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Abstract
In this contribution, we consider the classification of time series and similar functional data which can be represented in

complex Fourier and wavelet coefficient space. We apply versions of learning vector quantization (LVQ) which are

suitable for complex-valued data, based on the so-called Wirtinger calculus. It allows for the formulation of gradient-based

update rules in the framework of cost-function-based generalized matrix relevance LVQ (GMLVQ). Alternatively, we

consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the

classification of time-domain representations by means of conventional GMLVQ. In addition, we consider the application

of the method in combination with wavelet-space features to heartbeat classification.

Keywords Classification � Supervised learning � Functional data � Learning vector quantization � Relevance learning �
Dimensionality reduction

1 Introduction

Time series constitute an important example of functional

data [1]: Their time-domain-discretized vector represen-

tations comprise components which reflect the temporal

order and are often highly correlated over characteristic

times. This is in contrast to more general datasets, where

the feature vectors are concatenations of more or less

independent quantities and without any meaningful inter-

pretation of their order.

The machine learning analysis of time series data, e.g.,

for the purpose of classification, should take into account

their functional nature. Recently, prototype-based systems

have been put forward, which employ the representation of

data and prototypes in terms of suitable basis functions

[2, 3]. In addition, corresponding adaptive distance mea-

sures can be defined and trained in the space of expansion

coefficients [4–6]. Hence, the functional nature of data is

taken advantage of, explicitly. At the same time, it is

possible to compress high-dimensional data by functional

approximations, thus reducing computational effort and—

potentially—the risk of over-fitting.

Examples of the basic approach include the application

of wavelet representations of mass spectra [7] or hyper-

spectral images [8], and also polynomial expansions of

smooth functional data [2, 3].

In the context of signal processing, the discrete Fourier

transform (DFT) to the frequency domain is a popular tool

which can be applied to time series or more general,

sequential data. In the following, the discussion is pre-

sented mostly in terms of actual time series, but it is

understood that methods and results would carry over to

suitable sequential data from other contexts.

The standard formulation of the DFT resorts to the

determination of complex coefficients, conveniently.

Hence, we suggest and study the combination of DFT

functional representations with the extension of
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generalized matrix relevance learning vector quantization

(GMLVQ) [9, 10] to complex feature space [11].

We present furthermore the formalism to back-trans-

form the resulting prototypes and relevance matrix to the

time domain, thus retaining the intuitive interpretability of

the LVQ approach.

We apply the suggested framework to a number of

benchmark datasets [12] and study, among other aspects,

the dependence of the performance on the approximation

quality, i.e., the number of coefficients considered.

In addition, we compare performance with an approach

that resorts to the concatenation of the imaginary and real

parts of coefficients in a real-valued feature vector. The

application of conventional GMLVQ classification in the

time domain serves as an important and intuitive baseline

for comparison of performances and for the interpretation

of the obtained relevance matrices.

Some of our results have been presented at the Work-

shop on Self-Organizing Maps and Learning Vector

Quantization (WSOM? 2017) [13]. Here we extend the

scope of the work significantly by considering wavelet

representations of time series, which provide local features

of the signal, in contrast to the standard DFT. We study the

usefulness of the combination of wavelet representations

with the extension of GMLVQ to complex feature space

for heart beat classification in ECG data. We apply the

method to the well-known MIT-BIH dataset [14]. We study

the performance of general learning and patient-specific

learning, for both full-wavelet representations and trun-

cated representations. We interpret the classifiers in

wavelet space, and we also discuss the back transformation

of prototypes, for retaining time-domain interpretability.

2 The mathematical framework

In this section, we present the mathematical framework

that underlies the method. This consists of the discrete

Fourier transform (DFT), the dual-tree complex wavelet

transform (DTCWT), the adaptation of the machine

learning algorithm GMLVQ to complex-valued feature

space using Wirtinger calculus [15] and the back trans-

formation of the classifiers that retains interpretability in

the original time domain of the data.

2.1 Discrete Fourier transform

Sampling a continuous process f(t) with sampling interval

DT results in a potentially high-dimensional feature vector

x 2 RN containing the values of f(t) at the sampling times,

f ðiDTÞ; i ¼ 0; 1; . . .;N � 1. The time-domain vector x 2

RN can be written as a linear combination of sampled

complex sinusoids:

x½t� ¼
XN�1

k¼0

xf ½xk�e�j2ptk=N ; t ¼ 0; 1; 2; . . .;N � 1; ð1Þ

where the coefficients xf ½xk� 2 C can be calculated effi-

ciently by the DFT [16]:

xf ½xk� ¼
XN�1

t¼0

x½t�e�j2pkt=N ; k ¼ 0; 1; 2; . . .;N � 1: ð2Þ

As in Eqs. (1) and (2) and the rest of the discussion, the

subscript f is used to denote a vector or matrix in the

Fourier domain. As can be observed in Eq. (2), the trans-

formed feature vectors consist of N coefficients. It should

be noted that the coefficients of xf ½xk� are conjugate

symmetric and therefore all the information is contained in

the first bN=2c þ 1 coefficients:

xf ½xk�; k ¼ 0; 1; . . .; bN=2c. By restricting the number of

coefficients to a number n\bN=2c þ 1 in Eq. (1), an

approximation x̂½t� of the original time-domain vector x½t�
is obtained. Note that for the purpose of classification, in

some datasets the discriminative information may be con-

tained in the higher band of frequencies as well. However,

in this contribution, we consider smooth versions of the

time series which are obtained by cutting off high

frequencies.

Note that according to Eq. (2), the computation of a

single coefficient xf ½xk� 2 C for the kth frequency is

defined as the dot product between the time-domain vector

x½t� and the sampled complex sinusoid of the kth frequency,

gk½t� ¼ e�j2pkt=N . We could therefore equivalently write the

transformation in Eq. (2) as a matrix equation:

xf ½x� ¼ Fx; ð3Þ

where xf ½x� 2 Cn is the complex Fourier approximation of

x 2 RN truncated at n frequency coefficients and F 2 Cn�N

is the transformation matrix where the sampled complex

sinusoids appear on the rows. The multiplication with F in

Eq. (3) could be done using the FFT, which reduces

computational cost to OðN logNÞ, as compared to com-

puting the DFT directly as it is defined in Eq. (3) which has

a cost of OðN2Þ in case of a DFT that considers all the

N frequencies.

2.2 Dual-Tree Complex Wavelet Transform

In contrast to the DFT, the wavelet transform also provides

local information. The one-dimensional continuous wave-

let transform is defined as [17]:
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Wðs; sÞwx ¼ Ww
x ðs; sÞ ¼

1ffiffiffiffiffi
jsj

p
Z

xðtÞw� t � s
s

� �
dt; ð4Þ

where s 2 Rþ is the scale of the wavelet, s 2 R is the

translation or shift of the wavelet and W is the so-called

mother wavelet, which has a finite activation. The mother

wavelet W is the main function from which the specific

scaled and translated basis functions w� are derived.

For increasing s, more compressed functions are

obtained and decreasing s results in more dilated functions.

Obviously, the more compressed wavelets provide more

resolution in time. The s parameter shifts the wavelet with

finite activation along the signal.

The discrete wavelet transform (DWT) is efficiently

implemented as a repeated filtering process referred to as

sub-band coding: A high- and low-pass filter h and g are

applied to the sampled signal x½t� in each level of the

decomposition up to the highest level j [18]. This yields

detail coefficients di and approximation coefficients ai for

each level 1� i� j, obtained from the high- and low-pass

filter, respectively:

di½k� ¼
X

t

x½t� � h½2k � t�: ð5Þ

For i ¼ 1, we obtain d1 following Eq. 5 and a1 by an

application of the low-pass filter g:

ai½k� ¼
X

t

x½t� � g½2k � t�: ð6Þ

In the next level i ¼ 2, h and g are applied on a1, reducing

the analyzed frequency window by a factor two in each

step. The output of the DWT is the concatenation of all

detail coefficients di for 1� i� j and the approximation

coefficients of the last level aj:

xw ¼ ½di; aj� 2 RN : ð7Þ

In the following, the subscript w is used to denote a vector

or matrix in wavelet space, as in Eq. (7).

The original discrete wavelet transform is not shift-in-

variant. In [19], a version of the discrete wavelet transform

was proposed which attains approximate shift invariance:

the dual-tree complex wavelet transform (DTCWT). This

transform uses two filter-trees, in contrast to the normal

DWT in which only a single filter tree is used. One tree

produces the real parts and the other tree produces the

imaginary parts of the complex wavelet transform. When

applying the DTCWT, we therefore obtain vectors

xw ¼ ½di; aj� 2 CN . We will use the DTCWT mainly in

order to exploit its approximate shift invariance property.

2.3 GMLVQ with Wirtinger calculus

Having transformed the data to Fourier or wavelet space as

described in the previous sections, we consider a classifi-

cation setup in which GMLVQ works directly on complex-

valued data, following the prescription outlined in [6]. In

our case, the complex-valued data vectors are representa-

tions of the time series in terms of the basis functions of the

used transform, either obtained by the DFT or the DTCWT.

For illustration purposes, we consider Fourier representa-

tions, and therefore, we use the f subscript for the vectors in

this section. Let the dataset consist of labeled feature

vectors ðxf ; yÞ 2 Cn � f1; . . .;Cg, i.e., each feature vector

xf 2 Cn being a member of one of the C distinct classes in

the dataset. During the GMLVQ training process, complex-

valued prototypes wf 2 Cn representing the classes in the

dataset are learned and a quadratic distance measure

dK½xf ;wf � parameterized by a matrix K ¼ XHX is adapted

according to the relevance of the features in the space of

the transform. In the end, we obtain a classifier defined in

terms of distance measure dK½xf ;wf � and the set of proto-

types W ¼ fw1
f ;w

2
f ; . . .;w

K
f g, where in the case of multiple

prototypes per class K[C. A novel data point xlf is then

assigned the class label of the nearest prototype according

to the learned distance measure dK½xlf ;wf �.
Given an example ðxlf ; c ¼ jÞ of class j, the closest

prototype of the same class ðwþ
f ; c ¼ jÞ and the closest

prototype of a different class ðw�
f ; c 6¼ jÞ, the cost for

example xlf in cost-function-based GMLVQ is defined as:

el ¼
dK½xlf ;wþ

f � � dK½xlf ;w�
f �

dK½xlf ;wþ
f � þ dK½xlf ;w�

f �
2 ½� 1; 1�: ð8Þ

The total cost is then the sum of the individual cost con-

tributions of all data points:

E ¼
X

l

el: ð9Þ

Note that, for simplicity, we refrain from introducing a

nonlinear function UðelÞ in the sum, as originally sug-

gested in [20].

Upon presentation of vector xlf , the prototypes wþ
f , w

�
f

and the matrix X are adapted according to steepest descent

of the cost function:

wþ
f :¼ wþ

f � grwþ
f
el; ð10Þ

w�
f :¼ w�

f � grw�
f
el; ð11Þ

X :¼ X� grXe
l: ð12Þ

Derivations of the gradients with respect to complex-val-

ued wþ
f , w

�
f and X as appear in the above equations can be
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found in [11, 21]. In [11] the learning rules for updating the

prototypes wþ
f and w�

f and adaptive distance matrix K used

in cost-function-based GMLVQ are formulated for com-

plex-valued data, relying on the mathematical formalism of

Wirtinger calculus [15] for the computation of the gradi-

ents which yields intuitive adaptation rules. Note that

rwþ
f
el ¼ oel

odK
odK
owþ

f

, and therefore only the inner gradient is

taken with respect to complex variables, for which Wir-

tinger calculus is used. The distance between a data vector

xf 2 Cn and a prototype wf 2 Cn is defined as:

dK½xf ;wf � ¼ ðxf � wf ÞHXHXðxf � wf Þ; ð13Þ

where AH denotes the Hermitian transpose of a matrix,

which is obtained by the transpose operation on A and the

complex conjugation of each element Aij.

The gradient of dK with respect to complex prototype

wf 2 Cn is then, using the Wirtinger gradient, intuitively

formulated as:

rw�
f
dK½xf ;wf � ¼ �XHXðxf � wf Þ: ð14Þ

The gradient of dK w.r.t. matrix X is defined as:

rX�dK½xf ;wf � ¼ Xðxf � wf Þðxf � wf ÞH : ð15Þ

A comparison of the above gradients for complex-valued

data with the gradients for real-valued GMLVQ [9, 10]

reveals that the two are formally very similar, and therefore

naturally, by substitution of the gradients of the complex

variables into Eqs. (10)–(12), the learning rules for proto-

types wþ
f and w�

f and relevance matrix K in the complex

case are formally similar to the learning rules in the real

case.

2.4 Back transformation

Training on the data in coefficient space as described in the

previous section yields complex-valued prototypes and

relevance matrix, i.e., the classifier is defined by the

employed transformation. In this section, we formulate

back transformations to retain time-domain interpretability.

2.4.1 Fourier space

The result of training in Fourier space as described in the

previous section yields complex-valued prototypes wf 2
Cn and relevance matrix Kf 2 Cn�n. The prototypes wf can

be interpreted as typical Fourier space representations of

the different classes and relevance matrix Kf 2 Cn�n

indicate the relevance of the Fourier basis functions in the

classification problem. A transformation of the prototypes

to the time domain using the inverse discrete Fourier

transform (iDFT) retains the time-domain intuitiveness of

the prototypes [16]:

w½t� ¼ 1

N

XN�1

k¼0

wf ½k�ej2ptk=N ; t ¼ 0; 1; 2; . . .;N � 1: ð16Þ

We further note that the distance measure in Fourier space

can be written in terms of the Fourier transformation matrix

F:

d½xf ;wf � ¼ ðx� wÞHFHKfFðx� wÞ; ð17Þ

where x 2 RN and w 2 RN are vectors in the time domain.

By Eq. (17), the matrix K ¼ FHKfF yields a time-domain

interpretation of the feature relevances.

2.4.2 Wavelet space

After training, each prototype ww 2 Cn can be interpreted

as a typical wavelet-space representation of the class which

it represents. The diagonal diagðKwÞ 2 Rn of the relevance

matrix Kw 2 Cn�n, which is real-valued since the matrix is

always Hermitian, will reflect the importance of the

wavelet coefficients on the various scales in the classifi-

cation problem. The off-diagonal elements, which can be

complex-valued, reflect the relevance of correlations

between wavelet-space coefficients.

It is also possible to interpret the wavelet-space proto-

types in the original time domain, by back-transforming the

prototypes to the time domain using the inverse wavelet

transform. The inverse transform starts with the detail- and

approximation coefficients at the highest level j and works

its way backwards by repeated upsampling and application

of reconstruction high-pass and low-pass filters on the

analysis coefficients until the time-domain signal after the

reversal of the first level is obtained. The reconstruction

filters are simply the reverse of the analysis filters used in

the forward transform.

The back transformation of the relevance matrix could

be performed in a similar way: Working its way backward

by repeated upsampling and application of the recon-

struction filters starting from the highest level. After the

reversal of the first level, we obtain a matrix of relevance

values in the time domain. However, we will not back-

transform wavelet-space relevances here, as wavelets

already provide time-domain interpretability.

3 Experiments learning in Fourier space

In this section, we describe the setup of the experiments for

studying the usefulness of the method in combination with

Fourier space representations.
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3.1 Workflows

For our investigation into the usefulness and performance

of the proposed method, we compare and study the results

for the scenarios listed here. In order to evaluate the per-

formance of classifiers, we compute the accuracies

achieved in training and test set. We also present the

temporal evolution of the cost function, Eqs. (8) and (9)

and its counterpart computed as the analogous sum over the

test set, referred to as ‘validation costs’ in the following.

1. Train a GMLVQ system using the feature vectors x 2
RN in the original time domain and evaluate the system

on the test data. This serves as the baseline perfor-

mance. Note that it is required that bN=2c þ 1� nmax
(see Sect. 3.3).

2. Transform the feature vectors to complex Fourier space

truncated at different numbers of Fourier coefficients

n ¼ ½6; 11; . . .; 51� yielding feature vectors xf 2 Cn. On

each of these representations, a GMLVQ system is

trained. The training results in a classifier defined by

prototypes wf 2 Cn and complex relevance matrix

Kf 2 Cn�n, which is evaluated on the corresponding

test set.

3. As in Scenario 2, transform the data to complex

Fourier space truncated at n ¼ ½6; 11; . . .; 51� coeffi-

cients obtaining vectors xf 2 Cn, but here we consider

the representation that concatenates the real and

imaginary parts forming real-valued feature vectors

xf ¼
Rðxf Þ
Iðxf Þ

� �
2 R2n. We train a GMLVQ system on

each of these representations resulting in a classifier

defined by prototypes wf 2 R2n and a real-valued

relevance matrix Kf 2 R2n�2n, which is evaluated on

the corresponding test set.

4. Transform the feature vectors x 2 RN to Fourier space

for the same numbers n ¼ ½6; 11; . . .; 51� of coefficients
as in scenarios 2 and 3, after which the data is

transformed back to the original space yielding feature

vectors x̂ 2 RN , which are smoothed versions of the

original feature vectors. The GMLVQ systems are now

trained and evaluated on these smoothed feature

vectors in the time domain. The comparison of the

obtained performance with the performance of scenar-

ios B and C allows an estimate of the performance gain

that results from the noise reduction caused by the

truncation of high frequencies.

3.2 Training settings and parameter values

Prior to training, the training data is transformed such that

all dimensions have zero mean and unit variance. The test

data is transformed correspondingly using the mean and

standard deviation of the features in the training set. This

normalization is useful for the intuitive interpretation of the

relevance matrix, since the relevance matrix does not have

to account for the different scales of the features. The

relevance values will therefore be directly comparable. All

systems used one prototype per class, which was initialized

to a small random deviation from the corresponding class-

conditional mean. The relevance matrix was initialized

proportional to the identity matrix. Furthermore, a batch

gradient descent along the lines of [22] was applied as the

optimization procedure using the default parameters from

[23]. All classification results are obtained from the model

as it is trained after a fixed number of training epochs,

namely 300. Please note, that the goal of the experiments is

to gain insights into the properties and highlight potential

advantages of the proposed method. The presented classi-

fication accuracies may be further improved through the

implementation of early stopping strategies or regulariza-

tion methods.

3.3 Example datasets

The suggested approach was applied to four time series

datasets from the UCR Time Series Repository [12]. The

names of the datasets and their properties are given in

Table 1. All of the selected datasets contain time series

with more or less periodic behavior. The repository does

not provide any further details nor annotations about the

origin and interpretation of the datasets. As shown in Fig. 1

depicts examples for each of the datasets and allows the

evaluation of the intrinsic complexity of each dataset. Note

that it is required that bN=2c þ 1� nmax, where nmax ¼ 51,

the maximum number of coefficients we consider in the

experiments (see Scenario 2). As mentioned in Sect. 2.1,

all information is contained in bN=2c þ 1 coefficients

which is therefore the upper-bound for the number of

approximation coefficients n. As shown in Table 1, all the

considered datasets satisfy bN=2c þ 1� 51.

These benchmark datasets have been widely studied in

previous work. For example, in [3], a classification

Table 1 Time series datasets

Dataset name Classes Sampling points Samples

Training Validation

PLANE 7 144 105 105

MALLAT 8 1024 55 2345

SYMBOLS 6 398 25 995

FACESUCR 14 131 200 2050
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accuracy of approximately 95% is achieved on the PLANE

dataset in the original space, and a similar or higher clas-

sification accuracy is achieved in the space of Chebyshev

approximation coefficients. For the FacesUCR dataset, a

classification accuracy of around 80% is reported in [24]

using a nearest neighbor method with an adapted DTW

similarity measure. In [25], a deep neural network archi-

tecture is used with which an accuracy of approximately

95% is achieved for the MALLAT dataset and an accuracy

of 97% for the Symbols dataset. Nevertheless, we want to

state explicitly that the scope of this study is not the

achievement of higher classification accuracy. The datasets

serve as an illustration for the properties of the proposed

approach.

3.4 Performance evaluation

The performance for the different scenarios is evaluated by

the classification accuracy, i.e., the percentage of correctly

classified feature vectors on the validation set as indicated

in Table 1. For Scenario 1 this is one baseline classification

accuracy. For the functional approximation scenarios, 2, 3

and 4, each level of approximation n yields a classification

accuracy, which will then be compared and discussed.

4 Results and discussion

The results displayed in Fig. 2 suggest that, in general, the

classification results of functional data using a Fourier

representation are comparable to or better than the baseline

performance in the original time domain of the data.

The results on the PLANE dataset in Fig. 2a show that

for all numbers of complex Fourier coefficients n[ 5 the

classification accuracy is at least as good as the accuracy in

the original 144-dimensional feature space. The obtained

accuracies are robust with respect to n, as there are no large

fluctuations in performance. For this particular dataset, a

functional approximation with 15 or 20 complex Fourier

coefficients already seems sufficient to accurately distin-

guish between the classes. The representation with con-

catenated Fourier coefficients of Scenario 3 achieves a

similar accuracy as the complex representation.

In the results of the method on the FACESUCR dataset

as shown in Fig. 2b, the best performance is achieved for

20 Fourier coefficients. For n� 15, the performance of the

two Fourier representations is similar. The performance in

Fourier space is better than the performance in original

space in the n ¼ 20 region, but the classification becomes

less accurate the more higher frequency components are

added. This indicates the presence of higher frequency

Fig. 1 Example time series of each dataset. For the Plane, Symbols and MALLAT datasets, one example is shown from the first three classes in

the dataset. For the FacesUCR dataset, one example is shown for the first two classes in the dataset
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noise in the original signals that negatively affects the

classification accuracy.

On the SYMBOLS dataset, the functional Fourier rep-

resentations structurally achieve a better performance than

the baseline performance in the original 398-dimensional

space, even with a number of coefficients as low as n ¼ 15,

as displayed in Fig. 2c. The accuracies of the complex

representation and the concatenated real representation are

similar. On the other hand, the accuracies achieved on the

smoothed time series of Scenario 4 are systematically

lower than the accuracies in Fourier space. Therefore, the

observed improvement achieved from the transformation

of the feature vectors to Fourier space cannot only be

explained by the smoothing that the functional approxi-

mation brings about.

For further investigation of the performance of the

method for even higher-dimensional functional data, the

dataset MALLAT is considered consisting of feature vec-

tors with dimensions N ¼ 1024. Figure 2d shows that the

results in complex and concatenated Fourier space do not

deviate significantly from the achieved accuracy in the

original space. A functional Fourier approximation with 20

coefficients provides the same classification accuracy as in

the original space, i.e., the system was able to achieve a

similar accuracy on the 20-coefficient Fourier space rep-

resentation compared to using all 1024 available original

features. Despite the result on this dataset showing no

improvement in accuracy, the dimensionality in the clas-

sification problem was reduced by 99:6% without loss of

classification accuracy, yielding a large computational

advantage in the training and classification stage.

The prototypes that arise in the training process in

complex Fourier coefficient space can be interpreted as

class-specific contributions of the complex sinusoidal

components of different frequencies in the corresponding

classes. In Fig. 3b, the back transformation of the proto-

types as formulated in Sect. 2.4 has been applied to the

resulting complex prototypes of the PLANE dataset in 21-

coefficient Fourier space, wf 2 C21, yielding a representa-

tion of the prototypes in the original time domain. A

comparison with the prototypes resulting from training in

the original time domain (Fig. 3a) reveals that the back-

transformed prototypes are smoother, but resemble the

prototypes from training in the full original space closely.

Correspondingly, Fig. 3d shows the back-transformed rel-

evance values. A comparison with the relevance values

obtained in the original time domain shown in Fig. 3c

reveals that the general relevance profiles are similar.

Figure 4 shows the error development on the training-

and validation set of the MALLAT dataset. The three

methods all achieve zero training error before 50 training

epochs. After 50 epochs, the increased error in the original

space on the validation set indicates an over-fitting effect.

Both Fourier representations, complex and concatenated

real- and imaginary parts, are less affected by over-fitting

here, as the error on the validation set for these represen-

tations does not increase significantly. This confirms the

conjecture that training in reduced Fourier coefficient space

may help to alleviate over-fitting effects that arise in the

Fig. 2 Fraction of correctly

classified vectors in the test sets

for each dataset. The solid line

represents the classification

result in the original time

domain of the data. Filled
circles show the classification

accuracy in the n-coefficient
complex Fourier space of the

data. Empty squares show the

classification accuracy in the n-
coefficient Fourier space where

the real and imaginary parts of

the complex features are

concatenated yielding real

feature vectors. Crosses show
the classification accuracy on

the smooth data in the original

space that was obtained by an

inverse transform of the Fourier

representation. For each dataset

the number of dimensions N of

the original feature vectors is

indicated
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original space. On this dataset, the complex Fourier rep-

resentation eventually achieves the lowest error, followed

by the concatenated Fourier representation.

Besides the potential to improve performance with a

transformation to Fourier space, we must note that the

difference in accuracy between the complex Fourier rep-

resentation of Scenario 2 and the concatenated represen-

tation of Scenario 3 is small. However, training on the

complex-valued data directly with GMLVQ using learning

rules derived with Wirtinger calculus has the advantage of

treating the complex dimensions as such and is therefore

mathematically well formulated.

The dimensionality reduction results in less computa-

tional effort. The observed training times in a generic

desktop PC environment for the MALLAT and SYMBOLS

dataset are listed in Table 2. Both datasets have a high

number of sampling points (cf. Table 1) in their original

feature domain, so the approximation of the data with 20

Fourier coefficients renders a drastic reduction of input

dimensions of 98.1% for the MALLAT dataset and 95%

for the SYMBOLS dataset. The computational effort—as

represented by the time spent during the training process—

is also reduced significantly, though not as drastically as

the number of input dimensions.

5 Learning in wavelet space

In this section, we study the usefulness of the complex-

valued extension of GMLVQ in combination with wavelet-

space representations for the classification of heartbeats

extracted from ECG data. This section will describe the
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Fig. 3 a The resulting class prototypes of the PLANE dataset are

shown for training in the original 144-dimensional space. For clarity,

only three of the seven prototypes are shown. The corresponding

feature relevances, which are the diagonal elements of the resulting

relevance matrix for the PLANE dataset, are shown in c. b The back-

transformed prototypes obtained from training in 20-coefficient

Fourier space are shown. d The corresponding feature relevances,

obtained from back-transforming the complex relevance matrix as

discussed in Sect. 2.4
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dataset, data preparation, feature extraction, and the gen-

eral training settings for the experiments.

5.1 Dataset and training setup

The data on which we apply the method comes from the

MIT-BIH Arrhythmia dataset [14]. The data was obtained

from 4000 long-term Holter recordings [26]. In total, 48

recordings selected from this set are available in the MIT-

BIH database. Twenty-three of those were chosen ran-

domly from the total set of 4000, and the other 25

recordings were selected to include a variety of rare phe-

nomena occurring in the heart rhythm. The signals were

band-pass-filtered using a passband from 0.1 to 100 Hz and

then digitized with a sampling rate of 360 Hz. For each

record, slightly over 30 min of ECG signal is selected. In

principal, two leads are available for each recording.

Usually the main lead is MLII, which is a modified limb

lead that is obtained by placing the electrodes on the chest.

In the literature, different learning scenarios are descri-

bed. For example in [27], high classification accuracies of

approximately 98% are achieved using a feed-forward

neural network and DTCWT features, but the authors

appear to select beats randomly. These classifiers may

show degraded performance when applied to a new patient.

It is common to learn patient-specific classifiers, as is done

for example in [28].

It should be stated that in contrast to the above papers,

we do not include additional temporal features that have

the ability to further improve classification accuracy. The

current paper aims to reveal potential benefits of the basic

method as outlined above. Using the method along with

other features to improve classification accuracy could be

of interest in future research.

5.1.1 Annotations

After the records had been selected and digitized, a simple

QRS detector was applied on the signals [26]: The R-point

is the central peak of the heartbeat, the Q-point is the valley

before the peak, and the S-point the valley directly after the

peak. This wave is often referred to as the QRS-complex.

After the simple QRS detector was applied, two cardiolo-

gists independently annotated the abnormal beats and beats

that were missed by the detector. Additionally, annotations

for heart rhythm, signal quality, and comments are also

available.

The heartbeat classes are denoted by symbols. The

mapping from symbols to specific types of heart beats is

found on [29]. There are 17 different classes in the dataset.
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Fig. 4 Training and validation error for the MALLAT dataset in the

course of training. The solid line shows the error development in the

original space of the data. The dashed line is the error development in

20-coefficient complex Fourier space. The dotted line shows the error
development in 20-coefficient concatenated Fourier space

Table 2 Relations between

absolute training time and

dimensionality reduction

Dataset Original space 20-Coefficient Fourier Rel. dim. (%) Rel. time (%)

MALLAT 2535 55 1.9 2.1

SYMBOLS 96 28 5.0 29
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5.2 Data preparation and feature extraction

Using the beat annotations, we extract the beats from the

recorded electrocardiograms: For each annotated R-peak

sample, 128 samples are extracted toward the left and 127

samples toward the right. Including the R-peak sample

itself, this gives segments of 256 ¼ 28 samples in length.

This length segments the full QRS-complex including the P

and T waves and we have chosen a power of 2 deliberately

for direct compatibility with the DTCWT. With a sampling

rate of 360 Hz, the segments are approximately 0.711 s.

From the segmented time-domain heart beat vectors

x 2 R256, we extract wavelet features using the DTCWT up

till level j ¼ 5. For the first level, this gives 28�1 ¼ 27

complex-valued detail coefficients, representing higher

frequency wavelet correlations in the signal. The second

level reduces the frequency window by a factor two and

yields 26 complex-valued detail coefficients. This contin-

ues up till the highest level j, which yields 23 complex-

valued detail coefficients and also 23 complex-valued

approximation coefficients. The approximation coefficients

were obtained from the application of the low-pass filter at

the highest level and therefore correspond to the lowest

level frequencies in the signal. In summary, the procedure

which transforms the time-domain beat x 2 R256 to wavelet

space, yields 27 þ 26 þ 25 þ 24 þ 23 þ 23 ¼ 256 complex-

valued coefficients in the feature vector xw 2 C256; the

time-domain vector and the wavelet-space vector have the

same length.

5.3 Training settings and parameter values

In each experiment, we consider the wavelet-space feature

vectors xw 2 C256, which are obtained by applying a 5-

level DTCWT on each of the segmented time-domain

beat vectors x 2 R256. We will also consider truncated

versions of the wavelet-space feature vectors, and hence

we will refer to the wavelet-space vectors in the general

discussion as xw 2 Cn, where n� 256. In the general

experiment setup, we standardize the wavelet-space fea-

ture vectors, and on the resulting vectors, we apply

GMLVQ learning with one prototype for each beat type.

The prototypes ww 2 Cn are initialized to a small random

deviation from the class-conditional mean. The relevance

matrix Kw 2 Cn�n is initialized as a proportion of the

identity matrix, (1 / n)I, satisfying
Pn

i¼1 Kii ¼ 1 and Kii ¼
Kjj for all pairs i, j.

We use batch gradient descent along the lines of [22] in

order to optimize the GMLVQ cost function given in

Eq. (8), using the default parameters from [23].

6 Experiments learning in wavelet space

This section describes the specific experiment scenarios for

studying the usefulness of the extension of GMLVQ in

combination with wavelet representations for classifying

heart beats.

6.1 General classifier

In the first experiment, we consider the classes normal beat

(N), left bundle branch block beat (L), right bundle branch

block beat (R), premature ventricular contraction (V) and

paced beat (/), segmented from all available MIT-BIH

records. We perform a 5-level DTCWT on the labeled

time-domain beats and obtain labeled wavelet-space fea-

ture vectors ðxw 2 C256; yÞ, where y is a label from the set

C ¼ fN; L;R;V ; =g. Next, we randomly select 100 exam-

ples from each of the classes in C to be used as training

data in GMLVQ learning. One hundred and fifty other

examples from each class in C are randomly selected for

validation during the GMLVQ learning epochs. We per-

form sufficient training epochs in order to let the GMLVQ

cost-function converge on the validation set.

In the first experiment, we also consider truncated

wavelet-space vectors xw 2 C32 that consist of the coeffi-

cients of the fourth- and fifth-level decomposition and

compare the validation performance to the validation per-

formance when the full-wavelet space representation is

used. Note that as the number of parameters in GMLVQ

increases quadratically with the number of input features,

training on only the fourth- and fifth-level coefficients

results in considerably less adaptive parameters. The

training- and validation sets consist of the same examples

as are chosen for the experiment in which full-wavelet

space feature vectors are used.

6.2 Patient-specific classifiers

In the second experiment, we consider patient-specific

classification. We follow a similar approach as in [30]: We

select a common training set from the MIT-BIH records

100 till 124 and perform the patient-specific classification

on the records 200 till 234. For each record in the latter

group, the first 5 min of the record serves as additional

training data to the common beats and the beats occurring

in the remaining 25 min, which the classifier has not seen

during learning, will be used for assessing the performance

of the classifier.

In the first patient-specific experiment, we train on the

full-wavelet space vectors xw 2 C256. Then we perform the

same patient-specific experiment using vectors containing
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only the fourth- and the fifth-level wavelet coefficients,

xw 2 C32.

7 Results and discussion

7.1 General classifier

The results obtained from the first experiment are shown in

Fig. 5: Panels a and b display the performance of the

classifier throughout the learning process while panels c

and d show the interpretation of the final classifier, after

batch step number 300. In Fig. 5a, the value of the cost

function computed on the training data and computed on

the validation data is shown for each learning step. The

training set cost shows a stable converge toward a value of

approximately � 0:87. At the same time, the development

of the cost on the validation set shows signs of over-fitting,

after its initial decrease. After batch step 300, the value of

the validation cost is approximately � 0:57, but the lowest

value seen during training is at batch step 38 where the

validation cost has a value of � 0:62. As expected, the

classification error curves in Fig. 5b are quite correlated

with the cost-function curves. The classification error on

the training set converges to approximately 0.4%. The

lowest achieved validation error is 8.9% after batch step

38, where also the validation cost was lowest. Due to the

over-fitting, the validation error increases after batch step

38 toward a value of 11.7% after batch step 300.

Concerning the interpretation of the resulting classifier,

Fig. 5c shows the relevance value of each wavelet coeffi-

cient in the classification problem. The highest values
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Fig. 5 GMLVQ learning results of beat classification in experiment 1
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correspond to the most distinctive coefficients while low

values correspond to features with which the classifier can

not adequately discriminate between the classes. The

dashed vertical lines mark the transition between different

scales of the wavelet decomposition. Hence, the first

dashed line appears at feature 128, indicating the border

between the first-level detail coefficients and the second-

level detail coefficients. Inside each wavelet-scale window,

the horizontal axis indicates the translation s of the

wavelet. The wavelet transform makes the relevance values

interpretable both in frequency/scale and in time. As an

example of this, in most scales, the highest relevance is

around the center, indicating a higher relevance of corre-

lations with wavelets that are active in the QRS-complex

region, while at the same time it can be inferred that one of

the most discriminative wavelets is a second-level wavelet.

It is also evident that coefficients corresponding to the

fourth- and fifth-level decomposition are highly

discriminative.

In Fig. 5d, three time-domain prototypes are displayed,

as back-transformed from wavelet space. This allows for

the time-domain interpretation of what the classifier has

learned as typical examples of the different beats in the

classification problem. The figure shows the time-domain

prototypes for the beat classes Normal beat (N), Left

Bundle Branch Block Beat (LBBB) and Premature Ven-

tricular Contraction (PVC).

In Fig. 6, the results of GMLVQ learning on truncated

wavelet-space feature vectors is shown. It can be seen in

Fig. 6a that there are no over-fitting effects anymore in this

case. For this reason, the final validation set cost (� 0:66),

which is also the minimum cost achieved throughout

training, is lower than the final validation cost (� 0:57)

achieved when using all wavelet-space coefficients. The

validation set cost is also lower than the minimum achieved

validation cost for GMLVQ learning on the full-wavelet

space vectors.

In Fig. 6b, the relevance of the fourth- and fifth-level

wavelet space coefficients is shown. The most discrimi-

native coefficient is an approximation coefficient. Higher

values are obtained for wavelets with an activation corre-

sponding to the center of the signal: A peak occurs around

the center of the fourth- and fifth-level detail coefficients,

indicating a relevance of wavelets active in the QRS-

complex region on different scales. After training, the

classification error on the validation set is 10.1%.

Table 3 shows that GMLVQ learning on the truncated

wavelet-space vectors achieves a high accuracy on all beat

classes except for the PVC class. Although learning on the

full-wavelet space vectors results in a lower average vali-

dation accuracy, the classification of the PVC class is

slightly more accurate in this case. Although the GMLVQ

classifier trained on the full-wavelet space feature vectors

has the advantage of full-wavelet space interpretation and

time-domain prototype interpretation, the fourth- and fifth-

level wavelet coefficients already seem to provide enough

information to adequately discriminate between the classes.

Training on the truncated wavelet-space coefficients has

the additional advantage of requiring considerably less

training effort and alleviating over-fitting.

7.2 Patient-specific classifiers

Patient-specific learning was applied on the last 25 records

in the database. In Fig. 7a, the average validation cost over

the 25 patient-specific learning curves is shown for
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Fig. 6 GMLVQ learning results of beat classification in experiment 1 where only the wavelet decomposition of the fourth- and fifth levels is

considered
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GMLVQ learning on the full-wavelet space vectors and on

the truncated vectors. In this case as well, learning on the

full-wavelet space vectors results in over-fitting, whereas

over-fitting does not occur for learning on the truncated

wavelet-space vectors. The cost after batch step 100 is -

0.83 for learning on the truncated vectors. Not surprisingly,

patient-specific classifiers are on average more accurate

than more general classifiers. The average error per batch

step on the validation set is shown in Fig. 7b. In both

scenarios, the training quickly results in an error below 5%.

For the truncated scenario, the final error is approximately

3.6%, whereas for the full-wavelet space scenario, the final

error is 3.7%.

Figure 7c, d shows the interpretation of the resulting

patient-specific classifier for record 217, a patient that

mainly has normal beats, premature ventricular contrac-

tions and paced beats. The relevance profile in Fig. 7c

displays peaks around the center of each scale, indicating

that correlations of the signal with wavelets that are acti-

vated around the center of the signal are most discrimina-

tive, on multiple scales. Figure 7d shows the time-domain

representation of the prototypes which were learned in

Table 3 Per-class prediction accuracy for truncated- and the full-

wavelet coefficient vectors

N (%) L (%) R (%) V (%) / (%)

Truncated 97.3 96.7 98.7 60.5 97.0

Full 85.0 95.9 94.9 68.8 96.2
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Fig. 7 GMLVQ learning results in patient-specific classification
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wavelet space for the three main beat types that occur in

this record.

In Table 4, the classification accuracy of all 25 patient-

specific classifiers taken together is shown per class for the

two scenarios. On average, GMLVQ patient-specific

learning is slightly more accurate. The GMLVQ learning

on the full-wavelet space vectors is more accurate in

classifying premature ventricular contractions (V).

8 Summary and outlook

In this contribution, we have shown and discussed the

benefits to the classification of transforming smooth time

series to the complex Fourier domain, for reasonably

periodic data, and to wavelet space for ECG data. In the

Fourier experiments, the classification accuracy for even a

reasonably small number of coefficients (n ¼ 20) was

similar and frequently better than the classification accu-

racy on the corresponding dataset in the original time

domain. Besides the potential of improving classification

accuracy, this suggests that the method can be used to

reduce the number of dimensions of the feature vectors to a

large extent. A similar observation was made for heartbeat

classification using wavelet features, where we have

obtained a better classification performance when training

was applied on only the fourth- and fifth-level coefficients,

as compared to training on the full-wavelet space repre-

sentation. For either transform and subsequent truncation,

we have observed a reduction of over-fitting effects. As the

number of parameters in GMLVQ scales quadratically with

the number of features, the truncation also reduces the

computational effort in the training phase considerably.

The optimal number of coefficients is dependent on the

properties of the dataset. For future study, an automatic

method could be devised that suggests a number of coef-

ficients based on the available training data according to a

criterion of optimality, which seeks the best balance

between accuracy and the number of coefficients.

Concerning interpretability of the classifier, we have

shown by means of back transformation of the benefits of

obtaining interpretability in both spaces: The space of the

transform and the original space. It allows to inspect pro-

totypes in the space of the transform and in the time

domain, while still maintaining all benefits of training in

coefficient space. The relevance profile gives useful insight

into the most discriminative components of the transform.

Especially in the case of Fourier, we have seen that back-

transforming the relevance matrix yields plausible time-

domain interpretability of relevances, which lacks by

default when training in Fourier space. The relevance

profile in wavelet space is interpretable in time and scale

by default, as we have seen verified in the experiments,

hence it is less essential to back-transform the wavelet-

space relevances.

We have chosen heartbeat classification for our study

into the usefulness of the method in combination with the

wavelet transform. However, when classification perfor-

mance is the main priority, additional important ECG

features should be included in the wavelet-space vectors.

Increasing the classification performance by using the

proposed approach and adding other important features

could be interesting for future study.

In summary, our work demonstrates that the combina-

tion of dimension-reducing transformations with, e.g.,

GMLVQ constitutes a versatile framework which offers the

potential to improve performance and reduce computa-

tional workload significantly while retaining the inter-

pretability and white-box character of prototype-based

relevance learning.
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Mendenhall MJ, O’Driscoll P (eds) Advances in self-organizing

maps and learning vector quantization: proceedings of the 11th

international workshop WSOM 2016, Houston, Texas, USA,

January 6–8, 2016. Springer, Cham, pp 317–327

3. Melchert F, Seiffert U, Biehl M (2016) Functional approximation

for the classification of smooth time series. In: Hammer B,

Martinetz T, Villmann T (eds) GCPR workshop on new

Table 4 The per-class prediction accuracy in patient-specific learning

for truncated- and the full-wavelet coefficient vectors

N (%) L (%) R (%) V (%) / (%)

Truncated 98.7 98.3 99.6 75.4 99.8

Full 98.6 95.9 97.0 79.1 99.6

18098 Neural Computing and Applications (2020) 32:18085–18099

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


challenges in neural computation 2016, volume MLR-2016-04 of

machine learning reports, pp 24–31
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