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Abstract
In order to improve action recognition accuracy, the discriminative kinematic descriptor and deep attention-pooled

descriptor are proposed. Firstly, the optical flow field is transformed into a set of kinematic fields with more discrimi-

nativeness. Subsequently, two kinematic features are constructed, which more accurately depict the dynamic characteristics

of action subject from the multi-order divergence and curl fields. Secondly, by introducing both of the tight-loose constraint

and anti-confusion constraint, a discriminative fusion method is proposed, which guarantees better within-class com-

pactness and between-class separability, meanwhile reduces the confusion caused by outliers. Furthermore, a discrimi-

native kinematic descriptor is constructed. Thirdly, a prediction-attentional pooling method is proposed, which accurately

focuses its attention on the discriminative local regions. On this basis, a deep attention-pooled descriptor (DKD–DAD) is

constructed. Finally, a novel framework with discriminative kinematic descriptor and deep attention-pooled descriptor is

presented, which comprehensively obtains the discriminative dynamic and static information in a video. Consequently,

accuracies are improved. Experiments on two challenging datasets verify the effectiveness of our methods.
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1 Introduction

Human action recognition in videos possesses a crucial

academic value and an extensive market application pro-

spect, which make it quickly become a focus and difficulty

in computer vision and artificial intelligence. Conse-

quently, it attracts great interests of researchers and insti-

tutions. However, action recognition is still a challenging

problem while concentrating on some real-world data

obtained from web videos [1, 2], movies [3], etc. There-

fore, extracting effective features is undoubtedly very

significant for action recognition.

1.1 Background and motivation

Extracting dynamic features is one of the important

research directions for action recognition. Early works,

including spatiotemporal interest point (STIP) [4], cuboids

[5] and so on, usually adopt interest point detectors to

capture pixels with salient change of intensity or gradients

in a spatiotemporal video volume, then describe these

interest points or small regions using statistics acquired

from neighboring pixels, so as to obtain the motion infor-

mation of action subject. Subsequently, some methods

[6, 7] extend 2D image features to 3D features in videos to

acquire spatiotemporal features for action recognition. In

addition, quite a few research results show that the motion

information of trajectories can obtain impressive perfor-

mance, such as dense trajectories [8, 9] obtained by

tracking densely sampled points using optical flow fields.

In fact, the above methods based on interest points have
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been turned out to be successful in the field of action

recognition. However, they are highly dependent on

localized statistics within a small spatiotemporal neigh-

borhood [5, 9], and cannot describe the global character-

istics of motion as a whole. Moreover, there are also some

scholars [10, 11] who have built deep networks, such as

two-stream convolutional networks [10] and 3D convolu-

tional networks [11], so as to acquire spatiotemporal fea-

tures for action recognition. However, these networks are

not only difficult to train, but also unable to achieve the

performance equivalent to hand-crafted features.

As an important tool for describing dynamic properties

of videos, optical flow has been widely applied in the field

of action recognition. However, many of the features based

on local optical flow may simply summarize the flow

according to histograms of its orientations [12, 13], thus

arguably ignore other potentially discriminative properties.

Actually, the optical flow may be regarded as a flow field,

so some of its characteristics can be extracted using the

fluid dynamic theory. By exploring the dynamic charac-

teristics of optical flow field, optical flow can be described

in a richer way to obtain the physical characteristics of flow

pattern. However, they are less involved in existing fea-

tures for action recognition.

With the increasing number of action classes, adopting

motion features alone is not discriminative enough for

dependable action recognition. In fact, the appearance

information of action scene and discriminative object in a

video also plays a quite significant role. Recently, due to

the favorable learning and abstract abilities of deep learn-

ing, it has occupied an absolute dominant position in image

processing field and has been widely used in various

application fields [14–16]. For this reason, some scholars,

by constructing a deep network, have attempted to extract

the important static features from images for action

recognition. Wang et al. [17] firstly captured the spatial

relationship and the high-order correlations between parts.

Then, they constructed a hierarchical spatial sum-product

network (HS-SPN) to extract static deep features for action

recognition. Kwak et al. [18] introduced the triplet-based

rank constraints into a deep convolutional network, so as to

automatically capture the pose embedding information

from still image for action recognition. Subsequently, Qi

et al. [19], by defining a joint loss function, integrated the

pose hints into the convolutional neural networks (CNN)

framework. Thus, the static deep features containing pose

information are obtained for action recognition. However,

these methods directly input the whole image into deep

network for feature extraction without focusing on the

discriminative object in background.

In order to overcome the above problem, some scholars

attempted to extract features from the discriminative

regions of video frames, so as to improve recognition

performance. Peng et al. [20] firstly divided the whole

human body region [21] into multiple regions. Then, a deep

CNN network is used to extract features from individual

discriminative regions for action recognition. Ni et al. [22]

proposed a network composed by two connected deep

convolutional neural networks (DCNNs). The first DCNN

adopts video frames as inputs and creates response maps

indicating locations for body parts. Then, these maps are

fed into the second DCNN for learning discriminative and

semantic-aligned action representations of each body part

for action recognition. However, the above methods usu-

ally need to construct additional networks to obtain the

discriminative regions, which is generally difficult for

training networks and results in higher computational

consumption. Moreover, these methods assume that the

discriminative information always exists in the regions

around human body, and therefore often focus on human or

its parts. In fact, some actions may be easier to be distin-

guished using the appearance information of action scenes

such as the ocean wave in ‘‘surfing’’ action; while others

might need to pay close attention to the discriminative

object that interacts with the human, such as the bicycle in

‘‘bike riding’’ action.

1.2 Overview of DKD–DAD

Motivated by the above methods, a framework with dis-

criminative kinematic descriptor and deep attention-pooled

descriptor (DKD–DAD) for action recognition is proposed,

as shown in Fig. 1. Firstly, the optical flow field is trans-

formed into a set of kinematic fields with more discrimi-

nativeness to construct two kinematic features;

subsequently, a discriminative fusion method is proposed,

by which a discriminative kinematic descriptor is obtained

to depict the dynamic characteristics of action subject.

Secondly, a prediction-attentional pooling method is pro-

posed to automatically acquire the discriminative local

regions in a video frame. Furthermore, a deep attention-

pooled descriptor is presented to capture the discriminative

static information in action scene. Finally, a DKD–DAD

framework is constructed, which combines discriminative

kinematic descriptor and deep attention-pooled descriptor

together for action recognition. Consequently, accuracy is

improved.

1.3 Working flow of DKD–DAD

In this section, the whole working flow of DKD–DAD is

illustrated in Fig. 2, which includes two branches. Specif-

ically, given an input action video, the left branch aims to

obtain the proposed discriminative kinematic descriptor,

which depicts the dynamic information of action video; the
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right branch intends to acquire the proposed deep attention-

pooled descriptor, which describes the static information.

The left algorithm branch includes the following steps:

Firstly, the optical flow field is extracted. Then, the

divergence and curl fields are calculated, respectively.

Subsequently, the first-order divergence and curl fields are

acquired. Similarly, the second-order divergence and curl

fields are obtained. Furthermore, the multi-order diver-

gence and curl fields are, respectively, jointly encoded to

acquire the multi-order divergence and curl features. The

obtained features are discriminatively fused, consequently

the proposed discriminative kinematic descriptor is

Fig. 1 Overview of the proposed DKD–DAD framework for action recognition

Fig. 2 Working flow of the

proposed DKD–DAD

framework for action

recognition
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obtained. Regarding the right branch, it shows the main

procedures as below. Firstly, one frame is randomly picked

as the key-frame, which is inputted into the Inception-v3

[23] network to acquire the static deep features. Then, the

deep local and global features are, respectively, extracted

from the Inception-v3. Subsequently, the extracted features

are inputted into the multiple channel attentions to obtain

the local and global attentional heatmaps, which are,

respectively, fused by taking the predictions of deep net-

work as weight coefficients. Furthermore, the fused atten-

tional heatmaps are used to conduct weighted pooling on

deep local and global features, respectively. Consequently

the proposed deep attention-pooled descriptor is acquired.

Finally, the discriminative kinematic descriptor and deep

attention-pooled descriptor are concatenated as the feature

representation of action video, then inputted into the sup-

port vector machine (SVM) classifier, and thus the action

label is obtained.

In summary, the major contributions of this paper are as

follows: (1) Two kinematic features of multi-order diver-

gence and multi-order curl are constructed, which more

accurately depict the dynamic characteristics of action

subject. (2) A novel fusion method is proposed, which

ensures the discriminativeness of two kinematic features.

Furthermore, a discriminative kinematic descriptor is

constructed. (3) A prediction-attentional pooling method is

presented. Consequently, a deep attention-pooled descrip-

tor is constructed. (4) A DKD–DAD framework for action

recognition is proposed, which finally improves recogni-

tion accuracy. Experimental results demonstrate that, the

proposed methods can provide promising performance

compared to several state-of-the-art methods on two chal-

lenging datasets.

The rest of this paper is structured as follows. Section 2

constructs two kinematic features, and meanwhile presents

the discriminative fusion method as well as discriminative

kinematic descriptor. Section 3 proposes the prediction-

attentional pooling method and deep attention-pooled

descriptor. The related experiments and analysis of the

proposed methods are shown in Sect. 4, followed by the

conclusions with future work in Sect. 5.

2 Discriminative kinematic descriptor

Human action videos contain rich motion information that

can characterize the intrinsic patterns of different actions.

Most of the recent works usually used optical flow field to

describe motion information. However, optical flow only

records displacement vectors of pixels between two suc-

cessive frames. While by calculating the kinematics of

optical flow field, the physical properties of flow pattern

can be captured, which describe motion in a richer way,

and contain more details of motion as well as precise

variations, such as local expansion, local spin, velocity,

acceleration, etc. Therefore, researching field is equivalent

to exploring motion itself. In order to better obtain the

dynamic characteristics of action subject, this section firstly

transforms the optical flow field into a set of kinematic

fields with more discriminativeness, and then constructs

two kinematic features. Finally, the discriminative fusion

method is presented to obtain the proposed discriminative

kinematic descriptor, as shown in Fig. 3.

2.1 Construction of kinematic features

In this section, two kinematic features, namely multi-order

divergence feature and multi-order curl feature, are con-

structed. In order to do this, the optical flow is computed

firstly [24]. Specifically, given a video, any a point q at

time t is denoted as qt, then the optical flow vector of qt is

denoted as w qtð Þ ¼ u qtð Þ; v qtð Þð Þ, where u qtð Þ and v qtð Þ are
the horizontal and vertical components of w qtð Þ, respec-
tively. Subsequently, by calculating optical flow vector

from adjacent frames at every pixel position, the optical

flow field is acquired. In the following, the construction

process of kinematic features is detailedly given.

1. Extraction of divergence and curl

The divergence and curl are both the local first-order dif-

ferential scalar quantities of optical flow field, which

describe the physical pattern of flow, represent different

characteristics of optical flow field, respectively, and

meanwhile can well depict the different characteristics of

motion in videos from distinct perspectives. In this paper,

the divergence and curl of qt are computed as follows:

div qtð Þ ¼ ou qtð Þ
ox

þ ov qtð Þ
oy

ð1Þ

curl qtð Þ ¼ ov qtð Þ
ox

� ou qtð Þ
oy

ð2Þ

By, respectively, calculating div �ð Þ and curl �ð Þ for each
point in a video frame, the divergence field Fielddiv and

curl field Fieldcurl corresponding to the frame are obtained.

The physical meaning of Fielddiv derives from the fact that

it acquires the amount of local expansion occurring in

optical flow field, and can depict the regions of local

expansion caused by action subject. The physical signifi-

cance of Fieldcurl is that it can delineate the local spin

around the axis that is perpendicular to the plane of optical

flow field, and can describe the dynamic characteristics

resulting from human body motion in optical flow field.

2. Acquisition of the first-order derivatives of divergence

and curl
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In fact, it is not sufficient to describe the optical flow field

generated by action subject only using divergence and curl.

Therefore, the first-order derivatives of divergence and curl

are, respectively, calculated to capture the precise varia-

tions of local expansion and local spin caused by the

motion of action subject. Given a spatiotemporal point qt,

the first-order derivatives of divergence and curl for it

along x, y and t directions are, respectively, computed by

following Eqs. (3) and (4).

divx qtð Þ; divy qtð Þ; divt qtð Þ
� �T¼ r � div qtð Þ ð3Þ

curlx qtð Þ; curly qtð Þ; curlt qtð Þ
� �T¼ r � curl qtð Þ ð4Þ

where r ¼ o=ox; o=oy; o=otð ÞT represents the gradient

operator.

Till then, by, respectively, calculating divx �ð Þ, divy �ð Þ,
curlx �ð Þ and curly �ð Þ for each point qt in a video frame, a set

of first-order spatial kinematic fields is obtained, including

the first-order spatial divergence fields Fielddivx and

Fielddivy as well as the first-order spatial curl fields

Fieldcurlx and Fieldcurly , which acquire the relative motion

between pixels along x and y directions, and meanwhile

remove the camera motion. Similarly, by calculating divt �ð Þ
and curlt �ð Þ for each point qt, a set of first-order temporal

kinematic fields is obtained as well, including the first-

order temporal divergence field Fielddivt and the first-order

temporal curl field Fieldcurlt , which obtain the velocities of

divergence and curl, and meanwhile directly remove the

slowly changing background in a video through the sub-

traction of two consecutive kinematic fields.

3. Acquisition of the second-order derivatives of diver-

gence and curl

In order to more detailedly describe the kinematic char-

acteristics of optical flow field, the second-order deriva-

tives of divergence and curl for qt along x, y and t

directions are further computed, respectively, as shown in

Eqs. (5) and (6).

divxx qtð Þ; divyy qtð Þ; divtt qtð Þ
� �T

¼ r� divx qtð Þ; divy qtð Þ; divt qtð Þ
� �T ð5Þ

curlxx qtð Þ; curlyy qtð Þ; curltt qtð Þ
� �T

¼ r� curlx qtð Þ; curly qtð Þ; curlt qtð Þ
� �T ð6Þ

where � denotes the element-wise multiplication.

In the above formulas, the second-order derivatives

divxx qtð Þ, divyy qtð Þ, curlxx qtð Þ and curlyy qtð Þ can, respec-

tively, describe the change rates of the first-order deriva-

tives of divergence and curl along x and y directions. And

they construct second-order spatial kinematic fields,

including the second-order spatial divergence fields

Fielddivxx and Fielddivyy , as well as the second-order spatial

curl fields Fieldcurlxx and Fieldcurlyy , which depict the more

detailed motion information. Whereas the second-order

derivatives divtt qtð Þ and curltt qtð Þ, respectively, correspond
to the change rates of the first-order derivatives of diver-

gence and curl along t direction. Thus, the second-order

temporal kinematic fields, including the second-order

temporal divergence field Fielddivtt and curl field Fieldcurltt ,

acquire the accelerations of divergence and curl.

4. Joint coding

A set of kinematic fields obtained above usually possesses

high dimensions and strong correlation, which results in

great challenges for the subsequent joint feature coding.

Fig. 3 Schematic of the proposed discriminative kinematic descriptor
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Therefore, above kinematic features are firstly reduced in

dimension, respectively, then they are jointly encoded to

obtain the proposed multi-order divergence feature and

multi-order curl feature. The specific process is as follow.

Here, the divergence fields are taken as examples.

(a) Feature dimension reduction. For the j-th frame in

the i-th video, its fields Fielddivi;j , Field
divx
i;j , Field

divy
i;j ,

Fielddivti;j , Fielddivxxi;j , Field
divyy
i;j and Fielddivtti;j are

reduced in dimension, respectively, by two-dimen-

sion principle component analysis (2DPCA) [25], so

as to obtain the corresponding low-dimensional

representation FIELDdiv
i;j ¼ F̂ielddivi;j ;

h
F̂ielddivxi;j ;

F̂ield
divy
i;j ; F̂ielddivti;j ; F̂ielddivxxi;j ; F̂ield

divyy
i;j ; F̂ielddivtti;j �

2 Rd, where i ¼ 1; 2; . . .;G, G represents video

number; j ¼ 1; 2; . . .;Qi and Qi denotes the frame

number in the i-th video; d is the dimension of

FIELDdiv
i;j .

(b) Feature coding. Fisher vector [26] is used to jointly

code for above low-dimensional representation. A

Gaussian mixture model (GMM) of K components is

utilized to create the Fisher vectors. Then, L2

normalization is applied to the Fisher vectors to

obtain the multi-order divergence feature set

Msdiv¼ Msdiv1 ;Msdiv2 ; . . .;MsdivG

� �
2 RG�O for all

videos, where O ¼ 2dK. By the same way, the

multi-order curl feature set

Mscurl¼ Mscurl1 ;Mscurl2 ; . . .;MscurlG

� �
2 RG�O for all

videos is also obtained.

2.2 Construction of discriminative kinematic
descriptor

The proposed Msdiv and Mscurl, respectively, depict the

dynamic characteristics of action subject from multiple

levels and different perspectives, between which there exists

a certain complementarity information. Therefore, fusing

them will necessarily acquire a more complete feature rep-

resentation to delineate action subject in complex environ-

ment more precisely. This section aims to propose a

discriminative neural network fusion method to achieve the

fusion of Msdiv and Mscurl. Consequently, the proposed dis-

criminative kinematic descriptor is obtained, as shown in

Fig. 3. The specific process is presented as follow.

1. Introduction of a single tight-loose constraint term

Given a feature set Z ¼ f Msdiv;Mscurl;H
� �

, where f �ð Þ
denotes the feature projection function, and H ¼
H1;H2; . . .;Hxf g represents model parameter set, x is the

number of parameters. A single tight-loose constraint TLZ

is firstly introduced, as indicated in Eq. (7).

TLZ ¼ 1

G

XC

n¼1

XCn

g¼1

XC

c¼1;c6¼n

Zn
g � �Zn

���
���

Zn
g � �Zc

���
���

ð7Þ

where C is the number of action classes; Cn represents the

feature number of the n-th class;Zn
g 2 R1�2O denotes the g-th

feature of the n-th class in Z; �Zc 2 R1�2O and �Zn 2 R1�2O,

respectively, represent the feature centers of the c-th class

and the n-th class, namely mean values of features.

2. Introduction of an anti-confusion constraint term

It is known that there are usually a large number of outliers

in feature space. The distances of these outliers to the

feature centers of their own classes are usually larger than

the distances to the feature centers of other classes, which

seriously affects the discriminativeness of features. In order

to reduce the confusion caused by outliers, an anti-confu-

sion constraint ACZ is introduced as a penalty term to

measure the degree of confusion between different classes

of features, as shown in Eq. (8).

ACZ ¼ 1

G

XC

n¼1

XCn

g¼1

XC

c¼1;c 6¼n

relu Zn
g � �Zn

���
���� Zn

g � �Zc
���

���
� �

ð8Þ

where relu �ð Þ represents the rectified linear unit (ReLU)

[27].

3. Construction of the objective function for the proposed

fusion method

By introducing both of the constraint terms TLZ and ACZ

into the cross-entropy loss function, the objective function

of the proposed fusion method is obtained, as shown in

Eq. (9).

min J ¼ �
XG

g¼1

XC

c¼1

y0g log p yg ¼ cjZg

� �� �
þ TLZ þ ACZ

¼ �
XG

g¼1

XC

c¼1

y0g log p yg ¼ cjZg

� �� �

þ 1

G

XC

n¼1

XCn

g¼1

XC

c¼1;c 6¼n

Zn
g � Zn

���
���

Zn
g � Zc

���
���

þ 1

G

XC

n¼1

XCn

g¼1

XC

c¼1;c 6¼n

relu Zn
g � Zn

���
���� Zn

g � Zc
���

���
� �

ð9Þ

where yg and y0g are, respectively, the predicted label and

true label of the g-th sample; Zg represents the g-th feature

in Z.
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It can be seen from Eq. (9) that, during the optimization

solution process, the proposed TLZ , by calculating the

relative distances between each feature and its feature

center as well as the feature centers of other classes,

respectively, makes each feature point be closer to its own

feature center, and meanwhile be farther from the feature

centers of other classes. That is, the within-class com-

pactness is enhanced, and the between-class separability is

increased simultaneously. Consequently, the discrimina-

tiveness of features is improved. Further, it can be seen that

the proposed ACZ , by gathering the statistics for the sum of

error distances in feature space, reduces the between-class

confusion caused by outliers.

4. Acquisition of the proposed discriminative kinematic

descriptor

Here, a three-layer neural network called the discriminative

fusion network is constructed to finally achieve the fusion

of Msdiv and Mscurl. This network takes the training sam-

ples from Msdiv and Mscurl as inputs, and Eq. (9) is used as

the objective function for optimization. By minimizing

Eq. (9) using the stochastic gradient descent (SGD) algo-

rithm, the optimal model parameter set H� is acquired.

Consequently, the discriminative fusion of Msdiv and Mscurl

is achieved. That is, the proposed discriminative kinematic

descriptor Fkinematic ¼ f Msdiv;Mscurl;H�� �
is obtained.

Overall, the multi-order divergence feature Msdiv and

multi-order curl feature Mscurl are firstly obtained from a

set of kinematic fields, which possess better discrimina-

tivity, and meanwhile remove the camera motion and

slowly changing background. Then, in order to acquire a

more complete feature representation, the discriminative

fusion method is proposed to achieve the fusion of Msdiv

and Mscurl. Consequently, the discriminative kinematic

descriptor is obtained, which possesses better within-class

compactness and between-class separability, and mean-

while it is robust to outliers. Moreover, the additional

detection of interest points is not needed in this paper, thus

the computational consumption is significantly reduced,

and the negative effects caused by inaccurate interest point

detection on action recognition are effectively avoided. All

of these are very useful for action recognition.

3 Deep attention-pooled descriptor

When performing action recognition, both dynamic infor-

mation and static information are very significant clues. In

fact, when recognizing the action classes that are closely

related to specific objects or action scenes, static features

play a crucial role. This section aims to obtain the dis-

criminative static information in background for action

recognition. For this purpose, a deep attention-pooled

descriptor is constructed.

Firstly, the architecture of Inception-v3 network is

briefly introduced. Then, the prediction-attentional pooling

method is proposed. Subsequently, it is applied to both

lower layer and higher layer of Inception-v3 for acquiring

the proposed deep local attentional feature and deep global

attentional feature. Finally, by concatenating the two

attentional features, the proposed deep attention-pooled

descriptor is constructed, as shown in Fig. 4.

3.1 Introduction of architecture of Inception-v3

Inception-v3 deep neural network was developed by

Google, which is a 42 layer deep convolutional neural

network with 130 layers, and consists of multiple Inception

modules. There exist 4 convoluting modules in each

Inception module, and the receptive fields of convoluting

modules for each Inception module are allowed to freely

select from 5� 5, 3� 3 and 1� 1, which can synthesize

the different scale information. Compared with Inception-

v2 network [28], Inception-v3 adopts a combination of 1�
n and n� 1 convolutional kernel sizes instead of the

original n� n size, which significantly reduces parameter

number. In addition, Inception-v3 adopts the global aver-

age pooling (GAP), rather than the traditional fully con-

nected layer, to obtain the feature vector at the end of

network.

3.2 Extraction of deep local and global features

In fact, a deep network can learn different features at each

layer of layer hierarchy. To be specific, the activations in

lower layers possess smaller receptive fields, meanwhile,

they are much more sensitive to edge-like patterns and

corners; while activations in higher layers possess larger

receptive fields, which can learn the more global and high-

level feature representation and obtain more complex

invariances. However, Inception-v3 only adopts the top

layer of network, which is not enough for describing the

fine-grained detail.

In order to obtain a more complete feature representa-

tion, the local feature and global feature are, respectively,

extracted from the lower layer and higher layer of Incep-

tion-v3, which lay the foundation for further obtaining the

proposed deep local attentional feature and deep global

attentional feature. Specifically, (1) the Mixed_5c layer

with size 35� 35� 288 of Inception-v3 is selected and

served as the deep local feature XL, where 35� 35 denotes

the number of regions in a video frame and 288 is the

dimension of feature vector for each region. The reason for

selecting the 35� 35 region is that, the classical hand-
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crafted feature usually adopts an 8� 8 region for local

feature extraction, and when it is mapped to Inception-v3,

the most similar window scale 35� 35 is obtained. (2) the

Mixed_7a layer with size 8� 8� 1280 of Inception-v3 is

selected and taken as the deep global feature XH , where

8� 8 denotes the number of regions in a video frame and

1280 is the dimension of feature vector for each region.

The reason for choosing Mixed_7a instead of the last

Mixed_7c is that, the feature maps of Mixed_7c have very

large receptive fields, which means that each pixel point in

feature maps corresponds to all regions of input image [29],

thus different locations cannot be assigned different

weights. That is to say, it is impossible to highlight the

discriminative regions, which is disadvantageous for fur-

ther acquiring the proposed deep global attentional feature.

3.3 Proposed prediction-attentional pooling
method

It is well known that the current deep network usually

adopts GAP, rather than fully connected layer, to compress

the feature map at end of network for obtaining global

features. However, GAP considers all the regions inside

feature maps equally important, which may reduce the

discriminativeness of features [30]. Therefore, some

methods [31, 32] use the attention mechanism to highlight

the discriminative regions. Furthermore, other ones extend

the single-channel attention mechanism to multiple chan-

nels for enhancing the discriminativeness of features. Yan

et al. [33] proposed a multi-branch attention networks,

which obtains the attention maps from scene-level context

and region-level context perspectives, respectively. Then,

the two context branches are further integrated to acquire

the final attentional regions. Girdhar et al. [29] utilized the

low-rank second-order pooling to obtain multiple attention

maps from bottom-up and top-down perspectives, respec-

tively. Then, these attention maps are combined to acquire

the final attentional regions. However, the above methods

adopted simple ways to fuse different attention maps

without highlighting the more discriminative attention

maps, which makes the final acquired attention regions not

accurate enough. Depending on the problem to solve, a

novel prediction-attentional pooling method is proposed,

which aims to more accurately focus on the significant

discriminative regions, and meanwhile suppress irrelevant

background interference. Details are as follows.

Given an extracted deep feature map

X¼ XT
1 ; . . .;X

T
i ; . . .;X

T
N

	 
T2 RN�D, and Xi 2 R1�D maps to

distinct overlapping regions in input space, where N

denotes the number of regions in a video frame and D is the

dimension of feature vector for each region. Thereupon, the

proposed prediction-attentional pooling method is briefly

summarized as following. Firstly, the attentions with C

channels are constructed, where the number of channels

equals to the number of classes, and a single weight is

learned for each channel, aiming to pay attention to distinct

aspects of deep feature. Then, the attentional heatmap for X

in each channel is, respectively, calculated to obtain the

Fig. 4 Schematic of the proposed deep attention-pooled descriptor
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attentional heatmap set M1; . . .;Mc; . . .;MC
� �

, where

Mc 2 R1�N is the c-th attentional heatmap. Secondly, the

predictions of deep network are taken as weights to fuse

M1; . . .;Mc; . . .;MC
� �

, so as to obtain the weighted fusion

attentional heatmap Mfuse 2 R1�N . Thirdly, Mfuse is utilized

as the weight of X to further enhance the effect of

important local regions. Consequently, the more accurate

and discriminative deep feature is obtained. The specific

calculation process is shown below.

1. Acquisition of attentional heatmaps for C channels.

Firstly, in order to obtain M1; . . .;Mc; . . .;MC
� �

, a

convolutional kernel ac 2 R1�D is applied on each

channel aiming to acquire attentional heatmaps from

different perspectives. Specifically, a softmax function

for generating the attention distribution on the regions

of the image is adopted for each channel to, respec-

tively, obtain Mc
i , as shown in Eq. (10).

Mc
i ¼

exp acXT
i

� �

PN
j¼1 exp acXT

j

� � ð10Þ

whereMc
i represents the i-th element inMc, namely the

attentional weight of the i-th vector Xi in the c-th

channel. The larger the Mc
i is, the higher the impor-

tance degree of Xi in the c-th channel is. Equation (10)

is adopted for each channel, then the attentional heat-

map set M1; . . .;Mc; . . .;MC
� �

is obtained.

2. Acquisition of the weighted fusion attentional heatmap

Mfuse for C channels. The motivation is that different

actions activate different attentional heatmap sets. In

fact, different channels in attentional heatmaps capture

different regions related to action subject, discrimina-

tive objects and background. In certain circumstance,

some channels are more important than the others.

Therefore, the higher weights should be assigned to

these discriminative channels that play more significant

roles in action recognition.

For the sake of highlighting the contributions of dis-

criminative channels related to X, the prior probability of X

belonging to the c-th class is adopted as the weight ofMc
i to

conduct weighted fusion on M1; . . .;Mc; . . .;MC
� �

, so as

to obtain the weighted fusion attentional heatmap Mfuse.

For the i-th element M
fuse
i in Mfuse, the calculation is shown

in Eq. (11).

M
fuse
i ¼

XC

c¼1

p y ¼ cjXð ÞMc
i ð11Þ

where y is class label; p y ¼ cjXð Þ represents the prior

probability of X belonging to the c-th class. As can be seen

from Eq. (11), the larger the p y ¼ cjXð Þ is, the larger the

weight of Mc
i is, then the larger the contribution of Mc

i to

M
fuse
i is, that is to say, Eq. (11) assigns larger weights to the

more discriminative channels.

Furthermore, as for the calculation of p y ¼ cjXð Þ,
according to the structure of deep network, it is known that

in the process of forward propagation, the feature map of

each layer is obtained from the former layer feature map

through basic matrix operations. That is, the conditional

probability p b Xjð Þ ¼ 1 holds, in which b is the bottleneck

vector of deep network. Thereby, the following derivation

holds:

p y ¼ c Xjð Þ ¼ p y ¼ c;Xð Þ=p Xð Þ
¼ p y ¼ c; b;Xð Þ=p b;Xð Þ
¼ p y ¼ c b;Xjð Þ
¼ p y ¼ c bjð Þ

ð12Þ

where p y ¼ cjbð Þ represents the probability of b belonging

to the c-th class, namely the prediction of deep network.

It can be seen from Eq. (12) that the probability of X

belonging to the c-th class is equal to the prediction of deep

network, where the prediction can be obtained by fine-

tuning the network on video dataset. Thus, Eq. (11) is

transformed as follow:

M
fuse
i ¼

XC

c¼1

p y ¼ cjbð ÞMc
i ð13Þ

Till then, the weighted fusion attentional heatmap Mfuse

is acquired.

3. Acquisition of more accurate and discriminative deep

feature Atte. Mfuse is used to conduct weighted pooling

on X for obtaining the attentional feature Atte, as

shown in Eq. (14).

Atte ¼ MfuseX ¼
XN

i¼1

XC

c¼1

p y ¼ cjbð ÞMc
i Xi ð14Þ

In order to obtain Atte automatically, the SGD algorithm

is utilized to minimize the objective function of network, as

shown in Eq. (15).

min J ¼ �
XG

g¼1

XC

c¼1

y0g log p yg ¼ c Atteg
��� �� �

þ f1
XN

i¼1

M
fuse
i

� �2

þf2
XC

c¼1

ack k2

ð15Þ

where Atteg is the deep attentional feature of the g-th

sample; p yg ¼ cjAtteg
� �

denotes the possibility of the g-th

sample belonging to the c-th class; f1 and f2, respectively,
denote the attentional regularization coefficient and weight

decay coefficient; �k k2 is l2-norm.
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Conclusively, the proposed prediction-attentional pool-

ing method adopts predictions as weights to conduct

weighted fusion on the attentional heatmaps of multiple

channels, so as to obtain the weighted fusion attentional

heatmap Mfuse, which highlights the contributions of the

discriminative channels and meanwhile suppresses irrele-

vant background interference. Furthermore, Mfuse is uti-

lized as the weight for deep feature map X to enhance the

effect of important local regions that are significant for

action recognition. Consequently, the more accurate and

discriminative deep feature Atte is obtained.

3.4 Construction of deep attention-pooled
descriptor

In this section, the proposed deep local attentional feature

AtteL and deep global attentional feature AtteH are firstly

obtained. Then, the proposed deep attention-pooled

descriptor is constructed.

Specifically, the proposed prediction-attentional pooling

method is applied to both deep local feature XL and deep

global feature XH , thus AtteL and AtteH are obtained. It is

obviously that, AtteL mainly focuses on detail information

like texture and edge orientation, while AtteH usually

contains global body information and possesses a whole

abstract description for action. Therefore, in order to

comprehensively depict the discriminative information of

action scene, AtteL and AtteH are further concatenated to

finally construct the proposed deep attention-pooled

descriptor Fattention�pooled ¼ AtteL;AtteH
	 


.

In summary, by combining AtteL and AtteH , the pro-

posed deep attention-pooled descriptor can more compre-

hensively and accurately depict the static visual appearance

information of action scene and discriminative object in a

video, which improves the discriminativeness of features,

and is very useful for action recognition.

4 Experiments and analysis

In this section, the comparisons and analysis on experi-

mental results of the proposed methods for action recog-

nition are reported on two challenging video datasets,

namely UCF101 and HMDB51. The illustrations of their

representative frames are provided in Fig. 5.

4.1 Datasets and experimental settings

4.1.1 Introduction of datasets

UCF101 [1] dataset includes 13,320 videos with 101 action

classes. This dataset gives the largest diversity in terms of

actions and large variations in camera motion, viewpoint,

object appearance and pose, illumination conditions, clut-

tered background, object scale, etc. Videos of each action

class are divided into 25 groups, where videos from the

same group may share similar background and viewpoint.

The standard protocol of three train-test splits [34] is used

in our experiments, and average accuracy is adopted as the

eventual performance measure.

HMDB51 [2] dataset is collected from various sources

and represents a fine multifariousness of light conditions,

surroundings and situations in which action happens. The

camera motion consists of traveling shots, camera shaking,

zooming, etc. In total, the dataset contains 6766 video clips

divided into 51 action classes, each including at least 101

video clips. The original evaluation scheme of three train-

test splits [2] is adopted in our experiments. Each split

includes 30 videos for testing and 70 videos for training in

each class. The average result over three splits is utilized to

evaluate the final performance.

4.1.2 Experimental settings

(1) Parameter setting for the proposed discriminative

kinematic descriptor. The number of Gaussians K in the

Fisher vector is set to 128. (2) Parameter settings for

Inception-v3. Inception-v3 is utilized in this paper, and is

trained on the ILSVRC2012 dataset [35]. TensorFlow open

source software library [36] provided by Google is utilized

to build the CNN framework, and the parameters of

Inception-v3 are fine-tuned on UCF101 and HMDB51

datasets using 4 NVIDIA Titan X GPUs. The SGD algo-

rithm is adopted for training the network. The batch size is

set as 50; the momentum is set to 0.9; the learning rate is

set as 0.0001; the weight decay is set as 0.0005, and the

dropout ratio is selected as 0.9. (3) Parameter settings for

the proposed deep attention-pooled descriptor. Similarly,

SGD is adopted to train the proposed deep network.

Specifically, the batch size is set as 200 and learning rate is

set to 0.001. (4) Classifier settings. For the proposed dis-

criminative kinematic descriptor and DKD–DAD frame-

work, the linear SVM is used as a classifier. As for the

proposed deep attention-pooled descriptor, the output of

softmax layer in network is directly used for action

recognition.

4.2 Experiment on parameter selection

In this section, UCF101 dataset is taken as an example,

and the regularization coefficient f1 and weight decay f2
are optimized to show their significance for action

recognition by using the proposed deep attention-pooled

descriptor. Specifically, f1 and f2 are, respectively, set by

searching the grids 0:0005; 0:005; 0:05; 0:5f g and
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0:00005; 0:0005; 0:005; 0:05f g. The following Fig. 6

shows the recognition result under different parameters.

Figure 6 shows that the best performance is achieved

when f1 ¼ 0:05 and f2 ¼ 0:0005. Ulteriorly, it can be

observed that, when f1 and f2 become larger or smaller, the

accuracy begins to decline. Thereby, the trade-off on f1 and
f2 is very necessary. In fact, when f1 and f2 become larger

or smaller, the deep attention-pooled descriptor cannot

more accurately highlight the discriminative regions of

key-frame, then the discriminability of static features is

weakened, thereby the recognition performance becomes

worse. Consequently, f1 and f2 are, respectively, set to

0:05 and 0:0005 on UCF101 dataset in subsequent exper-

iments. Furthermore, similar results are demonstrated on

HMDB51 dataset.

4.3 Action recognition with kinematic features

In this section, the proposed kinematic features are applied

for action recognition to verify their effectiveness. Tables 1

and 2, respectively, show the recognition results of the

proposed kinematic features, namely multi-order diver-

gence feature and multi-order curl feature, as well as

contrastive methods on UCF101 and HMDB51.

As can be seen from Tables 1 and 2, the proposed

kinematic features achieve better accuracies than all con-

trastive methods. The reasons lie in that: both of the fea-

tures, by transforming optical flow field into a set of

kinematic fields with more discriminativeness, acquire the

different dynamic characteristics of optical flow field from

multiple levels and various perspectives. In fact, they

capture the spatiotemporal characteristics of action subject,

thus they can more accurately depict the detailed motion

information of subject, and meanwhile remove the camera

motion and slowly changing background. Consequently,

the accuracies are improved.

4.4 Action recognition with discriminative
kinematic descriptor

This section aims to demonstrate the effectiveness of the

proposed discriminative kinematic descriptor, namely

validity of the proposed discriminative fusion method.

Taking UCF101 and HMDB51 datasets as examples,

Tables 3 and 4, respectively, show the recognition results

of the proposed discriminative kinematic descriptor

obtained by the proposed discriminative fusion method, as

well as the results of the concatenation and linear weighted

fusion for the proposed multi-order divergence feature and

multi-order curl feature. Meanwhile, the results of con-

trastive methods are also given. In addition, the weight

coefficients of linear weighted fusion are obtained by use

of the grid search algorithm.

It can be observed from Tables 3 and 4 that: (1) The

proposed discriminative kinematic descriptor outperforms

all contrastive methods. (2) The result of concatenating the

multi-order divergence feature and multi-order curl feature

Fig. 5 Representative frames from videos in UCF101 and HMDB51 datasets

Fig. 6 Accuracy of the proposed deep attention-pooled descriptor

versus regularization coefficient and weight decay parameters on

UCF101 dataset
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is superior to the results of using any of them alone, which

indicates that there is really some complementary infor-

mation between them. (3) The performance of linear

weighted fusion is better than that of concatenation, which

indicates that the proposed multi-order divergence feature

and multi-order curl feature have different contribution

degrees to action recognition. Based on the above obser-

vations, the best performance of the proposed discrimina-

tive kinematic descriptor is owing to the following

contributions. The proposed discriminative fusion method,

by introducing the tight-loose constraint term, reduces the

within-class variations while also increasing the between-

class differences. That is, the proposed discriminative

kinematic descriptor possesses better within-class com-

pactness and between-class separability simultaneously. In

addition, by further introducing the anti-confusion con-

straint term, the confusion caused by outliers is reduced,

which enhances the discriminativeness and robustness of

the proposed kinematic descriptor. Consequently, the per-

formance is improved effectively.

4.5 Action recognition with prediction-
attentional pooling method

This section aims to verify the effectiveness of the pro-

posed prediction-attentional pooling method. Taking the

split 1 of UCF101 dataset for example, Fig. 7 demonstrates

the recognition accuracies with applying the proposed

pooling method, GAP, max pooling (MAX) and classical

attention pooling method on the extracted deep local fea-

ture XL and deep global feature XH .

It can be seen from Fig. 7 that: (1) Regardless of the

deep local or global feature, the classical attention pooling

method achieves better accuracies than GAP and MAX.

The reason lies in that, the introduction of the attention

mechanism highlights the contribution of discriminative

local regions. (2) The proposed pooling method outper-

forms classical attention pooling method. The reason lies in

that, the proposed pooling method adopts the predictions of

network output as weights to weighted fuse the attentions

of different channels, which further highlights the contri-

butions of discriminative channels. Consequently, the dis-

criminative regions are accurately obtained, and the

accuracy is effectively improved.

4.6 Action recognition with deep attention-
pooled descriptor

In order to verify the effectiveness of the proposed deep

attention-pooled descriptor, Tables 5 and 6, respectively,

show the recognition results of this descriptor and con-

trastive methods on UCF101 and HMDB51 datasets.

As is shown in Tables 5 and 6, the proposed deep

attention-pooled descriptor performs better than all con-

trastive methods. The reason lies in that, the proposed

descriptor, by combining the proposed deep local atten-

tional feature and global attentional feature, further accu-

rately depicts the static visual appearance information of

action scene and discriminative object in a video, and

enhances the discriminativeness of static deep features.

Consequently, accuracies are improved effectively.

Table 1 Recognition result of

the proposed kinematic features

and contrastive methods on

UCF101 dataset

Method Feature Accuracy (%)

Miao et al. [37] Trajectory 71.00

Shi et al. [38] HOG3D 68.50

Peng et al. [39] HOG 74.79

HOF 78.63

Nguyen and Mirza [40] MBH 79.80

Kobayashi [41] LMS 80.48

Proposed Multi-order divergence feature 88.86

Multi-order curl feature 87.92

Table 2 Recognition result of the proposed kinematic features and

contrastive methods on HMDB51 dataset

Method Feature Accuracy (%)

Jain et al. [42] DCS 52.10

Miao et al. [37] Trajectory 39.00

Yu et al. [43] LFF 46.90

Wang et al. [8] HOG 44.40

HOF 52.30

MBH 56.90

Caetano et al. [44] OFCM 56.91

Xu et al. [45] IDT-RCB 58.90

Proposed Multi-order divergence feature 61.81

Multi-order curl feature 61.11
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Table 3 Recognition result of

the proposed discriminative

kinematic descriptor and

contrastive methods on UCF101

dataset

Method Feature Accuracy (%)

Miao et al. [46] HOF ? MBH ? RBH ? HOG 78.90

Kihl et al. [47] HOG ? MrP ? GMrP 79.40

Feichtenhofer et al. [48] IDT ? LATE ? ST 87.70

Wang et al. [8] HOG ? HOF ? MBH 86.00

Fernando et al. [49] HOG ? HOF ? MBH 86.50

Peng et al. [39] HSV ? STP 87.20

Wang et al. [50] MoFAP 88.30

Kobayashi [41] IDT ? LMS 86.38

Tu et al. [51] ML-HDP (IDT) 83.40

Zheng et al. [52] Action sketch 83.85

Proposed Concatenation 89.86

Linear weighted fusion 90.25

Discriminative kinematic descriptor 92.01

Table 4 Recognition result of

the proposed discriminative

kinematic descriptor and

contrastive methods on

HMDB51 dataset

Method Feature Accuracy (%)

Wang et al. [50] MoFAP 61.70

Jiang et al. [53] IDT ? FV ? TrajMF 57.30

Bilinski and Bremond [54] IDT ? VCML 58.60

Shao et al. [55] KMP 49.80

Caetano et al. [44] OFCM 56.91

Fernando et al. [49] HOG ? HOF ? MBH 60.00

Wang et al. [8] HOG ? HOF ? MBH 60.10

Yang et al. [56] HOG ? HOF ? MBHx ? MBHy 60.84

Yao et al. [57] Multiview dictionary learning 54.00

Kobayashi [41] IDT ? LMS 60.22

Proposed Concatenation 62.88

Linear weighted fusion 63.12

Discriminative kinematic descriptor 64.51

Fig. 7 Recognition accuracy of different pooling methods on UCF101 dataset (split 1)
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4.7 Heatmap visualization of prediction-
attentional pooling method

To intuitively demonstrate the validity of the proposed

prediction-attentional pooling method, Fig. 8 illustrates the

visualization examples of heatmaps obtained by the pro-

posed pooling method. For comparative analysis, the

visualization examples of heatmaps obtained by classical

attention pooling method are given simultaneously.

It can be seen from Fig. 8a that for ‘‘biking’’ action,

compared with the visualization result of classical attention

pooling method, the deep global attentional heatmap

obtained by the proposed pooling method can highlight the

discriminative region (bicycle) and meanwhile suppress

other irrelevant regions. Furthermore, by superimposing

the deep local attentional heatmap on deep global atten-

tional heatmap, the more discriminative local regions (bi-

cycle wheels) are ulteriorly highlighted. Similarly, for

‘‘riding horse’’ in Fig. 8b, ‘‘swinging on the pommel

horse’’ in Fig. 8c and ‘‘playing violin’’ in Fig. 8d, the

proposed pooling method can also more accurately focus

on the discriminative objects ‘‘horse,’’ ‘‘pommel horse’’

and ‘‘violin’’ in video frames. For ‘‘table tennis shot’’ in

Fig. 8e and ‘‘surfing’’ in Fig. 8f, the same conclusions can

be obtained.

4.8 Action recognition with DKD–DAD
framework

This section aims to demonstrate the effectiveness of the

proposed DKD–DAD framework. Tables 7 and 8, respec-

tively, show the recognition results of the DKD–DAD and

contrastive methods on UCF101 and HMDB51 datasets.

From the above experimental results, it can be seen that

the proposed DKD–DAD achieves better accuracy than all

contrastive methods. Through analysis, this is due to the

following contributions. DKD–DAD combines the dis-

criminative kinematic descriptor and deep attention-pooled

descriptor together for action recognition, which shares the

benefits of both hand-crafted feature and deep feature, and

thus comprehensively acquires important dynamic charac-

teristics and discriminative static information in a video.

Consequently, accuracies are effectively improved.

4.9 Experiments on running time

Running time plays a significant role in performance

assessment, thereby the time consumption of the proposed

methods are simply presented. The UCF101 dataset is

taken as an example. (1) For a video containing 55 frames,

it approximately takes 51.50 s to extract the discriminative

kinematic descriptor. Since the proposed kinematic

descriptor does not require interest point detection and

trajectory tracking, the time consumption is chiefly on

calculating optical flow. (2) As for the proposed deep

attention-pooled descriptor, it takes about 46.14 ms for

each frame. (3) For the proposed DKD–DAD framework,

the overall processing time of a 55-frame video is about

53.00 s. These experiments are run on a workstation with a

2.60 GHz CPU.

5 Conclusions

The following conclusions are drawn from this paper.

Firstly, by transforming the optical flow field into a set of

kinematic fields with more discriminativeness, the dynamic

characteristics hidden within the optical flow field are

captured. Subsequently, two kinematic features are con-

structed, which more accurately depict the dynamic char-

acteristics of action subject from the multi-order

divergence and curl fields, meanwhile remove the camera

motion and slowly changing background. Secondly, a

discriminative fusion method is proposed. By introducing a

single tight-loose constraint, the better within-class com-

pactness and between-class separability are guaranteed. At

the same time, the introduction of the other anti-confusion

constraint reduces the confusion caused by outliers. On this

Table 5 Recognition result of

the proposed deep attention-

pooled descriptor and

contrastive methods on UCF101

dataset

Method Feature Accuracy (%)

Simonyan and Zisserman [10] Spatial stream ConvNet 73.00

Zhu and Newsam [58] STDN 59.10

Bilen et al. [59] MDI-end-to-end ? static-rgb 76.90

Fernando et al. [49] HRP. (CNN) 78.80

Lan et al. [60] LOG 80.00

Feichtenhofer et al. [61] Appearance stream 82.29

Wang et al. [62] Transformations 80.80

Wang et al. [63] Appearance 69.60

Kar et al. [64] AdaScan (Spatial network) 78.60

Proposed Deep attention-pooled descriptor 83.01
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Table 6 Recognition result of

the proposed deep attention-

pooled descriptor and

contrastive methods on

HMDB51 dataset

Method Feature Accuracy (%)

Zhu and Newsam [58] STDN 38.30

Bilen et al. [59] MDI-end-to-end ? static-rgb 42.80

Feichtenhofer et al. [61] Appearance stream 43.42

Fernando et al. [49] HRP. (CNN) 47.50

Ye and Tian [65] spatial-C3D-LSTM 51.20

Lan et al. [60] LOG 52.40

Wang et al. [63] Appearance 41.30

Kar et al. [64] AdaScan (Spatial network) 41.40

Girdhar and Ramanan [29] Pose regularized Attentional Pooling 52.20

Proposed Deep attention-pooled descriptor 58.19

Fig. 8 Heatmap visualization of the proposed prediction-attentional

pooling method and classical attention pooling method on UCF101

dataset. Row 1: original video frames; row 2: heatmaps obtained by

classical attention pooling method; row 3: deep global attentional

heatmaps obtained by the proposed pooling method; row 4: heatmaps

obtained by superimposing the deep local attentional heatmaps on

deep global attentional heatmaps

Table 7 Recognition result of

the proposed DKD–DAD

framework and contrastive

methods on UCF101 dataset

Method Feature Accuracy (%)

Zhang et al. [66] EMV ? RGB-CNN 86.40

Bilen et al. [59] MDI-end-to-end ? static-rgb ? trj 89.10

Lan et al. [60] Hybird 90.60

Fernando et al. [49] HRP 91.40

Wang et al. [63] Temporal pyramid CNNs 89.10

Ma et al. [67] VGG16 ? Images ? IDT-FV 91.10

Yang et al. [68] L-SCNN-16 92.00

Cherian et al. [69] GRP ? IDT-FV 92.30

Zhang et al. [70] DTMV ? RGB-CNN 87.50

Varol et al. [71] LTCFlowþRGB + IDT 92.70

Proposed DKD–DAD 93.16
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basis, the discriminative kinematic descriptor is con-

structed, which possesses better discriminativeness and

robustness. Thirdly, a prediction-attentional pooling

method is proposed, which adopts the predictions of deep

network as weights to weighted fuse different channel

information of attentions, and thus highlights the contri-

butions of discriminative channels. Consequently, its

attention is more accurately focused on discriminative

regions while suppressing irrelevant background interfer-

ence. Furthermore, the deep attention-pooled descriptor is

constructed, which obtains the significant static visual

appearance information of action scene and discriminative

object in a video. Finally, a DKD–DAD framework is

constructed by combining the proposed discriminative

kinematic descriptor and deep attention-pooled descriptor,

which comprehensively obtains the dynamic characteristics

and static information, and further improves the accuracies

of action recognition. The proposed methods are exten-

sively evaluated on two challenging datasets of UCF101

and HMDB51, where the superior performance is achieved

in comparison with a number of state-of-the-art methods.

The future work will focus on researching and designing

deeper network as well as more effective pooling method,

so as to handle complex video concepts.
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