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Abstract
Recently sparse coding based on regression analysis has been widely used in face recognition research. Most existing

regression methods add an extra constraint factor to the coding residual to make the fidelity term in the l2 loss approach the

Gaussian or Laplace distribution. But the essence of these methods is that only the fidelity term of l1 loss or l2 loss is used.

In this paper, weighted Huber constrained sparse coding (WHCSC) is used to study the robustness of face recognition in

occluded environments, and alternating direction method of multipliers is used to solve the problem of model mini-

mization. In WHCSC, we propose a sparse coding with weight learning and use Huber loss to determine whether the

fidelity is a l2 loss or l1 loss. For the WHCSC model, the two kinds of classification modes and the two kinds of weight

coefficients are further studied for the intra-class difference and the inter-class difference in the face image classification.

Through a large number of experiments on a public face database, WHCSC shows strong robustness in face occlusion,

corrosion and illumination changes comparing to the state-of-the-art methods.

Keywords Sparse coding � Face recognition � Robustness � ADMM

1 Introduction

In recent years, face recognition is still a hot research topic

[1]. On the one hand, it is great potential for use; on the

other hand, it reveals how machine learning can make

feature selection and classification on complete images

[2, 3]. The advantage of face recognition lies in its natu-

ralness and the characteristics that are not perceived by the

tested individual [4]. First, naturalness means that the

recognition method is the same as the biological charac-

teristics used by human (or even other organisms) for

individual recognition. For example, in face recognition,

humans beings also distinguish and confirm identity by

observing face. Second, unobtrusive characteristics are also

important for a method of identification, which makes it

less objectionable and because it is not easy to attract

people’s attention, it is not easy to be deceived. Face

recognition uses visible light to acquire face image infor-

mation. This is different from fingerprint recognition or iris

recognition, which requires the use of an electronic pres-

sure sensor to capture fingerprints, or the use of infrared to

acquire iris images. Fingerprint recognition or iris recog-

nition is easily perceived and thus more likely deceived by

camouflage.

Face recognition is considered as one of the most dif-

ficult research topics in the field of biometrics and even

artificial intelligence. On the one hand, this difficulty

comes from the characteristics of human biological char-

acteristics. First, the similarity of the face: the structure and

appearance of the faces between different individuals are

very similar. This similarity is not conducive to the use of

human face to distinguish between human beings. Second,

the variability of the face: face shape is very unstable,

human complex facial expression changes, but also in

different angles of view, face the visual image is also very

different. Finally, the difference in face: different genetic

makeup makes each person’s face always different. On the

other hand, the external noise changes. For example,
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expression changes, lighting conditions, true camouflage,

continuous occlusion, pixel corrosion, etc., will reduce the

valuable information of the face image and interfere with

the recognition of the face [5].

Recently, the method based on regression analysis has

attracted the widespread interest of researchers. The linear

regression classifier (LRC) proposed by Naseem et al. [6]

represents the query image by linear combination of dic-

tionary atoms. Wright et al. [7] proposed a sparse coding

classification algorithm (SRC) to identify the real camou-

flage and pixel erosion of human face images. The SRC uses

a sparse linear combination of dictionary atoms to represent

the query image. LRC and SRC cannot achieve the desired

performance when the dictionary is not enough. Zhang et al.

[8] considered that cooperative mechanisms are more

important than sparse constraints. They proposed a collab-

orative representation classifier (CRC) based on l2 norm

constraints and further proposed its robust version (RCRC).

Yang et al. [9] further proposed a matrix regression (NMR)

classification framework based on kernel regularization of l2
norm to obtain a better recognition rate in occlusion and

lighting changes. Zhong et al. [10] considered that the bal-

ance between SRC and CRC can be adjusted through iter-

ation and a classifier (LHC) of l1=2 regularization and ITR

iterative mechanism is proposed. Zheng et al. [11] attempted

to obtain amore general classifier (IRGSC) through adaptive

feature weight learning and adaptive distance-weighted

learning. Lin et al. [12] propose a robust, discriminative and

comprehensive dictionary learning (RDCDL) method, in

which a robust dictionary is learned from comprehensive

training sample diversities generated by extracting and

generating facial variations.

Although these classifiers have made great progress, due

to the complicated changes of occlusion, two types of

changes of face image are still not well overcome. The first

type of change is called inter-class difference. The inter-

class difference should be amplified as a standard to dis-

tinguish between individuals. The second type of change is

called intra-class difference. It should be eliminated

because they can represent the same individual. For face

images, intra-class difference interference is often greater

than the inter-class difference, so it becomes very difficult

to distinguish the individuals by the inter-class difference

under the intra-class difference. Two types of changes are

one of the biggest obstacles that face recognition technol-

ogy is widely used and need to be solved urgently.

We propose a new scheme called weighted Huber con-

strained sparse coding (WHCSC) and establish a robust

weighted regression model with sparse constraints.

WHCSC seeks the problem with the maximum a posteriori

(MAP) of sparse coding and is robust against noise values

(such as occlusion, corrosion, illumination changes). The

experiment uses a representative face database. The

experimental results show that WHCSC has obvious

advantages in dealing with facial occlusion, corrosion, and

camouflage.

The main contributions of this article are summarized as

follows:

1. Propose a more efficient taxonomy. On the one hand,

the intra-class difference is reduced; on the other hand,

the inter-class interference is effectively avoided when

the coding coefficients of the query sample and the

training sample are calculated.

2. The weighted method is adopted to reduce the

influence of noise. At the same time, two kinds of

exponential form of weight are researched to further

expand the effect of weight vector, increase the inter-

class difference and improve the recognition rate.

3. Utilize the robustness of Huber function to reduce

outlier interference and solve the l1 norm minimization

problem by using alternating direction method of

multipliers (ADMM) [13].

The rest of the paper is organized as follows: Sect. 2

introduces sparse robust coding. Section 3 introduces the

WHCSC and its contributions. Section 4 analyzes the

computational complexity of WHCSC. Section 5 analyzes

the convergence of WHCSC. Section 6 tests WHCSC

performance using a published face dataset. Finally, Sect. 7

summarizes WHCSC.

2 Sparse robust coding based on regression
classifier

2.1 General classification framework based
on regression analysis

In the general classification problem, the training samples

are expressed as a dictionary matrix

X ¼ X1,X2; . . .;Xc½ � 2 Rm�n, and c is the sample category.

Xi ¼ Xi1;Xi2; . . .;Xini½ � 2 Rm�ni i ¼ 1; 2; . . .; cð Þ is the sam-

ple subset of each category of the sample corpus X. ni is the

number of training samples of class i, n ¼
Pc

i¼1 ni is the

total number of samples. In the regression, the training

sample X linearly represents the query sample

y ¼ X1h1 þ X2h2 þ � � � þ Xchc
¼ X11h11 þ X12h12 þ � � � þ Xcnchcnc ¼ Xh; ð1Þ

where h ¼ ½h11; h12; . . .; hcnc �
T 2 Rn is the coding coeffi-

cient of the query sample to be determined on the training

sample.

The regression-based classification is to determine the

class of the query sample y 2 Rm in a given training

sample. By computing the residuals ei ¼ y� Xihi in the
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query sample and each category, the category of the

smallest ei is regarded as the category of the query sample.

2.2 Sparse coding

Sparse coding is an artificial neural network method that

simulates the simple cell receptivity field in the primary

visual cortex V1 of the mammalian visual system and has

been widely used in image processing and natural language

[14, 15]. Some human visual studies suggest that many

neurons in the visual pathway are selective for a variety of

specific stimuli in lower- and intermediate-level human

vision, such as color, texture, orientation, size. [16, 17].

Given the sparseness of the input image given by these

neurons, it can be efficiently computed by convex opti-

mization. Due to the difficulty in solving the l0 norm

minimization, the l1 norm is usually used as the nearest

solution to the l0 norm minimization problem. In general,

the problem of sparse coding can be expressed as

min
h

jjy� Xhjj22 þ kjjajj1 s:t: a ¼ h; ð2Þ

where k is the penalty coefficient for the l1 norm. The

essence of formula (2) is the least squares estimation of

sparse constraints when the residuals follow a Gaussian

distribution. When the residuals follow the Laplace distri-

bution, the sparse coding problem is

min
h

jjy� Xhjj1 þ kjjajj1 s:t: a ¼ h: ð3Þ

Sparse coding can capture high-order correlation struc-

tures in an image and represent the signal with as few

atoms as possible in a given overcomplete dictionary [18].

However, there are mainly two problems with this model.

The first one is whether the regularized l1 norm constraint

k a k1 is good enough to make the signal sufficiently

sparse. The second one is whether the fidelity term

(k y� Xh k22 or k y� Xh k1) is sufficiently effective to

describe the fidelity of the signal, especially when the

signal has noise or abnormal values.

Improve the first problem by modifying sparse con-

straints. For example, Liu et al. [19] added a nonnegative

constraint on sparse coefficient a. Gao et al. [20] intro-

duced Laplace coefficients in sparse coding. Wang et al.

[21] used weighted l2 norm for sparse constraints. In

addition, Ramirez et al. [22] proposed a generic sparse

modeling framework to design sparse regularization terms.

For the second problem, defining the fidelity terms using

the l2 or l1 norm from the perspective of the maximum a

posteriori probability (MAP) actually assumes that the

encoded residuals follow a Gaussian or Laplace distribu-

tion. However, in practice, it may not be very good to

follow a certain distribution of a single hypothetical

residual, especially when occlusion, camouflage or

corruption occurs in facial images. Therefore, a fidelity

item that uses a single l2 or l1 norm in a sparse coding

model may not be robust in these cases.

2.3 Sparse robust coding

It can be observed from (c) in Fig. 1 that when the

encoding residual approaches 0, the encoding residual of

the l2 norm is smaller, and when it is far from 0, the l1 norm

is smaller.

In practice, in a large number of training samples, it will

naturally contain more or less some outliers. In linear

coding, it is assumed that the sum of the residuals of the

training samples and the query samples is
Pm

i¼1 ei, and the

outliers have a great contribution to
Pm

i¼1 ei. Therefore, to

some extent reduce the encoding residuals of outliers, will

be greatly reduced
Pm

i¼1 ei. For example, in Fig. 1 (c), l2
loss and l1 loss show two different coding residuals.

Therefore, in order to reduce the impact of outliers, it is

important to query for different pixels using different

fidelities (jjy� Xhjj22 or jjy� Xhjj1).
In the statistical learning perspective, the Huber loss

function is a loss function of robust regression, which is

insensitive to outliers compared to mean square error and is

often used for classification problems. Huber loss function

is expressed as

g zð Þ ¼ jzj2=2 zj j � g
g zj j � g2=2 zj j[ g

�

; ð4Þ

where z is the residual and g is the Huber threshold.

l2 loss and l1 loss are mixed in the Huber loss (Fig. 2). If

the absolute value of the residual zj j is smaller than the

threshold value g (that is, the normal value), the fidelity of

formula (4) uses l2 loss. If the absolute value of the residual

the value zj j is greater than the threshold g, and the fidelity

of formula (4) uses l1 loss. For smooth connection with l2

loss, the constant g2=2 is subtracted from l1 loss. The

Huber loss balances the validity and robustness through the

optimal combination of l2 loss and l1 loss.

In order to improve the robustness and validity of sparse

coding, a sparse Huber (SH) model is designed according

to Huber loss mentioned above.

Byod explains in Sect. 6 of the article [13] that the

Huber function corresponds to the standard form

minf hð Þ þ g zð Þ of the ADMM model and can be expressed

as:

min
h

g zð Þ s:t: z ¼ Xh� y; ð5Þ

where f hð Þ ¼ 0, g zð Þ ¼
1

2
jjzjj22 zj j � g

gjjzjj1 �
1

2
g2 zj j[ g

8
><

>:
and is con-

strained by z ¼ y� Xh.
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SH can be expressed as

min
h

g zð Þ þ ka1 s:t: z ¼ Xh� y; a ¼ h; ð6Þ

where kjjajj1 is an l1 norm penalty term with a ¼ h con-

straints. In a certain range, the larger the value of k, the
more sparse h.

3 Weighted Huber constrained sparse
coding

3.1 Weighted Huber constrained sparse coding
model

To further reduce the effects of noise or outliers in the

training samples, we design a weight for the training

samples so that outliers are given a low weight value. In

RSRC, an effective weight vector is proposed to convert

the minimization problem into an iteratively reweighted

sparse coding problem.

With reference to the weight vector in RSRC [23],

combined with the above-mentioned sparse Huber model

(SH), this paper proposes a weighted Huber constrained

sparse coding model (WHCSC). The WHCSC model is

essentially a maximum likelihood estimation (MLE)

problem. The weight vector and the SH model are jointly

used to reduce the noise interference, and ADMM is used

to solve the l1 norm minimization problem. A large number

of experiments conducted in open face database show that

WHCSC has good classification effect, especially when the

facial image has complex changes such as occlusion, cor-

rosion, light changes.

WHCSC can be expressed as

min
h

g zð Þ þ kjjajj1 s:t: z ¼ w� Xh� yð Þ; a ¼ h; ð7Þ

where f hð Þ ¼ 0, g zð Þ ¼
1

2
jjzjj22

gjjw� zjj1�
1

2
g2wTw

8
><

>:

zkj j�gwk

zkj j[gwk
,

k¼ 1;2; � � �m, w is the sample weight. g is the residual

threshold constant. There are different methods to deter-

mine the threshold of g in many papers. In this paper, we

propose a combined threshold of weight, that is gw, where
g is a constant. gw makes the threshold value more in line

with the distribution of training samples with weight w

constraint. a� b represents the multiplication of the cor-

responding elements of a and b.

Weight w ¼ w1;w2; � � � ;wm½ � 2 Rm�1. wm is the weight

of number m in training sample X 2 Rm�n, em is the

residual with number m, wm is set to the following sigmoid

function

wm emð Þ ¼ 1

1þ exp �q
d�e2m
d

� �� � ; ð8Þ

where d is the residual threshold. d� e2m represents the

distance between the residual and the residual threshold,

and
d�e2m
d unifies the dimension of this distance. q affects the

penalty rate of weights and makes the distribution of

weights smoother. The sigmoid function can constrain the

weights value between [0,1]. Therefore, when the residual

is greater than d, the weights is less than 0.5; when equal to

Fig. 1 a and b are two pictures

of the same person. c is an l2
loss and l1 loss coded residual

image of the coded residual of

(a) and (b) when the residual

threshold is 10

Fig. 2 Huber loss function diagram
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d, the weights is equal to 0.5; when less than d, the weights
is greater than 0.5.

Let W ¼ e21; e
2
2; � � � ; e2m

� �
, and then ranking W to get Wa.

Let k ¼ bsmc, where s 2 0; 1ð �, bsmc is an integer less than

bsmc, then d can be expressed as

d ¼ Wa kð Þ: ð9Þ

For ease of calculation, formula (8) is organized to get

wm emð Þ ¼
exp �le2m þ ld

� �

1þ exp �le2m þ ld
� � ; ð10Þ

where the parameter l ¼ q
d.

Compared with the model in formulas (6), (7) has the

following advantages. Outliers (usual pixels with large

residuals) are adaptively assigned a low weight to reduce

their impact on regression estimates, which can greatly

reduce the sensitivity to outliers. And formula (8) limits the

weights between [0,1] using a sigmoid function and avoids

the almost infinite weight value of pixels with very small

residuals, which improves the stability of the encoding

process. The important parameters q and s will be analyzed
in conjunction with the experiment in Sect. 6.6.

3.2 WHCSC’s contribution

The purpose of the linear expression-based classification is

to obtain the smallest encoding residual by linear expres-

sion with the optimal encoding coefficient h, thereby dis-

tinguishing the category to which the test image belongs.

Definition

yi ¼ Fi Xð Þ ¼ X1h1 þ X2h2 þ � � � þ Xihi þ � � � þ Xchc½ �,
where yi ¼ Fi Xð Þ represents the linear expression of the

sample set for the ith test sample. Due to the variability of

the human face, two face images generated by the same

person at different times do not appear to be identical,

resulting in an intra-class difference, that is, yi � Xihi [ 0.

Similarly, the inter-class difference is the difference

between different people, that is, yi � Xjhj [ 0 j 6¼ ið Þ.
Sparse coding has the function of feature selection. Its

purpose is to select the training samples that are most

similar to the test samples to be linearly combined into test

samples [23]. First, we prefer to select samples belonging

to the same class to linearly combine test samples and

exclude interference from other classes of samples. This

makes the coding coefficients ðhjÞ of samples of different

categories small enough. Second, we also prefer to select

the same type of training samples that have less interfer-

ence with the test samples for the same type of samples. On

the other hand, in actual tests, the linear expression of test

samples in each category will be calculated. Therefore, we

hope that the coding residuals of linear expressions in the

same category will be small, while the coding residuals of

different categories are large. Section 3.2.1 describes in

detail the methods used to reduce intra-class difference and

avoid inter-class interference. Section 3.2.2 describes in

detail how to increase the inter-class difference.

3.2.1 Reduce the intra-class difference and remove inter-
class interference

In Fig. 3, we assume that the query sample belongs to the

category i. The residuals of the query samples and the

training samples of each category are e ¼
ei;1; ei;2; � � � ; ei;i; � � � ; ei;c
� �

¼ ðX1h1 � yi½ Þ; ðX2h2�
yiÞ; � � � ; ðXihi � yiÞ; � � � ; ðXchc �yiÞ�, where ei;i represents

the coding residuals of the query samples and training

samples of the same class, that is, intra-class difference,

and ei;j denotes the encoding residuals of the query samples

and the training samples of different class, that is, inter-

class difference.

In RSRC, the weight w is defined based on the residual

of the complete sample X 2 Rm�n and the query sample.

And all categories of samples use the same weight vector,

i.e. w� Xh� yð Þ ¼ w� X1ð½ h� yÞ;w�
X2h� yð Þ; . . .;w� Xch� yð Þ�. Here is defined as a classi-

fication model I, as shown in Fig. 3a, which shows the use

of the complete works samples to define weights, the same

type of coding residuals and the distribution of different

types of coding residuals. However, in WHCSC, the weight

w is based on the residual definition of the sample subset

Xi 2 Rm�ni and the query sample, that is, w� Xh�ð yÞ ¼
w1 � X1h� yð Þ;w2 � X2h� yð Þ; . . .;½ wc � Xch� yð Þ�.
Here is defined as classification model II, as shown in

Fig. 3b, which shows the distribution of the same class

coded residual and the different class coded residuals when

the weights defined by the sample subset are used.

Observing Fig. 3a–c, using the residuals of the sample

subset and the query sample to define the weights can

significantly reduce the coding residuals of the same class,

although the different types of coding residuals also

decrease, However, the same type and different types of

residuals fit straight line is still a clear distinction.

Therefore, in classification model II, the weight of

WHCSC can obtain the independent weights that are more

suitable for the subset of samples in this category, and then

the better coding coefficient hi under this weight is

obtained, so as to reduce the intra-class difference.

3.2.2 Increase the inter-class difference

First, it is also assumed that e ¼ ei;1; ei;2; � � � ;
�

ei;i; � � � ; ei;c� ¼ ðX1h1 � yi½ Þ; ðX2h2 � yiÞ; � � � ; ðXihi � yiÞ;
� � � ; ðXchc � yiÞ�. The difference between the residuals in

the different types of training samples and the residuals in
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the category i training samples, i.e. the relative differences

between the inter-class difference and intra-class differ-

ence, is expressed as

De ¼ ei;1 � ei;i

ei;i
;
ei;2 � ei;i

ei;i
; . . .;

ei;i�1 � ei;i

ei;i
;
ei;iþ1 � ei;i

ei;i
;

	

. . .;
ei;c � ei;i

ei;i
;




2 Rc�1:

ð11Þ

The larger the De is, the larger inter-class difference is

relative to the intra-class difference, the easier it is to

distinguish between the query sample and other types of

samples. Conversely, the smaller the De is, the smaller

inter-class difference is relative to the intra-class differ-

ence, the more difficult it is to distinguish between the

query sample and other classes of samples.

In RSRC, the weighting effect on the residual is

expressed as w
1
2 � Xh� yð Þ, and the definition of w

1
2 is 0.5

Fig. 3 a is a classification mode I. The ‘‘different category’’ curve is

the fitted image residual distribution of the query sample and different

categories of training samples, and ‘‘Linear fitting (different cate-

gory)’’ is the corresponding residual distribution fitting straight line.

The ‘‘same category’’ curve is the fitted image residual distribution of

the query sample and the same category of training samples, and

‘‘Linear fitting (same category)’’ is the corresponding residual

distribution fitting straight line. b is a classification mode II. The

‘‘different category’’ curve is the fitted image residual distribution of

the query sample and the different categories of training samples, and

‘‘Linear fitting (different category)’’ is the corresponding residual

distribution fitting straight line. The ‘‘same category’’ curve is the

fitted image residual distribution of the query sample and the same

category of training samples, and ‘‘Linear fitting (same category)’’ is

the corresponding residual distribution fitting straight line. c is a fitted
image residual distribution of the query sample and the same category

of training samples in the classification mode I and the classification

mode II. The ‘‘Pattern one’’ curve and the ‘‘Linear fitting (Pattern

one)’’ line respectively correspond to the residual distribution and the

residual distribution fitting line in the classification mode I. The

‘‘Pattern two’’ curve and the ‘‘Linear fitting (Pattern two)’’ line

respectively correspond to the residual distribution and the residual

distribution fitting line in the classification mode II

5240 Neural Computing and Applications (2020) 32:5235–5253

123



power exponent weights and the relative difference in

residual is De
W

1
2
. However in WHCSC, the weighting effect

on the residual is expressed as w� Xh� yð Þ, and the

definition of w is 1 power exponent weights, and the rel-

ative difference in residual is DeW . Figure 4 shows the

experimental results of w
1
2 and w in WHCSC. The ordinate

is the distribution of De
W

1
2
and DeW , and the abscissa is the

sample type.

It can be observed that the 1 power exponent weight

makes the difference between ei;j and ei;i increase, that is to

say, the inter-class difference is more different from the

intra-class difference, that is, increase the inter-class

difference.

3.3 The initial value of the weight

A good initial value will make the algorithm easier to get

good performance. In order to initialize the weights, the

coding residuals of the query samples should first be esti-

mated. We can set the initial residual as e ¼ y� ymni .

Because the weight of WHCSC is sub-category calculation,

it is reasonable to set ymni as the average of the same pixels

of the current training sample subset

ymni ¼ m y1ð Þ;m y2ð Þ; . . .;m ykð Þ½ �
¼ m y11; y12; . . .; y1j

� �� �
;m y21; y22; . . .; y2j

� �� �
;

�

. . .;m yk1; yk2; . . .; ykj
� �� ��

k ¼ 1; 2; . . .;m½ �;
j ¼ 1; 2; . . .; ni½ �

ð12Þ

where m(x) represents the mean of x. For parameters s and
q, usually s = 0.8 and q = 1. In more complex environ-

ments, such as occlusion, camouflage, corrosion, you can

set smaller s.

3.4 WHCSC iteration conditions

In each iteration, the formula (7) will gradually decrease,

the lower bound is 0, and WHCSC will gradually converge.

WHCSC converges and the iteration terminates when the

difference in h between adjacent iterations is small enough.

The termination conditions are as follows

jjht � ht�1 jj22\c ð13Þ

where c is a small enough positive number and t is the

number of iterations.

3.5 ADMM solves the sub-problem

min
h

g zð Þ þ kjjajj1 s:t: z ¼ w� Xh� yð Þ; a ¼ h: ð14Þ

The Lagrange expression of a sub-problem is

L h; z; a; hz; hað Þ ¼ g zð Þ þ kjjajj1 þ hhz;w� Xh� yð Þ � zi
þ hha; h� ai

ð15Þ

ADMM is an algorithm that aims to fuse the dual

variable ascent method’s decomposability and the multi-

plier method’s upper bound convergence property. In order

to increase the robustness of the dual variable ascent

method and the strong convex constraint of the relaxation

function, introducing the augmented Lagrangian formula

Lq1;q2 h; z; a; hz; hað Þ ¼ g zð Þ þ kjjajj1 þ hhz;w� Xh� yð Þ
� zi þ q1

2
jjw� Xh� yð Þ � zjj22

þ hha; h� ai þ q2
2
jjh� ajj22

ð16Þ

where q1, q2 is greater than zero. The ADMM iteration is

made up of

hkþ1 :¼ argmin
x

Lq1;q2 hk; zk; ak; hkz ; h
k
a

� �
ð17Þ

zkþ1 :¼ argmin
z

Lq1 hkþ1; zk; hkz
� �

ð18Þ

akþ1 :¼ argmin
a

Lq2 hkþ1; ak; hka
� �

ð19Þ

hkþ1
z :¼ hkz þ q1 w� Xhkþ1 � y

� �
� zkþ1

� �
ð20Þ

hkþ1
a :¼ hka þ q2 hkþ1 � akþ1

� �
ð21Þ

Formula (16) is brought into formula (17), (18), (19),

(20) and (21), and the iterative step of ADMM is

hkþ1 :¼ argmin
x

q1
2
jjw� Xhk � y

� �
� zk þ uk jj22 þ

q2
2
jjhk � ak þ uk jj22

� �

ð22Þ

Fig. 4 In two different weighting coefficients, the relative difference

between the intra-class difference and the inter-class difference
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zkþ1 :¼ argmin
z

g zk
� �

þ q1
2
jjw� Xhkþ1 � y

� �
� zk þ uk jj22

� �

ð23Þ

akþ1 :¼ argmin
z

kjjakjj1 þ
q2
2
jjhkþ1 � ak þ uk jj22

� �
ð24Þ

ukþ1
z :¼ ukz þ w� Xhkþ1 � y

� �
� zkþ1 ð25Þ

ukþ1
a :¼ uka þ hkþ1 � akþ1 ð26Þ

where u is an alternative variable for u ¼ h
q. Solve the

formula (22), (23), (24), (25) and (26) to get

hkþ1 ¼ q1X
TWTWX þ q2

� ��1
q1X

TWT zk � uk þ y
� �

þ q2 ak � uk
� �� �

;

ð27Þ

zkþ1 ¼ q1
1þ q1

w� Xhkþ1 � y
� �

þ uk�
�

þSWg
q1

	
1

1þ q1
w� Xhkþ1 � y

� �
þ uk

� �



;
ð28Þ

akþ1 ¼ S k
q2

hkþ1 þ uk
� �

; ð29Þ

ukþ1
z ¼ ukz þ w� Xhkþ1 � y

� �
� zkþ1; ð30Þ

ukþ1
a ¼ uka þ hkþ1 � akþ1; ð31Þ

where W ¼ diag wð Þ ¼ diag w1;w2; . . .;wm½ �ð Þ and the S

operator is defined as

Sk að Þ ¼
a� k; a[ k

0; aj j � k

aþ k; a\� k

:

8
<

:
ð32Þ

3.6 Judgment query sample category

The residuals of the query sample in each category are

calculated according to the categories hi obtained

e ¼ e1; e2; . . .; ei½ �,i ¼ 1; 2; . . .; c, where ei ¼ y� Xihi. The
category of the smallest ei belongs to the category of the

query sample.

Algorithm 1 Weighted Huber Constraint Sparse Coding

Input test sample y, training sample subset , initialization  to , 

parameters  and , threshold 

Output

Calculate the residuals 

The weight is calculated as

Encoding coefficient update

the specific solution to sub-problems in section 3.5 introduced. 

Reconstruction , and let 

: Return to step until the conditions are met or the maximum 

number of iterations is reached.

After the categories i’s is updated, let until all the categories 

are updated.
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4 Computational complexity analysis

The computational cost of the algorithm is mainly used to

update the weight w and the coding coefficient h. Given
that there are m face data sets of one category, and each

image size is n ¼ p� q. The face data set has a total of c

categories. The number of iterations of algorithm step 2 is

denoted as k1. The computational complexity of the weight

w 2 Rn�1 in step 4 is O nð Þ. WX and Wy can be calculated

and cached in advance. The computational complexity of h
in formula (27) is O nm2ð Þ, z in formula (28) is O nmð Þ and
uz in formula (30) is O nmð Þ. Therefore, the computational

complexity of the coding coefficient h in step 5 is

O k2nm
2ð Þ, where k2 is the number of iterations of the

ADMM algorithm. In summary, the computational com-

plexity of WHCSC is O ck1 nþ k2nm
2ð Þð Þ [26, 27]. After

many experiments, k1 and k2 are usually less than 10.

5 Convergence and convergence rate
analysis

Before proofing of convergence, the standard form of the

ADMM objective function is given by formula (7) as

follows

min f hð Þ þ g zð Þ þ l að Þ s:t: z ¼ w� Xh� yð Þ; a ¼ h; ;

ð33Þ

where f hð Þ ¼ 0, l að Þ ¼ ka1, g zð Þ ¼
1

2
jjzjj22

gjjw� zjj1 �
1

2
g2wTw

8
><

>:

zkj j � gwk

zkj j[ gwk
, k ¼ 1; 2; � � �m. The

following are two theorems about the function

f hð Þ; g zð Þ; l að Þ.

Theorem 1 The function of f hð Þ; g zð Þ; l að Þ is closed,

proper, and convex.

Proof Obviously, f hð Þ ¼ 0 must be a closed, proper, and

convex function. Since k[ 0, the norm satisfies the tri-

angle inequality; l að Þ is a proper closed convex function.

The epigraph of g zð Þ can be expressed as the following

form, i.e.

epig ¼ z; tzð Þ 2 Rm � Rjg zð Þ� tzf g: ð34Þ

Obviously the epigraph of g zð Þ is a non-empty closed

convex set. According to the nature of the epigraph, g zð Þ is
a proper closed convex function when epig is a non-empty

closed convex function. The iterative step of ADMM

algorithm is to solve the optimal solution of each sub-

problem. Obviously, the optimal solution of sub-problems

hkþ1; zkþ1; akþ1 is feasible. The problem of minimizing

hkþ1; zkþ1; akþ1 has solution (not necessarily unique).

Therefore, f hð Þ; g zð Þ; l að Þ are proper closed convex func-

tions, and f hð Þ þ g zð Þ þ l að Þ is also a proper closed convex

function. Certificate completed.

Theorem 2 The unaugmented Lagrangian

L0 h; z; a; hz; hað Þ ¼ g zð Þ þ l að Þ þ hhz;w� Xh� yð Þ � zi
þ hha; h� ai

ð35Þ

has a saddle point. Explicitly, there exist h�; z�; a�; h�z ; h
�
a

� �
,

not necessarily unique, for which

L0 h�; z�; a�; hz; hað Þ�L0 h�; z�; a�; h�z ; h
�
a

� �
�L0 h; z; a; h�z ; h

�
a

� �

ð36Þ

holds for all h; z; a; hz; ha.

Proof The primitive problem is

minh;z;a suphz;ha L0 h; z; a; hz; hað Þ, represented by Pl. The

dual problem is maxhz;ha infh;z;a L0 h; z; a; hz; hað Þ, repre-

sented by Dl. For L0 h; z; a; hz; hað Þ, since f hð Þ þ g zð Þ þ l að Þ
is a proper closed convex function, w� Xh� yð Þ � z ¼ 0

and h� a ¼ 0 is an affine function, and the existence points

h�; z�; a�; h�z ; h
�
a

� �
satisfy the Karush–Kuhn–Tucker (KKT)

condition, so according to the strong and weak duality and

optimality conditions of the Lagrange multiplier method

[24], the following conclusions can be obtained:

The primitive problem Pl is equal to the optimal value

of the dual problem Dl, that is, val Pl
� �

¼ val Dl
� �

. The

duality gap between the original problem and the dual

problem is zero, which means that satisfies the strong max–

min property, and Pl and Dl have the same optimal solu-

tion. Where val xð Þ represents the value of x.

Any point h�; z�; a�; h�z ; h
�
a

� �
that satisfies the KKT

condition in L0 h; z; a; hz; hað Þ has
inf
h;z;a

L0 h; z; a; h�z ; h
�
a

� �
�L0 h�; z�; a�; h�z ; h

�
a

� �

� sup
hz;ha

L0 h�; z�; a�; hz; hað Þ; ð37Þ

i.e.

val Dl
� �

�L0 h�; z�; a�; h�z ; h
�
a

� �
� val Pl

� �
: ð38Þ

When the duality gap between the primitive problem

and the dual problem is zero, i.e. val Pl
� �

¼ val Dl
� �

, we

can get

L0 h�; z�; a�; h�z ; h
�
a

� �
¼ inf

h;z;a
L0 h; z; a; h�z ; h

�
a

� �

�L0 h; z; a; h�z ; h
�
a

� �
; 8h; z; a 2 Rn:

ð39Þ

The same reason can get
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L0 h�; z�; a�; h�z ; h
�
a

� �
¼ sup

hz;ha

L0 h�; z�; a�; hz; hað Þ

	L0 h�; z�; a�; hz; hað Þ; 8hz; ha 2 Rn:
ð40Þ

In summary

L0 h�; z�; a�; hz; hað Þ�L0 h�; z�; a�; h�z ; h
�
a

� �

�L0 h; z; a; h�z ; h
�
a

� �
;

ð41Þ

that is, L0 h; z; a; hz; hað Þ has a saddle point

h�; z�; a�; h�z ; h
�
a

� �
, not necessarily unique. The standard

Lagrangian function of Eq. (33) satisfies theorem 2 as

evidence.

According to Theorem 1 and Theorem 2, the ADMM

iteration satisfies the following conditions, and the con-

vergence of proof Ref. [13] Appendix A:

Residual convergence. rk ! 0 as k ! 1, i.e., the iter-

ates approach feasibility.

Objective convergence.

hk
� �

þ g zk
� �

þ l ak
� �

! f h�ð Þ þ g z�ð Þ ? l a�ð Þ as k ! 1,

i.e., the objective function of the iterates approaches the

optimal value.

Dual variable convergence.hkz ! h�z , h
k
a ! h�a as k ! 1,

where h�z ; h
�
a

� �
is a dual optimal point.

We know that the convergence rate is another important

concept, which reflects the convergence speed of an iterative

algorithm. The authors of [25, 26] have shown that ADMM

can achieve O 1=kð Þ global convergence, where k is the

number of iterations, under a strong convexity assumption.

Without this strong convexity assumption, the author of [27]

gives the most general result of ADMM convergence speed.

Their results only require that both objective-function terms

are convex (not necessarily smooth). Since here f hð Þ, g zð Þ
and l að Þ are both convex, using ADMM to solve SMLR

problems can achieve O 1=kð Þ convergence.

6 Experiment

In this section, experiments will be conducted on several

public face databases to demonstrate WHCSC

performance.

6.1 Experimental settings

WHCSC is compared to existing related methods, includ-

ing NMR, RSRC, Sparse Huber (SH), RCRC, IRGSC. For

RSRC, parameter p defaults to 1, and s takes the best of (0,
1). In SH, the parameter g defaults to 10. For WHCSC, the

parameter p defaults to 1 and s get the best between (0,1).

The parameter p in IRGSC defaults to 1, and it should be

noted that formula 21 in the IRGSC has errors and should

be changed to

min
s

Pm

i¼1

sie
2
i þ cs2i

� �
¼ min

s
sþ E

2c

2

2

s:t: sT I ¼ 1; si 	 0; i ¼ 1
m:

; ð42Þ

where E ¼ e21; e
2
2; � � � ; e2m

� �
, and the authors in [28] also

have the same opinion. This article sets comparative

experiments according to the original IRGSC article.

In Sect. 3, we described how to reduce intra-class

changes (classification model I and classification model II)

and increase the variation between classes (1 power

exponent weights and 0.5 power exponent weights). In

Sect. 6, we use WHCSC, RSRC, RCRC and its improved

algorithm to experimentally test the two methods, other

unspecified algorithms in accordance with the original

essay method to help contrast. The 1 power exponent

weights and 0.5 power exponent weights are tested for

WHCSC, respectively, to prove the validity of the 3.2.1

and 3.2.2 theory, and the corresponding names are

WHCSC_1 and WHCSC_0.5. RSRC tests the classification

model I and classification model II, respectively, and the

corresponding names are RSRC_1 and RSRC_2. The

RCRC also tests the classification model I and classifica-

tion model II, respectively, corresponding to RCRC_1 and

RCRC_2. SH uses classification model II.

6.2 Face recognition without occlusion

The performance in WHCSC was first tested by illumina-

tion changes without occlusion. Datasets use ExYaleB

database and PIE database.

1. FR with different samples size: This section tests the

validity of WHCSC under changing the training

sample size. The data set was randomly divided into

two parts, one of which contained n images for each

person for training and the other for testing, where n =

10, 20, 30, 40, 50. The already-divided data is saved to

ensure that the different algorithm training sets and test

sets are the same, and the average recognition rate of

the 10 runs is counted. PIE database recognition rate as

shown in Table 1, ExYaleB database recognition rate

in Table 2. We can observe that WHCSC achieves the

highest recognition rate in all other tests of ExYaleB

database and PIE database except RSRC_1 and

RSRC_2 at sample size 10. When the sample is larger

than 30, WHCSC_1 is marginally higher than

WHCSC_0.5. Second, the classification rates of

RSRC_2, RCRC_2, SH and so on are higher than that

of RSRC_1, RCRC_1, and NMR. In addition, RSRC is

better than RCRC in most cases, reflecting the validity

of its weight vector. Overall, the WHCSC proposed in

this paper achieved the best results.
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2. FR with different feature dimension: This section tests

WHCSC performance under different feature dimen-

sion. For databases (ExYaleB and PIE), 20 samples per

subject were randomly selected for training, the rest of

the samples were used for testing. Saving the divided

data to ensure that when the parameters are changed,

the test data sets of different algorithms are the same,

and the average recognition rate of 10 runs is counted.

PCA is a recognized projection technique used to

reduce the dimensions of the original face image [3].

From Tables 3 and 4, not all WHCSCs achieve the best

recognition rate in the different dimensional character

tests. All recognition rates for WHCSC_1 are better

than WHCSC_0.5. The results of RCRC_2 and

RSRC_2 in different feature dimensions are better

than RCRC_1 and RSRC_1, respectively. In the test of

different characteristic dimensions, not all algorithms

reduce the recognition rate as the feature dimension

decreases. For example, the recognition rate in the

200-dimension is mostly higher than the 150-dimen-

sional and 250-dimensional. This is because after the

PCA reduces the dimension, the feature tries to obtain

a more meaningful low-dimensional representation, but

in fact may lose the original dictionary information

contained in the high-dimensional feature.

6.3 Face recognition with occlusion

One of the advantages of WHCSC is its robustness in terms

of occlusion and noise damage. On the one hand, the

parameter Wg is used to evaluate g (z) meets l2 loss or l1
loss, thus reducing the influence of noise or outliers. On the

other hand, classification model II and 1 power exponent

weight make it easier to distinguish between different

Table 1 PIE database recognition rates for different sample sizes of

WHCSC_1, WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1, RCRC_2,

IRGSC, SH, NMR (Unit: percentage)

Sample size 10 20 30 40 50

WHCSC_1 79 91 96.24 96.29 97.12

WHCSC_0.5 79.18 91.06 96.24 96.12 97.06

RSRC_1 86.23 89.17 90.07 92.24 93

RSRC_2 79.23 90.76 96.17 96.24 96.65

RCRC_1 83.92 87.62 90.11 92.1 93.14

RCRC_2 77.82 90.76 95.82 96.11 96.6

IRGSC 66.41 84.74 93.12 94.18 95.94

SH 78.64 91.01 96.17 96.17 97.06

NMR 77.12 89.34 92.63 93.06 94.87

Bold numbers in the table indicate the values that work best under this

parameter

Table 2 ExYaleB database recognition rates for different sample

sizes of WHCSC_1, WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1,

RCRC_2, IRGSC, SH, NMR (Unit: percentage)

Sample size 10 20 30 40 50

WHCSC_1 79 91.72 96.12 96.17 97.28

WHCSC_0.5 78.51 91.54 94.11 94.52 97.08

RSRC_1 85.94 87.3 90.73 91.67 94.94

RSRC_2 78.31 91.65 94.11 94.52 97.08

RCRC _1 83.92 87.85 90.73 94.53 94.94

RCRC _2 77.82 90.76 95.82 96.12 96.65

IRGSC 70.25 86.34 90.66 92.39 94.36

SH 77.48 90.8 94.19 94.63 96.5

NMR 76.25 90.34 92.5 93.89 94.02

Bold numbers in the table indicate the values that work best under this

parameter

Table 3 PIE database recognition rates for different feature dimen-

sion of WHCSC_1, WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1,

RCRC_2, IRGSC, SH, NMR (Unit: percentage)

Feature dimension 50 100 150 200 250 300

WHCSC_1 85.69 88.92 88.13 89.12 88.04 89.31

WHCSC_0.5 71.47 81.67 85 89.02 87.94 89.12

RSRC_1 64.41 81.04 82.11 84.57 83.42 83.45

RSRC_2 72.84 82.25 84.61 86.47 85.2 85.78

RCRC_1 65.2 82.25 86.27 87.06 88.3 89.41

RCRC_2 85.98 88.72 88.43 88.73 87.55 88.63

IRGSC 79.5 85.19 85.29 84.21 83.63 84.8

SH 85.88 88.72 88.33 88.92 87.74 89.22

NMR 68.82 76.11 82.14 82.1 83.5 84.11

Bold numbers in the table indicate the values that work best under this

parameter

Table 4 ExYaleB database recognition rates for different feature

dimension of WHCSC_1, WHCSC_0.5, RSRC_1, RSRC_2,

RCRC_1, RCRC_2, IRGSC, SH, NMR (Unit: percentage)

Feature dimension 50 100 150 200 250 300

WHCSC_1 87.85 89.54 90.63 92.93 91.47 91.54

WHCSC_0.5 87.84 89.48 90.81 92.86 91.29 91.17

RSRC_1 73.15 86.21 89.9 92.62 91.23 90.56

RSRC_2 85.97 88.87 90.93 92.38 91.83 91.17

RCRC_1 73.16 86.21 90.38 92.8 92.32 93.23

RCRC_2 88.33 89.29 90.75 92.14 91.29 90.87

IRGSC 80.77 81.98 84.64 86.03 84.95 85.61

SH 88.03 89.36 90.81 92.86 91.47 91.41

NMR 78.6 82.6 90.5 91.41 88.67 87.93

Bold numbers in the table indicate the values that work best under this

parameter
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categories of faces by lowering intra-class different and

increasing inter-class difference. In this section, we will

evaluate the robustness of WHCSC to different types of

occlusions, such as Gaussian noise random pixel corrup-

tion, random block occlusion, masquerading, and so on.

The WHCSCs are compared to existing related methods,

including NMR, RSRC, Sparse Huber (SH), RCRC,

IRGSC, and both the RSRC and RCRC will test both

classification modes. The robustness of RSRC is achieved

by repeatedly assigning weights to the training samples

through a sigmoid function with variable parameters. The

robustness of RCRC is achieved by sparse coding con-

strained coding coefficients. The robustness of SH is

achieved by using l2 loss and l1 loss in combination with

coding residuals. NMR is a recently proposed matrix-based

regression classification method, which not only retains the

structural information of face images but also has good

robustness. The IRGSC achieves robustness by adaptive

feature weights and distance-weighted learning. The

WHCSC robustness was tested by real complex occlusion

experiments.

1. FR with pixel corrosion: This section uses the ExYaleB

database, which has a total of 64 face images for each

theme and can be divided into 5 subsets depending on

the lighting conditions and face angle. Sample images

of each subset are shown in Fig. 5, wherein subset 1

and subset 2 have good lighting conditions, subset 3

has medium lighting conditions, subset 4 has most poor

lighting conditions, and subset 5 has poor lighting

conditions. A total of 22 face images of our fixed-

sampling sub-sets 1, 2, 3 and 5 were used for training,

and the rest of the 4 subsets were used for testing. All

images are cropped to 32 � 28 pixel size. For each test

image, a fixed proportion of noise is added using

random grayscale and random locations, i.e., Gaussian

noise. The original image shown in Fig. 6 is a face

image of 192 � 168 pixels with different pixel noise.

As can be observed in Fig. 7, the WHCSC test results

are superior to other algorithms for pixel etches at different

scales. Second, the recognition rate of the algorithm using

classification model II is much higher than that of the

algorithm using classification model I. The recognition rate

of WHCSC_1 was 0.23%, 1.39%, 1.15% and 4.27% higher

than that of WHCSC_0.5 when the signal to noise ratio was

equal to 40%. In addition, the recognition rates of RSRC_1

and RSRC_2 are mostly higher than those of RCRC_1 and

RCRC_2, respectively, and most of IRGSCs are better than

RSRC_1. This indirectly verifies the validity of the IRGSC

and RSRC algorithms. In summary, pixel-corrupted face

recognition once again validates the robustness and validity

of WHCSC for outliers. And on the other hand, it also

validated the noise-based advantages of the classification

model II and 1 power exponent weight.

2. FR with Block Occlusion: In this section, we design

two block occlusion experiments. In the first

Fig. 5 From left to right,

Sample subset 1 through subset

5 sample images, respectively

Fig. 6 Different percentage pixels damaged face images (from 0 to 70%)

Fig. 7 Different pixel corrosion face recognition
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experiment, we replaced 10–50% of each test image

with white or black blocks. Half of the face images of

the fixed subset 1, 2 and 3 were acquired for training

and the rest of the 3 subsets were used for testing. The

position of the occlusion box is random. Figure 8

shows a partially occluded facial image of the ExYaleB

database with different block blocking ratios. Figure 9

shows the recognition rates of RSRC, RCRC, IRGSC,

SH, NMR and WHCSC in different block occlusions.

We can observe that WHCSC has the obvious advan-

tage of having the highest recognition rate at different

occlusion percentages. At occlusion percentages above

20%, the RCRC, SH, and NMR discrimination rates

dropped significantly. The recognition rate of WHCSC

was 86.76% when the shielding ratio of black block

reached 50%, which was 7.12% higher than that of

RSRC_2 and 22.85% higher than that of IRGSC.

However, RCRC, SH, and NMR had failed at this time.

Meanwhile, WHCSC_1 is 6.12% higher than

WHCSC_0.5, and RSRC_2 is 26.16% higher than

RSRC_1. WHCSC_1 has a 92.72% recognition rate

when the white block occlusion ratio reaches 50%,

Fig. 8 a Face image of a black

block occlusion, b face image of

a white block occlusion

Fig. 9 a Face recognition rate of black block occlusion, and b face recognition rate of white block occlusion

Fig. 10 The face image with

Lina block occlusion
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which is 2.16% higher than RSRC_2 and 3.98% higher

than IRGSC. Meanwhile, RSRC_2 is 28.47% more

than RSRC_1. However, RCRC, SH, NMR still failed.

WHCSC_1 has the best occlusion ratio except 0.16%

lower than WHCSC_0.5 at 50% occlusion percentage.

In the second experiment, the classic Lena diagram was

used as the occlusion element to replace 10–50% pixel of

each test image. Figure 10 shows the test image samples.

We can see that the pixels in the occlusion area are close to

the original pixels relative to the first two experiments.

Figure 11 shows the recognition rates of WHCSC_1,

WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1, RCRC_2,

IRGSC, SH and NMR at 10–50% block occlusion. It can be

observed that the overall recognition rate is increasing, and

WHCSC still maintains the highest recognition rate. Sur-

prisingly, RCRC_2 and SH showed a good recognition

rate. On the one hand, it is easier to train a linear combi-

nation of images because of the occlusion area close to the

original pixel. On the other hand, we further prove the good

effect of WHCSC weight on image local optimization.

3. Real camouflage face recognition: The experiment in

this section uses AR database, using the first three of

each face subset 1 and subset 2, a total of six as a

training image. Six pieces of camouflage images in

Subset 1 and Subset 2 and 6 pieces of scarf camouflage

images were taken as test images, respectively. The

image is adjusted to 33� 24 pixels. Table 5 shows the

test results of several classifiers, WHCSC shows better

results than RSRC, RCRC, IRGSC, SH, NMR. The

performance of RCRC is unstable because of scarf

camouflage masks effective pixels of more people,

making RCRC vulnerable to interference when the

image information is limited. IRGSC performs well

and further reflects the effect of weight coefficient on

local image optimization.

6.4 Image reconstruction

Reconstructed block occlusion and real camouflage fitted

images, and observe the reconstructed image of each

algorithm. In this section, the training set uses a frontal,

non-occluded image, and the test set uses an occlusion

image. In algorithms with weights coefficients such as

WHCSC, RSRC, IRGSC, the reconstructed image is rep-

resented as w� Xh, and the corresponding test set image is

represented as w� y. In algorithms without weights coef-

ficients such as RCRC, SH, NMR, the reconstructed image

is represented as Xh, and the corresponding test set image

is represented as y. The noise in the pixel-corroded image

is randomly distributed, and the reconstructed image is not

easy to observe, so no experiment is set.

Figure 12 is an image reconstruction of block occlusion.

Looking at (f) and (g) of Fig. 12, because of a black

occlusion block in the test set, these algorithms without

weights coefficients in the reconstructed image, such as

RCRC, SH and NMR, cannot generate an area similar to a

black occlusion block. The reconstructed image of

RSRC_1 has begun to corrode other normal image areas in

a large amount when the black block has not been com-

pletely fitted. WHCSC_1, WHCSC_0.5, RSRC_2 and

IRGSC can all fit the black occlusion block well. A closer

look reveals that the forehead of the test image has subtle

color differences due to different illumination angles.

When the black occlusion block is completely fitted,

RSRC_2 has obvious noise corrosion in the forehead area

of the face. WHCSC_0.5 and IRGSC have slight noise

corrosion, and WHCSC_1 is almost none. The (h) of

Fig. 12 shows that as the parameter s decreases, the

residual threshold g is smaller and the weights constraint is

stronger. When s is equal to 0.9, 0.8, 0.7 and 0.6, the

reconstructed image does not completely fit the black block

area; and when s is 0.5, the g that is too small causes the

weight to over-constrain the residual, thus causing corro-

sion of the pixels outside the black block area. When s is

Fig. 11 The face recognition rate with Lina block occlusion

Table 5 Recognition rate (unit: percentage) of WHCSC_1,

WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1, RCRC_2, IRGSC, SH,

NMR in sunglasses camouflage and scarf camouflage

WHCSC_1 WHCSC_0.5 RSRC_1 RSRC_2

Sunglasses 93.67 92 39.33 84.67

Scarf 86 82.33 38.33 51.67

RCRC_1 RCRC_2 IRGSC SH NMR

Sunglasses 23.83 45.83 77.67 51.5 23.67

Scarf 26.5 15.64 62.83 7.33 27.33
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0.58, the reconstructed image completely fits the black

block area, and almost no other pixel points are corroded.

In addition, s ¼ 0:58 indicates that 42% of the pixels are

considered to have larger residuals, slightly larger than the

test set by 40%. Because the real image itself has noise

generated by other factors, it is in line with theory and

practice to reconstruct the image to obtain the optimal

performance at s ¼ 0:58 summary, in a complex noisy

environment, the parameter q can make the weight coef-

ficient smoother, and the value of the parameter s can be

easily determined by the actual number of residuals, which

continues to show the superiority of the WHCSC.

Figure 13 is the image reconstruction of the sunglasses

camouflage. Looking at (h) and (i) of Fig. 13, since there is

a sunglasses camouflage in the test sets, the algorithms with

no weights cannot generate a region similar to the sun-

glasses in the reconstructed image, such as RCRC, SH and

NMR. The reconstructed image of RSRC_1 has only a faint

sunglasses frame, and the entire image is cluttered with

noise. This indicates that in the noisy environment, the

classification model I does not distinguish between noise

and real images very well. Although IRGSC fits the sun-

glasses camouflage, its weights coefficient is not accurate

enough for the boundary of the character’s outline and

expression.

Compared with the corresponding test set comparison

chart, the reconstructed images of WHCSC_1,

WHCSC_0.5 and RSRC_2 have almost no difference, and

they can reconstruct the characteristics of the test image

very well. On the one hand, the reconstructed image fits the

shape and gloss of the sunglasses. For the test set, the white

area on the sunglasses belongs to the image point with

large residuals, and its pixel value approaches zero under

the weight coefficient, that is, it is black in the gray image.

On the other hand, the reconstructed image weakens the

facial expression influences brought about by (b) in

Fig. 13.

Fig. 12 Reconstructed image of a 40% black block occluded face.

From a–d are training sets. e Test sets. In f, reconstructed images of

WHCSC_1, WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1, RCRC_2,

IRGSC, SH, and NMR are shown from left to right. (g) shows a

comparison of test sets of WHCSC_1, WHCSC_0.5, RSRC_1,

RSRC_2, RCRC_1, RCRC_2, IRGSC, SH, and NMR from left to

right. h Reconstructed image of WHCSC_1 when the parameter s is

equal to 0.9, 0.8, 0.7, 0.6, 0.58, and 0.5, respectively
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6.5 Running time

Running time is one of the important reference indexes for

judging classifier. Five robust classifiers, such as WHCSC,

RSRC, RCRC, IRGSC, and SH, were run on the same

computer with noise and real disguise. Algorithms

involving l1 norm minimization are all solved by ADMM.

Table 6 lists the average run times for the 10 runs of the 5

classifiers. The IRGSC takes the longest time due to the

additional computation of adaptive feature weights and

adaptive distance weights, and its recognition rate is

medium and stable; SH takes the least time, but the

recognition rate is low; WHCSC_1 is less and the recog-

nition rate is the highest and stable. Influenced by the

experimental samples, the computational cost of classifi-

cation model II has no obvious advantage. In summary,

WHCSC sacrificed a small amount of computational cost

and achieved the highest recognition rate.

6.6 The impact of parameters on the recognition
rate

Parameter changes are another important reference indi-

cator for judging classifiers. WHCSC has two important

parameters, such as s and q mentioned earlier. The position

of the threshold residual in the residual sequence W is

determined by k = bsmc; and the penalty rate of the weight

is affected by q.

Fig. 13 Face reconstruction image with sunglasses camouflage. From

a–f is a training sets for sunglasses camouflage. g Test sets for

sunglasses camouflage. Reconstructed images of WHCSC_1,

WHCSC_0.5, RSRC_1, RSRC_2, RCRC_1, RCRC_2, IRGSC, SH,

and NMR are shown from left to right in h. In i, a comparison images

of test sets of WHCSC_1, WHCSC_0.5, RSRC_1, RSRC_2,

RCRC_1, RCRC_2, IRGSC, SH and NMR are shown from left to

right

Table 6 Run-time tests such as

WHCSC_1, RSRC_1, RSRC_2,

RCRC_1, RCRC_2, IRGSC,

SH. Unit: second

Gaussian noise Sunglasses camouflage

Correct rate Running time Correct rate Running time

WHCSC_1 81.89 572 93.17 657

RSRC_1 60.03 942 39.33 430

RSRC_2 70.93 700 84.67 894

RCRC_1 56.43 1068 23.83 449

RCRC_2 65.28 739 45.83 619

IRGSC 61.7 2307 77.67 1219

SH 71.39 541 51.5 261
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(a) and (c) of Fig. 14 show the fixed parameter s, and the
change in the recognition rate when the parameter q is

changed. As q decreases, the recognition rate shows an

upward trend overall. (b) and (d) of Fig. 14 show the

change of the recognition rate when the parameter q is

fixed and the parameter s is changed. As s increases, the

recognition rate shows an upward trend overall. (e) and (f)

of Fig. 14 show some of the characteristics of the sigmoid

function. When the parameter x changes to x
2
, the sigmoid

function image is smoother. Therefore, when the parameter

q becomes small, the degree of weights penalty can be

reduced, so that the value of the weights change trend is

smoother in the same iteration. (g) and (h) of Fig. 14 show

residual distribution maps of face images of 896 size. It can

be observed that only a small number of face images have

large residuals. Therefore, when the parameter s is

increased, more image points can be obtained to obtain

higher weights. In combination with the complex envi-

ronment of the face image, when the noise is enhanced, the

image points with large residuals will also increase, and the

value of s should be lowered. Conversely, the value of s
can be increased. The parameter q is usually small.

7 Conclusion

In this paper, we propose a newly weighted Huber con-

strained sparse coding, and propose an effective opti-

mization method to enhance the effect of weights. The

benefits of WHCSC are reflected in the robustness and

effectiveness of the occluded complex environment. On the

one hand, the weight constraint can effectively find the

noise pixels in the query sample and reduce the weight of

the noise pixels at the time of regression, which achieves

the local optimization. On the other hand, we use Huber’s

estimation to choose different fidelity terms (l1 or l2 norm)

to further accurately return the query samples. Secondly,

the use of classification mode II can avoid the interference

caused by other types of images when the current category

is regressed. Finally, increasing the variability between

classes through 1 power exponent weight makes it easier to

classify. WHCSC is suitable for complex changes of PCA,

illumination, corrosion, and occlusion. Experiments show

that WHCSC is superior to IRGSC, RSRC, SRC, NMR and

so on, and it is smoother and more accurate for noise

processing. Its high robustness and strong effectiveness are

the ideal choices in face recognition applications.
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