, this work presents an empirical study which encompasses different kinds of

selection algorithms (filters and embedded methods, univariate and multivariate techniques) and different application

domains. Specifically, we consider 18 classification tasks with heterogeneous characteristics (in terms of number of classes

and instances-to-features ratio) and experimentally evaluate, for feature subsets of different cardinalities, the extent to

which an ensemble approach turns out to be more robust than a single selector, thus providing useful insight for both

researchers and practitioners.

Keywords Feature selection � Stability of feature selection algorithms � Ensemble approaches � High-dimensional data

analysis

1 Introduction

The dimensionality of datasets used in machine learning

applications has increased exponentially in recent years. As

extensively discussed in the literature [1, 2], the high

dimensionality of data introduces a number of challenges

for learning algorithms, due to the very large search space,

and makes it difficult to extract valuable knowledge about a

given domain of interest. In this scenario, feature selection

has become almost indispensable since it can eliminate

irrelevant and redundant information, thus reducing the

dimensionality as well as the complexity of the original

problem, with significant benefits in terms of computa-

tional efficiency, model interpretability and data

understanding.

Many authors have investigated the strengths and

weaknesses of the available feature selection techniques

[3–6], but finding the ‘‘best’’ approach for a given task

remains difficult. In particular, recent research in the field

[7, 8] has highlighted that the existing algorithms are often

deficient in terms of stability, i.e. robustness with respect to

changes in the input data. This is a very important issue

when the selected features are exploited for gaining

knowledge on the underlying domain. Indeed, if the out-

come of the selection process is too sensitive to variations

in the set of training instances, with limited reproducibility

of results, it can compromise the confidence of users and

domain experts and the subsequent exploitation of the

results in real-world applications. Moreover, as observed in

[9], the robustness of feature selection may have practical

implications for distributed applications where the
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algorithm should produce stable results across multiple

data sources.

With the aim of achieving a better trade-off between

predictive performance and stability, new and more

sophisticated feature selection approaches are increasingly

being explored [2, 10]. In particular, the ensemble para-

digm has been investigated [11, 12] as a promising

framework for improving the robustness of the selection

process, especially in high-dimensional and low sample

size settings, where the extraction of stable feature subsets

is intrinsically more difficult [7]. The basic idea is to jointly

exploit the strengths of different selectors, overcoming at

the same time their weaknesses, similar to the logic of

ensemble classification, that leverages multiple models

[13] and has proved to be successful in a large variety of

applications [14–17].

The ensemble selection techniques appeared in recent

literature can be broadly categorized into two main groups

[18, 19]: functionally heterogeneous approaches, which

involve applying different selection algorithms to the same

dataset, and functionally homogeneous approaches, where

the same selection algorithm is applied to different per-

turbed versions of the original data (similar to bagging and

boosting techniques [20] in the context of multi-classifier

systems). In both cases, different outputs are produced

which are subsequently combined to generate a single

feature subset capable of better approximating, hopefully,

the ‘‘optimal’’ solution for the problem at hand.

The focus of this work is on homogeneous ensembles

which have turned out to be especially promising for

handling the stability issue [11, 21] but, so far, have been

experimented in a limited number of settings, particularly

with biological and genomic data (mostly in the context of

binary classification tasks) and in conjunction with specific

selection approaches. To provide a more comprehensive

evaluation of this ensemble technique, we present an

empirical study that encompasses different kinds of selec-

tion algorithms (filters and embedded methods, univariate

and multivariate approaches) and different application

domains (from the classification of genomic and proteomic

data to the analysis of texts, images, videos as well as

specific kinds of signals, such as voice recordings and ECG

recordings).

Specifically, we consider seven algorithms that are

representatives of quite different heuristics and, for each of

them, implement an ‘‘ensemble version’’ whose output is a

feature subset resulting from the aggregation of the algo-

rithm’s outcomes on different perturbed versions of the

available data. Considering different levels of data pertur-

bation as well as feature subsets of different cardinalities,

we systematically compare the robustness of this ensemble

version to that of the original ‘‘simple’’ algorithm. This

analysis has been conducted on 18 classification

benchmarks with quite heterogeneous characteristics (in

terms of numbers of features and instances, instances-to-

features ratio, number of classes and class distribution,

presence of noise), so as to obtain useful insight about the

real potential and the concrete applicability of the ensem-

ble selection paradigm across multiple, diversified, real-

world scenarios.

The experimental results confirm that the considered

approach can actually be useful to face the stability issue,

though to an extent that may depend both on the specific

selection algorithm and on the peculiar characteristics of

the domain.

The remainder of this work is structured as follows.

Section 2 provides background concepts and summarizes

previous research in the field. Section 3 illustrates all the

methods relevant to our study, i.e. the considered selection

algorithms, the specific ensemble strategy here adopted,

and the methodology used for evaluating both the stability

and the predictive power of the selected feature subsets.

Section 4 describes the 18 datasets used as benchmarks, the

specific settings of the experiments, as well as the experi-

mental results and their implications. Finally, Sect. 5 gives

the concluding remarks.

2 Background and related work

As previously highlighted, feature selection plays a very

important role in the analysis of high-dimensional data.

This section provides an overview of best practices and

research issues in the field, with special emphasis on

classification tasks (which are the target of our study),

though most of the concepts and ideas here discussed may

also be applied in the context of regression problems

[22, 23]. Specifically, we start from a general categoriza-

tion of feature selection algorithms in Sect. 2.1. Next,

Sect. 2.2 focuses on the rationale of ensemble feature

selection and Sect. 2.3 discusses its applicability to real-

world scenarios.

2.1 Foundations of feature selection

Feature selection, also known as attribute selection or

variable subset selection, is the process of detecting the

most relevant features for the problem at hand [1]. Many

definitions have been proposed in the literature to formalize

the concept of feature relevance and to quantify the degree

of relevance [24], with no clear and well-established

guidelines to choose the most suitable approach for a

specific situation.

In the context of classification tasks, where feature

selection essentially aims at extracting a subset of attributes

highly correlated with the target class, the available
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selection methods can be broadly categorized into three

groups [4]:

• Filters, which carry out the selection process as a pre-

processing step without interacting with the learning

algorithm used at the model construction stage. The

selection criteria rely on the general characteristics of

the training data and may involve the individual

evaluation of single features, whose correlation with

the target is measured through proper statistic or

entropic approaches, or the evaluation of subsets of

features, where the mutual correlation among the

features is also taken into account to minimize

redundancy.

• Wrappers, which search for the feature subset that can

optimize the performance of a given classifier. Then,

the learning algorithm itself is used to evaluate the

merit of each candidate subset of features, with the

computational burden of inducing a model from each

candidate subset, besides the intrinsic cost of the

candidate construction process that depends on the

search strategy used to explore the original feature

space.

• Embedded approaches, where the selection process

relies on the intrinsic capacity of certain classification

algorithms to assign weights to the features, without a

systematic search through different candidate subsets.

Due to their computational efficiency, filter methods are

often preferred in the context of high-dimensional prob-

lems; indeed, the fine search involved by the wrappers,

potentially capable of leading to better feature subsets, may

be practically infeasible depending on the size of the search

space. In turn, embedded approaches often provide a suit-

able trade-off between final predictive performance and

computational cost.

With the aim of exploiting the strengths of different

methods, overcoming at the same time their weaknesses,

new and more sophisticated approaches are constantly been

explored [2] that (i) rely on different algorithms at different

stages of the selection process (e.g. initially reducing the

problem dimensionality by a filter and then further refining

the search by a wrapper) or (ii) combine, at a given stage of

the selection process, the outcome of different selectors

(e.g. different filters). This last approach, which has shown

to be promising to improve the robustness of the selection

process [7], leverages the ideas and the methodologies

developed in the fruitful field of ensemble learning, as

discussed in the next subsection.

2.2 Exploiting the ensemble learning paradigm
for feature selection

Ensemble learning, also referred as ensemble classification,

is a well-established paradigm [14] that relies on the

decisions of multiple models to achieve a better predictive

performance. As observed in [25], a crucial factor for the

success of this approach is the degree of diversity among

the models that are exploited in the ensemble. This diver-

sity can be obtained in different ways: (i) by manipulating

the input data to create a number of diversified training sets

from which deriving, by a given induction algorithm, dif-

ferent models; (ii) by applying different learning algo-

rithms (or differently parameterized versions on the same

algorithm) to a given set of input records; (iii) by hybrid

approaches where diversity is injected both at the data level

and at the algorithm level. Once the different models

(ensemble components) are induced, their predictions are

properly combined in some way (e.g. by weighted or

unweighted voting) to classify new records.

A similar ensemble logic has been recently experi-

mented in the context of feature selection [18]. The ratio-

nale is to obtain a more reliable set of features by

combining the outputs of a number of base selectors, which

should be sufficiently diverse from each other to convey

non-overlapping, and hence complementary, information

on the considered domain. The base selectors can be

functionally homogeneous, if they leverage the same

algorithm, and in this case, their diversity is achieved by

varying the training data (e.g. through resampling tech-

niques). Alternatively, functionally heterogeneous selec-

tors, i.e. different selection algorithms, can be exploited on

the same data but hybrid approaches are also possible

where both the data and the selection algorithms are varied.

In turn, the results produced by the different selectors

can be combined in different ways. In particular, in the

context of high-dimensional problems, the ensemble

components usually exploit a feature ranking procedure

(i.e. assign a score to each single feature), and the com-

bination of the results is then formalized as a rank aggre-

gation problem [26]. A number of aggregation functions

have been proposed for this purpose, and it is not clear

which of them should be chosen for a specific task, but

simple approaches such as mean-based aggregation seem

to be suitable in most cases [27–29]. Strategies that take

feature interactions into account at the aggregation stage

are investigated in [30]. More generally, the combination

of multiple feature subsets into a single ‘‘ensemble subset’’

can be performed according to mixing strategies such those

discussed in [31].
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2.3 Application of ensemble feature selection
to real-world problems

Theoretically, ensemble feature selection is potentially

superior to standard feature selection techniques in many

aspects. Indeed, it has been observed [11] that single

selection algorithms tend to select locally optimal solutions

in the search space of candidate subsets, while the

ensemble approach has more chance to reach a better

approximation to the best solution by ‘‘averaging’’ differ-

ent hypotheses. Furthermore, it is possible that multiple

subsets are capable of discriminating the data equally well,

and different subsets may be selected under different set-

tings, with limited stability and reproducibility of results.

In these contexts, the ensemble approach may give a more

stable outcome [10].

In practice, however, the real potential of ensemble

feature selection is still object of debate and no clear

guidelines are available for choosing the best ensemble

strategy for a given problem. As regards the functionally

heterogeneous approaches, a number of experimental

studies have shown that, if properly built and tuned, they

can outperform single selection methods in terms of final

predictive performance. For example, micro-array data

classification can benefit from the combination of different

selection methods, as reported in [12, 32, 33]. In the con-

text of text categorization, the study proposed in [34]

explores the aggregation of three popular feature ranking

techniques. A comprehensive evaluation of different

ensembles, composed of two to 18 individual selectors, is

conducted by Wang et al. [35] on real-world software

measurement data. On the other hand, limited evidence

exists on the potential of this approach in terms of selection

stability [12, 36]. Further, in case of heterogeneous

ensembles, the choice of how many and which methods to

combine can be difficult, being highly dependent on the

specific characteristics of the data at hand, and often

requires an expensive phase of preliminary trials.

Actually, when the stability of the selection outcome is a

primary concern (especially if the high dimensionality is

coupled with a comparatively small number of instances),

the use of homogeneous ensembles has been presented as

an effective strategy [10]. In this case, all the base selectors

(whose number can be very large compared to the size of

heterogeneous ensembles) exploit the same algorithm but

are trained on different sampled versions of the original

data. Indeed, the outstanding studies of Saeys et al. [11]

and Abeel et al. [21] have shown that this strategy can

significantly improve the stability of standard selection

techniques in the context of biomarker discovery from gene

expression and mass spectrometry data. However, analys-

ing different datasets from the same domain, other authors

[37] have observed that the beneficial impact of the

ensemble approach is limited to certain selection methods,

at least for the considered subset size (100 genes). The

effectiveness of this ensemble strategy on high-dimen-

sional biomedical data is also evaluated by further studies

[38, 39], which remark the need for wider experiments on

different types of data. Besides the biological domain,

Woznica et al. [30] have also investigated homogeneous

ensembles in the context of text categorization tasks, but no

work exists, to the best of our knowledge, that extensively

evaluates the robustness of ensemble feature selection

across multiple real-world scenarios and multiple learning

settings (e.g. different numbers of classes and different

instances-to-features ratios).

3 Methods

Encompassing different application domains, our study

aims to evaluate the extent to which homogeneous

ensembles can really improve the robustness of the selec-

tion process, ensuring a satisfactory trade-off between

selection stability and predictive accuracy. Indeed, as

previously observed, they have been so far evaluated in a

limited number of classification tasks (and often only for

feature subsets of a given size), leaving unanswered

important questions about their large-scale applicability

and utility. To give a contribution to the field, we con-

ducted extensive experiments to compare the usual ‘‘sim-

ple’’ version of seven selection methods, chosen to

represent different heuristics and selection approaches (as

explained in Sect. 3.1), to their ‘‘ensemble’’ version,

implemented according to the strategy detailed in Sect. 3.2.

The comparison has been carried out in terms of both

stability and predictive performance, according to the

methodology presented in Sect. 3.3.

3.1 Simple ranking approach

In general, given a set of training instances, each described

by N features, the output of feature selection can be given

in the form of

(i) A weighting of the N features, i.e. a weight is

assigned to each feature based on a suitable rele-

vance criterion (e.g. the degree of correlation

between the feature and the target class);

(ii) A ranking of the N features, i.e. the features are

ordered based on their relevance, from the most

important to the least important (of course, a

feature weighting can be simply converted to a

feature ranking by sorting the weights);
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(iii) A subset of the N features, which can be chosen

based on a subset evaluation strategy (as in the

wrapper approaches) or grouping together features

that have individually shown to be highly predic-

tive (e.g. a weighting/ranking of the features can

be converted to a feature subset by setting a

suitable threshold).

According to common practice in high-dimensional data

analysis, we adopt here a ranking-based selection frame-

work which is flexible enough to encompass the use of

filter methods, which weigh the features based on their

correlation with the target class (such as Chi squared [26]

and information gain [40]), and embedded methods, which

leverage the features’ weights induced by a proper classi-

fication algorithm (such as SVM-based selectors [41]). In

both cases, features’ weights can be used to build a ranked

list where the features appear in decreasing order of rele-

vance, from the most important (rank 1) to the least

important (rank N). In turn, this list can be cut at a proper

threshold point (th) to produce a subset of highly dis-

criminative features, as schematized in Fig. 1. Though

unable to automatically determine the optimal subset size

(indeed, the choice of the ‘‘best’’ threshold value often

requires a fine tuning, besides a good knowledge of the

underlying domain), this approach is capable of removing

irrelevant and noisy features in a simple and cost-effective

way, especially when the size of the search space makes

impractical the direct adoption of wrapper-based search

strategies.

In what follows, we give a brief description of the seven

ranking methods included in our experimental study:

• Chi-squared (v2) quantifies the relevance of each single

feature by measuring its Chi-squared statistic with

respect to the class: the larger the Chi-squared, the

higher the importance of the feature for the task at hand

[26].

• Information Gain (InfoG) leverages the concept of

entropy [40]. Specifically, a weigh for each feature is

derived by evaluating the extent to which the class

entropy decreases (and, hence, the uncertainty in the

class prediction decreases) when the value of that

feature is known.

• Gain Ratio (GainR), in turn, relies on the concept of

entropy. Essentially, it differs from InfoG for a

normalization factor that tries to compensate for the

information gain’s bias towards features with more

values [40].

• OneR ranks the features using the rule-based classifi-

cation algorithm proposed by Holte [42]. Basically, for

each feature, the algorithm finds a simple rule by

determining the majority class for each feature’s value.

Then, the accuracy of each rule is evaluated, and the

features are ordered according to the quality of the

corresponding rules.

• ReliefF evaluates the features according to their ability

to differentiate between data points that are near to each

other in the attribute space [43]. Essentially, a sample

instance is drawn from the dataset, and the values of its

features are compared to those of the instance’s nearest

neighbours, one (or more) for each class. A relevance

score is then assigned to each feature based on the

assumption that a ‘‘good’’ feature should have the same

value for instances from the same class and different

values for instances of different classes. Iteratively, a

suitable number of sample instances are considered, and

the features’ scores are updated accordingly. This

method is often implemented by weighting the nearest

neighbours by their distance: in our study we employed

this weighted version of the algorithm.

• SVM-AW exploits the embedded capability of a linear

SVM classifier to assign a weight to each feature, based

on the contribution the feature gives to the decision

function induced by the classifier [40]; the absolute

value of this weight (AW) is used to build the ranked

list of the features.

• SVM-RFE, in turn, leverages the weights assigned to the

features by a linear SVM classifier. Once the features

are weighted, a recursive feature elimination (RFE)

strategy is adopted that consists in iteratively removing

the features with the lowest weights and repeating the

classifier construction (and the weighting process) on

the remaining features [44]. In our experiments, we

evaluated two versions of this method: SVM-RFE10,

where the percentage of features removed at eachFig. 1 Simple ranking approach
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iteration is 10%, and SVM-RFE50, where this percent-

age is 50%.

The above selection algorithms are representatives of

quite different (and popular) heuristics. In particular, as

previously mentioned, some of them (v2, InfoG, GainR,

ReliefF) can be categorized as filters since do not leverage

any classifier, while the others (OneR, SVM-AW, SVM-

RFE) exploit the embedded capability of certain classifi-

cation algorithms to assign weights to the features. From

another point of view, the adopted selection algorithms can

be distinguished into univariate approaches (v2, InfoG,

GainR, OneR), which evaluate each feature independently

from the others, and multivariate approaches (ReliefF,

SVM-AW, SVM-RFE), which take into account the inter-

dependencies among the features. This twofold catego-

rization of the adopted selection algorithms is summarized

in Table 1.

3.2 Ensemble ranking approach

As mentioned in Sect. 2, the applicability of the ensemble

learning paradigm to feature selection has been increas-

ingly investigated in recent years, especially in the context

of ranking-based frameworks, as the one here considered.

In particular, as summarized in Fig. 2, functionally

homogeneous ensembles involve a number of base selec-

tors which exploit the same core algorithm but are trained

on different versions of the original data. A common

strategy is the adoption of sampling techniques such as

bagging or bootstrap aggregating [40], i.e. a number B of

samples (bootstraps) are drawn with replacement from the

input data according to a uniform probability distribution.

Due to the diversity of the training data, the base selectors

can then produce different outputs to be subsequently

combined into a single final outcome.

Specifically, we focus here on constructing ensembles of

rankers, i.e. each base selector provides as output a ranked

list where the original features are ordered according to

their relevance. The different ranked lists are then com-

bined into a single ensemble list using a suitable aggrega-

tion function that assigns each feature an ‘‘overall score’’

based on the feature’s position (rank) in the original lists.

More formally, let Lk be the ranked list resulting from

the application of a given selection algorithm to the kth

bootstrap sample (k = 1,…, B). For each of the original

features fi (i = 1,…, N), an overall score is then calculated

as follows:

scorei ¼ score fið Þ ¼ aggrðri1; ri2; . . .; riBÞ;

where rik is the rank of the ith feature in the kth ranked list

and aggr is a suitable aggregation function. Based on their

overall scores, the features are then ordered, from the most

important to the least important, in the final ensemble list.

In turn, this list can be cut at a proper threshold point (th) to

obtain an ensemble subset of highly discriminative

features.

In this study, the overall score of each feature is simply

obtained by averaging its rank across all the B lists pro-

duced by the base selectors: the smaller the average rank,

the most important the feature is. Though more sophisti-

cated aggregation strategies could be adopted, they require

higher execution times and often result in a limited (or

null) improvement in terms of selection stability and/or

predictive performance [27, 28]. In turn, our previous

research on high-dimensional genomic data showed that

different aggregation functions often produce comparable

results [29].

3.3 Evaluating stability in conjunction
with predictive performance

Feature selection stability has been a neglected issue until

few years ago, and only recently, a number of method-

ologies and metrics have been proposed [9, 10, 45–47] for

the experimental assessment of stability. In most of the

studies, however, stability is not measured in conjunction

with predictive performance but in independent experi-

ments, thus making difficult to capture the extent to which

a given selection approach impacts on the trade-off

between stability and accuracy, which are both funda-

mental for real-world applications. (Indeed, stable but not

accurate solutions would not be meaningful; on the other

hand, accurate but not stable results could have limited

utility for practitioners.)

The methodology here adopted involves the evaluation

of both the aspects, i.e. the stability level of the selected

features and the predictive performance of the classifica-

tion models built from them. Specifically, given the input

dataset, we repeatedly perform random sampling (without

replacement) to create T different training sets, each con-

taining a fraction X of the original records. For each

training set, a test set is also formed using the remaining

fraction (1-X) of the instances.

The feature selection process is then carried out in a

twofold way:

Table 1 Categorization of the adopted selection algorithms: filter

versus embedded methods and univariate versus multivariate

approaches

Univariate Multivariate

Filter v2, InfoG, GainR ReliefF

Embedded OneR SVM-AW, SVM-RFE
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(i) Simple ranking approach. A given selection

method is applied separately on each training set

(as shown in Fig. 1) to obtain the corresponding

ranked list and the resulting feature subset, with the

first th features. This results in T different feature

subsets (referred as simple subsets in what follows).

(ii) Ensemble ranking approach. An ensemble version

of the same selection method is implemented

according to the strategy described in Sect. 3.2,

i.e. each training set is in turn sampled to construct

B bootstraps (see Fig. 2) from which to derive the

ensemble list (which is the aggregation of B ranked

lists). An ensemble subset, with the first th features

of the ensemble list, is hence derived for each

training set, resulting in a total of T ensemble

subsets.

In both simple and ensemble settings, a classification

model is built on each training set using the selected fea-

ture subset, and the model performance is measured

(through suitable metrics which can be chosen in depen-

dence on the characteristics of the data at hand) on the

corresponding test set. By averaging the classification

performance of the resulting T models, we can obtain an

estimate of the effectiveness of the applied selection

approach (simple or ensemble) in identifying the most

discriminative features.

At the same time, the stability of both simple and

ensemble ranking is measured by performing a similarity

analysis on the feature subsets derived from the T training

sets. Indeed, the more similar they are, the more stable the

selection approach. In more detail, for each pair of subsets

Si and Sj (i, j, = 1,…, T), we use a proper consistency index

[48] to quantify their degree of similarity:

simij ¼
jSi \ Sjj � th2

�
N

th � th2
�
N

where th is the size of the subsets (corresponding to the cut-

off threshold) and N the overall number of features. The

similarity simij simply expresses the degree of overlapping

between the subsets, i.e. the fraction of features which are

common to them (|Si \ Sj|/th), with a correction term

reflecting the probability that a feature is included in both

subsets simply by chance. The need for this correction,

which increases as the subset size approaches the total

number of features, is experimentally demonstrated for

example in [49].

The resulting similarity values are then averaged over

all pair-wise comparisons, in order to evaluate the overall

degree of similarity among the T subsets and hence the

stability level of the selection process:

stability ¼ simavg ¼ 2

TðT � 1Þ
XT�1

i¼1

XT

j¼iþ1

simij

This analysis is performed separately for the simple and

the ensemble subsets, and in both the settings, different

values of the cut-off threshold (i.e. different subset sizes)

are considered. Indeed, the ‘‘optimal’’ cut-off value may be

dependent on the characteristics of the data, as well as on

the ranking criteria adopted, so it is worth exploring the

robustness of the selection process within a wide range of

threshold values.

Note that we do not provide an automatic way to find

that optimal cut-off, which is still an open problem [50],

Fig. 2 Ensemble ranking

approach
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but investigate the patterns of both stability and predictive

performance for different subset sizes, in order to provide

useful guidance for knowledge discovery applications, as

discussed in what follows.

4 Experimental analysis and discussion

As explained in Sect. 3, we empirically evaluated the

performance of different ranking methods (v2, InfoG,

GainR, OneR, ReliefF, SVM-AW, SVM-RFE10, SVM-

RFE50) in their simple and ensemble version. A detailed

description of this study is here presented; in particular, the

datasets used as benchmarks and the settings of the

experiments are described in Sect. 4.1, while the experi-

mental results are illustrated in Sects. 4.2 (stability analy-

sis) and 4.3 (predictive performance analysis); a further

discussion of the results is finally given in Sect. 4.4.

4.1 Datasets and settings of the experiments

Our study focuses on high-dimensional domains where the

automatic extraction of meaningful and stable feature

subsets is still an open issue. The intrinsic difficulty of a

feature selection task is usually evaluated by the ratio

between the number of instances (I) and the number of

features (N), and the problems with a ratio I/N � 1 are

recognized to be much more challenging. Indeed, most of

the studies that investigate the robustness of ensemble

feature selection have been so far conducted on high-di-

mensional genomic data [e.g. [21, 36, 37]], where the

number of features exceeds the number of records by

several order of magnitude; a few studies [30, 51], how-

ever, have also considered text categorization tasks where

the number of features and the number of records are not so

different. With the aim of evaluating the large-scale

applicability and utility of ensemble feature selection, we

conducted extensive experiments that encompass 18 clas-

sification tasks with very different I/N ratios [52–64], as

given in Table 2, ranging from the setting I/N � 1 (as in

the Glioblastoma dataset, where I/N = 0.004) to the setting

I/N[ 1 (as in the MiceProtein dataset, where I/N = 14.03).

Specifically, for each of the considered datasets, Table 2

reports a brief description of the task, the number of classes

(both binary and multi-class problems are considered), the

number of features, the number of instances and the

instances-to-features ratio. As we can see, the 18 datasets

have been chosen to be representatives of different kinds of

applications, ranging from the classification of genomic

and proteomic data to the analysis of texts, images, videos

as well as specific kinds of signals (e.g. voice recordings

and ECG recordings). An artificial dataset prepared for the

NIPS 2003 feature selection challenge [53] has also been

included.

Each of the above benchmarks has been managed

according to the methodology presented in Sect. 3.3. In

particular, for evaluating both stability and predictive

performance, we built T = 20 training/test sets from the

original set of records. (A number of preliminary experi-

ments with higher values of T did not result in significantly

different results.) As regards the other parameters of the

methodology, i.e. the fraction X of the original records

included in each training set, the number B of bootstraps

used for the ensemble construction and the cut-off thresh-

old th that determines the size of the selected subsets, we

explored a number of potentially interesting values as

detailed in what follows:

• We experimented with X = 0.70, X = 0.80 and

X = 0.90, in order to evaluate the extent to which the

amount of perturbation introduced in the training data

affects the stability of the selection process; in partic-

ular, X = 0.90 corresponds to a ‘‘soft’’ perturbation

setting, where the T training sets are not so different to

each other, while lower values of X lead to training sets

that overlap to a less extent. Since our experiments

showed that the stability of the selection process

decreases in a very dramatic way as the value of

X decreases, we did not consider ‘‘hard’’ perturbation

settings, with fractions X\ 0.70.

• In the construction of the ensemble lists, one for each

training set, we considered three different settings, i.e.

B = 20, B = 50 and B = 100. Since B corresponds to

the size of the ensemble, i.e. to the number of ranked

lists that are aggregated to produce the ensemble list, a

proper setting of this parameter is crucial to ensure an

optimal trade-off between final performance and com-

putational cost. In particular, we observed that the use

of B = 100 resulted in drastically increased run times,

with a limited (or null) improvement in terms of final

performance (as discussed in Sect. 4.2), so higher

values of B were not considered at all.

• Finally, regarding the cut-off threshold used to derive

the simple and the ensemble subsets, we explored a

very wide range of values, from 0.2 to 40% of the

overall number of features. Of course, in dependence of

the I/N ratio, some threshold values may be more

suitable/interesting than others. In particular, when I/

N � 1, the focus is usually on small feature subsets,

but considering larger subset sizes can be still useful,

even in the setting I/N � 1, in case the ranking process

aims at achieving a preliminary dimensionality reduc-

tion, before the application of more sophisticated

selection techniques.
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The experimental study was conducted leveraging the

WEKA machine learning workbench [65], which provides

several functions for data manipulation, including the

bootstrap aggregating approach, as well as several algo-

rithms for feature ranking and classification. Considering

the high number of datasets and the multiple settings of the

experiments, the amount of results is large and, for the sake

of clarity and readability, only a summary of them will be

presented in the next subsections. For a more comprehen-

sive view of the results, the reader can refer to the attached

supplementary material.

4.2 Stability analysis

As a first point, we focus on the stability results, which give

a measure of the extent to which the selection process is

sensitive to perturbations in the input data. In our setting, as

explained in Sect. 3.3, these perturbations are obtained by

creating different training sets, each containing a fraction

X of the original records. In this regard, it is interesting to

initially consider how the stability, measured as the aver-

age similarity among the feature subsets extracted from the

different training sets, is affected by the X value, i.e. by the

amount of training data perturbation. To this end, limited to

the simple ranking approach, Fig. 3 shows the stability

behaviour of the selection methods here considered (v2,
InfoG, GainR, OneR, ReliefF, SVM-AW, SVM-RFE10,

SVM-RFE50), for different values of X and different subset

sizes, on the Glioblastoma dataset, which is the one with

the lowest I/N ratio (see Table 2).

As we can see, even a small amount of perturbation

(X = 0.90) affects the stability in a significant way; indeed,

the average similarity among the feature subsets selected

from the different training sets is far lower than the max-

imum value of 1. As the amount of perturbation increases,

the stability level dramatically falls off, for all the selection

methods, though some of them exhibit a more robust

behaviour. Similar considerations can be made for the other

Table 2 Datasets used in the empirical study

Dataset name Problem description and reference Number

of classes

Number of

features (N)

Number of

instances (I)

I/

N ratio

Glioblastoma Gene expression-based classification of malignant gliomas [52] 4 12,625 50 0.004

Dexter Text categorization benchmark as prepared for the NIPS 2003 feature

selection challenge [53]

2 20,000 300 0.015

Ovarian Proteomic patterns in serum that distinguish ovarian cancer from non-

cancer [54]

2 15,154 253 0.017

Arcene Proteomic benchmark built by merging different data sources, with

the addition of spurious and noisy features [53]

2 10,000 200 0.020

Lymphoma Gene expression-based classification of lymphoid malignancies, with

unbalanced numbers of samples per class [55]

9 4026 96 0.024

Colonoscopy Classification of gastrointestinal lesions from colonoscopy videos [56] 3 1396 76 0.054

LSVT voice

rehabilitation

Analysis of vocal performance degradation in Parkinson’s disease

subjects [57]

2 310 126 0.406

Micromass Identification of mixed bacterial species from mass spectrometry data

[58]

20 1300 571 0.439

Secom Defect recognition in semi-conductor manufacturing data [59] 2 590 520 0.881

Urban land

cover

Urban land cover classification from high-resolution aerial image data

[60]

9 147 168 1.143

CNAE-9 Categorization of free-text business descriptions [61] 9 856 1080 1.262

Arrhythmia Arrhythmia disease classification, based on features extracted from

ECG recordings [59]

13 279 452 1.620

Internet

advertisements

Recognition of advertisements on Internet pages [62] 2 1558 3279 2.105

Sonar Classification of sonar signals [59] 2 60 208 3.467

Madelon Artificial dataset, which was part of the NIPS 2003 feature selection

challenge [53]

2 500 2600 5.200

Semeion Handwritten digits recognition [59] 10 256 1593 6.223

Scene Outdoor scene classification from images [63] 2 294 2407 8.187

MiceProtein Classification of Down syndrome mice, based on the expression levels

of proteins measured in the cerebral cortex [64]

8 77 1080 14.03
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datasets in Table 2, even for higher I/N ratios, thus con-

firming that the instability of the selection outcome is a

critical (though often neglected) concern. Quite surpris-

ingly, even in the setting I/N[ 1, some selection methods

exhibit a problematic behaviour in terms of stability. The

complete results, here omitted for the sake of space, are

given in the attached supplementary material (section A).

The extent to which the adoption of an ensemble

selection strategy improves the robustness of the selection

process, in different domains and experimental settings,

has been the main focus of our experimental study. In this

regard, Figs. 4, 5, 6, 7 and 8 show, for five of the 18

datasets in Table 2, the stability of the different ranking

methods, in both simple and ensemble versions, for dif-

ferent numbers of selected features, with a data perturba-

tion level of X = 0.80. Specifically, for Dexter (Fig. 4),

Ovarian (Fig. 5) and Lymphoma (Fig. 6) datasets, where

the instances-to-features ratio is very low, the stability

patterns are shown for subset sizes th B 20% of N, with a

main focus on small thresholds, while for LSVT Voice

Fig. 3 Glioblastoma dataset (I/N = 0.004): stability patterns of the different ranking methods, in the simple ranking setting, for different levels of

data perturbation (X = 0.90, X = 0.80, X = 0.70)

5960 Neural Computing and Applications (2020) 32:5951–5973

123



Rehabilitation (Fig. 7) and Urban Land Cover (Fig. 8)

datasets, with higher I/N ratios, larger feature subsets are

also considered. Further, as explained in Sect. 4.1, three

ensemble versions have been evaluated for each selection

method, with different numbers of bootstraps (B = 20,

B = 50, B = 100).

As we can see, the effectiveness of the ensemble

approach is different for the different methods and varies in

dependence on the subset size and the specific character-

istics of the data at hand.

Specifically, the univariate filters v2 and InfoG exhibit a

very similar behaviour and, when used in their simple

form, turn out to be more robust than other selection

methods. Globally, they seem to benefit to a limited extent

from the ensemble approach which can be still useful,

however, for some threshold values. In particular, in the

Lymphoma dataset (Fig. 6), that presents a very low

instances-to-features ratio and a high number of classes, the

ensemble implementation of v2 and InfoG is appreciably

Fig. 4 Dexter dataset (I/N = 0.015): stability patterns of the different ranking methods, in the simple and in the ensemble version (X = 0.80)
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more robust for small feature subsets (where biomedical

experts typically focus their attention).

The other univariate filter, i.e. GainR, has a behaviour

quite similar to v2 and InfoG for some kinds of data, e.g. in

the text categorization domain (Fig. 4), but turns out to be

intrinsically less stable in other application contexts, e.g.

on mass spectrometry data (Fig. 5), where the adoption of

an ensemble selection strategy turns out to be quite bene-

ficial. In turn, the remaining univariate method, OneR,

which exploits a rule-based classifier to rank the features,

has undoubtedly a problematic behaviour in terms of sta-

bility when used in its simple form. It is clear that this

method, irrespective of the specific problem at hand, can

take significant advantage of the ensemble implementation,

with improvements in stability even in the order of 50%

(and more) of the original value.

About the multivariate selection approaches, we can see

that the stability behaviour of the ReliefF filter is highly

dependent on the characteristics of the data at hand. Indeed,

in Figs. 5, 6 and 8, it exhibits a good stability in its simple

Fig. 5 Ovarian dataset (I/N = 0.017): stability patterns of the different ranking methods, in the simple and in the ensemble version (X = 0.80)
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form and does not benefit at all from the ensemble

implementation. Nevertheless, the ensemble approach is

quite beneficial in the text categorization domain (Fig. 4),

where the simple version of ReliefF is very unstable, and in

the LSVT Voice Rehabilitation dataset (Fig. 7), but in this

case only for large threshold values.

Further, as regards the other multivariate techniques

included in this study, i.e. the embedded SVM-based

selectors (SVM-AW, SVM-RFE10 and SVM-RFE50), we

can see that SVM-AW has in turn a domain-dependent

behaviour, sometimes taking advantage of the ensemble

approach and sometimes not. In contrast, the two iterative

selectors SVM-RFE10 and SVM-RFE50 exhibit a quite

poor stability in their simple form, irrespective of the

specific characteristics of the data at hand. In this case, the

advantage of adopting an ensemble strategy is unques-

tionable, with improvements in stability that are somewhat

dataset dependent but always significant.

Irrespective of the specific behaviour of each selection

method, Figs. 4, 5, 6, 7 and 8 clearly show that using 50

bootstraps for the ensemble construction can be a suit-

able choice. Indeed, 20 bootstraps turn out to be sometimes

Fig. 6 Lymphoma dataset (I/N = 0.024): stability patterns of the different ranking methods, in the simple and in the ensemble version (X = 0.80)
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insufficient, resulting in a still improvable outcome, while

the use of 100 bootstraps is not beneficial since it increases

in a significant way the computational cost without

improving (with a few exceptions) the robustness of the

selection process.

It is important to remark that the above considerations

are not limited to the five benchmarks in Figs. 4, 5, 6, 7 and

8, but are essentially valid for the other datasets in Table 2

too. In particular, as previously highlighted, the domains

with relatively high instances-to-features ratios are not

exempt from the selection instability issue. Quite interest-

ingly, the adoption of an ensemble selection strategy can be

sometimes useful not only in the hard I/N � 1 setting, but

even when the number of features is quite small compared

to the number of instances, as in the MiceProtein dataset,

which has the highest I/N ratio (Table 2). Indeed, as shown

in Fig. 9, some methods (especially the filters v2, InfoG and

ReliefF) turn out to be stable already in their simple form,

Fig. 7 LSVT Voice Rehabilitation dataset (I/N = 0.406): stability patterns of the different ranking methods, in the simple and in the ensemble

version (X = 0.80)
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while other selectors (especially SVM-RFE10 and SVM-

RFE50) achieve a good stability only in the ensemble

version.

Globally, the analysis performed on the 18 benchmarks

here considered shows that the beneficial impact of the

ensemble approach strongly depends on the intrinsic sta-

bility of the simple selectors: the less stable they are, the

higher the gain in stability achieved in the ensemble ver-

sion. In particular, while the behaviour of the filter methods

can be dependent on the characteristics of the data at hand,

the embedded approaches exhibit in general a poorer

robustness and take significant advantage of the ensemble

implementation, as shown in Figs. 10 and 11. Specifically,

Figs. 10 and 11 show the comparison between the stability

of the simple and the ensemble ranking, for the univariate

OneR and the multivariate SVM-RFE50, respectively, for

the 12 datasets for which that comparison has not been

Fig. 8 Urban Land Cover dataset (I/N = 1.143): stability patterns of the different ranking methods, in the simple and in the ensemble version

(X = 0.80)
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shown above. As we can see, the ensemble ranking is

significantly more robust, with a few exceptions.

4.3 Predictive performance analysis

The stability analysis has been complemented, according to

the methodology presented in Sect. 3.3, with the analysis

of the predictive performance. Specifically, the selected

feature subsets have been used to train both support vector

machines (SVM) and random forest (RF) classifiers, which

have proved to be ‘‘best of class’’ learners in several

domains [66–69]. In particular, for the SVM classifier we

use a linear kernel, while the RF classifier is parameterized

based on common practice in the literature [70, 71]

(log2(th) ? 1 random features and 100 trees). Note that our

focus here is not to find which classifier performs best but

to investigate, for a given classifier and a given selection

algorithm, the impact of using an ensemble selection

strategy.

Fig. 9 MiceProtein dataset (I/N = 14.03): stability patterns of the different ranking methods, in the simple and in the ensemble version

(X = 0.80)
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Though the most suitable metrics for performance

evaluation should be chosen in dependence on the char-

acteristics of the data at hand, our study deals with a high

number of very heterogeneous datasets, as discussed in

Sect. 4.1, so our comparative analysis is carried out using

as a single synthesis measure the AUC, i.e. the area under

the receiver operating characteristic (ROC) curve [40].

Indeed, it is widely employed in previous studies on

ensemble feature selection [e.g. 21, 37] and provides a

richer measure of classification performance than accuracy

or error rate [72].

For the Arcene dataset, as an example, Fig. 12 shows the

AUC performance achieved by both SVM and RF classi-

fiers, when used in conjunction with the different ranking

methods here considered, in their simple and ensemble

version, for different percentages of selected features (with

a special focus on small subset sizes, given the small I/

N ratio). Specifically, the values here reported are obtained

by averaging the AUC results over the T = 20 training/test

sets derived from the original dataset. (The corresponding

standard deviations are in the range 0.03–0.07, with the

highest values registered for smaller feature subsets.)

As we can see, the RF classifier has here a better AUC

performance but, for the purposes of our study, the most

important observation is that, for both SVM and RF, the

average AUC values registered in the simple and in the

ensemble setting are almost identical. The only exception

is the SVM-AW method that leads to inferior AUC results in

the simple version and achieves a significant improvement

in the ensemble version. Noteworthy, for a given classifier,

there is no selection algorithm that turns out to be superior

in terms of final predictive performance. (Indeed, the dif-

ferent methods produce very similar results in terms of

AUC.) This confirms that, for a given problem, different

feature subsets can discriminate the classes equally well.

The above observations are fully confirmed by the AUC

analysis performed on the other datasets in Table 2.

Indeed, irrespective of the I/N ratio and whatever the size

Fig. 10 Stability of the OneR method, in the simple and in the ensemble version (X = 0.80, B = 50), for different datasets
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of the selected subsets, we found that the adoption of an

ensemble selection strategy, which can have a strong

impact on the stability of selection outcome, does not

influence in a significant way the final predictive perfor-

mance. For the sake of space and readability, we summa-

rize in Tables 3, 4 and 5 only the AUC results registered

for the OneR and SVM-RFE50 selection methods, whose

stability behaviour has been discussed in detail previously.

Specifically, for the first six datasets in Table 2 (which

have the lowest I/N ratio), Table 3 shows the AUC per-

formance achieved by both SVM and RF in conjunction

with OneR and SVM-RFE50, in their simple and ensemble

version. We considered here a subset size th = 2% of N,

which is enough to obtain a predictive performance com-

parable to that measured using all the original features (i.e.

without reducing the dimensionality of the T = 20 training

sets built from the original dataset). Note that both SVM

and RF classifiers are known to scale well on high-di-

mensional spaces, but a dimensionality reduction is still

crucial, in several domains, for data understanding/inter-

pretability and knowledge discovery purposes. Further, the

feature subsets selected through ranking techniques as the

one here considered can often be refined through more

sophisticated wrapper approaches that further improve the

final predictive performance [2, 73]. The same AUC

analysis is given in Tables 4 and 5, for datasets with higher

I/N ratios; here larger values of the cut-off threshold are

considered, respectively, th = 10% of N in Table 4 and

th = 20% of N in Table 5. Again, subsets with a predictive

performance comparable to that obtained with the original

feature space are considered, to give an example of the

impact of the adoption of an ensemble selection strategy;

the extended AUC results for different subset sizes are

provided in the attached supplementary material (section

B).

The overall AUC analysis, even considering subset sizes

different from the ones reported in Tables 3, 4 and 5,

clearly shows that the simple and the ensemble ranking are

Fig. 11 Stability of the SVM-RFE50 method, in the simple and in the ensemble version (X = 0.80, B = 50), for different datasets
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almost equivalent in terms of final predictive performance,

irrespective of the specific selection approach (filter or

embedded, univariate or multivariate). When looking at the

trade-off between the predictive performance and the sta-

bility of the selection process, we can then conclude that

the adoption of an ensemble strategy can lead to more

stable feature subsets without compromising at all the

predictive power of these subsets.

4.4 Discussion

Globally, the results presented in Sects. 4.2 and 4.3 confirm

that homogeneous ensembles are effective in making the

feature selection process more robust. Indeed, even in those

domains where the selection of stable subsets is intrinsi-

cally harder, due to a very low instances-to-features ratio,

the ensemble approach can produce better, though some-

times not completely satisfactory, results. In turn, the

applications that are less critical in terms of stability (e.g.

Fig. 12 Arcene dataset (I/N = 0.020): AUC performance of SVM and RF classifiers, in conjunction with the different ranking methods, in their

simple and ensemble version (X = 0.80, B = 50)
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in presence of relatively high values of I/N) can still benefit

from the ensemble approach depending on the number of

selected features and on the adopted selection algorithm.

These findings complement the results of other studies in

the literature which have investigated the robustness of

ensemble feature selection but limited to a single

application domain [36, 39], to a single selection method

[21, 51] or to a given number of selected features [30, 37].

Encompassing different real-world problems and dif-

ferent feature subset cardinalities, our study is exhaustive

in showing that the methods intrinsically less stable, such

as the univariate OneR and the multivariate SVM-RFE,

benefit to a greater extent from the ensemble approach.

Table 3 AUC performance of SVM and RF classifiers, in conjunction with OneR and SVM-RFE50 ranking methods, in their simple and

ensemble version (X = 0.80, B = 50, th = 2% of N), for six datasets having I/N � 1

Dataset SVM classifier RF classifier

OneR SVM-RFE50 Full dataset OneR SVM-RFE50 Full dataset

Simple Ensemble Simple Ensemble Simple Ensemble Simple Ensemble

Glioblastoma 0.875 0.909 0.878 0.896 0.889 0.905 0.940 0.914 0.929 0.912

Dexter 0.882 0.887 0.900 0.898 0.901 0.959 0.945 0.960 0.962 0.943

Ovarian 1.000 0.999 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.996

Arcene 0.851 0.858 0.816 0.836 0.855 0.920 0.924 0.887 0.904 0.912

Lymphoma 0.941 0.943 0.962 0.964 0.964 0.963 0.956 0.972 0.971 0.972

Colonoscopy 0.739 0.733 0.761 0.762 0.771 0.795 0.787 0.751 0.767 0.785

Table 4 AUC performance of SVM and RF classifiers, in conjunction with OneR and SVM-RFE50 ranking methods, in their simple and

ensemble version (X = 0.80, B = 50, th = 10% of N), for six datasets having I/N in the range (0.4, 1.7)

Dataset SVM classifier RF classifier

OneR SVM-RFE50 Full dataset OneR SVM-RFE50 Full dataset

Simple Ensemble Simple Ensemble Simple Ensemble Simple Ensemble

LSVT voice rehabilitation 0.773 0.788 0.859 0.850 0.833 0.880 0.883 0.918 0.913 0.890

Micromass 0.953 0.955 0.956 0.962 0.971 0.990 0.990 0.992 0.994 0.992

Secom 0.521 0.573 0.581 0.583 0.575 0.659 0.733 0.730 0.732 0.736

Urban land cover 0.894 0.897 0.949 0.950 0.950 0.951 0.951 0.982 0.977 0.979

CNAE-9 0.965 0.966 0.966 0.976 0.982 0.979 0.979 0.983 0.986 0.995

Arrhythmia 0.685 0.684 0.690 0.691 0.708 0.781 0.786 0.783 0.788 0.781

Table 5 AUC performance of SVM and RF classifiers, in conjunction with OneR and SVM-RFE50 ranking methods, in their simple and

ensemble version (X = 0.80, B = 50, th = 20% of N), for six datasets having I/N[ 2

Dataset SVM classifier RF classifier

OneR SVM-RFE50 Full dataset OneR SVM-RFE50 Full dataset

Simple Ensemble Simple Ensemble Simple Ensemble Simple Ensemble

Internet advertisements 0.899 0.897 0.922 0.920 0.923 0.975 0.975 0.978 0.980 0.982

Sonar 0.749 0.752 0.735 0.744 0.760 0.892 0.891 0.894 0.902 0.928

Madelon 0.591 0.593 0.559 0.558 0.566 0.800 0.867 0.705 0.702 0.713

Semeion 0.956 0.958 0.974 0.974 0.988 0.980 0.980 0.990 0.989 0.996

Scene 0.679 0.668 0.723 0.728 0.730 0.884 0.902 0.908 0.909 0.918

MiceProtein 0.982 0.982 0.989 0.988 0.996 0.999 0.999 0.999 0.999 1.0 00

5970 Neural Computing and Applications (2020) 32:5951–5973

123



Indeed, it significantly improves the robustness of the

selection process with no degradation in the predictive

performance of the selected subsets. Other methods, such

as the univariate InfoG and the multivariate ReliefF, turn

out to be intrinsically more robust but may still take

advantage of the ensemble implementation for some kinds

of data (and in dependence on the size of the selected

subsets).

Interestingly, for each of the benchmarks here consid-

ered, the adoption of an ensemble strategy has the effect of

reducing the gap between the least and the most

stable methods, hence making the choice of the specific

selection algorithm less decisive for the final outcome. This

is noteworthy for practitioners and final users that could

take advantage, in the ensemble setting, of functionally

different, but almost equally robust, selection methods. We

point out, though, that equally robust methods do not

necessarily result in the same set of selected features.

With this regard, it would be interesting to deeply

investigate the extent to which the adoption of an ensemble

implementation affects the ‘‘intrinsic’’ similarity of dif-

ferent selection algorithms, i.e. the degree of overlapping

among the subsets they produce. According to the

methodology presented in [74], we performed a number of

experiments to compare the composition of the subsets

selected by the various ranking methods here considered, in

both the simple and in the ensemble setting. Interestingly, it

turns out that the similarity among the selected subsets

often increases in the ensemble setting, though the

ensemble subsets still overlap only to some extent. The

preliminary results of this analysis, for a number of datasets

chosen to be representative of different I/N ratios, are given

in the attached supplementary material (section C). Further

research will be carried out on this topic, with extensive

experiments on more datasets and for a wide range of

subset sizes.

To conclude this discussion, it can be useful to provide

the reader with some details about the computational

impact of the selection methods here adopted. Of course,

the ensemble approach poses greater demands in terms of

resource consumption, the execution time being dependent

on the specific ensemble implementation. Specifically, in

case of homogeneous ensembles as the ones here consid-

ered, the cost of building an ensemble list increases linearly

with the number of bootstraps (i.e. with the number of

ranked lists involved in the aggregation process). In turn,

the cost of building a single ranked list depends on the

number of instances/features of the dataset at hand as well

as on the adopted selection algorithm. To give an idea, for

the Dexter dataset, which is the benchmark with the highest

number of features (20,000) among the ones in Table 2, the

execution times1 for the construction of a single ranked list

are as follows: about 1 s for ReliefF, 2 s for v2, InfoG,

GainR and SVM-AW, 3 s for SVM-RFE50, 6 s for SVM-

RFE10, 30 s for OneR. But the most demanding bench-

mark, in terms of resource consumption, is the Internet

advertisements dataset where the high number of features

(1558) is coupled with a quite high number of instances

(3279); in this case, the execution times are as follows:

about 1 s for v2, InfoG and GainR, 7 s for OneR and SVM-

AW, 21 s for SVM-RFE50, 96 s for SVM-RFE10 and 110 s

for ReliefF. For all the other datasets included in our study

the computational cost turned out to be sensibly lower. Of

course, since the time required for the ensemble con-

struction increases proportionally to the number of the

ensemble components, the overall computational cost may

be quite high, depending on the characteristics of the

dataset at hand. Distributing the ensemble components over

several nodes could be a way to improve the overall effi-

ciency, as discussed in [19].

5 Conclusions

Although the literature on feature selection stability is still

quite limited, an increasing number of studies recognize

the importance of devising feature selection protocols that

ensure an acceptable trade-off between the final predictive

performance and the stability of the selection process. This

work contributes to demonstrate that the ensemble selec-

tion paradigm can be, in this regard, a suitable option.

Specifically, we experimentally explored the effective-

ness of a functionally homogenous ensemble approach

which involves the application of a given selection algo-

rithm to a number of diversified datasets derived from the

original set of records. As shown by extensive experiments

conducted on high-dimensional benchmarks from different

domains, this ensemble setting can lead to a significant

gain in stability without any degradation of the predictive

performance.

The extent to which the ensemble implementation out-

performs the simple version of a given algorithm is

strongly dependent on the ‘‘intrinsic’’ stability of the

algorithm itself, with larger gains in robustness for the least

stable methods. It is worth highlighting that even selection

methods that are quite different to each other (from an

algorithmic point of view) tend to exhibit a similar per-

formance, in terms of both accuracy and stability, when

used in their ensemble version (i.e. when diversity is

injected in the training data). This does not mean, however,

that such ensemble selectors will result in the same set of

selected features: indeed, they may still produce subsets

that contain different features, though exhibiting a similar

1 Experiments were performed with a CPU of 3.3 GHz and 8 GB of

RAM.
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performance. These subsets, in turn, could be jointly

exploited to achieve a better understanding of the under-

lying domain.

Indeed, as future line of research, it could be interesting

to explore the full potential of hybrid ensemble approaches,

where diversity is injected both at the data level and at the

algorithmic level. This might open the way to the definition

of more flexible selection strategies which leverage mul-

tiple heuristics while reducing the degree of dependence on

the specific composition of the training data.
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