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Abstract
This study proposes a novel fuzzy multiple-attribute group decision-making approach based on expert reliability and the

evidential reasoning (ER) rule in an interval-valued intuitionistic fuzzy environment. First, to determine the reliabilities of

experts, an objective method is developed by combining the similarity between the assessments provided before and after

group discussion. Second, the proposed approach extends the ER rule to the case where belief degrees are intervals and

employs it to combine experts’ assessments. Hereinto, several optimization models are established to produce the

aggregated assessments of the alternatives. Then, the overall priority degree of each alternative can be obtained according

to the aggregated assessments and further utilized to yield a ranking of alternatives. Finally, a shopping center site selection

problem is analyzed by the proposed approach to demonstrate its validity and applicability.

Keywords Interval-valued intuitionistic fuzzy sets � Expert reliability � Evidential reasoning rule � Multiple-attribute group

decision making

1 Introduction

Decision making is usually considered a process in which

human beings and enterprises make choices among several

alternatives [1]. In real life, it is becoming impossible for a

single decision maker or expert to take into account every

related aspect of a decision-making problem without any

difficulty due to increasingly complex socioeconomic cir-

cumstances [2–4]. Hence, many practical decisions are

usually made by multiple decision makers or experts,

which give rise to abundant research concerning the topic

of multiple-attribute group decision-making problems

(MAGDMs).

In group decision making, experts should provide their

preferences for alternative attributes to achieve a collective

decision. Because of various uncertainties in real world, the

information received or provided by experts may be inde-

terminate and inconsistent. To address indeterminate

information and inconsistent information, Smarandache [5]

introduced the concept of neutrosophic set, in which each

element of the universe has a degree of truth, falsity, and

indeterminacy. Subsequently, the neutrosophic sets have

been successfully used in decision-making field. For

example, many researchers have succeeded in combining

neutrosophic sets with some classical decision-making

techniques, such as the TOPSIS (Technique for Order

Preference by Similarity to an Ideal Solution) method [6],

the VIKOR (VIsekriterijumska optimizacija i
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KOmpromisno Resenje) method [7], the MULTIMOORA

(Multi-Objective Optimization by Ratio Analysis plus Full

Multiplicative Form) method [8], and the WASPAS

(weighted aggregated sum product assessment) method [9],

to solve various decision-making problems with neutro-

sophic information [10–13]. Broumi and Smarandache [14]

further investigated the correlation measures of interval

neutrosophic sets. On the other hand, due to the uncertainty

and complexity of decision-making problems, as well as

the ambiguity of human thinking, the preferences provided

by experts may be imprecise. In this sense, the theory of

fuzzy sets [15] has been used to model uncertainty or

vagueness and applied to different kinds of decision-mak-

ing problems. To better handle uncertain and vague

information, fuzzy set theory has been extended to many

higher-order extensions, including intuitionistic fuzzy sets

[16] and interval-valued intuitionistic fuzzy (IVIF) sets

[17]. Compared with the theory of intuitionistic fuzzy sets,

the theory of IVIF sets more effectively applies to the

situations where decision makers have limited attention,

and information sources are insufficient for dealing with all

possibilities. Thus, it is more suitable and convenient to

represent the experts’ assessments based on IVIF sets

[18, 19].

Since its appearance in the literature, the IVIF set has

attracted increasing attention, and many fuzzy MAGDM

approaches based on IVIF sets have been presented

[18–30]. For instance, Atanassov [22] and Xu [23] con-

structed the arithmetic operations of IVIF values. Later,

with the aid of these operational rules, Xu and Chen [19]

developed some IVIF aggregation operators, such as the

IVIF weighted geometric and arithmetic aggregation

operators, and developed an approach for group decision

making with interval-valued intuitionistic information. Li

et al. [20] presented an improved group decision-making

method based on IVIF prioritized operators. By means of

Hamacher operations, Liu [24] developed a few Hamacher

IVIF aggregation operators and applied them to group

decision making. Makui et al. [17] proposed a fuzzy multi-

criteria group decision-making approach based on the IVIF

preference relation and the IVIF decision matrix. With the

use of Einstein operations, Wang and Liu [27] proposed

several Einstein IVIF aggregation operators to aggregate

IVIF information in multi-criteria group decision making.

Although these fuzzy MAGDM approaches have some

merits, there still exist two issues to be resolved with

regard to IVIF set-based MAGDM problems.

The first issue is that expert reliability is rarely taken

into account in these MAGDM approaches. In fact, experts

in MAGDM are not necessarily reliable. They have

bounded rationality in decision making because of their

selective memory and perception, as well as limited com-

putational ability, as analyzed in [31]. Expert reliability, as

an important concept in MAGDM, is usually applied to

evaluate the proficiency of specialists [32]. It is the

inherent property of the specialists [33–36]. Hence, expert

reliability should be considered and effectively measured

in the process of MAGDM. To our knowledge, none of the

above fuzzy MAGDM approaches has considered the

reliabilities of experts, which has significant influence on

the validity and rationality of decision results. Therefore,

one aim of this study is to develop an objective method to

determine expert reliability in the context of IVIF sets in

MAGDM.

The second issue is that the IVIF aggregation operator-

based MAGDM approaches (e.g., [19, 23, 24, 27]) will

generate unreasonable preference orders of alternatives in

some situations because of the deficiencies of the afore-

mentioned IVIF operational rules. In fact, these operations

are limited by their failures to take into account all the

interval-valued membership degrees and the interval-val-

ued non-membership degrees of elements that belong to

IVIF sets, since they only consider the maximal member-

ship degree and the minimal non-membership degree.

Moreover, according to the operational rules, the interval-

valued membership degrees and the interval-valued non-

membership degrees are computed independently. In the

situations, when there is an IVIF assessment whose mem-

bership degree equals [1] or non-membership degree equals

[0,0], the aggregated IVIF assessment will be ([1,1], [0,0])

or ([0,0], [1,1]), which is biased and invalid and thus will

yield unreasonable preference orders of alternatives in

MAGDM problems [37, 38]. Dymova and Sevastjanov

[39, 40] recently conducted a detailed analysis of the

limitations of the operations on IVIF values and noted that

the operations of ‘‘addition’’ and ‘‘multiplication’’ exhibit

undesirable properties and are not always rational. How-

ever, all the IVIF aggregation operator-based MAGDM

approaches mentioned above are developed in accordance

with the operations that have some similar deficiencies,

which make these approaches less reasonable. To address

this matter, Mohammadi and Makui [38] developed a fuzzy

MAGDM method on the basis of IVIF sets and the original

ER approach [41, 42]. The method developed in [38]

overcomes the second issue of the existing IVIF aggrega-

tion operator-based methods for fuzzy MAGDM in IVIF

environments. However, the original ER algorithm [41, 42]

only takes attribute weights into account when it is used to

combine attribute values. In other words, expert reliability

is still not considered in [38].

All the above analyses indicate that MAGDM with IVIF

information is still an active field of research. Many con-

tributions to this field have been made, but there are two

issues, as discussed above. In light of this, it is necessary to

develop a novel approach for MAGDM with IVIF sets that
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can overcome the above two issues, which serves as the

main motivation of this study.

Yang and Xu [35] recently extended the original ER

approach and established a unique ER rule to combine

multiple pieces of evidence with their associated reliabili-

ties and weights in the case where the degrees of belief in

the evidence are precise values. The consideration of reli-

abilities follows Simon’s theory of bounded rationality.

Therefore, taking into account the above motivations, the

focus of this study is to put forth a new fuzzy MAGDM

approach. First, in order to effectively determine the reli-

abilities of experts, an objective method is developed

through combining the similarities between the assess-

ments provided before and after group discussion (GD),

respectively. Then, we extend the ER rule to the case where

the belief degrees are intervals and employ the extended

ER rule to combine experts’ assessments. Several opti-

mization models are established and solved herein to

generate aggregated assessments of the alternatives. The

combination process of assessments considers expert

weights and expert reliabilities simultaneously. Finally, the

overall priority degrees of alternatives are calculated based

on their aggregated assessments. The novelty of the

developed approach can resolve the two aforementioned

issues for fuzzy MAGDM problems in IVIF environments.

Due to the emergence of modern lifestyles, all kinds of

businesses, especially service-oriented businesses, are

witnessing rapid transformations in many aspects. Service

firms are exploring new business models and taking actions

to meet the needs of modern lifestyles. One of these basic

actions is to select a suitable business location to expand

the scope of operation. Proper site/location selection is a

MAGDM problem where the decision-making process will

be conducted by multiple experts based on different

quantitative and qualitative attributes [43]. Many decision-

making models have been developed for this application

over the past few decades. Cheng et al. [44] applied the

analytic network process approach to handle a shopping

mall location selection problem. Kuo et al. [45] constructed

a decision support system for store location selection by

integrating fuzzy AHP and artificial neural network. Based

on a perspective with foresight, Zolfani et al. [43] proposed

a hybrid decision model to solve shopping mall location

problems. Liu et al. [46] developed an MAGDM method

with interval 2-tuple linguistic information to select the

optimal disposal site for municipal solid waste. From a

sustainability perspective, Rao et al. [47] presented a fuzzy

MAGDM model for location selection of city logistics

centers. In this study, we will also focus on this topic and

apply the proposed approach to analyze a shopping center

site selection problem to illustrate its validity and

applicability.

The rest of this study is organized as follows. Section 2

reviews some basic concepts of IVIF sets and the ER rule.

In Sect. 3, we present a detailed discussion of the proposed

approach. In Sect. 4, the proposal is applied to solve a

shopping center site selection problem to demonstrate its

applicability and validity. In Sect. 5, comparisons with

existing MAGDM approaches are made to highlight the

effectiveness and feasibility of the proposed approach.

Finally, we conclude this study in Sect. 6.

2 Preliminaries

To facilitate the introduction of the proposed approach, this

section reviews IVIF sets and some basic theorems which

will be used in the discussion that follows.

2.1 IVIF sets

Atanassov and Gargov [17] introduced the concept of IVIF

sets as follows.

Definition 1 [17]. Given a universe of discourse X, an

IVIF set ~A on X is represented in the following manner:

~A ¼ x; ~l ~AðxÞ; ~m ~AðxÞ
� �

jx 2 X
� �

¼ x; lL~AðxÞ; l
U
~A
ðxÞ

h i
; vL~AðxÞ; v

U
~A
ðxÞ

h iD E
jx 2 X

n o
;

ð1Þ

where intervals ~l ~AðxÞ and ~m ~AðxÞ symbolize the membership

and the non-membership degrees of x to ~A, respectively,

such that ~l ~AðxÞ ¼ ½lL~AðxÞ; l
U
~A
ðxÞ� 2 0; 1½ �, ~m ~AðxÞ ¼ ½mL~AðxÞ;

mU~A ðxÞ� 2 0; 1½ �, and 0� lU~A ðxÞ þ mU~A ðxÞ� 1 for all x 2 X.

Based on ~l ~AðxÞ and ~m ~AðxÞ, the corresponding interval-val-

ued hesitation degree of x to ~A is represented in the form:

~p ~AðxÞ ¼ pL~AðxÞ;p
U
~A
ðxÞ

h i

¼ 1 � lU~A ðxÞ � vU~A ðxÞ; 1 � lL~AðxÞ � vL~AðxÞ
h i

: ð2Þ

Consider the case where each of ~l ~AðxÞ and ~m ~AðxÞ con-

tains only one value for each x 2 X, we have lL~AðxÞ ¼
lU~A ðxÞ and vL~AðxÞ ¼ vU~A ðxÞ, and then the given IVIF set ~A

will be degraded to an intuitionistic fuzzy set [15]. The pair

(~l ~AðxÞ; ~m ~AðxÞ) in the IVIF set ~A is called an IVIF value [22],

which is usually denoted by ~a = (½lL~a ; lU~a �; ½vL~a ; vU~a �) for

simplicity, where 0� lL~a � lU~a � 1, 0� mL~a � mU~a � 1, and

0� lU~a ðxÞ þ mU~a ðxÞ� 1.

To compare different IVIF values, the scholars in

[48, 49] developed a few comparison mechanisms based on

Neural Computing and Applications (2020) 32:5213–5234 5215

123



the real-valued score, accuracy, and hesitation functions of

IVIF values. These mechanisms for comparison of IVIF

values possess undeniable merit. Subsequently, to avoid

information loss, Dymova et al. [50] extended the above

real-valued functions to their associated interval forms and

designed the interval-valued score and accuracy functions

of an IVIF value as follows.

Definition 2 [50]. Given an IVIF value ~a ¼ ð½lL~a ; lU~a �;
½vL~a ; vU~a �Þ, the interval-valued score function of ~a is calcu-

lated in the following manner:

~Sð~aÞ ¼ lL~a � vU~a ; l
U
~a � vL~a

� �
; ð3Þ

and the interval-valued accuracy function of a is calculated

as follows:

~Hð~aÞ ¼ lL~a þ vL~a ; l
U
~a þ vU~a

� �
: ð4Þ

With the use of such interval-valued score and accuracy

functions, Dymova et al. [50] developed a two-criterion

method to compare IVIF values, which will be detailed in

the proposed MAGDM approach in Sect. 3.

In [51], Xu and Yager defined the normalized Hamming

distance between two IVIF values, as shown in the

following.

Definition 3 [51]. Given any two IVIF values ~ai ¼
ð½lLi ; lUi �; ½vLi ; vUi �Þ and ~aj ¼ ð½lLj ;lUj �; ½vLj ; vUj �Þ, the nor-

malized Hamming distance measure between the IVIF

values ~ai and ~aj is defined as follows:

dð~ai; ~ajÞ ¼
1

4
lLi � lLj

���
���þ lUi � lUj

���
���þ vLi � vLj

���
���þ vUi
��

	

�vUj

���þ pLi � pLj

���
���þ pUi � pUj

���
���



¼ 1

4
lLi � lLj

���
���þ lUi � lUj

���
���þ vLi � vLj

���
���

	

þ vUi � vUj

���
���þ lLj þ vLj � lLi � vLi

���
���

þ lUj þ vUj � lUi � vUi

���
���


: ð5Þ

One can easily verify that 0 B dð~ai; ~ajÞ� 1.

Definition 4 [23]. Given any two IVIF values ~ai ¼
ð½lLi ; lUi �; ½vLi ; vUi �Þ and ~aj ¼ ð½lLj ; lUj �; ½vLj ; vUj �Þ, the opera-

tional rules of IVIF values are defined in the following

manner:

1. ~ai � ~aj ¼ lLi þ lLj � lLi �
h	

lLj ; l
U
i þ lUj � lUi � lUj �;

vLi � vLj ; vUi � vUj
h i

Þ;

2. ~ai � ~aj ¼ lLi � lLj ; lUi � lUj
h i

; vLi þ vLj � vLi � vLj ; vUi þ
h	

vUj � vUi � vUj �; Þ
3. j~ai ¼ 1 � ð1 � lLi Þ

j; 1 � ð1 � lUi Þ
j� �
; vLji ; vUj

i

� �� �
;

j[ 0;

4. ~aji ¼ lLji ; lUj
i

� �
; 1 � ð1 � vLi Þ

j; 1 � ð1 � vUi Þ
j� �� �

;

j[ 0:

Based on the above operations of IVIF values, Xu and

Chen [19] developed a family of IVIF aggregation opera-

tors, including the IVIF arithmetic and geometric weighted

averaging operators. Here, the IVIF arithmetic weighted

averaging (IVIFAWA) operator is presented as an

example.

Definition 5 [19]. Given a collection of n IVIF values

~ai ¼ ð½lLi ; lUi �; ½vLi ; vUi �Þ (i = 1,2,…, n), the IVIFAWA

operator is defined as follows:

IVIFAWAð~a1; ~a2; . . .~anÞ

¼ 1 �
Yn

i¼1

1 � lLi
� �xi ; 1 �

Yn

i¼1

1 � lUi
� �xi

" #

;

 

Yn

i¼1

vLi
� �x1 ;

Yn

i¼1

vUi
� �xi

" #!

; ð6Þ

where xi is the weight of ~ai, satisfying that 0�xi � 1 andPn
i¼1 xi ¼ 1.

The aggregation operators presented in [19] are based on

the algebraic operations of IVIF values. With the use of the

Einstein operations of IVIF values, Wang and Liu [27]

developed several IVIF Einstein aggregation operators.

Recently, Liu [24] extended the Hamacher operations to

IVIF environments and presented a series of IVIF Hama-

cher aggregation operators for aggregating IVIF informa-

tion in decision making. In particular, the IVIF Hamacher

aggregation operators can be reduced to the algebraic and

the Einstein aggregation operators when the parameter in

the Hamacher operations is equal to 1 and 2, respectively.

Note that the IVIF aggregation operators in [19, 24, 27]

have the drawback that when there is only one IVIF value

whose membership degree equals [1,1] or non-membership

degree equals [0,0], the aggregated IVIF value will be

([1,1], [0,0]) or ([0,0], [1,1]) even if the membership

degrees of the other IVIF values are not equal to [1,1] or

the non-membership degrees are not equal to [0,0]. That is

to say, these operators do not consider all the interval-

valued membership degrees and the interval-valued non-

membership degrees of elements that belong to IVIF sets.
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In such situation, the aggregated results are invalid and

further will yield unreasonable preference orders of alter-

natives in decision-making problems. Consider the fol-

lowing example, which illustrates the drawback of the

IVIFAWA operator. Obviously, the other aggregation

operators mentioned above can be tested similarly.

Example 1 Suppose that there is one collection of four

IVIF values ~a1 ¼ 0:8; 0:9½ �; 0:1; 0:2½ �ð Þ; ~a2 ¼ 1; 1½ �;ðf
0; 0½ �Þ; ~a3 ¼ 0:7; 0:8½ �; 0:1; 0:2½ �ð Þ; ~a4 ¼ 0:6; 0:8½ �;ð 0:1;½

0:2�Þg and their corresponding weights are 0.25, 0.25, 0.35,

and 0.15. Then, using the IVIFAWA operator, one can

obtain the aggregated IVIF value:

IVIFAWAð~a1; ~a2; . . .~a4Þ ¼ 1; 1½ �; 0; 0½ �ð Þ:

Given another collection of four IVIF values ~a1 ¼f
0:1; 0:2½ �; 0:8; 0:9½ �ð Þ; ~a2 ¼ 1; 1½ �;ð 0; 0½ �Þ; ~a3 ¼ 0:1;½ð

0:2�; 0:7; 0:8½ �Þ; ~a4 ¼ 0:1; 0:2½ �; 0:6; 0:8½ �ð Þg and the same

weights above, then the aggregated IVIF value obtained by

the IVIFAWA operator is

IVIFAWAð~a1; ~a2; . . .~a4Þ ¼ 1; 1½ �; 0; 0½ �ð Þ:

From the above calculations, one can find that except the

second IVIF value, the other three IVIF values in the first

collection are completely different from those in the second

collection. However, the aggregated results are the same,

namely ([1, 1],[0,0]), which is counterintuitive. More

details of the drawbacks of the aggregation operator-based

methods [19, 24, 27] will be discussed by a comparative

analysis in Sect. 5. As such, this paper will employ the ER

rule instead of the IVIF aggregation operators to aggregate

IVIF information in the following proposed approach.

2.2 ER rule with weight and reliability

The ER rule has been proven to be an effective technique

for aggregating information from multiple experts. In the

ER rule, different pieces of evidence are combined with

their associated reliabilities and weights. To facilitate the

presentation of the ER rule, the evidence representation is

introduced first.

Suppose that X = {H1, …, HN} is a set of propositions

or grades and P(X) = 2X = {Ø, {H1},…, {HN}, {H1,

H2},…, {H1, HN},…, {H1,…, HN-1}, X} is the power set

of X. Then, L pieces of independent evidence can be pro-

filed on P(X) by the following belief distribution:

Ei ¼ fðH; bH;iÞ; 8H � X;X
H�X

bH;i ¼ 1g; i ¼ 1; . . .; L;
ð7Þ

where (H; bH;i) is an element of evidence Ei, meaning that

the evidence supports an element H with a belief degree of

bH;i. Let �wi (i = 1, …, L) with 0 B �wi B 1, and Ri (i = 1,

…, L) with 0 B Ri B 1 denote the weights and reliabilities

of Ei (i = 1, …, L), respectively. When the weights and

reliabilities of Ei are simultaneously considered in the

combination of Ei, hybrid weights can be obtained by the

following formula:

~wi ¼ �wi=ð1 þ �wi � RiÞ i ¼ 1; . . .; Lð Þ: ð8Þ

In these circumstances, the ER rule with weight and

reliability is presented in the following manner.

Theorem 1 [35]. Suppose that L pieces of evidence Ei

(i = 1, …, L) are described by Eq. (7) with the hybrid

weights ~wi of Eq. (8). Then, the combined result of the

first i pieces of evidence can be represented by the fol-

lowing belief distribution: EðiÞ ¼ fðH; bH;EðiÞÞ; 8H �
X;
P

H�X bH;EðiÞ ¼ 1g (i = 2, …, L), with

bH;EðiÞ ¼
0 H ¼ ;

m̂H;EðiÞP
D�X m̂D;EðiÞ

H � X;H 6¼ ;

8
<

:
; ð9Þ

mH;EðiÞ ¼
0 H ¼ ;

m̂H;EðiÞP
D�X m̂D;EðiÞ þ m̂pðXÞ;EðiÞ

H � X;H 6¼ ;

8
<

:
;

ð10Þ

mpðXÞ;EðiÞ ¼
m̂pðXÞ;EðiÞP

D�X m̂D;EðiÞ þ m̂pðXÞ;EðiÞ
; ð11Þ

m̂H;EðiÞ ¼ ð1 � ~wiÞ � mH;Eði�1Þ þ mpðXÞ;Eði�1Þ � ~wibH;i

� �

þ
X

B\C¼H
mB;Eði�1Þ � ~wibC;i; 8H � X; and

ð12Þ

m̂pðXÞ;EðiÞ ¼ ð1 � ~wiÞ � mpðXÞ;Eði�1Þ; ð13Þ

where 0� bH;EðiÞ;mH;EðiÞ � 1; 8H � X, 0�mpðXÞ;EðiÞ � 1,

and
P

H�X mH;EðiÞ þ mpðXÞ;EðiÞ ¼ 1 for i = 2, …, L recur-

sively. The detailed proof for Theorem 1 can be found in

[35].

3 The proposed approach

This section will explore a novel MAGDM approach based

on expert reliability and the ER rule for fuzzy MAGDM in

which the experts’ assessments are expressed as IVIF sets

according to their preferences. To facilitate the
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introduction of this approach, MAGDM problems with

IVIF assessments are first modeled. In the model, we

explore how to measure expert reliabilities in fuzzy

MAGDM problems. Then, we describe how to combine

experts’ IVIF assessments with their weights and reliabil-

ities, which is followed by an introduction of how to derive

solutions to MAGDM problems. As a whole, an integrated

procedure of the proposed MAGDM approach is presented.

3.1 Modeling of MAGDM problems with IVIF
assessments

Assume that a MAGDM problem involves an expert team

consisting of T experts ej (j = 1, …, T) and one moderator

who organizes this decision-making activity. The set of

alternatives is denoted as A = {a1,…, al, …, aM} and needs

to be evaluated with respect to L attributes, denoted ci
(i = 1, …, L). Suppose that the weight of attribute ci is

symbolized by wi with 0 B wi B 1 for i = 1, …, L and
PL

i¼1 wi ¼ 1, and the reliability vector of these attributes is

{r1, …, rL}. For attribute ci, the relative weight of expert ej

is denoted by kj (ci), such that
PT

j¼1 k
j cið Þ ¼ 1. Let ~Aj

M	L

be the decision matrix provided by expert ej given as

follows:

~Aj
M	L ¼

~u j
11; ~v

j
11

� �
~u j

12,~v j
12

� �
� � � ~u j

1L,~v j
1L

� �

~u j
21; ~v

j
21

� �
~u j

22; ~v
j
22

� �
� � � ~u j

2L; ~v
j
2L

� �

..

. ..
. . .

. ..
.

~u j
M1; ~v

j
M1

� �
~u j
M2; ~v

j
M2

� �
� � � ~u j

ML; ~v
j
ML

� �

2

66664

3

77775
;

ð14Þ

where ð~l j
li; ~m

j
liÞ is the IVIF information denoting the

assessment of expert ej with respect to attribute ci of

alternative al.

3.2 Measurement of expert reliabilities

In the process of group decision making, group discussion

(GD) is usually needed for experts to clarify the decision

problem under consideration. With the development of

GD, experts may modify their own opinions or assessments

due to the influence of other experts’ views. After GD,

experts with a better understanding of the decision problem

will be less willing to modify their assessments. They will

be more reliable than those who are less familiar with the

same problem. In this sense, the reliability of an expert can

be objectively measured in accordance with the degree that

he/she is willing to modify his/her assessments based on

other experts’ assessments. In [32], Fu et al. first provided

the qualitative definition of expert reliability, presented as

follows:

Definition 6 [32]. In a group, the reliability of an expert is

defined as a combination of the similarities between the

assessment provided by the expert before GD and that

provided by any other expert after GD.

Experts will become more famous with the decision

problem through GD, which indicates that the assessments

provided after GD will be more credible than those pro-

vided before GD for other experts. For this reason, the

assessments of other experts after GD, instead of those

before GD, are used to evaluate expert reliability in Defi-

nition 6. The process of GD is shown in Fig. 1.

One can easily find that the definition of expert relia-

bility is based on the majority rule, meaning that the truth

generally falls in the hands of the majority. According to

Definition 6, the closer an expert’s assessment is to the

assessments provided by the rest of experts after GD, the

higher the reliability of that expert is. If one expert does not

alter his/her assessment after GD, three cases will occur:

(1) the assessments of other experts may move toward that

of the given expert; (2) the assessments of other experts

may move in the opposite direction to that of the given

expert; and (3) the assessments of other experts may

remain unchanged. In the first case, the reliability of the

expert will increase; in the second case, the reliability of

the expert will decline; and in the third case, the reliability

of the expert will stay the same. In other words, the reli-

ability of one expert is subject to the movements of the

assessments provided by the rest of experts after GD.

In the proposed MAGDM approach, the reliability of an

expert will be measured with the use of the original IVIF

assessments provided before GD and the updated IVIF

assessments after GD. To do this, we first investigate a

similarity measure between two IVIF values ð~l j
li; ~m

j
liÞ and

ð~lkli; ~mkliÞ in the discussion that follows.

A similarity measure reflects the degree of similarity

between two objects, whereas a distance measure is used to

distinguish the difference between them. The two measures

are usually considered complementary concepts. Thus,

based on their relationship, a similarity measure can be

deduced from its associated distance measure, and vice

versa. Then, by means of the distance measure between

two IVIF values defined in Definition 3, a similarity mea-

sure between two IVIF values can be deduced in the fol-

lowing manner:

Definition 7 Given any two IVIF values ~a j
li ¼ ð~l j

li; ~m
j
liÞ and

~akli ¼ ð~lkli; ~mkliÞ, then the similarity measure between the

IVIF values ~a j
li and ~akli is defined as:

SjkðliÞ ¼ 1 � d ~a j
li; ~a

k
li

� �
ð15Þ
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where dð~a j
li; ~a

k
liÞ represents the normalized Hamming dis-

tance measure between the IVIF values defined in Defini-

tion 3. Note that the similarity measure SjkðliÞ satisfies the

properties as follows:

1. 0� SjkðliÞ� 1;

2. SjkðliÞ ¼ 1 if and only if ~a j
li ¼ ~akli;

3. SjkðliÞ ¼ SkjðliÞ:

The proofs for properties (1)–(3) can be directly

deduced from the properties of the normalized Hamming

distance measure in Definition 3; thus, we omit them here.

Then, based on the qualitative definition of expert reli-

ability in Definition 6, the reliability of expert ej can be

quantified by using the similarity measure in Definition 7,

defined as follows:

Definition 8 Let ð~l j
li; ~m

j
liÞð0Þ and ð~l j

li; ~m
j
liÞð1Þ (i = 1,…,L;

l = 1,…,M) be the IVIF assessments provided by expert ej
(j = 1,…,T) before and after GD for a MAGDM problem,

S
jk

ð0Þð1ÞðliÞ represent the similarity between ð~l j
li; ~m

j
liÞð0Þ and

ð~lkli; ~mkliÞð1Þ, and Skhð0Þð0ÞðliÞ represent the similarity between

ð~lkli; ~mkliÞð0Þ and ð~lhli; ~mhliÞð0Þ. Then, after GD the expert reli-

ability denoted by Rj(li) is calculated in the following way:

Rj lið Þ ¼
PT

k¼1;k 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
jk

ð0Þð1ÞðliÞ � Rk
ð0ÞðliÞ

q

T � 1
ð16Þ

with

Rk
ð0ÞðliÞ ¼

PT
h¼1;h 6¼k S

kh
ð0Þð0ÞðliÞ

T � 1
; ð17Þ

where Rk
ð0ÞðliÞ stands for the initial reliability of expert ek

before GD. Consider the following example, which illus-

trates the calculation process for expert reliability.

Example 2 Suppose that four different experts {e1, e2, e3,

e4} anonymously provide the following IVIF assessments

with respect to attribute ci of alternative al before GD:

Fig. 1 Graph representation of

GD
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~l1
li; ~m

1
li

� �
ð0Þ¼ 0:5; 0:7½ �; 0:2; 0:3½ �ð Þ;

~l2
li; ~m

2
li

� �
ð0Þ¼ 0:4; 0:6½ �; 0:1; 0:3½ �ð Þ;

~l3
li; ~m

3
li

� �
ð0Þ¼ 0:6; 0:9½ �; 0; 0:1½ �ð Þ;

~l4
li; ~m

4
li

� �
ð0Þ¼ 0:3; 0:4½ �; 0:2; 0:4½ �ð Þ:

Then, the four experts have a discussion about the

decision problem under consideration under the guidance

of the moderator. After the discussion, the experts anony-

mously provide their updated assessments as follows:

~l1
li; ~m

1
li

� �
ð1Þ¼ 0:5; 0:7½ �; 0:2; 0:3½ �ð Þ;

~l2
li; ~m

2
li

� �
ð1Þ¼ 0:5; 0:7½ �; 0:2; 0:3½ �ð Þ;

~l3
li; ~m

3
li

� �
ð1Þ¼ 0:5; 0:8½ �; 0:1; 0:2½ �ð Þ;

~l4
li; ~m

4
li

� �
ð1Þ¼ 0:4; 0:5½ �; 0:2; 0:3½ �ð Þ:

Using the similarity measure defined in Definition 7, we

have:

Sð0Þð0ÞðliÞ ¼

� 0:85 0:8 0:75

0:85 � 0:75 0:85

0:8 0:75 � 0:6
0:75 0:85 0:6 �

0

BB@

1

CCA;

Sð0Þð1ÞðliÞ ¼

� 1 0:9 0:85

0:85 � 0:85 0:9
0:8 0:8 � 0:7
0:75 0:75 0:7 �

0

BB@

1

CCA:

From Eq. (17), the initial reliabilities of the four experts

before GD can be calculated:R1
ð0ÞðliÞ ¼ 0:8; R2

ð0ÞðliÞ ¼
0:8167; R3

ð0ÞðliÞ ¼ 0:7167; R4
ð0ÞðliÞ ¼ 0:7333.

From Eq. (16), the reliabilities of the four experts after

GD can be obtained:

R1 lið Þ ¼ 0:8321; R2 lið Þ ¼ 0:8058; R3 lið Þ ¼ 0:7749;

R4 lið Þ ¼ 0:7552. The calculation results reflect that expert

e1 is more reliable than the other three experts. Note that in

the above example, the IVIF assessments provided by other

three experts after GD simultaneously get close to that

provided by expert e1, and the IVIF assessment provided

by expert e1 after GD is the same as that provided before

GD. This indicates that expert e1 has a better understanding

of the decision problem compared with the other three

experts. In other words, the reliability of expert e1 is sub-

ject to the movements of the IVIF assessments provided by

other three experts after GD.

This section discusses the method for determining

expert reliability in the context of MAGDM with IVIF

information. In the next section, we will discuss how to

combine experts’ assessments with weights and reliabilities

for an MAGDM problem.

3.3 Combination of IVIF assessments
with reliabilities and weights based on ER
rule

To circumvent the flaws of the operator-based IVIF

information aggregation MAGDM approaches mentioned

in Introduction, in the following, we apply the ER rule to

combine the assessments of experts with reliabilities and

weights for the MAGDM problem modeled in Sect. 3.1.

Suppose that alternatives are assessed with respect to each

attribute using two evaluation grades denoted by X = {H1,

H2}, where H1 and H2 stand for completely matching and

not matching the fuzzy concept of ‘‘excellence,’’ respec-

tively. We then can transform the IVIF assessment

ð~l j
li; ~m

j
liÞð1Þ into an interval-valued distribution assessment

denoted by ~BjðliÞ ¼ fðH1; ½bjLH1
ðliÞ; bjUH1

ðliÞ�Þ; ðH2; ½bjLH2
ðliÞ;

bjUH2
ðliÞ�Þ; ðX; ½bjLX ðliÞ; b

jU
X ðliÞ�Þg, where ½bjLH1

ðliÞ; bjUH1
ðliÞ� ¼

~l j
li and ½bjLH2

ðliÞ; bjUH2
ðliÞ� ¼ ~m jli stand for the interval belief

degrees of expert ej on attribute ci of alternative al with

regard to the grades H1 and H2, respectively, and

½bjLX ðliÞ; b
jU
X ðliÞ� ¼ ~p j

li stands for the degree of global igno-

rance [35, 42]. Here, X can be interpreted as the grade of

‘‘indeterminacy.’’ In the ER context, the assessment ~BjðliÞ
is considered as a piece of evidence, and now the ER rule

can be utilized to combine these assessments.

Step 1 Combine the individual assessments ~BjðliÞ
(j = 1,…,T) with Rj(li) and kj(ci) by using the ER rule to

calculate the aggregated group assessment ~BðliÞ ¼ fðH1;

½bLH1
ðliÞ; bUH1

ðliÞ�Þ; ðH2; ½bLH2
ðliÞ; bUH2

ðliÞ�Þ; ðX; ½bLXðliÞ;
bUXðliÞ�Þg. To complete this step, the following sub-steps

should be done first:

Step 1.1 Convert the interval-valued distribution

assessment ~BjðliÞ into the weighted interval-valued distri-

bution assessment with reliability denoted by mjðliÞ ¼
fðH; ½ ~mjL

H ðliÞ; ~m
jU
H ðliÞ�Þ; 8H � X; ððPðXÞ; ½ ~mjL

pðXÞðliÞ;
~mjU

pðXÞðliÞ�Þg, presented as follows:

~mj
HðliÞ ¼

0 H ¼ ;
k jðciÞb j

HðliÞ
ð1 þ k jðciÞ � RjðliÞÞ

H � X;H 6¼ ;

1 � RjðliÞ
ð1 þ k jðciÞ � RjðliÞÞ

H ¼ PðXÞ

8
>>>><

>>>>:

: ð18Þ

In Eq. (18), ~mj
HðliÞ is the basic probability mass for

~BjðliÞ with both the reliability and weight of expert ej taken

into account. From Eq. (8), we can obtain the hybrid

weight of expert ej on attribute ci, i.e.,
~k jðciÞ ¼ k jðciÞ=ð1 þ k jðciÞ � RjðliÞÞ. Thus, Eq. (18) can

be equivalently rewritten as follows:
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~mj
HðliÞ ¼

0 H ¼ ;
~k jðciÞb j

HðliÞ H � X;H 6¼ ;
1 � ~k jðciÞ H ¼ PðXÞ

8
<

:
: ð19Þ

Theorem 1 presents the combined result of assessments

in the situation where belief degrees are precise values.

Hereafter, we extend the ER rule to the situation where

belief degrees are intervals by constructing two nonlinear

optimization problems.

Step 1.2 Combine the first j-independent interval-valued

distribution assessments ~BjðliÞ (j = 2, …, T) with their

hybrid weights ~k jðciÞ (j = 2, …, T) by using the recursive

ER rule. The combined interval-valued distribution

assessment denoted by ~BðjÞðliÞ ¼ fðH; ½bðjÞLH ðliÞ;
bðjÞUH ðliÞ�Þ; 8H � X and bðjÞLH ðliÞ� bðjÞH ðliÞ� bðjÞUH ðliÞ;
P

H�X bðjÞH ðliÞ ¼ 1Þg is calculated through resolving the

following nonlinear optimization problems with variables

bj
HðliÞ developed by using Theorem 1.

Model 1

MIN/MAX bðjÞH ðliÞ ¼
0 H ¼ ;

m̂
ðjÞ
H ðliÞ

P
D�X m̂

ðjÞ
D ðliÞ

H � X;H 6¼ ;

8
><

>:

ð20Þ

s:t:

m
ðjÞ
H ðliÞ ¼

0 H ¼ ;
m̂

ðjÞ
H ðliÞ

P
D�X m̂

ðjÞ
D ðliÞ þ m̂

ðjÞ
pðXÞðliÞ

H � X;H 6¼ ;

8
><

>:
;

ð21Þ

m
ðjÞ
pðXÞðliÞ ¼

m̂
ðjÞ
pðXÞðliÞ

P
D�X m̂

ðjÞ
D ðliÞ þ m̂

ðjÞ
pðXÞðliÞ

; ð22Þ

m̂
ðjÞ
H ðliÞ ¼ 1 � ~k jðciÞ

	 

� mðj�1Þ

H ðliÞ þ m
ðj�1Þ
pðXÞ ðliÞ � ~m

j
HðliÞ

h i

þ
X

B\C¼H
m

ðj�1Þ
B ðliÞ�~k jðciÞb j

CðliÞ; 8H � X;

ð23Þ

m̂
ðjÞ
pðXÞðliÞ ¼ 1 � ~k jðciÞ

	 

� mðj�1Þ

pðXÞ ðliÞ; ð24Þ

bjLH ðliÞ� bj
HðliÞ� bjUH ðliÞ; ð25Þ
X

H�X

bj
HðliÞ ¼ 1: ð26Þ

In the problems above, m̂
ðjÞ
H ðliÞ is the combined proba-

bility mass for H, 0� bðjÞH ðliÞ, m
ðjÞ
H ðliÞ� 1, 8H � X,

0�m
ðjÞ
pðXÞðliÞ� 1, and

P
H�X m

ðjÞ
H ðliÞ þ m

ðjÞ
pðXÞðliÞ ¼ 1 for

j = 2, …, T recursively.

When all the T-independent interval-valued distribution

assessments are aggregated recursively, we can obtain the

combined interval-valued distribution assessment (or the

aggregated group assessment) denoted by ~BðTÞðliÞ ¼ fðH;

½bðTÞLH ðliÞ; bðTÞUH ðliÞ�Þ; 8H � X and bðTÞLH ðliÞ� bðTÞH ðliÞ�
bðTÞUH ðliÞ;

P
H�X bðTÞH ðliÞ ¼ 1Þg. To facilitate the discussion

below, we simplify ~BðTÞðliÞ as ~BðliÞ ¼ fðH1;

½bLH1
ðliÞ; bUH1

ðliÞ�Þ; ðH2; ½bLH2
ðliÞ; bUH2

ðliÞ�Þ; ðX; ½bLXðliÞ;
bUXðliÞ�Þg. Let RðTÞðliÞ stand for the combined reliability;

�kðTÞðliÞ for the combined weight; and ~kðTÞðliÞ for the

combined hybrid weight of ~BjðliÞ. In the following, RðTÞðliÞ
will be utilized to combine ~BðliÞ (i = 1, …, L). As

m
ðTÞ
pðXÞðliÞ ¼ 1 � ~kðTÞðliÞ ¼ 1�RðTÞðliÞ

1þ�kðTÞðliÞ�RðTÞðliÞ, and RðTÞðliÞ can

be obtained with a precise �kðTÞðliÞ judged by the moderator,

according to the following formula:

RðTÞðliÞ ¼
1 � m

ðTÞ
pðXÞðliÞ � ð1 þ �kðTÞðliÞÞ

1 � m
ðTÞ
pðXÞðliÞ

: ð27Þ

If a precise �kðTÞðliÞ cannot be provided by the moderator,

RðTÞðliÞ will lie in the interval RðTÞðliÞ�;RðTÞðliÞþ
� �

¼
1�2�mðTÞ

pðXÞðliÞ

1�m
ðTÞ
pðXÞðliÞ

;
1�m

ðTÞ
pðXÞðliÞ�ð1þmaxj2f1;...;Tgfk jðciÞgÞ

1�m
ðTÞ
pðXÞðliÞ

� �
, due to the fact

that max
j2f1;...;Tg

fk jðciÞg� �kðTÞðliÞ� 1 [36].

Step 2 Combine the aggregated group assessments ~BðliÞ
(i = 2, …, L) with the reliabilities and weights of attributes

to compute the aggregated assessment ~BðlÞ ¼ fðH1;

½bLH1
ðlÞ; bUH1

ðlÞ�Þ; ðH2; ½bLH2
ðlÞ; bUH2

ðlÞ�Þ; ðX; ½bLXðlÞ; b
U
XðlÞ�Þg.

With the use of the fundamental reliability ri and weight

wi of attribute ci for alternative al, the overall reliability and

weight of ~BðliÞ are, respectively, computed as w
_

i ¼
�kðTÞðliÞ 	 wi and r

_

i ¼ RðTÞðliÞ 	 ri. From the above analy-

sis, we can obtain ~BðlÞ by applying the ER rule to combine

~BðliÞ with r
_

i and w
_

i.

Step 2.1 Convert the aggregated group assessment ~BðliÞ
into the weighted interval-valued distribution assessment

with reliability denoted by mðliÞ ¼ fðH; ½ ~mL
HðliÞ; ~mU

HðliÞ�Þ;
8H � X; ððP Xð Þ; ½ ~mL

pðXÞðliÞ; ~mU
pðXÞðliÞ�Þg, according to the

following formula:

~mHðliÞ ¼

0 H ¼ ;
w
_

i

ð1 þ w
_

i � r
_

iÞ
H � X;H 6¼ ;

1 � r
_

i

ð1 þ w
_

i � r
_

iÞ
H ¼ PðXÞ

8
>>>>><

>>>>>:

: ð28Þ
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In Eq. (28), ~mHðliÞ is the basic probability mass for ~BðliÞ
with both the reliability and weight of attribute ci taken into

account. Similarly, Eq. (28) can be rewritten as

~mHðliÞ ¼
0 H ¼ ;
~wibHðliÞ H � X; H 6¼ ;
1 � ~wi H ¼ PðXÞ

8
<

:
; ð29Þ

where ~wi ¼ w
_

i=ð1 þ w
_

i � r
_

iÞ.
Step 2.2 Combine the first i-independent interval-valued

distribution assessments ~BðliÞ (i = 2, …, L) with their

hybrid weights ~wi (i = 2, …, L) by using the recursive ER

rule. In the following, we discuss two situations:

(1) Consider the case where a precise �kðTÞðliÞ is provided

by the moderator, and the combined interval-valued dis-

tribution assessment ~BðlðiÞÞ ¼ fðH; ½bLHðlðiÞÞ; b
U
HðlðiÞÞ�Þ;

8H � X and bLHðlðiÞÞ� bHðlðiÞÞ� bUHðlðiÞÞ;
P

H�X

bHðlðiÞÞ ¼ 1Þg is computed by solving the following non-

linear optimization problems with boundary constraints on

the variables b
HðliÞ.

Model 2

MIN/MAX bHðlðiÞÞ ¼
0 H ¼ ;

m̂HðlðiÞÞP
D�X m̂DðlðiÞÞ

H � X;H 6¼ ;

8
<

:
;

ð30Þ

s:t: mHðlðiÞÞ ¼
0 H ¼ ;

m̂HðlðiÞÞP
D�X m̂DðlðiÞÞ þ m̂pðXÞðlðiÞÞ

H � X;H 6¼ ;

8
<

:
;

ð31Þ

mpðXÞðlðiÞÞ ¼
m̂pðXÞðlðiÞÞP

D�X m̂DðlðiÞÞ þ m̂pðXÞðlðiÞÞ
; ð32Þ

m̂HðlðiÞÞ ¼ 1 � ~wið Þ � mHðlði� 1ÞÞ þ mpðXÞðlði� 1ÞÞ � ~mHðliÞ
� �

þ
X

B\C¼H
mBðlði� 1ÞÞ � ~wibCðliÞ; 8H � X;

ð33Þ

m̂pðXÞðlðiÞÞ ¼ ð1 � ~wiÞ � mpðXÞðlði� 1ÞÞ; ð34Þ

bLHðliÞ� b
HðliÞ� bUHðliÞ; ð35Þ
X

H�X

b
HðliÞ ¼ 1: ð36Þ

In these optimization problems, 0� bHðlðiÞÞ,
mHðlðiÞÞ� 1, 8H � X, 0�mpðXÞðlðiÞÞ� 1, and
P

H�X mHðlðiÞÞ þ mpðXÞðlðiÞÞ ¼ 1 for i = 2, …,

L recursively.

(2) In the case where a precise �kðTÞðliÞ cannot be pro-

vided by the moderator, the constraint

max
j2f1;...;Tg

fk jðciÞg� �kðTÞ
 ðliÞ� 1 is added to the aforemen-

tioned optimization problems to calculate ~BðlðiÞÞ, shown as

follows:

Model 3

MIN/MAX

bHðlðiÞÞ ¼
0 H ¼ ;

m̂HðlðiÞÞP
D�X m̂DðlðiÞÞ

H � X;H 6¼ ;

8
<

:
;

ð37Þ

s:t: mHðlðiÞÞ ¼
0 H ¼ ;

m̂HðlðiÞÞP
D�X m̂DðlðiÞÞ þ m̂pðXÞðlðiÞÞ

H � X;H 6¼ ;

8
<

:
;

ð38Þ

mpðXÞðlðiÞÞ ¼
m̂pðXÞðlðiÞÞP

D�X m̂DðlðiÞÞ þ m̂pðXÞðlðiÞÞ
; ð39Þ

m̂HðlðiÞÞ ¼ 1 � ~wið Þ � mHðlði� 1ÞÞ þ mpðXÞðlði� 1ÞÞ � ~mHðliÞ
� �

þ
X

B\C¼H
mBðlði� 1ÞÞ � ~wibCðliÞ; 8H � X;

ð40Þ

m̂pðXÞðlðiÞÞ ¼ ð1 � ~wiÞ � mpðXÞðlði� 1ÞÞ; ð41Þ

bLHðliÞ� b
HðliÞ� bUHðliÞ; ð42Þ

max
j2f1;...;Tg

fk jðciÞg� �kðTÞ
 ðliÞ� 1; ð43Þ

X

H�X

b
HðliÞ ¼ 1: ð44Þ

In the problems above, 0� bHðlðiÞÞ, mHðlðiÞÞ� 1,

8H � X, 0�mpðXÞðlðiÞÞ� 1, and
P

H�X mHðlðiÞÞ þ
mpðXÞðlðiÞÞ ¼ 1 for i = 2, …, L recursively.

Until all the L-independent interval-valued distribution

assessments are combined recursively, the aggregated

assessment ~BðlÞ of al such that ~BðlÞ ¼ fðH1; ½bLH1
ðlÞ;

bUH1
ðlÞ�Þ; ðH2; ½bLH2

ðlÞ; bUH2
ðlÞ�Þ; ðX; ½bLXðlÞ; b

U
XðlÞ�Þg, where

ðH; ½bLHðlÞ; bUHðlÞ�Þ ¼ ðH; ½bLHðlðLÞÞ; bUHðlðLÞÞ�Þ, 8H � X,

bLHðlÞ� bHðlÞ� bUHðlÞ, and
P

H�X bHðlÞ ¼ 1), can be

obtained.

3.4 Generation of solutions

Based on the aggregated assessment ~BðlÞ, we can obtain its

associated IVIF assessment such that ~al ¼ ð½lLl ; lUl �;
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½vLl ; vUl �Þ, where ½lLl ; lUl � ¼ ½bLH1
ðlÞ; bUH1

ðlÞ� and ½vLl ; vUl � ¼
½bLH2

ðlÞ; bUH2
ðlÞ�, and 1 B l B M. To compare alternatives

represented by the obtained IVIF assessments ~al (l = 1, …,

M), the two-criterion method for IVIF value comparison

proposed in [50] is used in this paper.

For any two IVIF assessments ~al and ~am, the interval

local ‘‘net profit’’ is calculated as

UD~S
~Sð~alÞ � ~Sð~amÞ
� �

¼ ð~Sð~alÞ � ~Sð~amÞÞ þ 2

4
; ð45Þ

and the ‘‘risk’’ criterion is computed as

UD ~Hð ~Hð~alÞ � ~Hð~amÞÞ ¼
ð ~Hð~alÞ � ~Hð~amÞÞ þ 2

4
: ð46Þ

With the aid of UD~Sð~Sð~alÞ � ~Sð~amÞÞ and UD ~Hð ~Hð~alÞ�
~Hð~amÞÞ, the interval possibilities ½Pð~al [ ~amÞ� and

½Pð~al\~amÞ� can be obtained:

½Pð~al [ ~amÞ� ¼ hUD~S
~Sð~alÞ � ~Sð~amÞ
� �

þ ð1 � hÞUD ~H
~Hð~alÞ � ~Hð~amÞ
� �

; and

ð47Þ

½Pð~al\~amÞ� ¼ hUD~S
~Sð~amÞ � ~Sð~alÞ
� �

þ ð1 � hÞUD ~H
~Hð~amÞ � ~Hð~alÞ
� �

;
ð48Þ

in which 0� h� 1 is a balance factor measuring the risk

attitude of the moderator.

From the resulting ½Pð~al [ ~amÞ� and ½Pð~al\~amÞ�, an

interval overall priority degree of alternative al with

respect to other alternatives can be designed as

½STðalÞ� ¼
XM

m¼1;m6¼l
½Pð~al [ ~amÞ�

�
XM

m¼1;m 6¼l
½Pð~al\~amÞ�; ð49Þ

which represents the interval-valued overall strength of the

inequality of alternative al with respect to other alterna-

tives. In what follows, the real-valued overall priority

degree of alternative al can be obtained:

STðalÞ ¼
1

2

XM

m¼1;m 6¼l
½Pð~al [ ~amÞ�

	 
L
�
XM

m¼1;m6¼l
½Pð~al\~amÞ�

	 
U� �

þ
XM

m¼1;m 6¼l
½Pð~al [ ~amÞ�

	 
U
�
XM

m¼1;m 6¼l
½Pð~al\~amÞ�

	 
L��
:

ð50Þ

Thus, we can rank alternatives to produce an order in

accordance with the value of ST(al).

3.5 Procedure of the proposed MAGDM
approach

As a whole, the decision flowchart of solving an MAGDM

is shown in Fig. 2, and the procedure of the proposal is

presented as follows:

Step 1 Identify an MAGDM problem. A moderator

invites T experts to form an expert team and

identifies the set of alternatives A = {a1,…, al, …,

aM} as well as the set of attributes ci (i = 1, …, L).

Step 2 Prepare for the developed approach. The

moderator assigns the values of k(ci), w, ri, and

�kðTÞðliÞ (i = 1, …, L, l = 1, …, M).

Step 3 Organize GD and collect IVIF preferences

provided by the expert team before and after

GD. Experts express their preferences and provide

their original IVIF assessments ð~l j
li; ~m

j
liÞð0Þ

(i = 1,…,L, l = 1,…,M, j = 1,…,T). Then, the

moderator organizes GD which improves the

experts’ understanding of the problem. After

that, they modify their preferences and provide

their updated IVIF assessments ð~l j
li; ~m

j
liÞð1Þ

(i = 1,…,L, l = 1,…,M, j = 1,…,T).

Step 4 Compute the reliability of each expert. Based on

ð~l j
li; ~m

j
liÞð0Þ and ð~l j

li; ~m
j
liÞð1Þ (i = 1,…,L, l = 1,…,M,

j = 1,…,T), the reliabilities Rj(li) (i = 1,…,L,

l = 1,…,M, j = 1,…,T) of experts on each

attribute can be obtained by using Eq. (16).

Step 5 Transform the updated IVIF assessments into the

ER context. Let ½bjLH1
ðliÞ; bjUH1

ðliÞ� ¼ ~l j
li and ½bjLH2

ðliÞ; bjUH2
ðliÞ� ¼ ~m jli, then ð~l j

li; ~m
j
liÞð1Þ can be

transformed into ER belief distribution

assessments profiled by ~BjðliÞ ¼ fðH1; ½bjLH1

ðliÞ; bjUH1
ðliÞ�Þ; ðH2; ½bjLH2

ðliÞ; bjUH2
ðliÞ�Þ; ðX; ½bjLX ðliÞ;

bjUX ðliÞ�Þg, where ½bjLH1
ðliÞ; bjUH1

ðliÞ� and ½bjLH2
ðliÞ;

bjUH2
ðliÞ� denote the interval belief degrees of

expert ej on attribute ci of alternative al with

regard to the grades H1 and H2, respectively,

and ½bjLX ðliÞ; b
jU
X ðliÞ� is the degree of global

ignorance.
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Step 6 Generate the aggregated assessment of each

alternative

Step 6.1 Based on Eq. (18), get the basic

probability mass ~mj
HðliÞ for ~BjðliÞ

with both the reliability Rj(li) and

weight kj(ci) of expert ej taken into

account

Step 6.2 Using Model 1, aggregate ~BjðliÞ
(j = 2, …, T) and get the aggregated

group assessment ~BðliÞ ¼ fðH1; ½bLH1

ðliÞ; bUH1
ðliÞ�Þ;ðH2; ½bLH2

ðliÞ; bUH2
ðliÞ�Þ;

ðX; ½bLXðliÞ; b
U
XðliÞ�Þg of alternative al

on attribute ci
Step 6.3 Based on Eq. (28), get the basic

probability mass ~mHðliÞ for ~BðliÞ
with both the reliability ri and weight

wi of attribute ci taken into account

Step 6.4 Using Model 2, if �kðTÞðliÞ is provided

in Step 2, otherwise using Model 3,

aggregate ~BðliÞ (i = 2, …, L) and get

the aggregated assessment ~BðlÞ ¼
fðH1; ½bLH1

ðlÞ; bUH1
ðlÞ�Þ; ðH2; ½bLH2

ðlÞ;
bUH2

ðlÞ�Þ; ðX; ½bLXðlÞ; b
U
XðlÞ�Þg of

alternative al
Step 7 Produce a ranking of the M alternatives. As per

Eq. (50), calculate the overall priority degree

ST(al) of alterative al and then obtain a ranking of

the M alternatives in accordance with the values

of ST(al) (l = 1,…,M).

Step 8 Finish the decision.

4 A numerical example

In this section, we apply the proposal to analyze a shopping

center site selection problem in order to demonstrate its

validity and applicability.

4.1 Introduction of the shopping center site
selection problem

In this example, we investigate the decision of one service

firm in Anhui Province of China to select the appropriate

site for a new shopping center. First, an expert committee

of four experts, including a manager of the firm, a pro-

fessional consultant from a consulting company, a spe-

cialist in development strategy research in our research

institute, and a staff representative of the firm, was formed

to help the moderator evaluate the most suitable location

alternatives. In this study, the business development

department of the firm, together with our research institute,

is responsible for establishing the strategies, and the

moderator is the general manager of the firm. Then, four

potential locations in Anhui Province are identified to form

the set of alternatives for this problem. The potential

locations are Baohe, Yaohai, Shushan, and Luyang, which

are four urban districts in Hefei (the capital of Anhui

Province) and shown in Fig. 3. Finally, after discussing

with the expert committee and consulting various studies

[43, 47], six attributes, including total cost, population

characteristics, degree of competition, environmental

considerations, accessibility, and flexibility, are selected to

carry out the analysis. Assume that the four experts, the

four potential locations, and the six attributes are denoted

by ej (j = 1,…,4), al (l = 1,…,4), and ci (i = 1,…,6),

respectively. The experts express their preferences of

locations for each attribute by using IVIF sets. Step 1 has

been completed.

Supported by the documentations about the six attri-

butes, the moderator utilizes the method of [52] to calculate

their weights. In detail, the moderator first identifies the

most important attribute, i.e., the first attribute, and then

compares other attributes with the first one to analyze the

importance of these attributes. Finally, by normalizing

these relative weights, we can find that (w1, …,

w6) = (0.23, 0.19, 0.15, 0.14, 0.14, 0.15). Based on the

positive correlation between wi and ri, the reliabilities of

these attributes, i.e., ri (i = 1, …, 6) = (0.7, 0.58, 0.46,

0.43, 0.43, 0.46), can also be obtained. In the same manner,

the moderator can obtain the relative weights of the experts

with the aid of their knowledge and different backgrounds,

which are presented in Table 1. Furthermore, the combined

weights are specified as 1, i.e., �kð4ÞðliÞ = 1 (i = 1, …, 6,

l = 1,…,4). Step 2 has been completed.

4.2 Generation of the aggregated assessments
of potential locations

To find the solution to the shopping center site selection

problem, the aggregated assessment of each potential

location should be first produced by aggregating the

experts’ assessments. The aggregated assessments of the

four potential locations are then utilized to compute the

overall priority degree of each potential location.

Each expert expresses his/her initial preference of the

four potential locations on the six attributes in the form of

an IVIF value, as presented in Table 2. Then, the moder-

ator organizes the experts to have a GD, and after that, they

independently update their preferences, which are given in

Table 3. Step 3 has been completed.

With the use of the two sets of IVIF assessments pre-

sented in Tables 2 and 3, we can obtain the reliability of
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each expert by using Eq. (16). The resulting reliabilities are

presented in Table 4. Step 4 has been completed.

Suppose that the locations are evaluated by using the

evaluation grades H1 and H2, as described in Sect. 3.3. We

can transform the updated IVIF assessments ð~l j
li; ~m

j
liÞð1Þ

given in Table 3 into the interval-valued belief distribution

assessments ~BjðliÞ ¼ fðH1; ½bjLH1
ðliÞ; bjUH1

ðliÞ�Þ; ðH2; ½bjLH2
ðliÞ;

bjUH2
ðliÞ�Þ; ðX; ½bjLX ðliÞ; b

jU
X ðliÞ�Þg, where ½bjLH1

ðliÞ; bjUH1
ðliÞ� ¼

~l j
li and ½bjLH2

ðliÞ;bjUH2
ðliÞ� ¼ ~m jli. Taking attributes c1 and c2 as

examples, the transformed interval-valued belief distribu-

tion assessments of the four potential locations are given in

Table 5. Step 5 has been completed.

To generate the solution to the shopping center site

selection problem, the transformed interval-valued distri-

bution assessments ~BjðliÞ (i = 1,…,6; l = 1,…,4; j = 1, …,

4) are aggregated to produce the aggregated assessment
~BðlÞ (l = 1,…,4). Following Steps 1 and 2 discussed in

Sect. 3.3, ~BðlÞ (l = 1,…,4) can be obtained. The results are

presented in Table 6. Step 6 has been completed.

The aggregated assessments in Table 6 can effectively

reflect the real situations of the four locations in Hefei. Let

us take Yaohai District (a2) and Shushan District (a3) as

examples to demonstrate this. With strong support from

Anhui government, Hefei has undergone unprecedented

development during the last 10 years. Particularly, the

Fig. 2 The decision flowchart of the proposed MAGDM approach
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districts closer to the city center compared to other districts

develop more rapidly. Figure 3 shows that among the four

districts, Yaohai District is the farthest one from the city

center, which implies that its development is the slowest.

As such, for the service firm, the cost of building a shop-

ping center in Yaohai District is lower than that in other

districts. However, Yaohai District is relatively undevel-

oped. Its infrastructure is poor, which makes it perform

badly on the attributes degree of competition and accessi-

bility. In comparison with Yaohai District, Shushan District

is closer to the city center of Hefei. Its development has

always been valued by Hefei government. So, Shushan

District with good infrastructure owns outstanding perfor-

mances in the aspects of competition and accessibility.

Although the total cost of building a shopping center in this

district is not as low as that in Yaohai District, it is mostly

at an acceptable level. Meanwhile, in the other three

aspects, the performances of Shushan District are not

poorer than those of Yaohai District. Overall, it is rational

that ½bLH1
ð3Þ; bUH1

ð3Þ�[ ½bLH1
ð2Þ; bUH1

ð2Þ� and ½bLH2
ð3Þ; bUH2

ð3Þ�\ ½bLH2
ð2Þ; bUH2

ð2Þ�.

4.3 Generation of the solution to the shopping
center site selection problem

Based on the aggregated assessment ~BðlÞ of location al, we

can find its IVIF assessment ~al ¼ ð½lLl ; lUl �; ½vLl ; vUl �Þ, where

½lLl ; lUl � ¼ ½bLH1
ðlÞ; bUH1

ðlÞ� and ½vLl ; vUl � ¼ ½bLH2
ðlÞ; bUH2

ðlÞ�,
and 1 B l B 4. The overall priority degrees of the four

potential locations are then calculated using Eq. (50) given

h = 0.5, as decided by the moderator. The results are pre-

sented in Table 7. Consequently, we can obtain a ranking

of the four potential locations as a3 � a1 � a4 � a2. Step 7

has been completed.

Finally, the resulting ranking which is the solution to the

shopping center site selection problem indicates that the

optimal location is alternative a3, i.e., the Shushan District

can be selected to construct a shopping center of the firm.

Step 8 has been completed.

4.4 Sensitivity analysis

From the above decision process, one can observe that the

resulting ranking is relative not only to the attribute relia-

bility ri (i = 1, …, 6) but also to the risk attitude of the

moderator as well. In view of this, the sensitivity analyses

for ri and parameter h are performed to determine their

effects on the solutions.

Fig. 3 The four potential locations

Table 1 Relative weights of the experts on each attribute

Attribute k1 (ci) k2 (ci) k3 (ci) k4 (ci)

c1 0.35 0.2 0.25 0.2

c2 0.25 0.25 0.35 0.15

c3 0.3 0.2 0.2 0.3

c4 0.25 0.35 0.2 0.2

c5 0.35 0.2 0.2 0.25

c6 0.3 0.3 0.25 0.15
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To perform sensitivity analysis for ri (i = 1, …, 6), we

suppose that the ratios of ri (i = 2, …, 6) to r1 equal to

(0.83, 0.66, 0.61, 0.61, 0.66), while we keep the previous

assumptions for the ratios of wi (i = 2, …, 6) to w1 and

assume that the moderator is risk neutral, namely h = 0.5.

Under such conditions, ten different values within the

interval [0,1] are assigned to r1, and then the overall pri-

ority degrees of the four alternatives are obtained

(Table 8). The results in Table 8 show that the ranking

orders of the alternatives are stable when the value of ri
changes between 0.1 and 1. The attribute reliability ri
(i = 1, …, 6) has a great influence on the overall priority

degree of each alternative (Fig. 4). Figure 4 shows that the

priority degrees of alternatives a2 and a3 are positively

related to the attribute reliability r1. In contrast, the priority

degrees of alternatives a1 and a4 are negatively related to

r1.

To perform sensitivity analysis for the parameter h, 21

different values within the interval [0,1] are assigned to this

parameter. The overall priority degrees of the alternatives

are presented in Table 9, and the variation trend of the

overall priority degree for each alternative is shown in

Fig. 5. The results in Table 9 and Fig. 5 indicate that the

risk attitude of the moderator has a significant impact on

the final ranking of the alternatives. For example, if the

moderator is risk-averse, the optimal location for the con-

sidered selection problem is the alternative a4. The ranking

of a3 gradually increased with the increase in h. In par-

ticular, a3 becomes the third optimal location when h lies in

[0.05,0.2] and then becomes the optimal location when h
increases to [0.25,1]. There exist two stable intervals of h
from 0.05 to 0.2 and from 0.3 to 1, in which the ranking

orders of the alternatives remain as a4 � a1 � a3 � a2 and

a3 � a1 � a4 � a2, respectively. More importantly, the

distinctions between the alternatives become increasingly

apparent with the increase in h. One can see that the pro-

posed approach meets the different risk attitudes of

moderator.

Table 2 Original IVIF assessments from the expert committee for each location before GD

Attribute a1 a2 a3 a4

c1 e1: ([0.3, 0.6], [0.1, 0.2]); e1: ([0.4, 0.7], [0, 0.1]); e1: ([0.3, 0.7], [0.2, 0.3]); e1: ([0.5, 0.6], [0.3, 0.4]);

e2: ([0.2, 0.4], [0.4, 0.5]); e2: ([0.1, 0.4], [0.4, 0.5]); e2: ([0.6, 0.8], [0, 0.2]); e2: ([0.2, 0.4], [0.5, 0.6]);

e3: ([0.2, 0.4], [0.4, 0.5]); e3: ([0.7, 0.9], [0, 0.1]); e3: ([0.7, 0.8], [0, 0.2]); e3: ([0.2, 0.3], [0.4, 0.6]);

e4: ([0.4, 0.5], [0.3, 0.4]) e4: ([0.2, 0.3], [0.5, 0.6]) e4: ([0, 0.2], [0.5, 0.7]) e4: ([0.4, 0.6], [0.2, 0.4])

c2 e1: ([0.5, 0.7], [0.1, 0.2]); e1: ([0.2, 0.3], [0.4, 0.6]); e1: ([0.2, 0.4], [0.4, 0.5]); e1: ([0.7, 0.8], [0, 0.1]);

e2: ([0.6, 0.7], [0.1, 0.2]); e2: ([0.8, 0.9], [0, 0.1]); e2: ([0.3, 0.7], [0, 0.1]); e2: ([0.5, 0.6], [0.3, 0.4]);

e3: ([0.2, 0.4], [0.4, 0.5]); e3: ([0.3, 0.4], [0.4, 0.5]); e3: ([0.3, 0.8], [0, 0.1]); e3: ([0.2, 0.3], [0.4, 0.6]);

e4: ([0.3, 0.4], [0.4, 0.5]) e4: ([0.5, 0.6], [0.3, 0.4]) e4: ([0.4, 0.6], [0.2, 0.3]) e4: ([0.1, 0.2], [0.4, 0.6])

c3 e1: ([0.6, 0.7], [0.2, 0.3]); e1: ([0.1, 0.4], [0.4, 0.5]); e1: ([0.2, 0.4], [0.4, 0.5]); e1: ([0.6, 0.8], [0, 0.2]);

e2: ([0.5, 0.6], [0.2, 0.3]); e2: ([0.4, 0.7], [0.2, 0.3]); e2: ([0.6, 0.7], [0.1, 0.2]); e2: ([0.1, 0.3], [0.4, 0.6]);

e3: ([0.4, 0.7], [0, 0.1]); e3: ([0.1, 0.3], [0.3, 0.5]); e3: ([0.4, 0.7], [0.2, 0.3]); e3: ([0.6, 0.7], [0.2, 0.3]);

e4: ([0.3, 0.5], [0.3, 0.4]) e4: ([0.6, 0.7], [0.2, 0.3]) e4: ([0.3, 0.4], [0, 0.2]) e4: ([0.5, 0.6], [0.1, 0.2])

c4 e1: ([0.4, 0.5], [0.2, 0.4]); e1: ([0.3, 0.4], [0.4, 0.6]); e1: ([0.1, 0.3], [0.4, 0.6]); e1: ([0.6, 0.8], [0, 0.2]);

e2: ([0.5, 0.7], [0.1, 0.2]); e2: ([0.1, 0.4], [0.2, 0.5]); e2: ([0.2, 0.3], [0.4, 0.6]); e2: ([0.7, 0.8],[0.1, 0.2]);

e3: ([0.7, 0.9], [0, 0.1]); e3: ([0.2, 0.4], [0.4, 0.5]); e3: ([0.6, 0.7], [0, 0.2]); e3: ([0.5, 0.7], [0.1, 0.2]);

e4: ([0.3, 0.5], [0.4, 0.5]) e4: ([0.6, 0.7], [0.1, 0.3]) e4: ([0.5, 0.6], [0.2, 0.4]) e4: ([0.4, 0.6], [0.2, 0.3])

c5 e1: ([0.6, 0.8], [0.1, 0.2]); e1: ([0.2, 0.4], [0.4, 0.5]); e1: ([0.7, 0.8], [0.1, 0.2]); e1: ([0.5, 0.7], [0.2, 0.3]);

e2: ([0.6,0.8], [0, 0.2]); e2: ([0.2, 0.3], [0.4, 0.6]); e2: ([0.6, 0.7], [0.2, 0.3]); e2: ([0.6, 0.8], [0.1, 0.2]);

e3: ([0.3, 0.8], [0.1, 0.2]); e3: ([0.3, 0.4], [0.4, 0.6]); e3: ([0.2, 0.3], [0.5, 0.6]); e3: ([0.1, 0.2], [0.4, 0.6]);

e4: ([0.4, 0.5], [0.2, 0.3]) e4: ([0.7, 0.8], [0, 0.1]) e4: ([0.3, 0.4], [0.4, 0.6]) e4: ([0.3, 0.5], [0.4, 0.5])

c6 e1: ([0.7, 0.8], [0.1, 0.2]); e1: ([0.3, 0.6], [0.1, 0.2]); e1: ([0.2, 0.4], [0.4, 0.5]); e1: ([0.5, 0.7], [0.1, 0.2]);

e2: ([0.1, 0.4], [0.2, 0.5]); e2: ([0.6, 0.7], [0.2, 0.3]); e2: ([0.7, 0.8], [0.1, 0.2]); e2: ([0.6, 0.8], [0, 0.2]);

e3: ([0.2, 0.4], [0.4, 0.5]); e3: ([0.1, 0.2], [0.4, 0.6]); e3: ([0.4, 0.7], [0, 0.1]); e3: ([0.1, 0.3], [0.3, 0.5]);

e4: ([0.5, 0.6], [0.1,0.2]) e4: ([0.6, 0.7], [0.1, 0.3]) e4: ([0.3, 0.4], [0, 0.2]) e4: ([0.4, 0.6], [0.2, 0.4])
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5 Comparative analysis

In this section, the proposed method is compared with one

representative ER-based IVIF MAGDM method [38] and

three IVIF aggregation operator-based MAGDM methods

[19, 23, 24, 27] to verify its effectiveness and feasibility.

5.1 Comparison with the ER-based IVIF MAGDM
method

Based on IVIF sets and the ER methodology [41, 42],

Mohammadi and Makui [38] developed an ER-based IVIF

approach for addressing MAGDM problems. The key idea

of the approach in [38] is briefly described as follows. In

the approach of Mohammadi and Makui [38], the indi-

vidual IVIF assessments on each attribute for each alter-

native are first transformed into their associated belief

distribution assessments. Second, the original ER approach

[41, 42] is utilized to aggregate the belief distribution

assessments and the weights of attributes to obtain the

aggregated assessments of individual. Then, the ER

approach is employed again to aggregate the previously

obtained aggregated assessments of individuals and their

associated weights to produce an aggregated assessment of

each alternative. After that, a positive ideal solution (PIS)

and a negative ideal solution (NIS) are used as references

to calculate the gray relational coefficients of each alter-

native from these baselines. Finally, in accordance with the

degree of gray relational coefficients of each alternative

from PIS and NIS, the rank order of alternatives can be

generated. The superiority of their developed approach in

dealing with MAGDM with IVIF information has also been

demonstrated in [38]. In what follows, in order to compare

this paper’s developed approach with the approach of

Mohammadi and Makui, the considered selection problem

was solved a second time by applying the method.

Assume that both the reliabilities of experts and those of

the attributes are equal to 1. On the basis of the weights of

experts and attributes determined in Sect. 4.1, as well as

the updated IVIF assessments in Table 3, the resulting

aggregated assessments of the four potential locations by

employing the approach of Mohammadi and Makui are

given in Table 10.

Table 3 Updated IVIF assessments from the expert committee for each location after GD

Attribute a1 a2 a3 a4

c1 e1: ([0.3, 0.5], [0.1, 0.2]); e1: ([0.4, 0.6], [0, 0.1]); e1: ([0.4, 0.7], [0.2, 0.3]); e1: ([0.5, 0.6], [0.3, 0.4]);

e2: ([0.3, 0.4], [0.4, 0.5]); e2: ([0.2, 0.4], [0.4, 0.6]); e2: ([0.6, 0.7], [0, 0.2]); e2: ([0.3, 0.4], [0.5, 0.6]);

e3: ([0.2, 0.5], [0.4, 0.5]); e3: ([0.8, 0.9], [0, 0.1]); e3: ([0.7, 0.8], [0.1, 0.2]); e3: ([0.2, 0.3], [0.4, 0.5]);

e4: ([0.4, 0.5], [0.3, 0.4]) e4: ([0.2, 0.4], [0.5, 0.6]) e4: ([0, 0.2], [0.6, 0.8]) e4: ([0.4, 0.5], [0.3, 0.5])

c2 e1: ([0.6, 0.7], [0.1, 0.2]); e1: ([0.2, 0.4], [0.4, 0.5]); e1: ([0.2, 0.4], [0.4, 0.5]); e1: ([0.7, 0.8], [0, 0.1]);

e2: ([0.6, 0.8], [0.1, 0.2]); e2: ([0.8, 0.9], [0, 0.1]); e2: ([0.3, 0.6], [0, 0.2]); e2: ([0.4, 0.5], [0.3, 0.5]);

e3: ([0.2, 0.3], [0.5, 0.7]); e3: ([0.3, 0.5], [0.4, 0.5]); e3: ([0.4, 0.8], [0.1, 0.2]); e3: ([0.2, 0.3], [0.4, 0.7]);

e4: ([0.3, 0.4], [0.4, 0.6]) e4: ([0.5, 0.6], [0.3, 0.4]) e4: ([0.4, 0.6], [0.2, 0.3]) e4: ([0.1, 0.2], [0.4, 0.6])

c3 e1: ([0.6, 0.7], [0.1, 0.2]); e1: ([0.2, 0.4], [0.4, 0.6]); e1: ([0.2, 0.3], [0.4, 0.5]); e1: ([0.6, 0.8], [0, 0.2]);

e2: ([0.4, 0.6], [0.2, 0.3]); e2: ([0.4, 0.6], [0.2, 0.3]); e2: ([0.5, 0.7], [0.1, 0.2]); e2: ([0.2, 0.3], [0.4, 0.5]);

e3: ([0.5, 0.7], [0, 0.1]); e3: ([0.2, 0.3], [0.4, 0.5]); e3: ([0.4, 0.8], [0.1, 0.2]); e3: ([0.6, 0.7], [0.2, 0.3]);

e4: ([0.3, 0.5], [0.2, 0.4]); e4: ([0.5, 0.6], [0.2, 0.3]); e4: ([0.4, 0.5], [0, 0.2]); e4: ([0.5, 0.6], [0.1, 0.2]);

c4 e1: ([0.4, 0.5], [0.2, 0.4]) e1: ([0.3, 0.4], [0.3, 0.5]) e1: ([0.1, 0.3], [0.4, 0.6]) e1: ([0.7, 0.8], [0, 0.2])

e2: ([0.6, 0.7], [0.1, 0.2]); e2: ([0.2, 0.4], [0.3, 0.5]); e2: ([0.2, 0.3], [0.4, 0.5]); e2: ([0.7, 0.9], [0, 0.1]);

e3: ([0.7, 0.8], [0, 0.2]); e3: ([0.1, 0.3], [0.4, 0.5]); e3: ([0.6, 0.8], [0, 0.2]); e3: ([0.6, 0.7], [0.1, 0.2]);

e4: ([0.2, 0.5], [0.4, 0.5]) e4: ([0.6, 0.7], [0.1, 0.2]) e4: ([0.5, 0.7], [0.2, 0.3]) e4: ([0.4, 0.6], [0.2, 0.4])

c5 e1: ([0.5, 0.8], [0.1, 0.2]); e1: ([0.3, 0.5], [0.4, 0.5]); e1: ([0.6, 0.8], [0.1, 0.2]); e1: ([0.5, 0.7], [0.1, 0.2]);

e2: ([0.5, 0.6], [0.3, 0.4]); e2: ([0.1, 0.3], [0.4, 0.6]); e2: ([0.6, 0.7], [0.1, 0.2]); e2: ([0.6, 0.7], [0.1, 0.3]);

e3: ([0.4, 0.8], [0.1, 0.2]); e3: ([0.2, 0.4], [0.4, 0.6]); e3: ([0.3, 0.4], [0.5, 0.6]); e3: ([0.1, 0.2], [0.4, 0.6]);

e4: ([0.4, 0.5], [0.2, 0.3]) e4: ([0.7, 0.8], [0, 0.1]) e4: ([0.3, 0.5], [0.4, 0.5]) e4: ([0.4, 0.5], [0.4, 0.5])

c6 e1: ([0.7, 0.8], [0, 0.2]); e1: ([0.4, 0.6], [0.2, 0.3]); e1: ([0.3, 0.4], [0.4, 0.6]); e1: ([0.6, 0.7], [0.2, 0.3]);

e2: ([0.1, 0.3], [0.2, 0.5]); e2: ([0.5, 0.6], [0.2, 0.3]); e2: ([0.7, 0.8], [0, 0.2]); e2: ([0.6, 0.8], [0.1, 0.2]);

e3: ([0.3, 0.4], [0.4, 0.5]); e3: ([0.2, 0.3], [0.4, 0.6]); e3: ([0.5, 0.7], [0, 0.1]); e3: ([0.2, 0.3], [0.4, 0.5]);

e4: ([0.4, 0.6], [0.1, 0.2]) e4: ([0.7, 0.8], [0.1, 0.2]) e4: ([0.3, 0.5], [0.1, 0.2]) e4: ([0.5, 0.6], [0.2, 0.4])
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According to the aggregated assessments in Table 10,

the PIS and NIS can be obtained as a? = ([0.7236, 0.9679],

[0.0135, 0.0271], [0.0049, 0.2629]) and a- = ([0.4140,

0.8418], [0.0473, 0.1342], [0.0240, 0.5387]), respectively.

Then, the gray relational degree of each location from PIS

and NIS is calculated.

nþ1 ¼ 0:7766; nþ2 ¼ 0:3434; nþ3 ¼ 0:5850; nþ4 ¼ 1;

n�1 ¼ 0:3851; n�2 ¼ 1; n�3 ¼ 0:4603; n�4 ¼ 0:3465:

After that the relative gray relational degree of each

location from PIS is f1 = 0.6685, f2 = 0.2556, f3 = 0.5597,

f4 = 0.7427. Finally, in accordance with the values of fi
(i = 1,…,4), a ranking order of the four locations is pro-

duced as a4 � a1 � a3 � a2. It is evident that the ranking

result can be obtained by the proposed approach when h [
[0.05, 0.2]. This reflects that the proposed approach is

effective and more flexible compared to the approach of

Mohammadi and Makui. Besides, the reliabilities of dif-

ferent experts are assumed to be the same and equal to 1

when the approach of Mohammadi and Makui is used to

solve group decision-making problems. In other words, it

Table 4 Expert reliability on each attribute for each location

Attribute a1 a2 a3 a4

c1 e1: (0.7751); e1: (0.5861); e1: (0.6569); e1: (0.7963);

e2: (0.8134); e2: (0.5972); e2: (0.6630); e2: (0.8024);

e3: (0.8134); e3: (0.5892); e3: (0.6524); e3: (0.7884);

e4: (0.8193) e4: (0.5931) e4: (0.5616) e4: (0.7936)

c2 e1: (0.7312); e1: (0.6560); e1: (0.7317); e1: (0.5743);

e2: (0.7493); e2: (0.6331); e2: (0.7246); e2: (0.6425);

e3: (0.7438); e3: (0.6927); e3: (0.7405); e3: (0.6672);

e4: (0.7512) e4: (0.7025) e4: (0.7736) e4: (0.6388)

c3 e1: (0.7777); e1: (0.7451); e1: (0.6855); e1: (0.7127);

e2: (0.8014); e2: (0.7419); e2: (0.7123); e2: (0.6371);

e3: (0.7888); e3: (0.7190); e3: (0.7310); e3: (0.7129);

e4: (0.7803) e4: (0.7123) e4: (0.6998) e4: (0.7253)

c4 e1: (0.7546); e1: (0.7465); e1: (0.6825); e1: (0.8553);

e2: (0.7621); e2: (0.7550); e2: (0.7019); e2: (0.8605);

e3: (0.7191); e3: (0.7824); e3: (0.6930); e3: (0.8360);

e4: (0.7410) e4: (0.6981) e4: (0.7094) e4: (0.8122)

c5 e1: (0.8106); e1: (0.7480); e1: (0.7118); e1: (0.7156);

e2: (0.8353); e2: (0.7346); e2: (0.7331); e2: (0.6862);

e3: (0.7987); e3: (0.7431); e3: (0.6861); e3: (0.6505);

e4: (0.8192); e4: (0.6375); e4: (0.7148); e4: (0.7006);

c6 e1: (0.6430); e1: (0.6905); e1: (0.6352); e1: (0.7510);

e2: (0.6706); e2: (0.7194); e2: (0.6609); e2: (0.7274);

e3: (0.6737); e3: (0.6240); e3: (0.6660); e3: (0.6585);

e4: (0.6869) e4: (0.7163) e4: (0.6415) e4: (0.7509)
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cannot allow the experts to have different reliabilities as

the proposed approach does.

5.2 Comparison with the IVIF aggregation
operator-based MAGDM methods

With the use of IVIF aggregation operators such as the

IVIFAWA operator [19, 23], the IVIF Einstein weighted

averaging (IVIFEWA) operator [27], and the IVIF Hama-

cher weighted averaging (IVIFHWA) operator [24], three

IVIF aggregation operator-based MAGDM approaches are

presented in [19, 23, 24, 27]. In these approaches, the IVIF

aggregation operators are used twice to implement attribute

aggregation and the aggregation of individual assessments.

Finally, based on the obtained aggregated assessments, a

ranking order of the alternatives can be produced. In the

following, in order to compare the approach developed in

this paper with the approaches in [19, 23, 24, 27], the

considered selection problem was solved by using the latter

three approaches.

Under the same assumptions as stated in Sect. 5.1, the

resulting aggregated assessments of the four potential

locations by using the three different aggregation methods

are presented in Table 11. As the IVIFAWA operator and

the IVIFEWA operator are the special cases of the

IVIFHWA operator when s = 1, 2, respectively, Table 11

shows that the aggregated assessments using the IVIFHWA

operator in the setting of s = 1, 2 are the same as those,

respectively, using the IVIFAWA operator and the IVI-

FEWA operator. More importantly, the lower bound of the

aggregated interval-valued non-membership degree is

equal to 0, even if the lower bounds of the most individual

interval-valued non-membership degrees are not equal to 0

as listed in Table 3. This is due to the drawback of these

operators that they only consider the individual interval-

valued non-membership degrees whose lower bounds are

equal to 0 but fail to consider all the other individual

interval-valued non-membership degrees.

In order to eliminate the impact of different IVIF

comparison rules, we use the two-criterion rule [50] to

compare the aggregated IVIF assessments of the four

locations. The results are presented in Table 12. As given

in Table 12, the three aggregation operator-based

MAGDM methods generate the same ranking order of the

four locations: a3 � a4 � a1 � a2, where the rankings of

Table 6 Aggregated

assessments of the four

locations

Location Aggregated assessments

a1 {(H1, [0.4996, 0.7897]), (H2, [0.1422, 0.1474]), (X, [0.0629, 0.3582])}

a2 {(H1, [0.4380, 0.7214]), (H2, [0.1653, 0.2013]), (X, [0.0773, 0.3967])}

a3 {(H1, [0.5169, 0.8152]), (H2, [0.1085, 0.1161]), (X, [0.0687, 0.3746])}

a4 {(H1, [0.5154, 0.7508]), (H2, [0.1181, 0.1854]), (X, [0.0638, 0.3665])}

Table 7 Overall priority degrees of the four locations

Location Overall priority degrees Rank order

a1 0.0276 a3 � a1 � a4 � a2

a2 - 0.1024

a3 0.0704

a4 0.0045

Table 8 Overall priority degrees obtained by the proposed approach

with variation in r1

r1 a1 a2 a a4 Rank order

0.1 0.0385 - 0.1148 0.0500 0.0262 a3 � a1 � a4 � a2

0.2 0.0374 - 0.1137 0.0520 0.0242

0.3 0.0362 - 0.1123 0.0544 0.0218

0.4 0.0347 - 0.1107 0.0572 0.0189

0.5 0.0329 - 0.1086 0.0606 0.0152

0.6 0.0306 - 0.1059 0.0648 0.0105

0.7 0.0276 - 0.1023 0.0704 0.0044

0.8 0.0236 - 0.0972 0.0778 - 0.0042

0.9 0.0178 - 0.0895 0.0886 - 0.0169

1 0.0085 - 0.0766 0.1060 - 0.0379

Fig. 4 Movement of overall priority degrees of the four locations

with variation in r1
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a1 and a4 differ from those generated by the proposed

method, but the best and the worst choices are still a3 and

a2, respectively. Similar to the method of Mohammadi and

Makui, all the experts are assumed to be fully reliable when

these aggregation operator-based MAGDM methods are

used to solve group decision-making problems. Thus, they

cannot allow the experts to have different reliabilities as

the proposed method does.

In summary, the decision results generated by the

methods [19, 23, 24, 27, 38] can be achieved by the pro-

posed method. Meanwhile, relative to a static fixed deci-

sion result obtained by the method of Mohammadi and

Makui [38], the dynamic decision result generated by the

proposed method can better reflect the inherent variety

rule. This indicates that the proposed method is effective

and is more flexible than the existing one [38]. When

aggregating IVIF information, the proposed method takes

into account all the interval-valued membership degrees

and the interval-valued non-membership degrees of ele-

ments that belong to IVIF sets instead of only considering

the maximal membership degree and the minimal non-

membership degree as the aggregation operator-based

methods [19, 23, 24, 27] do. More importantly, different

Table 9 Overall priority

degrees obtained by the

proposed approach with

variation in h

h a1 a2 a3 a4 Rank order

0 0.0082 - 0.0193 - 0.0246 0.0357 a4 � a1 � a2 � a3

0.05 0.0101 - 0.0276 - 0.0151 0.0325 a4 � a1 � a3 � a2

0.1 0.0091 - 0.0234 - 0.0198 0.0341

0.15 0.0096 - 0.0255 - 0.0174 0.0333

0.2 0.0094 - 0.0244 - 0.0186 0.0337

0.25 0.0179 - 0.0608 0.0229 0.0201 a3 � a4 � a1 � a2

0.3 0.0198 - 0.0691 0.0324 0.0169 a3 � a1 � a4 � a2

0.35 0.0217 - 0.0774 0.0419 0.0138

0.4 0.0237 - 0.0857 0.0514 0.0107

0.45 0.0256 - 0.0940 0.0609 0.0076

0.5 0.0276 - 0.1024 0.0704 0.0045

0.55 0.0295 - 0.1107 0.0798 0.0013

0.6 0.0314 - 0.1190 0.0893 - 0.0018

0.65 0.0334 - 0.1273 0.0988 - 0.0049

0.7 0.0353 - 0.1356 0.1083 - 0.0080

0.75 0.0373 - 0.1439 0.1178 - 0.0112

0.8 0.0392 - 0.1522 0.1273 - 0.0143

0.85 0.0411 - 0.1605 0.1368 - 0.0174

0.9 0.0431 - 0.1688 0.1463 - 0.0205

0.95 0.0450 - 0.1771 0.1558 - 0.0236

1 0.0470 - 0.1855 0.1653 - 0.0266

Fig. 5 Movement of overall priority degrees of the four locations

with variation in h

Table 10 Aggregated

assessments of the four

locations

Location Aggregated assessments

a1 {(H1, [0.6525, 0.9679]), (H2, [0.0175, 0.0271]), (X, [0.0049, 0.3300])}

a2 {(H1, [0.4140, 0.8418]), (H2, [0.0389, 0.1342]), (X, [0.0241, 0.5471])}

a3 {(H1, [0.5907, 0.9351]), (H2, [0.0473, 0.0481]), (X, [0.0168, 0.3620])}

a4 {(H1, [0.7236, 0.9614]), (H2, [0.0135, 0.0325]), (X, [0.0061, 0.2629])}
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from the methods [19, 23, 24, 27, 38], the proposed method

allows experts to have different reliabilities when it is

employed to address group decision-making problems. The

above comparisons verify the effectiveness and feasibility

of the proposed method.

6 Conclusion and future study

This study proposes a novel fuzzy approach for MAGDM

with IVIF information. For the purpose of resolving the

issues with the operator-based IVIF aggregation MAGDM

methods [19, 23, 24, 27, 38], we first transform the IVIF

assessments into the ER context and then use the ER rule

twice to combine experts’ assessments. Several optimiza-

tion models are established and solved in order to produce

the interval-valued aggregated assessments of alternatives.

More importantly, expert reliabilities and expert weights

are taken into account simultaneously, which has rarely

been considered in most of the existing IVIF set-based

MAGDM methods. In other words, the proposed approach

explores a new way to address expert reliability in fuzzy

MAGDM. Finally, the proposed approach is utilized to

solve a service firm’s shopping center site selection prob-

lem to demonstrate its applicability and validity. By solv-

ing the practical example, we find that the proposal of this

Table 12 Overall priority

degrees of the four locations

using different methods

Method a1 a2 a3 a4 Rank order

Using the IVIFHWA operator [24]

s = 0.1 - 0.0035 - 0.0558 0.0358 0.0235 a3 � a4 � a1 � a2

s = 0.5 0.0032 - 0.0686 0.0407 0.0247

s = 1 0.0064 - 0.0737 0.0423 0.0251

s = 1.5 0.0082 - 0.0762 0.0428 0.0251

s = 2 0.0095 - 0.0776 0.0431 0.0250

s = 5 0.0129 - 0.0804 0.0429 0.0245

s = 100 0.0193 - 0.0802 0.0353 0.0256

Using the IVIFAWA operator [19, 23] 0.0064 - 0.0737 0.0423 0.0251 a3 � a4 � a1 � a2

Using the IVIFEWA operator [27] 0.0095 - 0.0776 0.0431 0.0250 a3 � a4 � a1 � a2

Table 11 Aggregated assessments of the four locations using different aggregation methods

Aggregation method a1 a2 a3 a4

Using the IVIFHWA operator [24]

s = 0.1 ([0.4513, 0.6302],

[0.0000, 0.2816])

([0.4695, 0.6373],

[0.0000, 0.2762])

([0.4541, 0.6632],

[0.0000, 0.2641])

([0.4994, 0.6592],

[0.0000, 0.2908])

s = 0.5 ([0.4388, 0.6130],

[0.0000, 0.2981])

([0.4376, 0.6001],

[0.0000, 0.3116])

([0.4390, 0.6445],

[0.0000, 0.2803])

([0.4852, 0.6323],

[0.0000, 0.3160])

s = 1 ([0.4289, 0.6034],

[0.0000, 0.3065])

([0.4185, 0.5835],

[0.0000, 0.3274])

([0.4280, 0.6333],

[0.0000, 0.2891])

([0.4748, 0.6179],

[0.0000, 0.3279])

s = 1.5 ([0.4229, 0.5982],

[0.0000, 0.3110])

([0.4072, 0.5751],

[0.0000, 0.3353])

([0.4207, 0.6268],

[0.0000, 0.2940])

([0.4679, 0.6099],

[0.0000, 0.3341])

s = 2 ([0.4187, 0.5948],

[0.0000, 0.3139])

([0.3995, 0.5699],

[0.0000, 0.3401])

([0.4154, 0.6225],

[0.0000, 0.2972])

([0.4630, 0.6046],

[0.0000, 0.3379])

s = 5 ([0.4065, 0.5867],

[0.0000, 0.3205])

([0.3787, 0.5578],

[0.0000, 0.3509])

([0.3989, 0.6114],

[0.0000, 0.3051])

([0.4484, 0.5911],

[0.0000, 0.3468])

s = 100 ([0.3908, 0.5792],

[0.0000, 0.3266])

([0.3539, 0.5471],

[0.0000, 0.3600])

([0.3591, 0.6001],

[0.0000, 0.3129])

([0.4285, 0.5773],

[0.0000, 0.3547])

Using the IVIFAWA operator [19, 23] ([0.4289, 0.6034],

[0.0000, 0.3065])

([0.4185, 0.5835],

[0.0000, 0.3274])

([0.4280, 0.6333],

[0.0000, 0.2891])

([0.4748, 0.6179],

[0.0000, 0.3279])

Using the IVIFEWA operator [27] ([0.4187, 0.5948],

[0.0000, 0.3139])

([0.3995, 0.5699],

[0.0000, 0.3401])

([0.4154, 0.6225],

[0.0000, 0.2972])

([0.4630, 0.6046],

[0.0000, 0.3379])

Values in bold represent the unreasonable results obtained by aggregation methods

Values in italic represent the same results obtained by different aggregation methods
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paper puts forth an effective tool for us to handle MAGDM

with IVIF information.

In this study, we discuss the reliabilities of experts in

MAGDM with IVIF information. However, there exist few

works that consider this topic in fuzzy circumstances. In

the future, we will explore new ways to measure expert

reliability in other circumstances, including the neutro-

sophic set [5, 9–12], the hesitant fuzzy environment

[53–55], the interval-valued hesitant fuzzy context [56], the

probabilistic soft circumstance [57], and other contexts.
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