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Abstract
This paper proposes an improved social spider optimization (ISSO) for achieving different objectives of optimal reactive

power dispatch (ORPD). The proposed ISSO method is developed by applying two modifications on new solution

generation process. The proposed method uses only one modified equation for producing the first new solution generation

and the second new solution generation while the standard SSO uses two equations for each process. The improvement in

the proposed method is confirmed by solving benchmark optimization functions, IEEE 30-bus system and IEEE 118-bus

system. Obtained results from ISSO are compared to those from other existing methods available in other studies together

with other popular and state-of-the-art methods, which are implemented in the work. As compared to standard SSO for

application to ORPD problem, ISSO can reduce the number of computation steps and one control parameter, and shorten

simulation time. About the result comparisons with SSO and other remaining methods, ISSO can find more favorable

solutions with higher quality and ISSO can stabilize solution search function with approximately all trial runs finding lower

value of fitness. Furthermore, the strong search ability of ISSO is also indicated because it uses less value for control

parameters. As a result, the proposed ISSO method can be a very effective optimization tool for dealing with the ORPD

problem.

Keywords Improved social spider optimization � Optimal reactive power dispatch � Power loss � Voltage deviation �
Voltage stabilization index

List of symbols
HI The highest iteration

Nbus Number of buses in the considered

power system

Nc Number of VAR compensator buses

Nfs, Nms Number of females and males,

respectively

NG Number of generator buses

Nline Number of transmission lines

Nload Number of load buses in the

considered power system

Npop Population size or the sum of males

and females

Nt Number of buses with transformer

Pdi, Qdi Real and reactive power required by

load of bus i

Pm Movement probability of female

spiders

Qci Reactive power generation of VAR

compensator of bus i

Qci,min, Qci,max Lower and upper limitations of

reactive power generation of VAR

compensator at bus i

QGi,min, QGi,max Lower and upper limitations of

reactive power generation of

generator at bus i, respectively

RNf Random number within 0 and 1 for

female spider f

Sl,max Maximum apparent power flow of

line l

Ti,min, Ti,max Lower and upper limitations of tap

changer of transformer at bus i
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VGi,min, VGi,max Lower and upper limitations of

voltage magnitude of generator at

bus i, respectively

Vi, Vj Voltage magnitude of buses i and j

Vloadi,min, Vloadi,max Lower and upper limitations of

voltage magnitude of the load at bus

i, respectively

Xfs,f Position of female spider

f corresponding to a solution

XGbest Position of the best spider

corresponding to the best solution

Xms,m Position of male spider

m corresponding to a solution

Abbreviation
ABCA Artificial bee colony algorithm

ACO Ant colony optimization

AGA Adaptive genetic algorithm

ALO Ant lion optimizer

ASCSA Adaptive selective cuckoo search

algorithm

BA Bat algorithm

BB–BCA Big bang–big crunch algorithm

BBDE Bare-bones differential evolution

BBPSO Bare-bones particle swarm optimization

BOFs Benchmark optimization functions

BRCFA Binary real-coded firefly algorithm

BTSA Backtracking search algorithm

CABC-DE Hybrid chaotic artificial bee colony

differential evolution

CKHA Chaotic krill herd algorithm

CLPSO Comprehensive learning particle swarm

optimization

COA Coyote optimization algorithm

CSA Cuckoo search algorithm

CSSA Charged system search algorithm

DE Differential evolution

DE–AS Differential evolution and ant system

DPM Dynamic programming method

DSA Differential search algorithm

EMA Exchange market algorithm

EP Evolution programming

FA Firefly algorithm

FPA Flower pollination algorithm

GBBWCA Gaussian bare-bones water cycle

algorithm

GBTLBO Gaussian bare-bones teaching learning-

based optimization

GSA Gravitational search algorithm

GSA-CSS Gravitational search algorithm with

original selection

GSA-NHCM Gravitational search algorithm with new

constraint handling method

GWO Gray wolf optimizer

GWPSO Particle swarm optimization with inertia

weight

HFA-NMS Hybrid Nelder–Mead simplex-based

firefly algorithm

HFVNS Hybrid stochastic fractal search and

variable neighborhood search

HICTS Hybrid imperialist competitive algorithm

and tabu search

HISGA Hybrid interior search algorithm and

genetic algorithm

HKAGA Hybrid Keshtel algorithm and genetic

algorithm

HKASA Hybrid Keshtel algorithm and simulated

annealing

HLGA Hybrid loop genetic algorithm

HMA Hybrid metaheuristic algorithm

HMPSO Hybrid multi-agent particle swarm

optimization

HPSO–ICA Hybrid particle swarm optimization and

imperialist competitive technique method

HPSO–TS Hybrid particle swarm optimization and

tabu search

HRDSA Hybrid red deer algorithm and simulated

annealing

HSA Harmony search algorithm

HSFSA Hybrid stochastic fractal search and

simulated annealing

HSSSA Hybrid salp swarm algorithm and

simulated annealing

HWPSO Hybrid whale optimization algorithm and

particle swarm optimization

HWWGA Hybrid water wave optimizer and genetic

algorithm

ICBO Improved colliding bodies optimization

IDA Improved deterministic algorithm

IMA Improved metaheuristic algorithm

IPG-PSO Improved pseudo-gradient search-particle

swarm optimization

IPM Interior point method

IQP Improved quadratic programming

ISA Interior search algorithm

ISSO Improved social spider optimization

JA Jaya algorithm

KA Keshtel algorithm

LCA League championship algorithm

LDGWPSO Particle swarm optimization with linearly

decreasing inertia weight

LPM Linear programming approach

MDE Modified differential evolution

MFO Moth flame optimization

MLPM Mixed-integer linear programming

MNM Modified Newton method
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MORDA Multi-objective red deer algorithm

MPSO Modified particle swarm optimization

MSSA Modified salp swarm algorithm

MSSO Modified social spider optimization

MTLT–DDE Modified teaching learning technique and

double differential evolution algorithm

NMSFLA Shuffled frog leaping algorithm and

Nelder–Mead

ORCSA One rank cuckoo search algorithm

PG-PSO Particle swarm optimization with pseudo-

gradient search

PGSWT-PSO Particle swarm optimization with

stochastic weight trade-off and pseudo-

gradient search

PSO Particle swarm optimization

PSO-ALC Particle swarm optimization with an

aging leader and challengers

PSO-CF Particle swarm optimization with

constriction factor

PSO-GT Particle swarm optimization with graph

theory

PSO-TVAC Particle swarm optimization with time-

varying acceleration coefficients

PSO-TVIW Particle swarm optimization with time-

varying inertia weight

QODE Quasi-oppositional differential evolution

QOTLBO Quasi-oppositional teaching learning-

based optimization

RCGA Real-coded genetic algorithm

RDA Red deer algorithm

RSGA Genetic algorithm with rank selection

technique

SARCGA Self-adaptive real-coded genetic

algorithm

SEO Social engineering optimizer

SFOA Sunflower optimization algorithm

SFS Stochastic fractal search

SGA Specialized genetic algorithm

SPSO-TVAC Particle swarm optimization with time-

varying acceleration coefficients

SPSO-TVAC Particle swarm optimization with self-

organization and time-varying

acceleration coefficients

SSA Salp swarm algorithm

SSO Social spider optimization

SWT-PSO Particle swarm optimization with

stochastic weight trade-off

TVAC Time-varying acceleration coefficients

WOA Whale optimization algorithm

WWO Water wave optimizer

1 Introduction

Optimal reactive power dispatch (ORPD) is one of the

most popular optimization problems in engineering field in

aim to operate power systems stably and effectively. ORPD

is mathematically formulated as a nonlinear problem where

objective function and constraints are shown clearly. In

fact, the task of such ORPD problem is to determine con-

trol parameters in electricity power systems such as voltage

of generation buses, tap setting of transformers and gen-

erated reactive power of capacitor banks so that other

obtained working parameters such as voltage of load buses,

apparent power flow of transmission lines and reactive

power of generators are always within an predetermined

allowed working range. ORPD problem focuses on opti-

mizing different independent objectives consisting of total

active power losses in all transmission lines, voltage

deviation and voltage stability index. As the three objec-

tives are obtained, the considered power systems are

working economically and stably. Similar to other opti-

mization problems related to power systems such as eco-

nomic load dispatch [1, 2] and optimal power flow [3, 4],

ORPD has also attracted the use of conventional deter-

ministic methods and modern metaheuristic methods. The

applications of classical deterministic methods have been

carried out in refs. [5–11] while a huge number of appli-

cations of standard metaheuristic (SMH), improved ver-

sions of SMH (ISMH) and hybrid methods have been

presented in Ref. [12]–Ref. [54]. Among these meta-

heuristic, there some large algorithm groups such as par-

ticle swarm optimization (PSO) variants [12–21],

differential evolution (DE) variants [22–26], genetic algo-

rithm (GA) variants [27–31] and gravitational search

algorithm (GSA) variants [32–35]. In addition, many other

standard methods as well as improved methods have been

employed for dealing with ORPD problem and presented in

[36–54].

It is clear that there are a huge number of studies

regarding ORPD problem; however, the obtained results

have not been good enough and many researchers have

constantly developed optimization tools for tackling main

drawbacks such as low optimal solution quality, long

computation time and difficult task of tuning the most

appropriate control parameters. For suggesting one of the

most appropriate optimization methods to find the effective

solution for an ORPD problem, we have collected and

summarized several popular and powerful methods applied

to various optimization problems in recent years as in

Table 1. In the table, we emphasize the type of methods

and the applied optimization problems for discussion of the

application and potential search ability of methods. Most

the solution methods can be classified into three types
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including original versions, improved versions and hybrid

versions, in which the original versions and improved

versions only aim to single methods with their drawbacks

and the improvements have been proposed while the hybrid

methods are based on the coordination of two different

methods or more. A view from the applied problems can

reveal that the potential search ability of these methods

could not be demonstrated persuasively due to the lack of

challenges from complicated constraints and large-scale

problems. The simplest problem in the table is the bench-

mark optimization functions (BOFs), which have been

solved by many original, improved methods and hybrid

methods. Hybrid methods have been employed for more

complicated problems such as sustainable closed-loop

supply chain network design, tire closed-loop supply chain

network design, bi-objective green home healthcare routing

problem and economic load dispatch. These hybrid meth-

ods have shown more promising than the original ones for

such problems, but the application of these methods has

become more difficult due to the coordination of different

individual methods. More control parameters and more

computation steps are the common characteristics of hybrid

ones. On the other hand, these methods can be divided into

three groups with one, two and three new solution

Table 1 Popular and state-of-the-art metaheuristic algorithms

No. Heuristic algorithm Type References Published year Studied problem

1 PSO Origin [55] 1995 BOFs

2 BA Origin [56] 2010 BOFs

3 FA Origin [57] 2008 BOFs

4 CSA Origin [58] 2009 BOFs

5 FPA Origin [59] 2012 BOFs

6 SSO Origin [60] 2013 BOFs

7 KA Origin [61] 2013 –

8 ISA Origin [62] 2014 BOFs

9 WWO Origin [63] 2015 BOFs

10 SFSA Origin [64] 2015 BOFs

11 WOA Origin [65] 2016 BOFs

12 RDA Origin [66] 2016 BOFs

13 MSSO Improved [67] 2016 Economic dispatch problem

14 MSSO Improved [68] 2017 Inverse radiation and coupled

radiation–conduction heat transfer problems

15 MSSO Improved [69] 2017 Number attribute reduction problem

16 COA Origin [70] 2018 BOFs

17 SFOA Origin [71] 2018 BOFs

18 SEO Origin [72] 2018 BOFs

19 HWWGA Hybrid [73] 2018 A bi-objective partial interdiction problem

20 HWPSO Hybrid

21 HISGA Hybrid [74] 2018 Distribution network problem

22 HKSA Hybrid

23 MORDA Improved [75] 2018 Three-objective function problem

24 HRDSA Hybrid [76] 2018 Sustainable closed-loop supply chain

network design problem

25 HKAGA Hybrid

26 HICTS Hybrid

27 HKASA Hybrid [77] 2018 Tire closed-loop supply chain network design problem.

28 HFVNS Hybrid

29 HSFSA Hybrid

30 SSA Origin [78] 2018 Engineering design problems

31 MSSA Improved [79] 2018 Bi-objective green home healthcare routing problem

32 HSSSA Hybrid

33 ASCSA Improved [80] 2018 Optimal operation of hydrothermal power systems
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generations per iteration. Normally, one new solution

generation-based methods tend to produce new solutions at

the same time with the same manner while two and three

new solution generations-based methods produce more

new solutions by using two or three different operations

and take more time for their search process. In the table,

PSO, FA, FPA, ISA, WOA, SFOA, SSA, HWPSO and

HISGA methods are the family of the first group while the

third group consists of the improved and hybrid versions

regarding SFS methods and SSO methods. The rest is

belonging to the second group with two new solutions

generations. For the first method group, the search strategy

is not diversified since the whole population is newly

updated by using the same way or the same formula. PSO

method is an example of the main drawback falling into

local optimum zones with low quality. FPA method seems

to be more effective than PSO since one of two different

ways can be employed for each newly updated solution.

The main task of the FPA method is to select the most

appropriate formula, which is dependent on the used

probability. The standard algorithms such as SFOA and

SSA and other hybrid methods including HWPSO and

HISGA were developed in the early this year. These hybrid

methods have been developed with the intent to take

advantages of element methods and avoid overlapping

shortcomings of each one. Among these methods with two

new solution generations per iteration, cuckoo search

algorithm (CSA) is one of the most effective optimization

ones. This method has been judged by solving a set of

benchmark functions and compared to PSO and GA. In the

early this year, its new improved version [80] was intro-

duced for finding the optimal operation of power systems

with hydropower and thermal power plants. The improved

method has demonstrated its outstanding performance

since its found better objective than most popular methods

such as evolutionary family (DE variants, EP, GA variants)

and swarm family (CSA variants and PSO variants). The

outcomes with respect to the most effective solution and

stabilization search ability have resulted in a confirmation

that these methods could be better than other compared

methods. Among the methods with three new solutions

generations introduced in the table, SSO was first intro-

duced in 2013 by Cuevas et al. [60]. The SSO has a special

characteristic which is totally different from other methods.

It consists of three new solution generations per iteration

but the number of newly updated solutions per iteration is

not high, about approximately the population size. The

search strategy of this method effectively exploits the

solution space by dividing the population size into two

different groups, female and male groups. In addition, the

offspring in this method is also produced in the case of

occurred mating operation. Females perform the movement

action first in the first generation and then males continue

to move to new positions in the second generation. The

new positions of females are dependent on the closet spider

to them and the best spider in the population in addition to

the weight of these related spiders and the distance between

them and the considered females. Similarly, the new

positions of male spiders are determined based on the

closest female to him or all other males. The specialization

of the SSO is the third new generation, which can use both

good males and females to produce offspring (new solu-

tions). Unlike other methods in Table 1, the search strategy

of SSO can focus on the global search by the first and the

second new solutions while the local search is strongly

exploited by the third new solution. Compared to other

methods such as PSO, BA, CSA, SSA, MSSA and FPA,

SSO has more control parameters and more complicated

implementation but these issues become simpler compared

to hybrid methods. In fact, hybrid methods are developed

by integrating two or more individual methods. Thus, these

methods have basically more control parameters and

operations for applications. It is obvious that the SSO can

be a very optimization algorithm for searching for optimal

solutions if these drawbacks can be successfully handled.

In [60], the SSO has shown its potential search since sev-

eral advantages over ABC and PSO have been indicated

clearly and persuasively such as better optimal solutions

and smaller standard deviation. Nevertheless, such

achievements have not met the requirements of compli-

cated optimization problems in different engineering fields.

Other authors in [66–69] have pointed out drawbacks that

such method has been put up with such as low convergence

speed to global optimum and long computation process.

Thus, they have proposed different changes for overcoming

such limitations and lead to better results. For instance,

authors in [67] have applied mutation procedure of stan-

dard DE for searching new solutions. These authors have

canceled the gender of spiders, and there were no longer

movements of females and males as well as mating pro-

cedure of producing baby spiders. Four improved SSO

methods have been proposed in [68] by using constriction

factor, inertia weight factor of PSO variants in [17], and

other modifications such as adding one more updated step

size and using mutation operation of DE for carrying out

mating operation. Clearly, such proposed methods in [68]

were the integration of PSO variants and SSO, and DE

variants and SSO. In [69], authors have suggested two

changes in which the first change was to update the best

solution continuously after each new solution was pro-

duced and the second change was to construct a new fitness

function for more accurate evaluation. The impact of the

two changes could see clearly and effectively since results

obtained were much better than those from SSO. However,

the method has consumed more time for performing all

computation stages of SSO in addition to taking time for
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continuously updating the best solution. Such methods

have been proved better than SSO and other existing

methods through heat transfer problems with respect to

better accuracy and better stabilization. In spite of good

results, the methods have also coped with the following

limitations: (1) high number of control parameters; (2)

spending more time tuning the best values of the control

parameters; (3) long computation time due to many com-

putation steps. It is clearly acknowledged that the methods

in [67–69] have different difficulties to be considered as a

potential optimization tool. Consequently, in the paper, we

propose a novel improved SSO method by performing:

1. Modification on the first new solution generation: In

SSO, two equations are proposed for updating new

solutions but in the proposed method only one equation

is used and modified before application.

2. Modification on the second new solution generation:

Similar to the first new solution generation, SSO also

uses two equations for the second generation; however,

only one equation should be used and modified before

application in the proposed method.

With respect to the proposed method, our main contri-

butions in the article are as follows:

1. Reducing one control parameter, so time of tuning the

parameter is zero and simulation time is shortened.

2. Reducing both computation processes and comparison

condition, so simulation time can be shortened.

3. Enabling the proposed method to find better optimal

solutions with faster convergence speed.

4. Implementing other methods such as FA, PSO, CSA,

FPA, SSO, SSA, MSSA and HSSSA for demonstrating

the potential search of the proposed method.

The performance of the proposed ISSO method is

investigated in the paper by solving benchmark functions,

IEEE 30-bus system and IEEE 118-bus system with three

single objectives consisting of power loss minimization,

voltage deviation minimization and voltage stability max-

imization. Obtained results by the proposed method and

other ones are compared to evaluate capability of searching

optimal solutions, stabilization of search ability and search

speed of the proposed method. The structure of the paper is

as follows: Literature review is presented in Sect. 2. The

optimization problem with objective functions and con-

straints is described in Sect. 3. The standard SSO and

proposed method are explained in Sect. 4. The imple-

mentation of the proposed method for the solved problem

is given in Sect. 5. Simulation results from benchmark

functions and two IEEE power systems are given in

Sect. 6. Finally, conclusions are summarized in Sect. 7.

2 Literature review

ORPD problem has a very important role in operation field

of power systems and attracted the concern of a huge

number of researchers. For dealing with complicated con-

straints and finding optimal solutions of different single

objectives of ORPD problem, the researchers have used

different optimization tools such as origin deterministic

algorithms, origin metaheuristic algorithms, improved

metaheuristic algorithms and hybrid metaheuristic algo-

rithms. Better literature review of applied methods, studied

power systems, considered objective function and other

implemented methods for comparison are given in Table 2.

In the table, we can see five types of methods including

original deterministic algorithm (ODA), improved deter-

ministic algorithm (IDA), original metaheuristic algorithm

(OMA), improved metaheuristic algorithm (IMA) and

hybrid heuristic algorithm (HMA) that have been suc-

cessfully applied for ORPD problem. Among these meth-

ods, ODA and IDA [5–11] are the oldest methods with a

small number of applications and their applications have

ended recent years. On the contrary, metaheuristic algo-

rithms such as particle swarm optimization (PSO) variants

[12–21], differential evolution (DE) variants [22–26],

genetic algorithm (GA) variants [27–31], gravitational

search algorithm (GSA) variants [32–35] and other meth-

ods [36–54] have shown their leading ability with a high

number of applications, especially improved and hybrid

metaheuristic algorithms have been constantly developed

recent years. Almost studies have considered power loss

(PL) as a main objective and optimization methods have

been evaluated by comparing the value. A few studies have

focused on the installation of shunt capacitors and their

initial capital has been considered to be a main objective

function. For better evaluations, other studies have taken

power quality factors including voltage deviation (VD) and

voltage enhancement index (L index). The review on test

cases can indicate that real power systems such as Indian

24-bus system, Brazil system, North America system,

Taiwan system, 810-bus system and 135-bus system have

not been studied widely and only considered in the first

studies by using the oldest methods. Most data of the

systems have not been shown in the published work. Only

IEEE 30-bus and 118-bus have been taken into account in

approximately all the studies because all the data of the

systems have been reported sufficiently. IEEE 6-bus,

14-bus and 57-bus systems have been employed in few

studies because of different reasons. IEEE 6-bus and

14-bus systems are small-scale tests for demonstrating the

strong search ability of methods while IEEE 57-bus system

has ignored the limitations of all branches. Consequently,

we have used the two most popular systems, IEEE 30-bus
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Table 2 Review on previous studies about ORPD problem

Method Type of

method

Other implemented methods for comparisons Objective function Test cases

MNM [5] IDA DPM PL IEEE 30-bus system, 810-bus system

LPM [6] ODA – PL IEEE 30-bus system

MLPM [7] IDA – Capacitor

installation cost

135-bus system

IPM [8] ODA – PL Brazil system, North America

system

IPM [9] ODA – PL IEEE 6-bus and 118-bus system

DPM [10] ODA Software VD Taiwan system

IQP [11] IDA QPM, LPM PL IEEE 30-bus and 118-bus system

HMPSO

[12]

HMA GA, PSO HPSO, MPSO PL IEEE 30-bus and 118-bus system

CLPSO

[13]

IMA PSO PL, L index IEEE 30-bus and 118-bus system

HPSO–TS

[14]

HMA TSA, PSO PL, VD IEEE 30-bus system

PSO-ALC

[15]

IMA PSO PL, VD IEEE 30-bus, 57-bus and 118-bus

system

PSO [16] OMA – VD Southern India 24-bus system

IPG-PSO

[17]

IMA PSO-TVIW, PSO-TVAC, SPSO-TVAC, PSO-CF, PG-

PSO, SWT-PSO, PGSWT-PSO

PL, VD, L index IEEE 30-bus and 118-bus systems

SPSO-

TVAC

[18]

IMA – PL IEEE 14-bus and 118-bus system

HPSO–ICA

[19]

HMA PSO, ICA PL, VD IEEE 57-bus and 118-bus system

PSO [20] OMA LPM VD New England 39-bus system

PSO-GT

[21]

IMA PSO, GA PL IEEE 14-bus system

DE [22] OMA – PL, VD, L index IEEE 30-bus system

DE–AS

[23]

HMA EP, PSO, DE PL IEEE 30-bus system

MTLT–

DDE [24]

HMA ACO, DE, ABC, LCA, CSSA, BRCFA, BB–BCA,

PBILA

PL IEEE 14-bus, 30-bus and 118-bus

systems

QODE [25] IMA DE PL, VD, L index IEEE 30-bus, 57-bus and 118-bus

test systems

CABC-DE

[26]

HMA DE PL IEEE 14-bus and 30-bus systems

AGA [27] IMA GA PL IEEE30-bus system

SARCGA

[28]

IMA EP PL IEEE 14-bus and 30-bus systems

HLGA [29] IMA GA PL IEEE 14-bus system

SGA [30] IMA – PL, VD IEEE 30-bus and 57-bus systems

RSGA [31] IMA NRM PL IEEE 30-bus system

GSA [32] OMA – PL, VD, L index IEEE 30-bus, 57-bus and 118-bus

systems

GSA [33] OMA – Multi-objective

(PL and VD)

IEEE 57-bus and 118-bus systems

GSA [34] OMA – PL, VD, L index IEEE 14-bus and 30-bus systems

GSA-

NHCM

[35]

IMA GSA, PSO, GSA-CSS PL, VD IEEE 14-bus, 30-bus and 57-bus

systems

ACO [36] OMA GA, PSO PL IEEE 14-bus and 30-bus systems
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and 118-bus systems and three single objective functions

including PL, VD and L index have been considered to be

main targets for comparisons. In addition, we have also

used benchmark optimization functions for general com-

ments on the performance of proposed method. Many

studies have implemented only one proposed method for

solving ORPD problem and compared results with previous

methods rather than implement more methods. As observed

from information of other implemented methods for com-

parisons, deterministic methods in [5–11] have not focused

on comparison of performance but the demonstration of

solving ORPD problem exactly. Studies in [5] and [11]

have implemented other methods for comparisons of per-

formance, and study in [10] has shown DPM could deal

with the same system as well as software could accomplish.

HMPSO [12] is the integration of GA, multi-agent

system and conventional PSO. Thus, HMPSO has the

characteristic of hybrid PSO-GA and of multi-agent PSO.

The method is superior to other methods implemented

methods including GA, PSO, HPSO and MPSO. CLPSO

[13] has applied a learning strategy in aim to tackle the

premature convergence that has been existed in the feature

of PSO. The method has proposed a new formula for

determining the values of inertia weight and has suggested

a new range for velocity, which was totally different from

other PSO methods. Compared to GA and PSO, both

HMPSO and CLPSO were capable of avoiding premature

convergence to local optimum with low quality and had

other advantages such as high success rate, stable conver-

gence feature and accurate solutions. However, the further

performance of the two methods was not clear and per-

suasive because all comparisons were simply made with

GA, PSO and a small number of other methods such as

linear programming and evolutionary programming. Fur-

thermore, only objective of minimizing power loss was

considered for comparison. HPSO–TS was developed in

[14] by the use integration of search function of PSO and

TS. PSO has acted as global search while TS has been in

charge of local search and stopping PSO from falling into

local optimum fast. So, the search process of HPSO–TS

Table 2 (continued)

Method Type of

method

Other implemented methods for comparisons Objective function Test cases

ACO [37] OMA LPM PL Indian 24-bus system

QOTLBO

[38]

IMA TLBO PL, VD, L index IEEE 30-bus and 118-bus systems

GBTLBO

[39]

IMA BBDE, BBPSO PL IEEE 14-bus and 30-bus systems

CSA [40] OMA MFO, GWO, FA, FPA, GSA PL IEEE 30-bus system

ORCSA

[41]

IMA – PL, VD, L index IEEE 30-bus and 118-bus systems

HSA [42] OMA – PL, VD, L index IEEE 30-bus and 57-bus systems

NMSFLA

[43]

IMA PSO, GWPSO, LDGWPSO, MDE PL IEEE 30-bus and 57-bus systems

CKHA [44] IMA KHA PL, VD, L index IEEE 30-bus and 57-bus systems

HFA-NMS

[45]

HMA PSO, ABC, FA PL, VD IEEE 30-bus and 118-bus systems

GWO [46] OMA SGA, PSO, HSA PL, VD IEEE 30-bus and 118-bus systems

ABCA [47] OMA LPM PL Indian 24-bus system

EMA [48] OMA – PL, VD, L index IEEE 30-bus and 118-bus systems

DSA [49] OMA – PL, VD, L index IEEE 30-bus and 57-bus systems

ALO [50] OMA BA, GWO, ABC PL, L index IEEE 30-bus and 118-bus systems

BTSA [51] OMA – Multi-objective

(PL and VD)

IEEE 30-bus system

ICBO [52] IMA CSA, PSO, GSA PL IEEE 57-bus system

GBBWCA

[53]

IMA WCA PL, VD IEEE 30-bus, 57-bus and 118-bus

systems

JA [54] OMA – PL, capacitor

installation cost

IEEE 30-bus system

Proposed

method

IMH FA, CSA, PSO, FPA, SSO, SSA,

MSSA, HSSSA, KA

PL, VD, L index Benchmark functions, IEEE 30-bus

and 118-bus systems
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was much more complicated than PSO and TS, and there

were two new solution generations for each iteration in

HPSO–TS. This was totally different from the feature of

PSO and TS. Via the comparison of results obtained from

IEEE30-bus system with the objective of power loss min-

imization, HPSO–TS has shown better search ability than

other methods such as standard DE, PSO and TS. Clearly,

the investigation of the method’s performance has been

restricted. The conventional PSO has been applied in [16]

and [20] for the voltage profile improvement. The work

here only demonstrated the ability of PSO for dealing all

constraints and the ability of finding better optimal solution

than linear programming method. Another improved ver-

sion of PSO, PSO-ALC has been applied to ORPD problem

in [15] for independently minimizing power loss and

voltage deviation. PSO-ALC has used a leader particle to

attract other particles for moving new positions. If new

positions have been improved in terms of fitness function,

the leader has been employed for the next step. Otherwise,

new solutions would be merged into the whole population

for determining another leader particle. The method has

been tested on different cases and has been considered as

the best method among all compared methods.

Many existing improved versions of PSO in addition to

IPG-PSO have been applied in [17] for ORPD problem

with three independent objectives consisting of power loss,

voltage deviation and voltage stabilization index. IPG-PSO

has been constructed by applying pseudo-gradient theory

for determining the best velocity direction, which is totally

different from all previous versions of PSO. The pseudo-

gradient could support to find better updated velocity,

leading to better optimal solution. As a result, the method

has outperformed other PSO methods consisting of PSO-

TVIW, PSO-TVAC, SPSO-TVAC, PSO-CF, PG-PSO,

SWT-PSO and PGSWT-PSO. SPSO-TVAC has also been

applied in [18] for ORPD problem with different data from

[17]. HPSO–ICA has been proposed in [19] by the inte-

gration of imperialist competitive algorithm and improved

PSO. The imperialist competitive algorithm can enable to

select promising solutions for producing new solutions.

The method has produced new positions and evaluated

fitness functions three times; thus, it has taken much more

time than PSO for the whole search process. In fact, the

simulation time reported in [19] has given the evidence for

the comment since the simulation time of HPSO–ICA was

much longer than that of PSO and ICA for all test cases.

Although better results were obtained, the advantages of

HPSO–ICA over PSO and ICA were not able to be

accepted. In [21], graph theory has been applied in the

improved PSO called PSO with graph theory (PSO-GT) for

the duty of fault detection and isolation in an integrated

system of thermal units and wind turbines. The proposed

method has succeeded to deal with all the constraints.

Different versions of DE have been reemployed or

proposed for ORPD such as standard DE [22], DE–AS

[23], MTLT–DDE [24], QODE [25] and CABC-DE [26].

Such methods have been improved mainly based on

modifications on mutation operation and combination of

other methods and DE for overcoming several limitations

of DE such as easily fallen into local optimal solutions,

premature convergence and weakly jumping out local

traps. DE–AS has applied ant system to replace existing

selection operation of DE. Besides, mutation factor has

been also considered as a variable and determined by using

three different conditions. The proposed method has also

seen its advantages over PSO and DE via IEEE 30-bus

system with the target of minimizing power loss. MTLT–

DDE was an integration of modified teaching learning

technique (MTLT) and double differential evolution

(DDE). MTLT has changed the search strategy into a

number of points instead of only one point like the standard

teaching learning technique while DDE has used new

mutation, new crossover and new selection operations.

MTLT–DDE has been compared to almost recent methods

via the results obtained from IEEE 30-bus and IEEE

118-bus systems. Simple comparison via power loss could

see that method was better than all other methods; how-

ever; convergence speed has not been demonstrated for

further investigation.

GA and its improved versions have been applied for

ORPD such as AGA [27], SARCGA [28], HLGA [29],

SGA [30] and RSGA [31]. In AGA, mutation probability

and crossover probability have been adaptively tuned

dependent on fitness value of population in aim to enable

AGA jump out local search with premature convergence

and low-quality solutions. In SARCGA, simulated binary

crossover has been used as self-adaption and RCGA with

probability distribution (namely polynomial function) has

been used to replace uniform distribution. The demon-

stration of SARCGA’s performance has not satisfied

readers since comparisons have been made with EP and

DE. HLGA has determined good search zone and started

search process within the identified zones. Then, HLGA

has focused on global search within the identified zones.

Thus, compared to GA, the method has found better opti-

mal solution with faster speed. Nevertheless, the method

has coped with a limitation that the capability of jumping

out local zone was weak and it has been fallen into local

optimum easily. The performance of standard GA with

Roulette wheel selection and the performance of improved

GA with rank selection technique have been analyzed by

running on IEEE 30-bus system. The rand selection tech-

nique that has retained the top solutions among all old and

all new solutions was superior to GA with roulette wheel

selection. The method has been only compared to GA, and

its performance is still a question for readers.
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In addition to the three largest method groups, other

small groups have been applied for ORPD problem such as

GSA [32–34], GSA-NHCM [35], ACO [36, 37], QOTLBO

[38], GBTLBO [39], CSA [40], ORCSA [41], HSA [42],

NMSFLA [43], CKHA [44], HFA-NMS [45], GWO [46],

ABCA [47], EMA [48], DSA [49], ALO [50], BTSA [51],

ICBO [52], GBBWCA [53] and JA [54]. Among these

methods, CSA, GBBWCA and JA are the latest methods

which have been applied for dealing different systems of

ORPD problem. In general, all studies have made a big

effort for demonstrating their applied or proposed methods;

however, most methods have been only compared to a few

methods consisting of GA, PSO and standard methods.

Furthermore, the probability has been only carried out by

comparing one objective only while comparison of con-

vergence speed has been almost ignored. In the paper, we

investigate the performance of compared methods by using

reliable comparison criteria and result in the conclusion

which can advise readers which good methods for appli-

cation. In addition to implementation of the proposed

method, we also run other methods for better performance

evaluation consisting of PSO [55], FA [57], CSA [58], FPA

[59], SSA [78], MSSA [79] and HSSSA [79].

3 Optimal reactive power dispatch problem

3.1 Description

A transmission power network is the connection of electric

components such as power plants, transformers, transmis-

sion lines, capacitors and loads. Among the objects, power

plants are in charge of produce electricity and transmit the

electricity to transformers. There are two types of trans-

former, step-up transformer and step-down transformer.

Step-up transformers receive medium voltage from gener-

ators in power plants and increase the voltage to higher

level and transfer electricity to transmission lines but step-

down transformers receive electricity with very high volt-

age from transmission lines and decrease the voltage to

lower level compatible with the requirement from loads.

Transmission lines can be hundreds of kilometers long with

the main duty of providing electricity to loads or trans-

formers. The transmission power network can work stably

and effectively if all the components are controlled

appropriately. Basically, power plants are represented by

generators with three main parameters consisting of active

power output, reactive power output and voltage. Trans-

formers have two main roles in the contribution to the

stable operation of the transmission power network such as

increasing or decreasing voltage and regulating voltage by

setting tap changer. Transmission lines are represented by

impedance and admittance but its important factor

influencing the stable operation of the transmission power

network is maximum apparent power flow limit. If appar-

ent power flow through transmission lines is not higher

than their capacity, they are working stably; however, it

cannot conclude the status of the transmission power net-

work. Capacitors are used to provide active power to loads

with intent to reduce power loss and regulate voltage of

buses. The transmission power network is working stably if

all electric components as well as their operating parame-

ters are in allowed operating range. Thus, the major role of

solving ORPD problem is to determine these main

parameters of electric component so that the transmission

power network can work stably and effectively. ORPD

problem is solved by using mathpower program and the

support of optimization tools. The optimization tools pro-

vide the program with control variables with standard

values (i.e., main parameters in allowed range). Then, the

program is run and all remaining variables (i.e., other

parameters) are obtained as a result. The optimization tool

will calculate the effectiveness of given objectives as well

as judge operating status of electric components. Finally,

these control variables will be changed close to the most

appropriate values.

3.2 Assumption

ORPD problem considers six electric components such as

(1) generators of power plant; (2) transformers; (3) trans-

mission lines; (4) capacitors; (5) loads; and (6) buses. Each

component has main parameters regarding to stably oper-

ating status of transmission power network. These param-

eters are explained and supposed as follows:

1. Generators: active power output, reactive power output

and voltage can be regulated smoothly. It means that

generators can work as parameters obtained from

optimization tools and Mathpower program.

2. Transformers: tap changer is controlled exactly and

expected voltage can be responded.

3. Transmission lines: maximum apparent power flow

limit is predetermined and during working time, other

parameters of the line such as impedance and admit-

tance do not suffer from the impact of environment

temperature.

4. Capacitors: reactive power can be exactly generated as

requirement.

5. Loads: active power and reactive power are exactly

known and they remain unchanged during considered

time.

6. Buses: voltage magnitude and voltage phase angle can

be measured exactly.

On the other hand, ORPD problem supposes that all

generators are working by given values of active power
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output. During the operation process, only voltage and

reactive power output can be tuned by operators.

3.3 Problem formulation

ORPD problem is mathematically formulated by the pre-

sent of objectives and constraints. Objectives can be min-

imization of power loss, minimization of voltage deviation

and minimization of voltage stability L index while con-

straints are voltage limitations of load buses, apparent

power flow of transmission lines, reactive power of gen-

erators and the balance between demand and supply in

terms of active power and reactive power. The objectives

and constraints are described as follows:

3.3.1 Objective functions

Active power loss minimization Active power loss is also

the electricity energy loss leading to less effective economy

of power systems and high price of energy for customers.

As a result, the total active power loss is considered as a

main objective when operating power systems. The

objective is formulated as follows:

Minimize F1 ¼
X

Ploss ð1Þ

where
P

Ploss is the real power loss obtained by the fol-

lowing equation:

X
Ploss ¼

XNbus

i¼1

XNbus

j¼1
j 6¼i

glinel V2
i þ V2

j � 2ViVj cos ui � uj

� �h i

ð2Þ

where glinel is the conductance value of line l connecting

two buses i and j; ui and uj represent the voltage phase

angles of buses i and j, respectively.

Load bus voltage deviation minimization The load bus

voltage can show the voltage profile of power systems. In

case that the load voltage changes continuously and its

value is much lower or higher than expected value 1.0 pu,

the power system is working unstably and ineffectively.

Thus, the second objective is to minimize the deviation of

load voltage magnitude. Namely, the objective is expressed

by the following model:

Minimize F2 ¼
XNload

i¼1

Vloadi � Vrefj j ð3Þ

where Vloadi is the ith load’s voltage magnitude; Vref is the

hopeful value of load voltage, which is normally set to

1.0 pu.

Voltage stability L index minimization In power system,

loads tend to change their consumed active power almost

continuously. This phenomenon can result in uncontrolled

condition of power systems, and even it can result in

voltage collapse. Normally, L index is within the range [0;

1]. ‘‘0’’ value indicates that all loads and such power net-

work are working stably but ‘‘1’’ value indicates that such

power network is being subjected to disturbance condition

and voltage collapse can take place soon. Thus, the

improvement in voltage stability can be yielded in case

minimization of L index is obtained [11]. The third

objective concerned in the paper is to minimize voltage

stability index (L index) of all buses similar to the maxi-

mization of voltage stability. The objective and L index can

be seen by the following formulas:

Minimize F3 ¼ maxðLiÞ; i ¼ 1; . . .;Nbus ð4Þ

where Li is the L index value of bus i determined by [11]:

Li ¼ 1�
PNG

j¼1 YijVj

Vi

�����

�����; i ¼ 1; 2; . . .;Nbus ð5Þ

where Yij is the mutual admittance between bus i and bus j.

3.3.2 Constraints

Real and unreal power balance constraints In order to

ensure voltage and frequency are within working range

values, real power and reactive power must be balanced

between generating and consuming. The constraints are

seen in the following equations:

PGi � Pdi ¼ Vi

XNbus

j¼1

Vj Glinel cos ui � uj

� ��

þBlinel sin ui � uj

� ��
; i ¼ 1; . . .;Nbus

ð6Þ

QGi þ Qci � Qdi ¼ Vi

XNbus

j¼1

Vj Glinel sin ui � uj

� ��

�Blinel cos ui � uj

� ��
; i ¼ 1; . . .;Nbus

ð7Þ

where Glinel and Blinel are real and imaginary parts of

admittance of line l connecting buses i and j, respectively.

In addition to the equality constraints above, other

inequality constraints related to working limitations of

other electric components are also taken into account in

ORPD problem. Namely, such inequality constraints are

considering the upper and lower limitations of: (1) reactive

power generation and voltage magnitude of generator; (2)

the reactive power generation of VAR compensator; tap

changer of transformer; voltage magnitude of load; and the

maximum apparent power flow of branch l. Such con-

straints are given in the following formulas:
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QGi;min �QGi �QGi;max; i ¼ 1; . . .;NG ð8Þ

VGi;min �VGi �VGi;max; i ¼ 1; . . .;NG ð9Þ

Qci;min �Qci �Qci;max; i ¼ 1; . . .;Nc ð10Þ

Ti;min � Ti � Ti;max; i ¼ 1; . . .;Nt ð11Þ

Vloadi;min �Vloadi �Vloadi;max; i ¼ 1; . . .;Nload ð12Þ

Sl � Sl;max; l ¼ 1; . . .;Nline ð13Þ

4 The proposed ISSO method

4.1 Original social spider optimization algorithm

The social spider optimization (SSO) is also a metaheuristic

algorithm such as PSO, GA and DE; however, the configu-

ration of SSO is different from these methods. In fact, these

methods have only one time producing new solutions but

SSO possesses three new solution generations. The first

generation and the second generation, respectively, produce

Nfs andNms new solutions. The third generation producesNbs

new solutions in which Nbs is the number of baby spiders.

Normally, the number of females accounts for from 60 to

90% of the whole spider community (Npop). The three gen-

erations of SSO are described in detail as follows.

The first generation (the movement of female spiders)

The first generation produces Nfs new solutions via the

phenomenon of position movement of all female spiders. In

the spider community, all female spiders will move first

when there is a vibration on the web. New position of

female spider f called Xfs,f is dependent on both the

vibration intensity and the position of (1) one spider who is

closest to her and (2) the best spider who has the best

weight. Thus, the new position of female spider f is

obtained by using either Eqs. (14) or (15) depending on the

movement probability Pm. If a random number RNf within

0 and 1 arbitrarily produced is higher than Pm, Eq. (14) is

applied for moving spider f. Otherwise, Eq. (15) is

employed for determination of the new position of spider f.

Xfs;f ¼ Xfs;f þ rand � Vibnearest � ðXnearest � Xfs;f Þ þ rand

� VibGbest � ðXGbest � Xfs;f Þ þ rand � rand� 0:5ð Þ
ð14Þ

Xfs;f ¼ Xfs;f � rand � Vibnearest � ðXnearest � Xfs;f Þ � rand

� VibGbest � ðXGbest � Xfs;f Þ þ rand � rand� 0:5ð Þ
ð15Þ

In Eqs. (14) and (15), some symbols need to be defined

as follows: Vibnearest and Xnearest are the vibration intensity

and position of the spider closest to female spider f;

VibGbest and XGbest are the vibration intensity and position

of the global best spider in the whole population.

The vibrations of the two spiders are calculated by the

following expressions:

Vibnearest ¼ wnearest � e�d2
f ;nearest ð16Þ

VibGbest ¼ wGbest � e�d2
f ;Gbest ð17Þ

where df,nearest and df,Gbest are, respectively, the distance

between considered female spider f and another one closest

to her and the distance between considered female spider f

and the best spider; wnearest and wGbest are, respectively, the

weight of the nearest spider to spider f and the weight of

the global best spider in which the weight of a typical

spider s can be calculated by

ws ¼
FVGworst � FVs

FVGworst � FVGbest

ð18Þ

where FVGworst and FVGbest are the highest fitness value of

the global worst spider and the lowest fitness value of the

global best spider, and FVs is the fitness value of spider s,

which is being considered;

The second generation (the movement of male spiders)

After all the female spiders change their position (corre-

sponding to Nfs new produced solutions), all male spiders

also move to new positions corresponding to producing

Nms new solutions. However, the movement strategy of

male spiders is not the same as that of female spiders. New

position of being considered male spider m is dependent on

either the female closest to him or all other males as shown

in Eqs. (19) and (20). Obviously, it needs condition for

using either (19) or (20) similar to the use condition of

Eqs. (14) and (15). Namely, the weight of being considered

male spider m wms,m is compared to the medium weight of

all males wms,mean. If wms,m is higher than wms,mean, male

spider m will employ Eq. (19) for changing its position. On

the contrary, Eq. (20) is selected for the movement.

Xms;m ¼ Xms;m þ rand � Vibfs;nearest � ðXfs;nearest � Xms;mÞ
þ rand � ðrand� 0:5Þ

ð19Þ

Xms;m ¼ Xms;m þ rand �
PNms

m¼1 Xms;m � wms;mPNm

m¼1 wms;m

� Xms;m

 !

ð20Þ

In Eq. (19), Vibfs,nearest is the vibration of female closest

to being considered male m and is obtained by

Vibfs;nearest ¼ wfs;nearest � e�d2m;nearest ð21Þ

where wfs,nearest is the weight of the female spider closest to

being considered male m and dm,nearest is the distance

between the closest female and male m.

The third generation (mating operation for giving birth

to baby spiders) Mating operation is the action of leading
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males and other females for maintaining spider community.

The operation is corresponding to the third new solution

generation in SSO method. Leading males move within

their own controlled zone and carries out mating with

females in the zone. The zone is a circle and its radius is

obtained by

Radius ¼
PD

i¼1 zi;max � zi;min

� �

2 � D ð22Þ

where zi,min and zi,max are the upper and lower limitations

of control variable z; D is the control variable dimension.

After restoring dominant males and females in the pre-

determined circle, baby spiders will be given birth. The

phenomenon is corresponding to the generation of new

solutions but it is different from the first and the second

generations because the third generation cannot be math-

ematically formulated. In fact, each new solution is pro-

duced by random selection of control variables in the

position of such dominant male and females.

The whole search procedure of SSO method for solving

a typical optimization is illustrated in Fig. 1.

4.2 Proposed algorithm

In the section, we suggest some modifications that should

be performed on SSO for tackling several disadvantages of

SSO such as (1) many control parameters needing selection

of values such as the population Npop, probability Pm and

the highest iteration HI; (2) many computation steps such

as calculation of vibration, weight and fitness function; (3)

high oscillation and (4) low convergence to good quality

solutions. Our modifications are as follows:

1. Set the term ‘‘rand(rand - 0.5)’’ in Eqs. (14) and (19)

to zero. It is clear that value of ‘‘rand(rand - 0.5)’’ is

randomly produced within the range [- 0.5; 0.5] and

does have mutual relationship with old solutions, Xfs,f

and Xms,m. Thus, the contribution of the term may be

insignificant and even it can lead to worse result. In

fact, for ORPD problem with IEEE 30-bus system and

IEEE 118-bus system, optimal solutions contain

different control variables such as voltage magnitude

in per unit (PU) within the range of [0.95; 1.1], tap

changer in (PU) within the range of [0.9; 1.1] and

reactive power of VAR compensators within the range

of [0; 5] for IEEE 30-bus system and [- 40; 20] for

IEEE 118-bus system. It can be indicated that the term

‘‘rand(rand - 0.5)’’ with values from - 0.5 to 0.5 may

not much influence reactive power of VAR compen-

sators but its impact on voltage magnitude and tap

changer is highly remarkable. As a result, optimal

solutions will be negatively influenced by the random

terms in Eqs. (14) and (19), leading to failure for the

optimization operation of transmission power system.

2. Use only Eq. (14) for moving females. In Eq. (14), Xfs,f

is newly updated by adding two terms rand � Vibnearest �
ðXnearest � Xfs;f Þ and rand � VibGbest � ðXGbest � Xfs;f Þ to

Xfs,f while in Eq. (15) Xfs,f is updated by subtracting the

two terms from Xfs,f. Clearly, the main difference

between Eqs. (14) and (15) is the use of addition and

subtraction, leading to different performance. As shown

in [55], 70% of using Eq. (14) can result in better

solutions for most benchmark functions. However, as

thoroughly observed from formulas (20) and (21)

Fig. 1 The flowchart of using SSO for solving a typical optimization

problem

Neural Computing and Applications (2020) 32:5919–5950 5931

123



calculating velocity and position of PSO [17], formulas

(15) and (23) producing new solutions of CSA via levy

flights and strange egg discovery [81], formulas (1), (2)

and (3) calculating frequency, new velocity and new

position of bat algorithm [82] and formula (13) produc-

ing new solutions of DE [22], such methods have used

addition instead of subtraction. The use of both addition

and subtraction was applied only in [17] for PG-PSO

and IPG-PSO but there had to be utilization condition

for the two strategies dependent on their efficiency for

the first iteration. If addition was more effective for the

previous iteration, it would be used in the current

iteration. Otherwise, subtraction would be selected for

the considered iteration. By using the theory and

constriction factor, the two methods in [17] could get

better performance than other PSO methods including

PSO methods with the combination of constriction

factor and other improvements. The results could clearly

advise that there must be a condition for the use of

adding or subtracting a step size. Thus, in order to

overlap the drawback of SSO method, we suggest using

only Eq. (14) with slightly change as shown in Eq. (23)

and cancel Eq. (15) for moving the position of female

spiders corresponding to producing Nfs new solutions.

The single use of Eq. (23) can cancel the selection of

Pm, shorten computation time for determining optimal

solutions and support the proposed method to be

convergent to better optimal solutions.

Xfs;f ¼ Xfs;f þ rand � Vibnearest � ðXnearest � Xfs;f Þ þ rand

� VibGbest � ðXGbest � Xfs;f Þ
ð23Þ

3. Use only Eq. (19) for moving males. Observing from

Eq. (20), we can see that new position of male spider is

directly impacted by the weight of all males. Further-

more, the method is also completely different from all

optimization algorithms. There have not been studies

that indicate the combination of fitness function/weight

and old solutions can lead to better solution as used in

Eq. (20). Thus, the formula should be ignored for better

performance. In addition, in Eq. (19), we also replace

the female closet to the considered male with the best

female, who has just been found after the movement of

all females. For the modification, we can stop calculat-

ing the weight of all males, the mean weight of all males

and stop determining the female closest to the consid-

ered male. As a result, the movement of all males is

modeled as only one following equation.

Xms;m ¼ Xms;m þ rand � Vibfs;best � ðXfs;best � Xms;mÞ
ð24Þ

where Vibfs,best and Xfs,best are the vibration and the

position of the best female, respectively.

The effectiveness and robustness of the use of Eqs. (23)

and (24) will be tested and discussed in the numerical results.

The whole search process of solving a typical opti-

mization problem by using the proposed method is clearly

shown in Fig. 2. The observation from Figs. 1 and 2 can

represent the simplicity of the proposed method and the

superiority of the proposed method over SSO method.

Namely, the points are as follows:

1. Reduction in one control parameter Pm and the

comparison between RNf and Pm: The task for tuning

Pm is no longer necessary in the proposed method,

leading to the cancelation of the comparison between

RNf and Pm. As a result, the computation steps and

simulation time can be shortened.

2. Cancelation of Eqs. (15) and (20): This task not only

reduces the computation steps but also gives more

chances for producing promising solutions with high

quality by using Eqs. (23) and (24).

3. No calculation of theweight of eachmalewms,m andmean

weight wms,mean for the whole males and the cancelation

of the comparison between wms,m and wms,mean: Eq. (18)

for determining the weight of each male is not used and

themeanweight of thewholemales is no longer needed in

the proposed method, resulting in the reduction in the

computation steps and shorter simulation time.

5 The application of the proposed method
for solving ORPD problem

5.1 Initialization

In the considered ORPD problem, the position of male spi-

ders and female spiders restores unknown variables playing

important role such as voltage of generators, tap changer of

transformers and MVAR of compensators. For better

observation, such position is mathematically modeled by

Xs ¼ fVG1;s; . . .;VGNG;s; T1;s; . . .; TNt ;s;Qc1;s; . . .; QcNc;sg
T;

s ¼ 1; . . .; Npop

ð25Þ

At the beginning, each position is randomly produced

within upper and lower values as the following expression

Xs ¼ Xmin þ rand � ðXmax � XminÞ; s ¼ 1; . . .;Npop ð26Þ

where Xmin and Xmax are representing minimum values and

maximum values of control variables, respectively, shown

in formula (25).
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After having enough number of control variables, reactive

power of generators, voltage of load buses aswell as apparent

power flow of transmission lines are yielded by running

MATPOWER 4.1 and fitness function evaluating quality of

solutions is then constructed by present of objective and

punishments of obtained variables from program of MAT-

POWER 4.1. The fitness function is established as follows:

FFs ¼ Objectiveþ k1
XNG

i¼1

DQGi

 !
þ k2

XNload

i¼1

DVloadi

 !

þ k3
XNline

l¼1

DSl

 !

ð27Þ

where k1, k2 and k3 are amplification factors for punish-

ment; DQGi, DVloadi and DSl are the punishment interval for

violation of reactive power of generator i, voltage

magnitude of load bus i and apparent power flow of line l.

k1, k2 and k3 are selected by experiment while DQGi,

DVloadi and DSl are calculated by using the following

formulas:

DQGi ¼
QGi � QGi;max if QGi [QGi;max

QGi;min � QGi if QGi\QGi;min

0 else

8
<

: ð28Þ

DVloadi ¼
Vloadi � Vloadi;max if Vloadi [Vloadi;max

Vloadi;min � Vloadi if Vloadi\Vloadi;min

0 else

8
<

: ð29Þ

DSl ¼
Sl � Sl;max if Sl [ Sl;max

0 else

�
ð30Þ

5.2 Stopping condition for iterative algorithm

The execution of ORPD based on the proposed method is an

iterative algorithm that depends on a predetermined stopping

condition. Most metaheuristic algorithms are using the

highest iteration for stopping search process and in the paper,

the proposedmethod is not also an exception. Thus, when the

current iteration is equal to the highest iteration, which is

predetermined, the search process can be terminated.

5.3 The whole computing procedure

The application of the proposed method for solving ORPD

can be described in detail as follows:

Step 1: Determine control parameters consisting of

population size Npop, the number of female

spiders Nfs, the number of male spiders Nms and

the highest iteration HI

Step 2: Randomly initialize the whole population using

Eq. (26)

Step 3: Run MATPOWER 4.1 program for determining

reactive power of generators, voltage of load

buses and apparent power flow of transmission

lines

Step 4: Evaluate solution quality by calculating

Eq. (27)

• Set solution with the lowest fitness function

to the global best solution XGbest and set

current iteration to 1 (CI = 1).

Step 5: Use Eq. (18) to calculate weight for whole

spiders and calculate vibrations using Eqs. (16)

and (17).

Fig. 2 The flowchart of using the proposed method for a typical

optimization problem
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Step 6: Perform the first generation corresponding to

moving females’ position

– Check upper and lower boundaries: if solu-

tions are higher upper bound, set them to

upper bound (Xmax) and if solutions are

smaller than lower bound, set them to lower

bound (Xmin).

– Run MATPOWER 4.1 program for deter-

mining reactive power of generators, volt-

age of load buses and apparent power flow

of transmission lines.

– Evaluate solution quality by calculating

Eq. (27).

– Set solution with the lowest fitness to the

best solution Xfs,best and solution with the

highest fitness to Xfs,worst.

Step 7: Perform the second generation corresponding to

moving males’ position.

– Check upper and lower boundaries: if solu-

tions are higher upper bound, set them to

upper bound (Xmax) and if solutions are

smaller than lower bound, set them to lower

bound (Xmin).

– Run MATPOWER 4.1 program for deter-

mining reactive power of generators, volt-

age of load buses and apparent power flow

of transmission lines.

– Evaluate solution quality by calculating

Eq. (27) and set solution with the highest

fitness to the worst solution Xms,worst.

Step 8: Perform the third generation corresponding to

mating operation

– Check upper and lower boundaries: if solu-

tions are higher upper bound, set them to

upper bound (Xmax) and if solutions are

smaller than lower bound, set them to lower

bound (Xmin).

– Run MATPOWER 4.1 program for deter-

mining reactive power of generators, volt-

age of load buses and apparent power flow

of transmission lines.

– Evaluate solution quality by calculating

Eq. (27).

– Set solution with the lowest fitness function

to the best solution Xbaby,best.

– Between Xfs,worst and Xms,worst, choose worse

one and replace it with Xbaby,best.

Step 9: Compare new position (new solution) with old

position (old solution) of each spider to retain

better one and abandon worse one.

Step 10: Determine the best solution among the current

population XGbest.

Step 11: If CI = HI, stop computation procedure.

Otherwise, back go step 4 and set CI = CI ? 1.

6 Numerical results

In the section, we concentrate on comparison of results

obtained by the proposed method and other existing

methods in addition to other implemented methods such as

(1) PSO [55]; (2) FA [57]; (3) CSA [58]; (4) FPA [59]; (5)

SSA [78]; (6) MSSA [79]; (7) HSSSA [79]; (8) SSO [60];

(9) SSO with Eq. (23) (ISSO1); (10) SSO with Eq. (24)

(ISSO2). Six benchmark functions and two standard sys-

tems, IEEE 30-bus system and IEEE 118-bus system, are

used for running the methods. The platform and the com-

puter for execution of the proposed method are, respec-

tively, MATLAB 2016a and 2.4 Ghz processor with 4 Gb

of ram. The whole information of the section is given in

Table 3.

6.1 Impact analysis of proposed modifications
on obtained results from benchmark
functions

In the part, we run FA, CSA, PSO, FPA, SSA, MSSA,

HSSSA, SSO, ISSO1, ISSO2 and the proposed method on

six benchmark functions [83, 84] where 30 is selected as

the number of variables. For simulation, we set Npop to 50

for FA, PSO, FPA, SSA, MSSA and HSSSA but 30 for

CSA, 40 for SSO, ISSO1, ISSO1 and ISSO while setting

HI to 1,000 for all the methods. In addition, other param-

eters are also selected as follows:

1. FA: a = 0.25, 0.5, 0.75, 1.0

2. CSA: Pa = 0.2, 0.4, 0.6, 0.8, 1.0

3. PSO: c1 = c2 = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0

4. FPA: Pa = 0.2, 0.4, 0.6, 0.8, 1.0

5. SSO and ISSO2: Pm = 0.7

The simulation results in terms of minimum and stan-

dard deviation of 50 independent trial runs for six bench-

mark functions are reported in Tables 4 and 5 for

evaluating the best optimal solution quality and the sta-

bility of solution search among 50 runs of such compared

methods. When the population size and the highest itera-

tion are thoroughly selected for fair comparison of con-

vergence speed, the quality of the best solution and the

standard deviation, respectively, reflect the effectiveness

and the robustness of compared methods. As given in

Tables 4 and 5, the reported minimum and standard devi-

ation of ISSO1 and ISSO2 are much less than those from
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SSO but much higher than those from the proposed ISSO

method for all functions. The indications can confirm the

standout of ISSO1 and ISSO2 in terms of the effectiveness

and the robustness over SSO. Clearly, using Eq. (23) is

better than using both Eqs. (14) and (15), and using

Eq. (24) is better than using both Eqs. (19) and (20). Fur-

thermore, the combination of Eqs. (23) and (24) can lead to

the best performance as seeing results achieved by ISSO.

For comparisons with other methods such as PSO, FA,

CSA, FPA, SSA, MSSA and HSSSA, the proposed ISSO

method always reaches the best achievement with the best

minimum and the best standard deviation but SSO is

always worse than many methods in terms of minimum and

standard deviation. In fact, SSO is worse than CSA for all

functions in terms of both minimum and deviation. For

comparison with FPA, SSO can find better result for only

Rastrigin function. For comparison with state-of-the-art

methods including SSA, MSSA and HSSA, SSO shows its

shortcoming since its optimal solutions have higher mini-

mum and standard deviation for most functions excluding

Rastrigin function and Schwelfel_222 function.

In summary, we can conclude that the proposed modi-

fications carried out on SSO reaches very good results and

the proposed ISSO method is superior to popular meta-

heuristic algorithms including SSO, FA, CSA, FPA and

PSO, and state-of-the-art methods consisting of SSA,

MSSA and HSSA for benchmark functions.

6.2 Investigation of the proposed method’s
performance on IEEE 30-bus system

In the part, the proposed ISSO method is compared to FA,

CSA, FPA, PSO, SSA, MSSA, HSSSA, SSO and other

existing methods by implementing on IEEE 30-bus system.

Such IEEE 30-bus system can be reached by referring to

[85] and it consists of 6 generator buses, 24 load buses, 41

transmission lines, 9 VAR compensators and 4 transform-

ers. The set of control variables included in position of

spiders is comprised of voltage magnitude of 6 generators,

reactive power output of 9 VAR compensators and tap

changer of 4 transformers. Fifty independent trial runs are

performed for each method by setting HI to 50 for all

methods and setting Npop to 30 for PSO, FA, FPA, SSA,

MSSA and HSSSA but setting to 20 for CSA and 25 for

SSO and ISSO. The selection can balance the number of

new produced solutions between ISSO and other methods

as well as approximate computation time excluding FA,

which must use high value for population. Other remaining

control parameters of these methods are also set to the

range shown in Sect. 6.1. Three single objectives including

power loss, voltage deviation and L index are indepen-

dently minimized in turn and the best results with respect to

minimum, mean, maximum, standard deviation and com-

putation time (CPU time) obtained by these methods and

other methods are, respectively, summarized in Tables 6, 7

and 8. In addition, another important value, called

improvement level (IL) in %, which is calculated by using

Eq. (31) together with the TNFEs, is also reported in these

tables.

Improvement level ð%Þ

¼ min: of another method�min: of ISSO

min: of another method
100%

ð31Þ

With respect to the value of IL, result with positive

value (?) means the proposed method is better than others

but result with negative value (-) indicates there is no

improvement in the proposed method over others even the

proposed method is less effective than such compared

methods if other comparison criteria are accepted. Clearly,

accurate comparison criteria need to be predetermined for

assessing the effectiveness of compared methods. Thus, in

the paper we consider the following factors as main

accurate comparison criteria:

1. The comparison of minimum (or improvement level):

aim to assess the best optimal solution quality.

2. The comparison of standard deviation: aim to assess

the stability of optimal solution search ability.

Table 3 The description of study cases

Subsection Implemented method Test system Objective function

6.1 FA, CSA, PSO, FPA, SSA, MSSA, HSSSA, SSO, ISSO1, ISSO2, the

proposed method

Six benchmark

functions

Minimize benchmark

function

6.2 FA, CSA, PSO, FPA, SSA, MSSA, HSSSA, SSO, the proposed method IEEE 30-bus system Minimize:

(1) Power loss

(2) Voltage deviation

(3) Voltage stability index

6.3 FA, CSA, PSO, FPA, SSA, MSSA, HSSSA, SSO, the proposed method IEEE 118-bus system Minimize:

(1) Power loss

(2) Voltage deviation

(3) Voltage stability index
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3. The comparison of the number of newly produced

solutions to assess the solution search speed. In [86],

authors have presented a convincing argument that

population size and the iterations are two important

factors in regard to the performance of implemented

methods. Higher population size and iterations can

improve found solution significantly but simulation

time may be much longer. Thus, they have suggested

that the number of fitness evaluations TNFEs (is also

the total number of newly produced solutions) must be

used for fairly evaluating applied methods. Namely,

TNFEs can be calculated by the following formulas:

TNFEs ¼ Npop � HI ð32Þ

TNFEs ¼ 2 � Npop � HI ð33Þ

TNFEs ¼ Npop þ Nbb

� �
� HI ð34Þ

Among the three formulas, Eq. (32) is applied for

calculating TNFEs for the methods with one new

solution generation per iteration such as PSO, FPA,

SSA and BBO, while Eq. (33) can find TNFEs for the

methods with two new solution generations such as

CSA, TLBO and QOTLBO. On the contrary, the SSO

method and the proposed method are totally different

because TNFEs in Eq. (34) are not a certain value for

each run due to the uncertainty of Nbb, which is the

number of babies produced per iteration. For reporting

values of TNFEs for the SSO and the proposed meth-

ods, we have to count the total number of babies for the

50 runs and then the average value will be employed.

4. The verification of optimal solution accuracy: to assess

the reliability of methods.

For power loss optimization case, the minimum power

loss found by the proposed method to be 4.51445 MW and

less than that of almost methods excluding GSA [32] with

IL of - 0.003%, which is given in bold in Table 6. The

accuracy of reported solution of GSA is checked and truly

confirmed but the superiority of GSA over the proposed

method is not accepted because GSA has produced 20,000

Table 4 Comparison of results

obtained from Sphere,

Rosenbrock and Rastrigin

functions

Method Sphere function Rosenbrock function Rastrigin function

Min SD Min SD Min SD

PSO 7.86E?02 4.59E-13 3.69E?01 1.82E?02 1.73E-01 1.26E?01

FA 1.21E?02 1.70E?01 4.02E?03 1.00E?03 9.86E?01 2.12E?01

FPA 7.84E-05 1.06E-04 2.57E?01 4.66E-01 8.20E-05 1.26E-04

CSA 2.99E-12 9.44E-12 1.98E?01 5.64E-01 4.64E-13 1.83E-12

SSA 1.88E-01 8.44E-01 2.93E?01 8.05E?00 5.36E-02 1.86E-01

MSSA 3.60E-03 2.46E-01 2.60E?01 3.78E?01 9.57E-05 2.32E-02

HSSSA 3.75E-01 7.40E-01 2.71E?01 4.80E?00 2.53E-02 1.96E-01

SSO 4.05E?00 9.33E-01 2.64E?02 1.04E?02 4.91E-10 1.15E-05

ISSO1 6.1E-33 5.43E-9 3.93E-5 9.19E?00 2.21E-33 7.11E-10

ISSO2 4.92E-29 8.77E-10 5.57E-6 1.12E?01 5.35E-40 3.47E-11

ISSO 1.90E-53 1.66E-35 7.77E-17 5.29E?00 9.31E-128 6.89E-16

Table 5 Comparison of results

obtained from Ackley,

Griewangk and Schwelfel_222

functions

Method Ackley function Griewangk function Schwelfel_222 function

Min SD Min SD Min SD

PSO 2.02E?00 4.30E?00 3.36E?00 6.11E?00 8.81E?00 5.39E?00

FA 1.86E?01 3.37E-01 4.36E?02 5.52E?01 4.93E?04 7.79E?08

FPA 4.70E-02 1.23E-02 5.27E-04 3.84E-04 1.11E-01 9.01E-02

CSA 1.27E-05 5.13E-06 1.36E-11 3.76E-11 3.19E-05 2.23E-05

SSA 6.78E-01 7.12E-01 2.57E-01 8.29E-01 3.74E?00 2.47E?00

MSSA 4.85E-02 3.10E-01 2.93E-03 1.50E-01 3.69E?01 2.41E?01

HSSSA 8.69E-01 6.49E-01 1.20E-01 7.76E-01 3.22E?00 2.33E?00

SSO 1.71E?00 2.07E-01 1.13E-02 1.50E-01 2.07E-01 4.97E?00

ISSO1 1.08E-04 5.15E-04 6.25E-10 5.66E-06 8.47E-15 3.73E-09

ISSO2 5.71E-06 3.33E-05 1.09E-11 7.62E-07 1.93E-19 9.83E-15

ISSO 3.29E-14 1.07E-14 3.33E-16 0.00E?00 1.81E-60 3.35E-22
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new solutions and accomplished 20,000 fitness evaluations;

meanwhile, the proposed method has updated and evalu-

ated about 1424 new solutions. The vast work of GSA has

indicated that GSA has used approximately 14 times the

number of new solutions from the proposed method. As

compared to other implemented methods such as PSO,

FPA, FA, CSA, SSA, MSSA, HSSSA and SSO, the power

loss yielded by the proposed method can result in a high

improvement level, 1.169%, 2.399%, 13.615%, 2.367%,

4.26%, 9.73%, 9.26% and 7.116%, respectively. Further-

more, the proposed method has converged to better results

with less number of new solutions and less number of fit-

ness evaluations than these methods. These methods have

produced and evaluated about 1500 and 2000 new solutions

while that from the proposed method was about 1424 new

solutions. The comparison of the remaining methods shows

that the proposed method can reach the improvement level

approximately about 0.25 to 9%. The comparison of

TNFEs can confirm fast search speed of the proposed

method compared to other ones since TNFEs from other

methods were from 4000 to 30,000. Clearly, the proposed

method could be from 3.5 to 21 times faster than other

ones. As a result, it can conclude that the proposed method

is the most powerful optimization tool for the case because

it reaches advantages such as the second best optimal

solution, the fastest method, getting high improvement

level compared to compared methods.

Table 6 Comparison of results obtained from IEEE 30-bus system with power loss optimization

Method Min Avg. Max SD CPU time (s) HI Npop TNFEs IL (%)

HPSO–TS [14] 4.5213 – – – – – – 0.152

TS [14] 4.9203 – – – – – – 8.248

PSO [14] 4.6862 – – – – – – 3.665

SGA [30] 4.5692 – – – – 300 60 18,000 1.2

PSO-TVIW [17] 4.84580 4.87610 5.22920 0.05620 8.76200 200 20 4000 6.838

PSO-TVAC [17] 4.84490 4.87020 4.96550 0.02630 8.68000 200 20 4000 6.821

SPSO-TVAC [17] 4.52620 4.55640 4.77160 0.05540 9.09200 200 20 4000 0.260

PSO-CF [17] 4.52580 4.57110 4.99900 0.08150 8.48000 200 20 4000 0.251

PG-PSO [17] 4.64250 4.73200 4.79720 0.11240 8.21600 200 20 4000 2.758

SWT-PSO [17] 4.65780 4.94130 5.25210 0.12210 7.99500 200 20 4000 3.078

PGSWT-PSO [17] 4.79140 5.23490 6.05120 0.21310 7.91200 200 20 4000 5.780

IPG-PSO [17] 4.52560 4.55080 4.94930 0.05920 7.85200 200 20 4000 0.246

DE [22] 4.55500 – – – – 500 150 75,000 0.890

GSA [32] 4.51431 – – – – 200 100 20,000 2 0.003

QOTLBO [38] 4.55940 4.56010 4.56170 0.03700 – 100 50 10,000 0.986

TLBO [38] 4.56290 4.56950 4.57480 0.05640 – 100 50 10,000 1.062

SGA [42] 4.94080 5.0378 5.1651 – – 30,000 – – 8.629

PSO [42] 4.9239 4.972 5.0576 – – 30,000 – – 8.316

HSA [42] 4.9059 4.924 4.9653 – – 30,000 – – 7.979

NMSFLA [54] 4.6118 4.61264 4.61749 0.00098 – 100 14 1400 2.111

ALO [50] 4.59000 100 – – 1.646

JA [54] 4.62500 – – – – 500 60 30,000 2.390

PSO 4.56787 4.99356 6.68261 0.49541 4.6 50 30 1500 1.169

FPA 4.62543 4.78287 5.07591 0.09795 4.8 50 30 1500 2.399

FA 5.22597 5.92571 6.97414 0.52432 134.1 50 30 1500 13.615

CSA 4.62388 4.73631 4.9388 0.06931 4.5 50 20 2000 2.367

SSA 4.71515 4.943208 5.71349 0.188697 5.1 50 30 1500 4.26

MSSA 5.001256 5.80103 6.947719 0.45394 5.2 50 30 1500 9.73

HSSSA 4.975122 5.410426 5.717224 0.166735 5.5 50 30 1500 9.26

SSO 4.86029 5.2259 5.5975 0.19162 4.7 50 25 & 1432 7.12

ISSO 4.51445 4.69215 4.52546 0.02799 4.5 50 25 & 1424
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For the voltage magnitude deviation optimization case

given in Table 7, it is surprised to see the bold values

- 30.87% of GSA [32] and - 3.35% of QOTLBO [38],

which imply that these methods are the two best opti-

mization tools for the case of minimizing voltage magni-

tude. However, as we recheck by substituting reported

solution to Mathpower, the minimum of GSA and

QOTLBO is, respectively, 0.1862 and 0.1031, which are

much higher than reported values 0.0676 and 0.0856.

Based on the true values, IL is recalculated to be ? 52.48%

and ? 14.19%. As compared to other remaining methods

with valid solution or without solutions reported, the pro-

posed method can reach very high improvement. For

instance, the improvement can be up to 32.99%, 37.19%,

69.29%, 30.29%, 53.04%, 61.55%, 49.36%, 54.17% and

57.14% in comparison with PSO, FPA, FA, CSA, SSA,

MSSA, HSSSA, SSO and PSO-TVAC, respectively. Sim-

ilar to the previous case, the population size and the

maximum iteration from the proposed method lead to the

smallest work of generating and evaluating 1375 new

solutions while the control parameters from other methods

result in much higher work with from 1500 to 75,000 new

solutions. The vast deviation separated the proposed

method from other slow convergence methods and

emphasized its outstanding performance. In summary, the

proposed method reaches the best solution and gets the

fastest search speed. Thus, it can confirm the real superi-

ority of the proposed method over other ones for the case.

For comparison with other methods by considering

voltage stabilization as an objective given in Table 7, the

minimum and the improvement level of GSA [32] and

ALO [50] are the two best results among all compared

methods since they are, respectively, 0.1161 and - 7.37%

while the minimum of the proposed method is 0.12466.

However, recalculated minimum by substituting reported

solution to Mathpower indicates that real values of GSA

and ALO are, respectively, 0.1247 and 0.1241. IL is also

recomputed to be ? 0.03% and - 0.45%. Similarly, three

other methods in [50] consisting of BA, GWO and ABC

have also reported very good values of minimum such as

0.1191, 0.1180 and 0.1161 but the recalculated minimum

values are, respectively, 0.1264, 0.1257 and 0.1264.

QOTLBO [38] has also given an optimal solution with

minimum of 0.1242 but dependent variable, reactive power

of generator 4, is higher than upper limit. Namely, recal-

culated reactive power output is 79.1274 MVAR but upper

limit is 60 MVAR. Clearly, many studies have reported

wrong minimum and some of them have reported invalid

solutions. On the contrary, IPG-PSO [17] and DE [22] have

reported exact minimums, 0.1241 and 0.1246, which are

Table 7 Comparison of results obtained from IEEE 30-bus system with voltage deviation optimization

Method Min Avg. Max SD CPU time (s) HI Npop TNFEs IL (%)

PSO-TVIW [17] 0.1038 0.1597 0.5791 0.1112 12.25 200 20 4000 14.76

PSO-TVAC [17] 0.2064 0.2376 0.5796 0.0153 12.88 200 20 4000 57.14

SPSO-TVAC [17] 0.1354 0.1558 0.1833 0.0103 12.59 200 20 4000 34.66

PSO-CF [17] 0.1287 0.1557 0.4041 0.0404 12.94 200 20 4000 31.26

PG-PSO [17] 0.1202 0.1440 0.2593 0.0222 12.45 200 20 4000 26.40

SWT-PSO [17] 0.1614 0.1814 0.2296 0.1330 22.57 200 20 4000 45.19

PGSWT-PSO [17] 0.1539 0.2189 0.5532 0.0656 22.32 200 20 4000 42.51

IPG-PSO [17] 0.0892 0.1078 0.2518 0.0298 9.724 200 20 4000 0.82

DE [22] 0.0911 – – – – 500 150 75,000 2.89

GSA [32] 0.0676 – – – – 200 100 20,000 2 30.87

QOTLBO [38] 0.0856 0.0872 0.0907 0.0314 – 100 50 10,000 2 3.35

TLBO [38] 0.0913 0.0934 0.0988 0.0403 – 100 50 10,000 3.10

PSO 0.13203 0.4068 1.70393 0.28312 5.2 50 30 1500 32.99

FPA 0.14086 0.18363 0.22828 0.018 5.0 50 30 1500 37.19

FA 0.28811 0.66069 1.44986 0.36341 133.9 50 30 1500 69.29

CSA 0.12692 0.16432 0.2076 0.01655 4.3 50 20 2000 30.29

SSA 0.188411 0.374529 0.941759 0.166094 5.2 50 30 1500 53.04

MSSA 0.230087 0.690254 1.860037 0.333131 5.4 50 30 1500 61.55

HSSSA 0.174701 0.308337 0.576439 0.094216 5.6 50 30 1500 49.36

SSO 0.19304 0.2863 0.42681 0.05357 5.3 50 25 & 1386 54.17

ISSO 0.08847 0.11603 0.14938 0.02277 4.6 50 25 & 1375
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better than result of the proposed method and result in

improvement level - 0.45% and - 0.05%. Nevertheless,

the two methods have used high values TNFEs, 4000 for

IPG-PSO and 25,000 for DE while that of the proposed

method has been 1382. Thus, we increase Npop and HI to 20

and 150, 25 and 150, and 20 and 200, and results obtained

are, respectively, given in Table 9. As observed minimum

values given in the table, the proposed method can find

better optimal solutions, which has minimum of 0.12425 at

Npop = 25 and HI = 150. Clearly, 0.12425 is better than

0.1246 of DE but it is not better than 0.1241 of IPG-PSO.

Thus, the proposed method is not superior to IPG-PSO for

the case of voltage stability index. In comparison with

other remaining methods, the proposed method can find

better optimal solution since it can reach the improvement

level from 0.52 (compared to PSO) to 16.84% (compared

to PSO-TVAC [17]). Furthermore, the proposed method

has faster convergence speed than these methods since the

proposed method has used the smallest value for TNFEs

1382 but that from other methods has been from 1500 to

25,000. In summary, the result comparison analysis for the

voltage stability optimization can result in a conclusion that

the proposed method outperforms most methods in terms of

better optimal solution and faster convergence speed

excluding comparison with IPG-PSO [17].

The best result of 50 independent runs obtained by nine

implemented methods consisting of PSO, FA, CSA, FPA,

SSA, MSSA, HSSSA, SSO and the proposed method for

the optimization of three objectives is plotted in Figs. 3, 4

and 5. The figures let us know that FA, PSO, SSO and

MSSA are four methods with the highest fluctuation, most

solutions with low quality and the highest standard devia-

tion while five remaining methods including FPA, CSA,

SSA, HSSSA and the proposed method have low oscilla-

tion and more effective solutions. In particular, all values

of the proposed method for three different objectives seem

to be on a line and approximately all solutions of the

proposed method are better than those of other ones.

Solutions of the proposed method for the system are given

in ‘‘Appendix’’.

Table 8 Comparison of results obtained from IEEE 30-bus system with voltage stabilization index optimization

Method Min Avg. Max SD CPU time (s) HI Npop TNFEs IL (%)

PSO-TVIW [17] 0.1258 0.1270 0.1289 0.0008 14.42 200 20 4000 0.91

PSO-TVAC [17] 0.1499 0.1513 0.1544 0.0009 14.53 200 20 4000 16.84

SPSO-TVAC [17] 0.1271 0.1285 0.1297 0.0006 14.05 200 20 4000 1.92

PSO-CF [17] 0.1261 0.1279 0.1295 0.0008 14.39 200 20 4000 1.14

PG-PSO [17] 0.1264 0.1297 0.1313 0.0008 14.84 200 20 4000 1.38

SWT-PSO [17] 0.1488 0.1634 0.1806 0.0074 18.99 200 20 4000 16.22

PGSWT-PSO [17] 0.1394 0.1537 0.1749 0.0081 19.107 200 20 4000 10.57

IPG-PSO [17] 0.1241 0.1266 0.1298 0.0010 13.75 200 20 4000 - 0.45

DE [22] 0.1246 500 50 25,000 - 0.05

GSA [32] 0.1161 – – – – 200 100 20,000 - 7.37

QOTLBO [38] 0.1242 0.1245 0.1247 0.0452 – 100 50 10,000 - 0.37

TLBO [38] 0.1252 0.1254 0.1258 0.0454 – 100 50 10,000 0.43

BA [50] 0.1191 94.65 100 40 4000 - 4.67

GWO [50] 0.1180 104.29 100 40 4000 - 5.64

ABC [50] 0.1161 105.04 100 40 8000 - 7.37

ALO [50] 0.1161 – – – 97.92 100 40 4000 - 7.37

PSO 0.12531 0.13265 0.15295 0.0082 4.8 50 30 1500 0.52

FPA 0.12556 0.12715 0.12918 0.00066 5.1 50 30 1500 0.72

FA 0.13813 0.15506 0.28362 0.03359 181 50 30 1500 9.75

CSA 0.12466 0.12659 0.12784 0.0018 6.7 50 20 1000 0.00

SSA 0.126595 0.141856 0.152356 0.005707 5.1 50 30 1500 1.53

MSSA 0.127679 0.151029 0.374735 0.035933 5.5 50 30 1500 2.36

HSSSA 0.131915 0.296015 4.916918 0.766127 5.8 50 30 1500 5.5

SSO 0.12738 0.13375 0.14455 0.00384 5.6 50 25 & 1388 2.14

ISSO 0.12466 0.12529 0.12706 0.0004 4.9 50 25 & 1382 –

Neural Computing and Applications (2020) 32:5919–5950 5939

123



6.3 Investigation of the proposed method’s
performance on IEEE 118-bus system

Similar to Sect. 6.2, in the part the performance of the

proposed ISSO method continues to be investigated by

comparing to CSA, FPA, PSO, SSO (in which FA cannot

deal with the large system and obtain valid solutions) and

other existing methods available in previous studies once

IEEE 118-bus system is considered as a test. Readers can

reach the whole data of such IEEE 118-bus system by

referring to [85]. The system consists of 54 generator

buses, 64 load buses, 186 transmission lines, 14 VAR

compensators and 9 transformers. The set of control vari-

ables included in position of spiders is comprised of volt-

age magnitude of 54 generators, reactive power output of

14 VAR compensators and tap changer of 9 transformers.

For implementation of the proposed method and other

methods, HI is set to 150 while Npop is not set to the same

value for all methods such as Npop = 50 for PSO, FPA,

SSA, MSSA and HSSSA but Npop = 30 for CSA and

Npop = 40 for SSO and the proposed method. Results with

respect to minimum, average, maximum and standard

deviation obtained by such eight implemented methods and

other methods are reported in Table 10 for power loss

minimization, in Table 11 for voltage magnitude deviation

minimization and in Table 12 for L index minimization.

Besides, improvement level, computation time on average

for each run, control parameters, Npop and HI, and TNFEs

are also summarized in the tables for better comparison.

The improvement level given in such tables can imply the

proposed method can search better optimal solutions than

most methods and the improvement level can be up to

13.29% compared to PSO [13] for power loss minimiza-

tion, 92.75% compared to PSO [13] for voltage deviation

minimization and 37.1% compared to CLPSO [13] and

56.27% compared to PSO [13] for L index minimization.

In addition, the improvement level compared to PSO, FPA,

CSA, SSA, MSSA, HSSSA and SSO is, respectively,

6.63%, 11.66%, 5.56%, 8.98%, 7.70%, 9.61% and 36.08%

for power loss objective, 27.49%, 60.16%, 72.90%,

64.41%, 64.95%, 61.10% and 47.91% for voltage deviation

objective and 0.16%, 1.30%, 0.16%, 3.13%, 4.30%, 3.35%

and 13.29% for L index objective. On the other hand, these

implemented methods have been assigned by high enough

values of Npop and HI, so they have used more new solu-

tions and more fitness evaluations from 7500 to 9000 but

that of the proposed method was less than 7500. The

comparison of improvement level and TNFEs can identify

high-quality search process of the proposed over these

compared methods.

For the three cases of optimization, Figs. 6, 7 and 8

show fitness function of 50 runs obtained by PSO, FPA,

CSA, SSA, MSSA, HSSA and ISSO but there is no result

for SSO in the figures because most runs of SSO obtain

high fitness values, leading to a unclear sight for clear

comparison. Observing these figures can indicate that the

Table 9 Different results obtained by the proposed method by setting

different values to Npop and HI

Npop 20 25 20

HI 150 150 200

Min 0.12460 0.12425 0.12447

Avg. 0.12553 0.12475 0.12540

Max 0.12709 0.12612 0.12689

SD 0.00075 0.00038 0.00061

CPU time (s) 10.51375 13.77134 14.43990

Fig. 3 Power loss of 50 runs obtained by compared methods for IEEE

30-bus system

Fig. 4 Voltage deviation of 50 runs obtained by compared methods

for IEEE 30-bus system
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proposed method has better solution search stabilization

since its values have a small deviation with low oscillation

but those of others have very high fluctuations. Clearly, the

improvement is significant. However, there are limitations

that the proposed method cannot be more effective than

SARGA [28] and QOTLBO [38] for power loss

minimization, IPG-PSO [17] for voltage deviation mini-

mization and PSO-TVIW [17], SWT-PSO [17] and

PGSWT-PSO [17] for L index minimization. Namely, the

improvement level of the proposed method superior to such

methods is - 1.25% (SARGA) and - 2% (QOTLBO),

- 0.12% (IPG-PSO) for voltage deviation minimization

and L index minimization and - 0.17% (PSO-TVIW),

- 3.41% (SWT-PSO), - 5.75% (PGSWT-PSO) and

- 6,87% (IPG-PSO) for L index minimization. As checked

optimal solution, we found that SARGA has not reported

optimal solution. Clearly, the proposed method has better

results than QOTLBO [38] for two cases, optimization of

voltage deviation and optimization of L index but its results

are worse than those of QOTLBO [38] for power loss

optimization. As compared to PSO-TVIW [17], SWT-PSO

[17] and PGSWT-PSO [17], the proposed method also

reaches better results for two cases, optimization of power

loss and optimization of voltage deviation but its results are

worse than these methods for L index. Compared to IPG-

PSO, the proposed method has better result for only one

case, optimization of power loss but for two other cases,

the proposed method cannot reach better results. However,

IPG-PSO has been controlled by assigning to higher HI,

200 but that of the proposed method is only 150. Thus, we

Fig. 5 L index of 50 runs obtained by compared methods for IEEE

30-bus system

Table 10 Comparison of results obtained from IEEE 118-bus system with power loss optimization

Method Min Avg. Max SD CPU time (s) HI Npop TNFEs IL (%)

CLPSO [13] 130.96 – – – – 200 120 24,000 12.55

PSO [13] 131.99 – – – – 200 120 24,000 13.23

PSO-TVIW [17] 116.8976 118.2344 126.6222 1.6009 109.645 200 40 8000 2.03

PSO-TVAC [17] 124.3335 129.7494 134.1254 2.156 96.32 200 40 8000 7.89

SPSO-TVAC [17] 116.2026 117.3553 118.139 0.4696 96.45 200 40 8000 1.44

PSO-CF [17] 115.6469 116.9863 119.8378 0.8655 95.86 200 40 8000 0.97

PG-PSO [17] 116.6075 119.3968 127.0772 2.107 96.11 200 40 8000 1.78

SWT-PSO [17] 124.1476 129.371 141.6147 3.309 91.58 200 40 8000 7.75

PGSWT-PSO [17] 119.427 122.781 125.762 1.2455 95.17 200 40 8000 4.10

IPG-PSO [17] 115.06 116.462 118.35 0.528 91.07 200 40 8000 0.46

SARCGA [28] 113.12 113.968 – 0.0002 – 300 15 9000 - 1.25

HEP [28] 115.58 115.8 – 0.0018 – 300 15 4500 0.91

QOTLBO [38] 112.2789 113.7693 115.4516 0.0244 – 100 50 10,000 - 2.00

TLBO [38] 116.4003 121.3902 118.4427 0.0482 – 100 50 10,000 1.61

PSO 122.6579 126.3469 133.1325 2.1915 40.8 150 50 7500 6.63

FPA 129.6524 138.4028 147.7131 4.0914 45.3 150 50 7500 11.66

CSA 121.2732 124.1214 126.7648 1.2447 50.9 150 30 9000 5.56

SSA 125.8324 129.1417 132.5658 1.555358 41.4 150 50 7500 8.98

MSSA 124.0818 133.2492 151.8367 4.875804 42.6 150 50 7500 7.7

HSSSA 126.6992 129.3808 133.7336 1.589492 43.2 150 50 7500 9.61

SSO 179.1816 312.9189 756.2027 123.282 43.3 150 40 & 7246 36.08

ISSO 114.5297 115.651 121.1127 1.4889 41.6 150 40 & 7190 –
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Table 11 Comparison of results obtained from IEEE 118-bus system with voltage deviation optimization

Method Min Avg. Max SD CPU time (s) HI Npop TNFEs IL (%)

CLPSO [13] 1.6177 – – – – 200 120 24,000 89.97

PSO [13] 2.2359 – – – – 200 120 24,000 92.75

PSO-TVIW [17] 0.1935 0.2291 0.2809 0.0206 78.49 200 40 8000 16.18

PSO-TVAC [17] 0.3921 0.4724 0.5407 0.0316 78.7 200 40 8000 58.63

SPSO-TVAC [17] 0.2074 0.2498 0.3012 0.0215 74.9 200 40 8000 21.79

PSO-CF [17] 0.1801 0.2143 0.3384 0.0286 78.13 200 40 8000 9.94

PG-PSO [17] 0.1658 0.2084 0.2354 0.021 51.24 200 40 8000 2.17

SWT-PSO [17] 0.1658 0.2084 0.2354 0.021 51.24 200 40 8000 2.17

PGSWT-PSO [17] 0.2355 0.2755 0.3239 0.0205 114.5 200 40 8000 31.13

IPG-PSO [17] 0.162 0.1923 0.2147 0.0184 47.86 200 40 8000 - 0.12

QOTLBO [38] 0.191 0.2043 0.2267 0.0356 – 100 50 10,000 15.08

TLBO [38] 0.2237 0.2306 0.2543 0.0384 – 100 50 10,000 27.49

PSO 0.4071 0.4975 0.6834 0.0612 41.6 150 50 7500 60.16

FPA 0.5986 0.7253 0.9273 0.0751 46.8 150 50 7500 72.90

CSA 0.3114 0.3672 0.438 0.032 52.6 150 30 9000 47.91

SSA 0.455703 0.533246 0.678477 0.05021 42.6 150 50 7500 64.41

MSSA 0.462826 0.620333 1.092311 0.136598 43.6 150 50 7500 64.95

HSSSA 0.416974 0.542517 0.625822 0.044202 44.2 150 50 7500 61.1

SSO 1.1588 1.451 1.668 0.254 44.3 150 40 & 6883 86

ISSO 0.1622 0.1894 0.6201 0.0733 42.4 150 40 & 6825 –

Table 12 Comparison of results obtained from IEEE 118-bus system with voltage stabilization index optimization

Method Min Avg. Max SD CPU time (s) HI Npop TNFEs IL (%)

CLPSO [13] 0.0965 – – – – 200 120 24,000 37.10

PSO [13] 0.1388 – – – – 200 120 24,000 56.27

PSO-TVIW [17] 0.0606 0.0607 0.0612 0.0001 119.66 200 40 8000 - 0.17

PSO-TVAC [17] 0.0607 0.0609 0.0613 0.0001 119.22 200 40 8000 0.00

SPSO-TVAC [17] 0.0607 0.0608 0.0612 0.0001 119.16 200 40 8000 0.00

PSO-CF [17] 0.0606 0.0607 0.061 0.0001 119.86 200 40 8000 - 0.17

PG-PSO [17] 0.0654 0.0656 0.0721 0.0002 119.65 200 40 8000 7.19

SWT-PSO [17] 0.0587 0.0608 0.0641 0.0012 58.45 200 40 8000 - 3.41

PGSWT-PSO [17] 0.0574 0.0605 0.0683 0.0018 56.43 200 40 8000 - 5.75

IPG-PSO [17] 0.0568 0.0569 0.0583 0.0002 55.62 200 40 8000 - 6.87

QOTLBO [38] 0.0608 0.0631 0.0616 0.0476 – 100 50 10,000 0.16

TLBO [38] 0.0613 0.0626 0.0646 0.0488 – 100 50 10,000 0.98

PSO 0.0608 0.0615 0.0656 9.03E-04 43.1 150 50 7500 0.16

FPA 0.0615 0.0629 0.0652 8.49E-04 48.6 150 50 7500 1.30

CSA 0.0608 0.0611 0.0619 2.34E-04 56.7 150 30 4500 0.16

SSA 0.062661 0.064864 0.066953 0.001028 45 150 50 7500 3.13

MSSA 0.063429 0.065875 0.068974 0.001415 46.9 150 50 7500 4.3

HSSSA 0.062804 0.064917 0.066953 0.000851 48.1 150 50 7500 3.35

SSO 0.07 85.9729 411.7652 100.0974 48.5 150 40 & 6821 13.29

ISSO 0.0607 0.0608 0.061 5.59E-05 45.2 150 40 & 6614 –
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try the proposed method’s performance by setting HI to

200 and fixing Npop = 40. Results obtained given in

Table 13 show that power loss and voltage deviation are

114.296 MW and 0.15541, respectively, which reach the

improvement level over IPG-PSO to be 0.664% and 4.07%

but L index of the proposed method is still worse than that

of IPG-PSO with the improvement level of - 6.8%.

In short, the search performance of the proposed method

has been further investigated by simulating results on the

large-scale system with 118 buses and three single objec-

tive functions. The evaluation conclusion is done based on

three comparison criteria such as (1) the best optimal

solution judged via minimum objective function and

improvement level, (2) optimum solution search speed

judged via TNFEs and (3) the search stabilization judged

via 50 runs. The three main points have been clarified and

resulted in a conclusion that the proposed method is sig-

nificantly superior to other implemented methods consist-

ing of FA, PSO, CSA, FPA, SSA, MSSA, HSSSA and

SSO. The comparison with other methods available in

other studies also indicates that the proposed method can

be more effective than all methods excluding IPG-PSO for

L index optimization case only. Consequently, the pro-

posed method is a very effective method for IEEE 118-bus

system of ORPD problem. The optimal solutions obtained

by the proposed method are given in ‘‘Appendix’’.

7 Conclusion

This paper has implemented a social spider optimization

algorithm for solving the ORPD problem considering three

independent objectives including power loss minimization,

voltage deviation minimization and voltage stabilization

enhancement. The proposed method is an improved

metaheuristic algorithm by implementing modifications on

two procedures of the new solution generation of the

conventional social spider optimization algorithm. In the

conventional SSO, there are two different formulas to be

used for each generation and there must be conditions for a

decision which formula to be used. Therefore, the

Fig. 6 Power loss of 50 runs obtained by compared methods for IEEE

118-bus system

Fig. 7 Voltage deviation of 50 runs obtained by compared methods

for IEEE 118-bus system

Fig. 8 L index of 50 runs obtained by compared methods for IEEE

118-bus system

Table 13 Results obtained by the proposed method and setting

Npop = 40 and HI = 200 for IEEE 118-bus system

Objective Min Avg. Max SD CPU time (s)

Power loss 114.296 114.553 121.244 0.829 55.7

VD 0.15541 0.16265 0.36537 0.024 59.1

L index 0.06069 0.06073 0.06112 5.7E-05 60.5
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computation and comparison are carried out many times in

the conventional SSO method. In the two generations of the

improved method, only one formula with the changes is

used for producing new solutions while the other one is

ignored. Consequently, as compared to that of the standard

SSO method, the implementation of proposed method for

solving a typical optimization problem as well as bench-

mark optimization functions and different systems of

ORPD problem is simplified significantly thank to the

following advantages: 1) control parameter Pm has been

canceled, reducing the task of tuning the most appropriate

values and comparison between random number RNf and

Pm; (2) determination of new positions for females and

male spider has become less complicated since Eqs. (15)

and (20) have been discarded due to low effectiveness; (3)

calculation of weight for each male and mean weight for all

males and the comparison between individual weight and

mean weight are no longer necessary. By possessing these

advantages, the proposed method could find better solu-

tions with lower fitness function and faster computational

time to the proposed method while the conventional SSO is

coping with drawbacks such as the complicated computa-

tion, many comparison conditions, long time for tuning

control parameters and low convergence speed to high-

quality solutions. The proposed method together with the

conventional SSO and other methods has been imple-

mented for solving benchmark functions without compli-

cated constraints and two standard IEEE power systems

with 30 buses and 118 buses considering a set of equality

and inequality constraints. The results obtained by the

proposed method have been verified by comparing to those

from other methods available in previously published

studies. The comparisons of the objective values and cal-

culation speed have indicated that the proposed method has

outperformed SSO, PSO, FA, FPA, CSA, SSA, MSSA and

HSSSA methods for all studied cases and the most com-

pared methods reported in other studies. Moreover, the

performance of the proposed method is also effective and

robust because it can find better solutions with faster

computational time for most study cases. Therefore, the

proposed method can be one of the powerful optimization

tools for dealing with the ORPD problem. For future work,

we will try the performance of the proposed method for

solving a new ORPD problem with the presence of wind

turbines and distributed generators in aim to reduce energy

loss and enhance stable operation of power systems. In the

new work, the proposed method is in charge of determining

the location and the capacity of wind turbines and dis-

tributed generators. The obtained results are evaluated via

the energy loss and the operation stability of power

systems.
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Appendix

See Tables 14, 15, 16 and 17.

Table 14 Optimal solutions obtained by the proposed method for Case 3

Input/control variables Minimize power loss Minimize Vol. dev. Minimize L index

PG1 (MW) 97.9257 99.1329 98.3034

PG2 80 80 80

PG5 50 50 50

PG8 20 20 20

PG11 20 20 20

PG13 20 20 20

VG1 (pu) 1.1 1.011 1.0921

VG2 1.0939 1.0067 1.0903

VG5 1.0744 1.0182 1.0983

VG8 1.0762 1.0057 1.0747

VG11 1.0993 1.031 1.0964

VG13 1.0999 1.0122 1.0992

QC10 (MVAR) 4.8421 4.9133 3.8967

QC12 4.9287 4.1121 3.9619

QC15 4.6199 4.9917 1.8803

QC17 4.8338 0.0067 1.565

QC20 4.1948 5 3.3746

QC21 4.9951 4.9936 0.3977
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Table 15 Optimal solution obtained by ISSO for the IEEE 118-bus power system with minimization of power loss

Input/control variables Value Input/control variables Value Input/control variables Value

PG1 (MW) 0 PG100 252 VG77 1.051

PG4 0 PG103 40 VG80 1.0615

PG6 0 PG104 0 VG85 1.0486

PG8 0 PG105 0 VG87 1.0478

PG10 450 PG107 0 VG89 1.0654

PG12 85 PG110 0 VG90 1.047

PG15 0 PG111 36 VG91 1.0494

PG18 0 PG113 0 VG92 1.0563

PG19 0 PG116 0 VG99 1.0477

PG24 0 VG1 (pu) 1.0291 VG100 1.0508

PG25 220 VG4 1.0478 VG103 1.04

PG26 314 VG6 1.0401 VG104 1.03

PG27 0 VG8 1.0387 VG105 1.0255

PG31 7 VG10 1.0393 VG107 1.0117

PG32 0 VG12 1.0369 VG110 1.0186

PG34 0 VG15 1.0333 VG111 1.0264

PG36 0 VG18 1.0353 VG112 1.0015

PG40 0 VG19 1.0325 VG113 1.0419

PG42 0 VG24 1.0437 VG116 1.05

PG46 19 VG25 1.0776 QC5 (MVAR) 21.7236

PG49 204 VG26 1.0901 QC34 9.9396

PG54 48 VG27 1.0398 QC37 - 3.724

PG55 0 VG31 1.0304 QC44 9.7973

PG56 0 VG32 1.0349 QC45 9.9792

PG59 155 VG34 1.0455 QC46 4.5163

PG61 160 VG36 1.0435 QC48 7.5304

PG62 0 VG40 1.0255 QC74 7.878

PG65 391 VG42 1.0288 QC79 19.0955

PG66 392 VG46 1.0392 QC82 19.8919

PG69 497.6133 VG49 1.0545 QC83 9.9977

PG70 0 VG54 1.0275 QC105 13.6283

PG72 0 VG55 1.0261 QC107 1.92

PG73 0 VG56 1.0266 QC110 4.6279

PG74 0 VG59 1.0442 T8 (pu) 0.9773

PG76 0 VG61 1.0437 T32 1.0999

PG77 0 VG62 1.0429 T36 0.9789

Table 14 (continued)

Input/control variables Minimize power loss Minimize Vol. dev. Minimize L index

QC23 2.4763 5 0.3323

QC24 4.9517 5 0.2433

QC29 2.2404 2.628 0.3239

T11 1.0397 1.047 0.9637

T12 0.9011 0.9 0.9114

T15 0.9782 0.9908 0.9575

T36 0.9652 0.9678 0.9415
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Table 16 Optimal solution obtained by ISSO for the IEEE 118-bus power system with minimization of voltage deviation

Input/control variables Value Input/control variables Value Input/control variables Value

PG1 (MW) 0 PG100 252 VG77 1.0103

PG4 0 PG103 40 VG80 1.0155

PG6 0 PG104 0 VG85 1.0199

PG8 0 PG105 0 VG87 0.9912

PG10 450 PG107 0 VG89 1.0018

PG12 85 PG110 0 VG90 1.0215

PG15 0 PG111 36 VG91 1.094

PG18 0 PG113 0 VG92 1.0001

PG19 0 PG116 0 VG99 0.9507

PG24 0 VG1 (pu) 1.0036 VG100 1.0359

PG25 220 VG4 1.0027 VG103 1.1

PG26 314 VG6 0.9942 VG104 1.1

PG27 0 VG8 1.012 VG105 0.999

PG31 7 VG10 0.9698 VG107 1.021

PG32 0 VG12 1.0113 VG110 1.0051

PG34 0 VG15 1.0039 VG111 1.0994

PG36 0 VG18 0.9917 VG112 1.0998

PG40 0 VG19 1.0358 VG113 0.9617

PG42 0 VG24 0.9814 VG116 1.0033

PG46 19 VG25 1.0295 QC5 (MVAR) - 24.8638

PG49 204 VG26 1.0209 QC34 4.3223

PG54 48 VG27 1.0074 QC37 - 10.9761

PG55 0 VG31 1.003 QC44 9.1897

PG56 0 VG32 1.003 QC45 2.2389

PG59 155 VG34 1.0111 QC46 1.3214

PG61 160 VG36 0.9988 QC48 1.1228

PG62 0 VG40 1.0034 QC74 3.1048

PG65 391 VG42 1.0163 QC79 5.827

PG66 392 VG46 1.0572 QC82 19.9315

PG69 546.0628 VG49 0.9926 QC83 3.117

PG70 0 VG54 1.0247 QC105 8.2772

PG72 0 VG55 1.0132 QC107 1.6479

PG73 0 VG56 1.0195 QC110 2.1606

PG74 0 VG59 1.0431 T8 (pu) 1.028

PG76 0 VG61 0.9984 T32 1.0093

Table 15 (continued)

Input/control variables Value Input/control variables Value Input/control variables Value

PG80 477 VG65 1.0577 T51 0.977

PG85 0 VG66 1.0672 T93 0.9924

PG87 4 VG69 1.0766 T95 1.0015

PG89 607 VG70 1.047 T102 0.9324

PG90 0 VG72 1.0419 T107 0.9324

PG91 0 VG73 1.0447 T127 0.9741

PG92 0 VG74 1.0367 Ploss (MW) 114.5297

PG99 0 VG76 1.0316

5946 Neural Computing and Applications (2020) 32:5919–5950

123



Table 16 (continued)

Input/control variables Value Input/control variables Value Input/control variables Value

PG77 0 VG62 0.9993 T36 0.9691

PG80 477 VG65 1.009 T51 0.9762

PG85 0 VG66 1.0128 T93 0.9628

PG87 4 VG69 0.9945 T95 0.9891

PG89 607 VG70 1.015 T102 1.033

PG90 0 VG72 1 T107 0.9326

PG91 0 VG73 0.9796 T127 0.9701

PG92 0 VG74 1.0069 VD 0.1622

PG99 0 VG76 1.0132

Table 17 Optimal solution obtained by ISSO for the IEEE 118-bus power system with minimization of L index

Input/control variables Value Input/control variables Value Input/control variables Value

PG1 (MW) 0 PG100 252 VG77 1.0385

PG4 0 PG103 40 VG80 1.0622

PG6 0 PG104 0 VG85 0.9894

PG8 0 PG105 0 VG87 1.0502

PG10 450 PG107 0 VG89 1.0066

PG12 85 PG110 0 VG90 1.0034

PG15 0 PG111 36 VG91 1.0187

PG18 0 PG113 0 VG92 1.0198

PG19 0 PG116 0 VG99 1.0832

PG24 0 VG1 (pu) 1.0097 VG100 1.0253

PG25 220 VG4 1.0351 VG103 1.033

PG26 314 VG6 1.0059 VG104 1.0227

PG27 0 VG8 0.9775 VG105 0.9888

PG31 7 VG10 1.0284 VG107 1.0002

PG32 0 VG12 0.9938 VG110 1.0185

PG34 0 VG15 1.0272 VG111 1.0843

PG36 0 VG18 1.0099 VG112 1.021

PG40 0 VG19 1.0233 VG113 1.0501

PG42 0 VG24 1.0582 VG116 0.9964

PG46 19 VG25 1.0106 QC5 (MVAR) - 27.448

PG49 204 VG26 1.0641 QC34 9.1127

PG54 48 VG27 1.0324 QC37 - 21.1741

PG55 0 VG31 1.0325 QC44 5.7943

PG56 0 VG32 1.031 QC45 6.7776

PG59 155 VG34 1.0604 QC46 0.9106

PG61 160 VG36 1.0226 QC48 7.5556

PG62 0 VG40 0.9722 QC74 3.3538

PG65 391 VG42 1.0993 QC79 8.9954

PG66 392 VG46 1.1 QC82 3.4797

PG69 595.7806 VG49 1.0405 QC83 3.7914

PG70 0 VG54 0.9552 QC105 8.3628

PG72 0 VG55 1.0179 QC107 3.7167

PG73 0 VG56 0.9944 QC110 2.3961
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