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Abstract
Recently, bipolar as well as vague concept lattice visualization is introduced for precise representation of inconsistency and

incompleteness in data sets based on its acceptation and rejection part simultaneously. In this process, a problem is

addressed while measuring the periodic fluctuation in bipolar information at the given phase of time. This changes in

human cognition used coexist often in our daily life where the sentiments (i.e., love or hatred) for anyone may change

several times from morning to evening office time. In this case precise representation of this type of bipolar information

and measuring its pattern is a major issue for the researchers. To deal with this problem, the current paper proposes three

methods for adequate representation of bipolar complex data set using the calculus of complex fuzzy matrix, d-equality and
the calculus of granular computing, respectively. Hence, the proposed method provides an umbrella way to navigate or

decompose the bipolar complex data sets and their semantics using an illustrative example. The results obtained from the

proposed methods are also compared to validate the results.

Keywords Bipolar complex fuzzy set � Bipolar complex fuzzy graph � Bipolar concept lattice � Bipolar fuzzy graph �
Formal concept analysis (FCA) � Granulation

List of symbols
(X, Y, ~R) Context-K

^ Infimum

_ Supremum

Z Set of universe

d Granulation

d Distance

Avd Average distance

I Bipolar fuzzy set of vertices

J Bipolar fuzzy set of edges

Z Complex fuzzy set

G Bipolar graph

n Total number of attributes

n Total number of objects

� Multiplication

! Residuum

X Objects

Y Attributes
~R A map from X � Y to L

L Scale of truth degree

L Residuated lattice

a, b, c Elements in L

A Set of objects

B Set of attributes

C1 Concept

CG Complex granules

lPðzÞ Position information

lNðzÞ Negative information

("; #) Galois connection
Q

Projection operator

LX L-set of objects

LY L-set of attributes
S

Union
T

Intersection

1 Introduction

Extracting some of the meaningful information from a

given data set is a major concern for the research com-

munity [18]. Solving the particular problem of a given

research field is based on user requirements. To deal with

this problem, one of the mathematical model is introduced

by Wille [56] based on applied abstract algebra. The

algebra of this tool is recently enhanced via mathematics of
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fuzzy set [16] and its extensive properties [17]. It given a

way to deal with uncertainty and vagueness in fuzzy

attributes precisely when compared to binary setting [48].

This new tool generally takes the input in form of a fuzzy

context K ¼ X; Y ; ~R
� �

having some set of objects set (X),

some set of fuzzy attributes (Y), and an L-relation among X

and Y such that, ~R: X � Y ! L. It means the relation
~Rðx; yÞ 2 L represents the membership value at which the

object x 2 X has the attribute y 2 Y in L-set [26]. L is a

support set of some complete residuated lattice LÞ ¼
ðL;^;_;�;!; 0; 1Þ where, 0 and 1 represent the least and

greatest elements, respectively [37]. This becomes com-

plete residuated lattice having following properties: (i)

ðL;^;_; 0; 1Þ is a bounded complete lattice with bound 0

and 1, (ii) ðL;�; 1Þ is commutative monoid, (iii) � and !
are adjoint operators (called multiplication and residuum,

respectively), that is a� b� c iff a� b ! c; 8a; b; c 2 L

[55]. The operators � and ! are defined distinctly by

Lukasiewicz: a� b ¼ maxðaþ b� 1; 0Þ, a ! b ¼ min

ð1� aþ b; 1Þ; G€odel: a� b ¼ minða; bÞ, a ! b ¼ 1 if

a� b, otherwise b; Goguen: a� b ¼ a � b, a ! b ¼ 1 if

a� b, otherwise b/a. For any L-set A 2 LX of objects, an L-

set A " 2 LY of attributes can be obtained using " operator

A "ðyÞ ¼ ^x2XðAðxÞ ! ~Rðx; yÞÞ. Similarly, for any L-set

B 2 LY of attributes, an L-set B# 2 LX of objects can be

discovered using # operator, i.e., B#ðxÞ ¼ ^y2YðBðyÞ !
~Rðx; yÞÞ. Here, A"ðyÞ is interpreted as the L-set of attribute

y 2 Y shared by all objects from A. Similarly, B#ðxÞ is

interpreted as the L-set of all objects x 2 X having the

same attributes from B in common. The formal fuzzy

concept is a pair of ðA;BÞ 2 LX � LY satisfying A" ¼ B and

B# ¼ A, where fuzzy set of objects A is called an extent and

fuzzy set of attributes B is called an intent [24]. The set of

obtained formal fuzzy concepts from a given fuzzy context

K defines the partial ordering principle, i.e.,

ðA1;B1Þ� ðA2;B2Þ () A1 � A2ð() B2 � B1Þ. Together

with this ordering, there exists an infimum and a supremum

for the generated formal fuzzy concepts in the complete

lattice, i.e., (i) ^j2JðAj;BjÞ ¼ ð
T

j2J Aj; ð
S

j2J BjÞ#"Þ, (ii)

_j2JðAj;BjÞ ¼ ðð
S

j2J AjÞ"#;
T

j2J BjÞ [22]. The operators

("; #) are known as Galois connection [28]. In this way, the

calculus of fuzzy concept lattice provides some of the

interesting patterns hidden in the data with fuzzy attributes.

In this process, a problem arises when the attributes contain

bipolar information and its uncertainty changes at each

given phase of time. To conquer this problem, current

paper focuses on the depth analysis of complex or dynamic

data set having bipolar fuzzy attributes using the calculus

of bipolar complex fuzzy set and its graphical properties.

The bipolarity is nothing but a generalized mathematical

representation of Yin Yang logic [69, 71]. Generally, it

exists in two forms: (1) linear bipolarity, i.e., pass and fail

or, (2) interactive bipolarity among the attributes, i.e.,

conflict or common interest side [23, 68]. It means a

bipolar information can be represented through combina-

tion of a positive and negative membership of a defined

bipolar fuzzy space ½�1; 0Þ � ð0; 1� where 1 represents

positive pole true, - 1 represents negative pole true and 0

as false [2]. In this case, a bipolar fuzzy set J in Z can be

represented as J ¼ ðz; lPðzÞ; lNðzÞÞjz 2 Zf g where lP :
Z ! ½0; 1� and lN : Z ! ½�1; 0� are mappings [10]. This

mathematical model provides a precise representation of

bipolar information given by any user for further analysis.

However, the preference and opinion of any user change at

each interval of time [45]. The bipolar cognitions as well as

bipolarity in sentiments used to find in each of the human

couple. In which, they love each other maximally at the

beginning and hate minimally to each other, whereas it

changes after some time and vice versa. This type of

fluctuation is used to find in each daily life where a user

prefers specific product to purchase at morning official

time and some thing different at evening returning time.

This can be measured in day, month and yearly basis also

[4]. Analyzing this type of periodic or non-periodic bipolar

or multi-polar information using the properties of mathe-

matics [14] or graphs [13] is a major issue for the

researchers of current time [45]. The problem computing

with these types of multi-valued [64] complex linguistics

words is an intensive issue due to lack of incomplete data

[33, 63]. To deal with these types of multi-valued linguistic

words properties of complex fuzzy set [59] and its calculus

is extensively studied [60]. Among them the calculus of

bipolar complex fuzzy set and its application is at infancy

stage. However, its properties provide a precise represen-

tation of chages in bipolar information when compared to

other available approaches as shown in Table 1. Due to this

reason, current paper focuses on analysis of bipolar com-

plex fuzzy context and its compact visualization in the

concept lattice for knowledge processing tasks. The moti-

vation is to extract some meaningful information from the

given bipolar complex fuzzy context based on their objects

and attributes set. To achieve this goal, recently Prem

Kumar Singh [45] tried to analyze the given bipolar context

[39] and its concept lattice visualization [40] using the

amplitude and phase term of a complex fuzzy set. The

current paper is distinct from any of the available approa-

ches in following ways:

(i) The current paper focuses on empirical analysis of

bipolar complex fuzzy context for multi-decision

process,

2406 Neural Computing and Applications (2020) 32:2405–2422

123



(ii) The current paper aimed at providing a graphical

analytics of periodic bipolar data sets and their

pattern,

(iii) The current provides d-equal decomposition or

navigation of bipolar complex fuzzy concept

lattice at user required complex granules for

refining the knowledge. It can be considered as

one of the novel and significant output of the

proposed method in field of knowledge discovery

and representation tasks.

To understand the necessity of the proposed method, a

graphical structure classification of available data process

is shown in Fig. 1. It shows that the bipolar complex fuzzy

concept lattice and its calculus are vital requirements to

handle the data with bipolar complex fuzzy attributes. To

achieve this goal, three subsequent methods are proposed

in this paper: (i) the first method aims at investigating all

the bipolar complex fuzzy concepts based on user required

subset of attributes, (ii) the second method aims at select-

ing d-equal bipolar complex fuzzy concepts based on their

computed distance, and (iii) the third method focuses on

decomposition of given bipolar complex fuzzy context at

user-defined complex granules with an illustrative exam-

ple. All of these methods and their obtained results are

compared with each other to validate the results and their

uses for the appropriate contexts.

Remaining parts of this paper is constituted as follows:

Sect. 2 contains some of the required mathematical nota-

tions about bipolar complex fuzzy set and its graphical

representation. Section 3 includes the proposed methods

for handling the bipolar complex fuzzy data sets. The step-

by-step demonstration of the proposed methods is shown in

Sect. 4 using an illustrative example. Section 5 provides

discussions followed by conclusions and references.

2 Preliminaries

In the last decade, bipolar fuzzy concept lattice [39] and its

properties in complex vague plane [45] are considered as

one of the most potential tool. The reason is it given a

mathematical way to represent the positive and negative

side of bipolar information, independently when compared

to vague set [40]. Recently, Prem Kumar Singh [45]

addressed a issue in this regard that precise representation

of bipolar information in the dynamic or complex data sets

is computationally expensive task. It becomes more diffi-

cult when the user or expert wants to analyze and visualize

them in using applied abstract algebra or graphical format.

The reason is uncertainty and its existence in the bipolar

attributes changes at each given phase of time [51, 52]. To

resolve this issue, the current paper focuses on utilizing the

properties of bipolar complex fuzzy graph, d-equality and

complex granules as given below:

Definition 1 (Complex fuzzy set) [49, 50]: A complex

fuzzy set Z can be defined over a universe of discourse

U having a single fuzzy membership value at given phase

Table 1 A comparative study on complex fuzzy, interval, vague and bipolar set

Complex fuzzy set Interval-valued complex set Complex vague set Bipolar complex set

Domain Universe of discourse Universe of discourse Universe of Discourse Universe of discourse

Co-domain Single-valued in [0, 1] Interval-valued in [0, 1] Single-valued [0, 1] Bipolar ½�1; 0Þ � ð0; 1�
Uncertainty measurement Yes Yes Yes Yes

Fluctuation measurement Yes Yes Yes Yes

Unit circle [0, 1] [0, 1] [0, 1] (0, 1] and [- 1, 0)

Periodic measurement Yes Yes Yes Yes

Amplitude term Single-valued membership Yes in [0, 1] Yes in [0, 1] Yes in [- 1, 1]

Positive membership Single-valued membership Yes in [0, 1] Yes in [0, 1] Yes in [0, 1]

Negative membership Single-valued membership Yes in [0, 1] Yes in [0, 1] Yes in [- 1, 0]

Phase term measurement Yes in [0, 2p] Yes in [0, 2p] Yes in [0, 2p] Yes in [0, 2p]

Fig. 1 Graphical understanding of bipolar complex fuzzy concept

learning
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of time. The complex-valued grade of membership of an

element z 2 U can be characterized by lZðzÞ. The mem-

bership values that lZðzÞ may receive all lie within the unit

circle in the complex plane in the form lZðzÞ ¼ rzðxÞeiwzðxÞ,

where i ¼
ffiffiffiffiffiffiffi
�1

p
, both rZðzÞ and wZðzÞ are real-valued and

rZðzÞ 2 [0, 1]. The complex fuzzy set Z may be represented

as the set of ordered pairs:

Z ¼ ðz; lZðzÞÞ : z 2 Uf g ¼ ðz; rZðzÞeiwZ ðzÞÞ : z 2 U
n o

Example 1 Let us suppose, a company wants to manu-

facture a car (x1) using the opinion of an expert (y1). The

expert gives 60% opinion that the production of car can be

done in the third or fourth month of the given year. This

complex linguistics words can be represented via proper-

ties of complex fuzzy set as follows: x1 ¼ 0:6ei0:7p=y1.

Similarly, the opinion of more than two experts can be

analyzed using the union and intersection of complex fuzzy

sets lz1ðzÞ ¼ rz1ðzÞ:eiargz1 ðzÞ and lz2ðzÞ ¼ rz2ðzÞ:eiargz2 ðzÞ as

given below [4]:

• lz1[z2 ¼ rz1[z2ðzÞ:eiargz1[z2 ðzÞ ¼ maxðrz1ðzÞ; rz2ðzÞÞ.
eimaxðargz1 ðzÞ;argz2 ðzÞÞ.

• lz1\z2 ¼ rz1\z2ðzÞ:eiargz1\z2 ðzÞ ¼ minðrz1ðzÞ; rz2ðzÞÞ.
eiminðargz1 ðzÞ;argz2 ðzÞÞ.

Example 2 Let us suppose, two experts provide their

opinion for the production of car in the third or fourth

months. One of the expert agreed 60 percent for the pro-

duction, whereas the second expert agreed 40 percent in the

given phase of time. In this case, the opinion of two experts

can be analyzed using the intersection and union operator

among the complex number: z1ðzÞ ¼ 0:6ei0:7p=y1 and z2 ¼
0:4ei0:7p=y1 as follows [21]:

• lz1[z2 ¼ 0:6ei0:7p=y1.

• lz1\z2 ¼ 0:4ei0:7p=y1.

It can be observed that the expert gives 60% opinion for

the production of car in the third or fourth month which

includes his/her 40% disagreement also. To represent this

type of bipolar attributes, the calculus of bipolar fuzzy set

and bipolar fuzzy graph can be utilized in the complex

fuzzy set.

Definition 2 (Bipolar fuzzy set) [30]: A bipolar fuzzy set

J in Z represents the positive and negative side of a given

attributes, consequently. It is represented in the form J ¼
ðz; lPðzÞ; lNðzÞÞjz 2 Zf g where lPðzÞ : Z ! ½0; 1� and

lNðzÞ : Z ! ½�1; 0� are mappings. The positive member-

ship degree lPðzÞ is to denote the satisfaction degree of an

element z to the property corresponding to a bipolar fuzzy

set J, and the negative membership degree lNðzÞ is to

denote the satisfaction degree of an element z to some

implicit counter-property corresponding to a bipolar fuzzy

set J. The following can be defined for any given two

bipolar fuzzy sets I ¼ ðlPI ; lNI Þ and J ¼ ðlPJ ; lNJ Þ:

(1) ðI
T
JÞðzÞ ¼ minðlPI ðzÞ; lPJ ðzÞÞ, maxðlNI ðzÞ; lNJ ðzÞÞ,

(2) ðI
S
JÞðzÞ ¼ maxðlPI ðzÞ; lPJ ðzÞÞ, minðlNI ðzÞ; lNJ ðzÞÞ.

Definition 3 (Bipolar complex fuzzy set) [5]: A bipolar

complex fuzzy set Z can be defined over a universe of

discourse U. The bipolar complex fuzzy membership of an

element z 2 U can be characterized by positive 0\rPz
� 1,

negative membership value �1� rNz
\0, whereas the

membership value 0 means the element is somehow irrel-

evant to the given context. It can be observed that the

‘‘amplitude’’ term in bipolar complex fuzzy set satisfies the

property 0� rPz
þ rNz

� 2, whereas the ‘‘phase’’ term can

be characterized by wr
Pz

and 2p� wr
Nz

in real-valued

interval ð0; 2p� and i ¼
ffiffiffiffiffiffiffi
�1

p
. It can be represented as

Z ¼ ðz; ½rPz
; rNz

� � ew
r
Pz
;2p�wr

Nz : z 2 U
� �

. Similarly, the

bipolar complex fuzzy relations and their partial ordering

can be defined based on their positive and negative mem-

bership for their amplitude and phase terms, independently.

Example 3 Let us suppose, a company wants to manu-

facture a car (x1) based on the expert opinion (y1). The

expert agreed 60% for the production of car in third or

fourth month, whereas 30% disagreed in production of car

in eight month. To represent, this type of complex fuzzy

word this paper introduces the properties of bipolar com-

plex fuzzy set as follows x1 ¼ ð0:5ei0:7p;�0:4ei1:2pÞ=y1.
Now for the visualization the properties of bipolar complex

fuzzy graph and its calculus are given below with a

suitable example.

Definition 4 (Bipolar fuzzy graph) [3, 58]: A bipolar

fuzzy graph G ¼ ðI; JÞ is complete iff:

lPJ ð v1; v2f gÞ ¼ minðlPI ðv1Þ; lPI ðv2ÞÞ and,
lNJ ð v1; v2f gÞ ¼ maxðlNI ðv1Þ; lNI ðv2ÞÞ

for all v1; v2 2 V and ðv1; v2Þ 2 V � V .

Example 4 Let us suppose, the expert V ¼ ðv1; v2; v3Þ
provides a bipolar information and its fluctuation in context

of production of cars. It can be shown mathematically

using the calculus of bipolar fuzzy sets as shown in

Table 2. Subsequently, their corresponding relationship

can be shown through fuzzy set of edges E ¼
ðv1v2; v2v3; v3v1Þ given in Table 3. This can be visualized

using vertices and edges of a bipolar fuzzy complete graph

as shown in Fig. 2.
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Definition 5 (Bipolar complex fuzzy graph) [54]: A

bipolar complex fuzzy graph G ¼ ðV; lc; qcÞ is a non-

empty set in which the value of vertices lc : V !
rcðvÞ:eiargcðvÞ and edges qc : V � V ! rcðv� vÞ:eiargcðv�vÞ

may receive the membership values within the unit circle

of a complex argand plane. In this case, rcðvÞ, rcðv� vÞ 2
½�1; 1� and eiargcðvÞ, eiargcðv�vÞ is periodic function. It means

the vertices (V) and Edges (E) of a complex fuzzy graph

can be characterized by an amplitude and phase term of

defined complex fuzzy set such that:

rPc ðvi � vjÞ:eiarg
P
c ðvi�vjÞ �min rPc ðviÞ; rcðviÞ

� �
:eimin argPc ðviÞ;argcðvjÞð Þ:

rNc ðvi � vjÞ:eiarg
N
c ðvi�vjÞ �min rNc ðviÞ; rcðviÞ

� �
:eimin argNc ðviÞ;argcðvjÞð Þ:

The given complex fuzzy graph is complete iff:

rcðvi � vjÞ:eiargcðvi�vjÞ ¼ min rcðviÞ; rcðviÞð Þ:eimin argcðviÞ;argcðvjÞð Þ:

Example 5 Let us combine Examples 3 and 4. This pro-

vides a complex bipolar information about the production

of car as shown in Table 4. Similarly, the corresponding

complex bipolar relationship among each of the car can be

represented through a bipolar complex fuzzy set as shown

in Table 5. These two contexts can be visualized in a

compact format using the vertices V and edges E of a

bipolar complex fuzzy graph as shown in Fig. 3. This

representation is still unable to solve the problem of a

company to analyze the preference of user for purchasing

the car. To encounter this problem, a method is proposed in

the next section using the properties of bipolar complex

fuzzy graph and its d-granulation.

3 Proposed method

Knowledge discovery from a given complex data set hav-

ing bipolar fuzzy attributes is a computationally expensive

task [40, 45]. In this process, two technical issues arises

one with their mathematical representation whereas the

second one with their graphical visualization. To resolve

this issue current paper proposes three methods to process

the bipolar complex fuzzy context using the calculus of

applied abstract algebra, bipolar complex fuzzy graphs and

properties of d-granulation.

3.1 A proposed method for bipolar complex
fuzzy concepts generation

This section introduces a method for extracting the inter-

esting patterns in the given bipolar complex fuzzy context

based on their objects and common attribute set using the

Table 2 A bipolar fuzzy subset

of V for Example 1
v1 v2 v3

lPI 0.5 0.7 0.6

lNI - 0.5 - 0.3 - 0.4

Table 3 A bipolar fuzzy subset

of E for Example 1
v1v2 v2v3 v3v1

lPJ 0.5 0.6 0.5

lNJ - 0.3 - 0.3 - 0.4

Fig. 2 A bipolar fuzzy complete graph visualization for the fuzzy set

shown in Tables 2 and 3

Table 4 A bipolar complex

fuzzy context for the opinion of

expert toward production of car

y1

x1 ð0:5ei0:7p;�0:4ei1:2pÞ
x2 ð0:3ei1:6p;�0:5ei0:2pÞ
x3 ð0:3ei1:4p;�0:5ei0:2pÞ
x4 ð0:3ei0:7p;�0:6ei0:6pÞ

Table 5 A bipolar complex

fuzzy edges exists among the

car

y1

x1; x2 ð0:3ei0:7p;�0:5ei0:2pÞ
x1; x3 ð0:3ei0:7p;�0:5ei0:2pÞ
x2; x4 ð0:3ei0:7p;�0:6ei0:2pÞ
x1; x4 ð0:3ei0:7p;�0:5ei0:2pÞ

Fig. 3 A bipolar complex fuzzy graph visualization of context shown

in Tables 4 and 5
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amplitude and phase term of a defined complex fuzzy

connected with Galois closure operator. The discovered

bipolar complex fuzzy concepts and their hierarchical

ordering are shown using the mathematical properties of

bipolar complex fuzzy graph and its ordering. To achieve

this goal, the expert or user can decide the acceptance of

bipolar complex attributes based on his/her desired

requirements to solve the particular problem. In this paper,

the author has considered maximal acceptance of bipolar

complex fuzzy attribute, i.e., 1.0 membership value for the

positive amplitude and 0.0 for negative amplitude at given

phase of time, i.e. (2p, 0) where 2p represents a periodic

year. In general, the amplitude represents uncertainty hid-

den in the bipolar information, whereas the phase term

represents fluctuations in the uncertainty at given phase of

time. The amplitude and phase term can be decided by user

or expert to measure the uncertainty in the bipolar complex

data set as shown in Table 6. The proposed method in this

paper aims at partially complete information about ampli-

tude and phase term to generate the complex pattern as

given below:

Let us suppose, a bipolar complex fuzzy context is

defined on the universe of discourse U. The bipolar com-

plex-valued grade of membership of an element z 2 U

includes the positive rPz
and negative membership value

rNz
for the amplitude term where 0\rPz

� 1 �1� rPz
\0.

The amplitude with 0 membership values means it is not

relevant to the corresponding property. The phase term is

represented by wr
Pz

and wr
Nz

in real-valued interval ð0; 2p�
and i ¼

ffiffiffiffiffiffiffi
�1

p
which can be represented in composed form

as given below: Z ¼ ðz; ðrPz
ew

r
Pz ; rNz

Þewr
Nz Þ : z 2 U

� �
. Sim-

ilarly, the bipolar complex fuzzy relationship among

objects and attributes of a given bipolar complex fuzzy

context F ¼ ðX; Y; ~RÞ lZðzÞ can be represented through

positive and negative membership using the amplitude and

phase terms. The membership values that lZðzÞ may

receive all lie within the unit circle in the complex plane in

the form lZðzÞ ¼ rzðxÞeiwzðxÞ, where i ¼
ffiffiffiffiffiffiffi
�1

p
, both rZðzÞ

and wZðzÞ are real-valued and rZðzÞ 2 ½0; 1�.

Step 1. Let us choose any bipolar complex fuzzy set of

attribute as given below:

ðyj; ðrPyj
e
wr
Pyj ; rNyj

e
wr
Nyj ÞÞ:

Now, a pattern can be investigated based on their

amplitude and phase term of objects–attributes set.

Step 2. Decide the partial acceptance of chosen

attributes based on its amplitude and phase term

to investigate the user interest patterns from the

given bipolar complex data set. In this case,

generally a user tries to choose the maximal

acceptance of attributes. It means the maximal

positive membership value, i.e., 1.0 and

minimal, i.e., 0.0 membership value for the

amplitude term in the given phase of time. This

provides positive regions (0.0, 1.0) for the

amplitude and phase term to choose subset of

attributes ðyj; ðrPyj
e
wr
Pyj ; rNyj

e
wr
Nyj ÞÞ. Similarly,

(0; 2p) can be considered as phase term for

measuring minimal fluctuation ðew
r
Pyj ; e

wr
Nyj Þ.

Step 3. Now, the pattern can be discovered from the

given bipolar complex fuzzy context using # of

Galois connection to find their maximal

covering objects set based on their amplitude

and phase term as given below:

ðyj; ðrPyj
e
wr
Pyj ; rNyj

e
wr
Nyj ÞÞ# ¼ ðxi; ðrPxi

e
wr
Pxi ; rNxi

e
wr
Nxi ÞÞ;

for all yj 2 Y where j ¼ 1; 2; :::;m and

i ¼ 1; 2; 3; :::; n.

Table 6 Some potential

classification of bipolar

complex fuzzy data set based on

amplitude and phase term

Car (object) Parameters (attributes) Bipolar complex fuzzy relation

(i) Amplitude Bipolar Fuzzy Bipolar complex set

Phase Complete Complete Complex set

(ii) Amplitude Fuzzy Bipolar Bipolar complex set

Phase Complete Complete Complex set

(iii) Amplitude Fuzzy Fuzzy Bipolar complex set

Phase Complete Complete Complex set

(iv) Amplitude Bipolar Bipolar Bipolar complex set

Phase Complete Complete Complex set
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Step 4. The membership value of the obtained bipolar

complex fuzzy set of objects can be computed

for the amplitude and phase term as follows:

Amplitude:

min (xi; rPxi
Þ for the positive membership value,

and

max (xi; rNxi
Þ for negative membership value.

Phase term:

min ðew
r
Pxi Þ for positive phase, and

max ðew
r
Nxi Þ for negative phase term.

Step 5. Now, apply the operator " on these constituted

objects set to find their maximal covering

attributes based on amplitude and phase term as

follows:

ðxi; ðrPxi
e
wr
Pxi ; rNxi

e
wr
Nxi ÞÞ" ¼ ðyj; ðrPyj

e
wr
Pyj ; rNyj

e
wr
Nyj ÞÞ;

for all xi 2 X where i ¼ 1; 2; :::; n and

j ¼ 1; 2; 3; :::;m.

Step 6. The membership value of the obtained

attributes (new attributes) using " on the

constituted objects set can be computed as

follows:

Amplitude:

min (yj; rPyj
Þ for positive membership value

and,

max (yj; rNyj
Þ for negative membership value.

Phase term:

min ðew
r
Pyj Þ for positive phase term and,

max (e
wr
Nyj Þ for negative phase term.

Step 7. The investigated pair of bipolar complex fuzzy

objects and their common attributes (A,

B) using the Galois connection forms a pattern

(i.e., concept) for knowledge processing tasks.

Step 8. In this way, all the bipolar complex fuzzy

concepts can be generated.

Step 9. Draw the bipolar complex fuzzy concept lattice

using the super and sub-concept ordering of

distinct complex concepts.

Step 10. Discover the knowledge for empirical analysis.

The above given steps are shown in a form of

an algorithm as shown in Table 7.

Complexity: The proposed algorithm shown in Table 7

starts the analysis from the given subset of bipolar complex

fuzzy set of attributes. In this case, the proposed method

takes O(2m) computational time to find the subset and

O(n) time to connect with its covering objects set based on

amplitude and phase term. This takes overall O(n2:2m)

computational time to investigate the bipolar complex fuzzy

concepts. One of the major advantages of the proposed

method is that it provides complete information about posi-

tive and negative membership of the given bipolar infor-

mation in ½�1; 1� at a given phase term [0, 2p]. This unique
representation of the proposed method helps precisely in

knowledge processing tasks when compared to other

approaches.

3.2 A method for extracting bipolar d-equal
complex fuzzy concepts

It can be observed that the method shown in Table 7 provides

several bipolar complex fuzzy concepts for knowledge pro-

cessing tasks in exponential computational time. In this case,

extracting some of the interesting patterns based on chosen

information granules is very rigorous. To shoot this problem, a

method is proposed in this section using the calculus of

complex granulation [66]. The granulation [36] is an umbrella

term which includes many different mathematical ways to

process the large and complex data via a small chunk of

information [53]. This small chunk of information provides a

simpler solution for the given problem with an improved

descriptions [36]. Due to that, its calculus is applied in formal

fuzzy context [29, 38], interval-valued context [46] and

bipolar fuzzy context [40] for concept lattice reduction [41].

To decompose or navigate the concept lattice at user required

information granulation [7, 42]. In this way, the properties of

granulation help more approximately for precise analysis of

knowledge processing tasks [57] using different multi-gran-

ulation [32]. These advantages of granular computing meth-

ods motivated to navigate the bipolar complex fuzzy concept

lattice using the user required d-granulation. To achieve this

goal, the current paper focuses on utilizing the different dis-

tance metric of complex fuzzy set [66] and its other available

measurements [5, 20, 60]. The steps of the proposed method

are given as follows:

Step 1. Let us suppose, a user or experts want a bipolar

complex fuzzy concept C1 ¼ ðA1;B1Þ having
similar amplitude and phase term for the

knowledge processing tasks.

Step 2. To discover the similar information in the given

complex data set, choose any bipolar complex

fuzzy concepts investigated from the given

context, i.e., C2 ¼ ðA2;B2Þ.
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Step 3. Now find their distance based on intent (or

extent), i.e., bipolar complex fuzzy set of

attributes, i.e., ðrPB1
eiargPB1 ; rNB1

e
iargNB1 Þ

rB1
ðyÞ:eiargB1 ðyÞ and ðrPB2

eiargPB2 ; rNB2
e
iargNB2 Þ

rB2
ðyÞ:eiargB2 ðyÞ as given below:

dðB1;B2Þ ¼
maxðsupðjrPB1

� rPB2
j; jrNB1

� rNB2
jÞ;

1

2p
sup ðjargPB1

� argPB2
j; jargNB1

� argNB2
jÞÞ:

Step 4. The total distance among two concepts is the

sum of all the distances among each of the

attributes in their intents, i.e.,
P

dðB1;B2Þ.
Step 5. Now, the average distance can be computed

among the given concepts as follows:

AVðdÞ ¼
P

dðB1;B2Þ
m

where m is total number of

attributes in the given bipolar complex fuzzy

concepts.

Step 6. Define a d-granulation for deciding the

similarity level to refine the knowledge.

Step 7. The chosen bipolar complex fuzzy concept C2

can be considered as d-granules to user required
concept C1 iff: dðC1;C2Þ� 1� d.

Step 8. In this way a user required d-granules bipolar
complex fuzzy concepts can be selected from

the investigates concepts.

Step 9. Write all the d-similar concepts based on their

distance.

Step 10. Interpret the obtained concepts for the

knowledge processing tasks.

Complexity: The proposed algorithm shown in Table 8

finds the d-equal bipolar complex fuzzy concepts based on

user required information granules. To achieve this goal,

the proposed method compares the amplitude and phase

term for each of the given attributes (or objects) set which

may take m2 computational time for the amplitude and

phase term, respectively. In this way, the overall time

complexity of the proposed method can be O(m4). This

reduced complexity is helpful for the experts in quick

Table 7 A proposed algorithm for generating the bipolar complex fuzzy concepts

Input: A bipolar complex fuzzy context F=(X, Y, R̃)
where number of objects =n and number of bipolar attributes=m.

Output: Bipolar complex fuzzy concepts:
1. Select a subset of bipolar complex fuzzy attributes yj .
2. Decide the acceptance level of attributes:

Amplitude = (0.0, 1.0) and Phase=(0, 2π)
3. Connect with the Galois operator ↓:

(yj , (rPyj
e
wr

Pyj , rNyj
e
wr

Nyj ))↓ = (xi, (rPxi
e
wr

Pxi , rNxi
e
wr

Nxi ))
4. Compute the bipolar complex membership of obtained objects as follows:

Amplitude:
min (xi, rPxi

) for the positive membership–value, and
max (xi, rNxi

) for the negative membership–value.
Phase term:

min (xi, e
wr

Pxi ) for the positive phase term and,

max (xi, e
wr

Nxi ) for the negative phase term.
5. Now connect the operator ↑ on the constituted set of objects:

(xi, (rPxi
e
wr

Pxi , rNxi
e
wr

Nxi ))↑ = (yj , (rPyj
e
wr

Pyj , rNyj
e
wr

Nyj )).
6. The bipolar complex membership for the attributes can be find as follows:

Amplitude:
min (xi, rPxi

) for the positive membership–value, and
max (xi, rNxi

) for the negative membership–value.
Phase term:

min (e
wr

Pyj ) for the positive phase term and,

max (e
wr

Nyj ) for the negative phase term.
7. Subsequently, other bipolar complex fuzzy concepts can be discovered.
8. List out all the distinct bipolar complex fuzzy concepts.
9. Build the bipolar complex fuzzy concept lattice.
10. Extract the meaningful pattern to solve the particular problem.

2412 Neural Computing and Applications (2020) 32:2405–2422

123



analysis of concept learning when compared to any other

approaches.

3.3 A method for decomposition of bipolar
complex fuzzy context

Analyzing dynamic or complex data set based on small

chunk of variables is a major concern for data analysis and

processing tasks [61, 71]. Recently, some of the researchers

have paid attention toward processing the given fuzzy

context based on user-defined granules [38]. The advantage

of using the properties of granular computing is that it

provides many ways to process the given context based on

small chunk of information [32, 36]. Due to which, its

calculus is utilized on processing the fuzzy context [29],

interval-valued fuzzy context [22, 46], bipolar fuzzy con-

text [40] for concept lattice reduction [9, 41, 70]. This

paper focuses on decomposition of complex fuzzy matrix

[67] for knowledge processing [31]. The motivation is to

apply the properties of granular computing for navigating

the bipolar complex fuzzy context to measure the changes

in bipolar queries [65]. For this purpose, a method is pro-

posed in Table 8 based on amplitude and phase term of

given complex fuzzy relations. It can be observed that the

proposed method provides many ways to a user or expert

for processing the given complex fuzzy context based on

obtained binary context.

Complexity: The proposed algorithm shown in Table 9

provides a way to find many binary context based on user-

defined complex fuzzy granules. To achieve this goal, the

proposed method finds the entries in complex fuzzy matrix

which have maximal amplitude and phase term from the

chosen complex granules. In this case, the proposed

method takes total m� n searches to find the chosen

complex information granules. Hence, the total complexity

taken by the proposed method cannot exceed the O(n:m2)

or O(m:n2) computational time in case of n-number of

objects and m-number of complex fuzzy attributes. In this

way, the proposed method reduces the time complexity to

process the complex fuzzy context when compared to the

proposed method shown in Tables 7 and 8. To validate the

extracted information, the knowledge discovered from the

proposed method is compared with other two proposals in

this paper.

4 Illustration

In this section, each of the proposed methods shown in

Table 7, 8 and 9 is demonstrated one by one with an

illustrative example.

4.1 Bipolar complex fuzzy concept lattice

Concept learning from data with bipolar information is a

major issue for the researchers of current time [40, 71]. The

reason is it exists at many time of our daily life from

morning to evening [45]. Some of notable bipolarity and its

existing conditions are as follows: (1) Coexistence, (2)

Equilibrium, (3) Negation, (4) Linear and (5) Integrity

[6, 68]. This paper focuses on negation condition to explore

the bipolar complex fuzzy context and its fluctuation using

the properties of bipolar complex fuzzy set. In the last

decade some of the researchers tried to analyze the bipolar

information through visualization in the graph [3, 11] and

concept lattice [12, 39]. The problem arises when the

uncertainty in bipolar information fluctuates at a given

phase of time in the complex data sets [26, 27]. Modeling

this type of bipolar information [25] and its compact

visualization in the graph [34, 45] is computationally

Table 8 A proposed algorithm

for extracting d-equal bipolar
complex fuzzy concepts

Input: A bipolar complex fuzzy concept (C1 = (A1, B1)) and,
Output:δ–equal bipolar complex fuzzy concepts (C2=(A2, B2)).
1. Enter the given complex fuzzy concepts (C1 = (A1, B1)) i.e. rB2(y).e

iargB2 (y).
2. Define a information granules (C2 = (A2, B2)) i.e. rB2(y).e

iargB2 (y).
3. Compute the distance among them as follows:

d(B1, B2)= max(sup|rB1 (y) − rB2 (y)|, 1
2π

sup |argB1(y) − argB1(y)|).
4. Sum the distance of each attributes in the intent i.e. d(B1, B2).
5. Compute the average of distance AV (d) = d(B1,B2)

m
.

6. Choose a granulation for selecting the δ–equal complex fuzzy concepts.
7. if (d(C1, C2) ≤ 1 − δ)

Extract the given complex fuzzy concepts.
else

Donot select the concept.
8. Similarly, extract all the δ–equal complex fuzzy concepts.
9. List all the δ–equal concepts.
10. Interpret the obtained complex fuzzy concepts.
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expensive tasks. To deal with this issues, current paper tries

to model the bipolar information in complex data sets using

the extensive properties of complex fuzzy set [45] and its

different metric [60] to discover all the bipolar complex

fuzzy pattern hidden in a given bipolar complex data set.

To achieve this goal, Example 5 is extended as given

below:

Example 6 To illustrate the proposed method Example 5

is extended in this section. Let us suppose the car company

wants to analyze the production based on Cost (y1), Fuel

efficient (y2), Speed (y3), Beautiful (y4), Luxurious ðy5Þ,
Durability (y6), Modern technology (y7), maximum pay-

load ðy8Þ, reliability (y9) and maintenance charges (y10)

based on the user or experts feedback x1; x2; x3; x4f g. It is
observed that most of the users focused on four parameters

cost (y1), fuel efficient (y2), speed (y3), beautiful (y4).

Suppose an expert says that the car x1 cost y1 may fluctuate

to 60 percent within three to four months, the fuel effi-

ciency y2 may fluctuate to 40% at each two to three month,

Speed y3 of car may fluctuate to 70% at each two to three

month, whereas Beauty (y4) of car may fluctuate to 60%

within one month of its production. This complex expres-

sion given by expert can be written using the amplitude and

phase term of a defined complex fuzzy set as follows:

(i) x1 ¼ 0:6ei0:7p=y1 þ 0:4ei0:5p=y2 þ 0:7ei0:5p=y3
þ0:6ei0:2p y4.

This paper considers a production year as 2p for the phase

term and its analysis. Similarly, the opinion of expert can

be written for the remaining cars to analyze its production:

(ii) x2 ¼ 0:5ei1:6p=y1 þ 0:7ei0:4p=y2 þ 0:6ei1:9p=y3
þ0:7ei0:4p=y4.

(iii) x3 ¼ 0:3ei1:4p=y1 þ 0:4ei1:3p=y2 þ 0:5ei0:2p=y3
þ0:2ei0:5p=y4.

(iv) x4 ¼ 0:4ei0:7p=y1 þ 0:6ei0:5p=y2 þ 0:5ei1:2p=y3
þ0:4ei0:2p=y4.

This positive opinion of experts can be written in the form

of a complex fuzzy matrix as shown in Table 10. The

negative opinion of experts can be derived from this con-

text through complement as shown in Table 11. Now, the

problem arises with company in analysis of this positive

and negative opinion of the expert for the production of

suitable car. To encounter this problem, a method is pro-

posed in Table 7 of this paper for finding all the complex

fuzzy pattern hidden in the given context. To achieve this

goal, the constituted bipolar fuzzy context for Tables 10

and 11 is shown in Table 12 where x represents the car, i.e.,

objects set, and y represents the attributes of the car, and

entries represent bipolar complex fuzzy relationship among

them. The complex fuzzy concepts from this context can be

generated as given below:

Table 9 A proposed algorithm for decomposition of the bipolar complex fuzzy context

Input: A bipolar complex fuzzy context F=(X, Y, R̃)
Output: A binary context for the chosen bipolar complex granules.
1. Write the bipolar complex fuzzy context F=(X, Y, R̃).
2. Define the Complex Granules (CG) for the complex fuzzy relation as follows:

CG=(rP
R̃
(x,y).e

iargP
R̃

(x,y) , rN
R̃
(x,y).e

iargN
R̃

(x,y) ).
3. if

Positive membership–values

rP
R̃
(x,y).e

iargP
R̃

(x,y) ≥ rP
R̃
(xi,yj).e

iargP
R̃

(xi,yj ) .
Negative membership–values

rN
R̃
(x,y).e

iargN
R̃

(x,y) ≤ rN
R̃
(xi,yj).e

iargN
R̃

(xi,yj) .
4. represent that entries as 1 in the matrix.
5. else

0.
6. Display the obtained binary context for the chosen bipolar complex granules.
7. Generate the concept lattice.
8. Interpretate the knowledge.

Table 10 A positive opinion of experts about the given cars in form

of complex fuzzy set

y1 y2 y3 y4

x1 0:6ei0:7p 0:4ei0:5p 0:7ei0:5p 0:6ei0:2p

x2 0:5ei1:6p 0:7ei0:4p 0:6ei1:9p 0:7ei0:4p

x3 0:3ei1:4p 0:4ei1:3p 0:5ei0:2p 0:2ei0:5p

x4 0:4ei0:7p 0:6ei0:5p 0:5ei1:2p 0:4ei0:2p
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Step (1) There are four attributes y1; y2; y3; y4f g in the

given bipolar complex fuzzy context shown in Table 12

which provides following subsets to find the pattern in the

data:

1. øf g,
2. ð0:0; 1:0Þeið0;2pÞÞ=y1

� �
,

3. ð0:0; 1:0Þeið0;2pÞÞ=y2
� �

,

4. ð0:0; 1:0Þeið0;2pÞÞ=y3
� �

,

5. ð0:0; 1:0Þeið0;2pÞÞ=y4
� �

,

6. ð0:0; 1:0Þeið0;2pÞÞ=y1 þ 1:0ei2p=y2
� �

,

7. ð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y3
� �

,

8. ð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y4
� �

,

9. ð0:0; 1:0Þeið0;2pÞÞ=y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3
� �

,

10. ð0:0; 1:0Þeið0;2pÞÞ=y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y4
� �

,

11. ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4
� �

,

12. ð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y2þ
�

ð0:0; 1:0Þeið0;2pÞÞ=y3g,
13. ð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y2þ

�

ð0:0; 1:0Þeið0;2pÞÞ=y4g,
14. ð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y3þ

�

ð0:0; 1:0Þeið0;2pÞÞ=y4g,
15. ð0:0; 1:0Þeið0;2pÞÞ=y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3þ

�

ð0:0; 1:0Þeið0;2pÞÞ=y4g,
16. fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y2þ

ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g.
Now the complex fuzzy concepts can be generated using

the above subsets from the context shown in Table 12. In

this process, the proposed method considers maximal

acceptance of complex fuzzy subsets of attributes in the

given year, i.e. (0, 1)-amplitude and (0, 2p)-phase term.

Step (2) Apply the # on the first subset øf g# which

provide following covering objects:

fð0:7ei0:5p;�0:3ei1:5pÞ=x1 þ ð0:7ei0:4p;�0:3ei1:6pÞ=x2
þ ð0:5ei0:2p;�0:5ei1:8pÞ=x3 þ ð0:6ei0:5p;�0:4ei1:5pÞ=x4g:

Similarly, apply the " on these constituted objects which

provide following bipolar complex fuzzy set of attributes:

fð0:3ei1:4p;�0:7ei0:6pÞ=y1 þ ð0:4ei0:5p;�0:6ei1:5pÞ=y2
þ ð0:5ei0:2p;�0:5ei1:8pÞ=y3 þ ð0:2ei0:5p;�0:8ei1:5pÞ=y4g:

In this way the first subset provides following bipolar

complex fuzzy concepts from Table 12:

1. Extent: fð0:7ei0:5p;�0:3ei1:5pÞ=x1 þ ð0:7ei0:4p;
�0:3ei1:6pÞ=x2 þ ð0:5ei0:2p; �0:5ei1:8pÞ=x3
þð0:6ei0:5p;�0:4ei1:5pÞ=x4g.
Intent: fð0:3ei1:4p;�0:7ei0:6pÞ=y1 þ ð0:4ei0:5p;
�0:6ei1:5pÞ=y2 þ ð0:5ei0:2p;�0:5ei1:8pÞ=y3þ
ð0:2ei0:5p;�0:8ei1:5pÞ=y4g.

Step (3) Similarly, following concepts can be generated

using other subsets of complex fuzzy attributes shown in

step 1:

2. Extent: fð0:6ei0:7p;�0:4ei1:3pÞ=x1 þ ð0:5ei1:6p;
�0:5ei0:4pÞ=x2 þ ð0:3ei1:4p;�0:7ei0:6pÞ=x3
þð0:4ei0:7p;�0:6ei1:3pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:4ei0:4p;�0:3ei0:7pÞ=
y2 þ ð1:0ei0:2p;�0:3ei0:1p=y3 þ ð0:2ei0:2p;�0:3ei1:5pÞ=
y4g.

3. Extent: fð0:4ei0:5p;�0:6ei1:5pÞ=x1 þ ð0:7ei0:4p;
�0:3ei1:6pÞ=x2 þ ð0:4ei1:3p;�0:7ei0:7pÞ=x3
þð0:6ei0:5p;�0:4ei1:5pÞ=x4g.
Intent: fð0:3ei0:7p;�0:4ei0:4pÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ
=y2 þ ð0:5ei0:2p;�0:3ei0:1pÞ=y3 þ ð0:2ei0:5p;
�0:3ei1:5pÞ=y4g.

Table 11 A negative opinion of experts about the given cars in form

of complex fuzzy set

y1 y2 y3 y4

x1 �0:4ei1:3p �0:6ei1:5p �0:3ei1:5p �0:4ei1:8p

x2 �� 0:5ei0:4p � 0:3ei1:6p � 0:4ei0:1p � 0:3ei1:6p

x3 � 0:7ei0:6p � 0:7ei0:7p � 0:5ei1:8p � 0:8ei1:5p

x4 � 0:6ei1:3p � 0:4ei1:5p � 0:5ei0:8p � 0:6ei1:8p

Table 12 A bipolar complex

fuzzy set representation of

experts opinion about the given

set of cars

y1 y2 y3 y4

x1 (0:6ei0:7p, �0:4ei1:3p) (0:4ei0:5p, �0:6ei1:5p) (0:7ei0:5p, �0:3ei1:5p) (0:6ei0:2p, �0:4ei1:8p)

x2 ( 0:5ei1:6p, �0:5ei0:4pÞ (0:7ei0:4p, �0:3ei1:6p) (0:6ei1:9p, �0:4ei0:1p) (0:7ei0:4p, �0:3ei1:6p)

x3 (0:3ei1:4p, �0:7ei0:6p) (0:4ei1:3p, �0:6ei0:7pÞ ( 0:5ei0:2p, �0:5ei1:8p) (0:2ei0:5p, �0:8ei1:5pÞ
x4 (0:4ei0:7p, �0:6ei1:3pÞ (0:6ei0:5p, �0:4ei1:5p) (0:5ei1:2p, �0:5ei0:8p) (0:4ei0:2p, �0:6ei1:8p)
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4. Extent: fð0:7ei0:5p;�0:3ei1:5pÞ=x1 þ ð0:6ei1:9p;
�0:4ei0:1pÞ=x2 þ ð0:5ei0:2p;�0:5ei1:8pÞ=x3
þð0:5ei1:2p;�0:5ei0:8pÞ=x4g.
Intent: fð0:3ei0:7p;�1:0ei0:4pÞ=y1 þ ð0:4ei0:4p;
�0:3ei0:7pÞ=y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:2ei0:5p;
�0:3ei1:5pÞ=y4g.

5. Extent: fð0:6ei0:2p;�0:4ei1:8pÞ=x1 þ ð0:7ei0:4p;
�0:3ei1:6pÞ= x2 þ ð0:2ei0:5p;�0:8ei1:5pÞ=x3
þð0:4ei0:2p;�0:6ei1:8pÞ=x4g.
Intent: fð0:3ei0:7p;�0:4ei0:4pÞ=y1 þ ð0:4ei0:4p;
�0:3ei0:7pÞ=y2 þ ð0:5ei0:2p;�0:3ei0:1pÞ=y3
þð0:0; 1:0Þeið0;2pÞÞ=y4g.

6. Extent: fð0:4ei0:5p;�0:4ei1:3pÞ=x1 þ ð0:5ei0:4p;
�0:3ei0:4pÞ= x2 þ ð0:3ei1:3p;�0:6ei0:6pÞ=x3
þð0:4ei0:5p;�0:4ei1:3pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y2
+ ð1:0ei0:2p;�0:3ei0:1pÞ=y3 þ ð0:2ei0:2p;�0:3ei1:5pÞ
=y4g.

7. Extent: fð0:6ei0:5p;�0:3ei1:3pÞ=x1 þ ð0:5ei1:6p;
�0:4ei0:1pÞ=x2 þ ð0:3ei0:2p;�0:5ei0:6pÞ=x3
þð0:4ei0:7p;�0:5ei0:8pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:4ei0:4p;�0:3ei0:7pÞ=
y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:2ei0:2p;�0:3ei1:5pÞ=y4g.

8. Extent: fð0:6ei0:2p;�0:4ei1:3pÞ=x1 þ ð0:5ei0:4p;
�0:3ei0:4pÞ=x2 þ ð0:2ei0:5p;�0:7ei0:6pÞ=x3
þð0:4ei0:2p;�0:6ei1:3pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:4ei0:4p;�0:3ei0:7pÞ=
y2 þ ð0:5ei0:2p;�0:3ei0:1pÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g.

9. Extent: fð0:4ei0:5p;�0:3ei1:5pÞ=x1 þ ð0:6ei0:4p;
�0:3ei0:1pÞ=x2 þ ð0:4ei0:2p;�0:5ei0:7pÞ=x3
þð0:5ei0:5p;�0:4ei0:8pÞ=x4g.
Intent: fð0:3ei0:7p;�1:0ei0:4pÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=
y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:2ei0:2p;�1:0ei1:5pÞ=y4g.

10. Extent: fð0:4ei0:2p;�0:4ei1:5pÞ=x1 þ ð0:7ei0:4p;
�0:3ei1:6pÞ=x2 þ ð0:2ei0:5p;�0:8ei0:7pÞ=x3
þð0:4ei0:2p;�0:4ei1:5pÞ=x4g.
Intent: fð0:3ei0:7p;�0:4ei0:4pÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=
y2 þ ð0:5ei0:2p;�0:3ei0:1pÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g.

11. Extent: fð0:6ei0:2p;�0:3ei1:5pÞ=x1 þ ð0:6ei0:4p;
�0:3ei0:1pÞ=x2 þ ð0:2ei0:2p;�0:5ei1:5pÞ=x3
þð0:4ei0:2p;�0:5ei0:8pÞ=x4g.
Intent: fð0:3ei0:7p;�0:4ei0:4pÞ=y1 þ ð0:4ei0:4p;
�0:3ei0:7pÞ=y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3
þð0:0; 1:0Þeið0;2pÞÞ=y4g.

12. Extent: fð0:4ei0:5p;�0:3ei1:3pÞ=x1 þ ð0:5ei0:4p;
�0:3ei0:1pÞ=x2 þ ð0:3ei0:2p;�0:5ei0:6pÞ=x3
þð0:4ei0:5p;�1:0ei0:2pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=
y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:2ei0:5p;�0:3ei1:5pÞ=y4g.

13. Extent: fð0:4ei0:2p;�0:4ei1:3pÞ=x1 þ ð0:5ei0:4p;
�0:3ei0:4pÞ=x2 þ ð0:2ei0:5p;�0:6ei0:6pÞ=x3
þð0:4ei0:2p;�0:4ei1:3pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=
y2 þ ð1:0ei0:2p;�0:3ei0:1pÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g.

14. Extent: fð0:6ei0:2p;�0:3ei1:3pÞ=x1 þ ð0:5ei0:4p;
�0:3ei0:1pÞ=x2 þ ð0:2ei0:2p;�0:5ei0:6pÞ=x3
þð0:4ei0:2p;�0:5ei0:8pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:4ei0:4p;
�1:0ei0:7pÞ=y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3
þð0:0; 1:0Þeið0;2pÞÞ=y4g.

15. Extent: fð0:4ei0:2p;�0:3ei1:5pÞ=x1 þ ð0:6ei0:4p;
�0:3ei0:1pÞ=x2 þ ð0:2ei0:2p;�0:5ei0:7pÞ=x3
þð0:4ei0:2p;�0:4ei0:8pÞ=x4g.
Intent: fð0:3ei0:7p;�1:0ei0:4pÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=
y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g.

16. Extent: fð0:4ei0:2p;�0:3ei1:3pÞ=x1 þ ð0:5ei0:4p;
�0:3ei0:1pÞ=x2 þ ð0:2ei0:2p;�0:5ei0:6pÞ=x3
þð0:4ei0:2p;�0:4ei0:8pÞ=x4g.
Intent: fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=
y2 þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g.

The bipolar complex fuzzy concept lattice for the above

generated concepts is shown in Fig. 4 reflecting 16 as the

most specialized and 1 as the more generalized concepts.

The specialized concept 16 shows that the car

ð0:5ei0:4p;�0:3ei0:1pÞ=x2 will be considered as first prefer-

ence due to its maximal acceptance whereas car

ð0:4ei0:2p;�0:3ei1:3pÞ=x1 as second preference. The gener-

alized concept 1 shows that user preference of car is based

on attribute ð0:5ei0:2p;�0:5ei1:8pÞ=y3 and

ð0:4ei0:5p;�0:6ei1:5pÞ=y2 maximally. It means that the

preference analysis of user is based on the concepts having

maximal acceptance of these attributes, i.e., concepts

number 4, 3, 9 will be useful due to their maximal

acceptance of attributes y1 and y2. The concept number 4

represents that the car ð0:7ei0:5p;�0:3ei1:5pÞ=x1 will be

considered as the first preference whereas the car

ð0:6ei1:9p;�0:4ei0:1pÞ=x2 as the second preference due to

their maximal acceptance of attribute y3. Similarly, the

concept number 3 represents that the car

ð0:7ei0:4p;�0:3ei1:6pÞ=x2 will be considered as the first

preference whereas car ð0:6ei0:5p;�0:4ei1:5pÞ=x4 as the

second preference due to their maximal acceptance of

attribute y2. The concept number 9 represents that the car

ð0:6ei0:4p;�0:3ei0:1pÞ=x2 will be considered as the first

preference due to its maximal acceptance of attributes

y2; y3. These extracted information together approves that

the car x2 will considered as the first preference of user
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while purchasing the car in the given year. This conclusion

helps to the company and its production department to

increase its profit in the given financial year. Similarly,

other meaningful information can be extracted. To provide

this extraction, the current paper takes exponential time.

This becomes computationally expensive in case the user

wants to analyze the concepts based on his/her require-

ments. To deal with this problem, another method is pro-

posed in Table 8 of Sect. 3.2. This method provides a way

to find all d-equal complex fuzzy concepts based on user

required complex granules. In the next section illustration

of this method is given for the given context. In addition,

the analysis derived from both of the method is compared

to validate the results.

4.2 d-equal bipolar complex fuzzy concepts

The previous section shows that the number of bipolar

complex fuzzy concepts may be exponential based on

small changes in amplitude and phase terms. In this case,

finding some of the important or similar bipolar fuzzy

concepts at user-defined granulation is an expensive task.

To solve this problem, a method is proposed in Sect. 3.2. In

this section, the proposed method is illustrated using the

same context shown in Table 12. The problem is that the

company wants to analyze the preferences of user to pur-

chase the car using this bipolar complex fuzzy context. To

solve this problem, current paper considers maximal

acceptance of each attributes as given below:

C1 ¼ fð0:0; 1:0Þeið0;2pÞÞ=y1 þ ð0:0; 1:0Þeið0;2pÞÞ=y2
þ ð0:0; 1:0Þeið0;2pÞÞ=y3 þ ð0:0; 1:0Þeið0;2pÞÞ=y4g:

The distance of each car x1; x2; x3; x4 from the user pref-

erence is given in Tables 13, 14, 15, and 16, respectively.

Table 17 represents the d-granulation of a given bipolar

complex fuzzy concepts and shows that the car x2 will be

considered as first preference. This extracted information

corresponds to its bipolar complex fuzzy concepts (shown

in Fig. 3) with less computational time, i.e., O(m4) or

O(n4). It should be noted that both of proposed methods

have different advantages to solve the particular problem of

a given bipolar complex fuzzy context. In the next section,

another method is proposed to navigate the bipolar com-

plex fuzzy concept lattice based on user-defined complex

granules.

4.3 Decomposition of bipolar complex fuzzy
concepts

In the last decade, many researchers tried to read the large

or complex data set using the properties of granular com-

puting. This provides a simpler way to solve the particular

problem with an improved descriptions [36]. Due to which,

recently some of the researchers tried to navigate the for-

mal fuzzy context [29], interval-valued context [46] and

bipolar fuzzy context [40] at different granulation [38, 53].

This paper focuses on decomposition of bipolar complex

fuzzy context at user required d-granulation using the

proposed method shown in Sect. 3.3. For this purpose, a

context shown in Table 12 is considered. Now the problem

is to decide a level of granulation to analyze this context.

To achieve this goal, some of the potential levels are shown

in Table 18. Table 19 shows the decomposition of context

shown in Table 12 using the granulation level-4

i.e:ð0:5;�0:5Þeð0;2pÞ for finding the interesting concepts.

The concept lattice generated from Table 19 is shown in

Fig. 5 which shows that x2 is specialized concept and x3 as

generalized concepts. In this case the company can con-

clude that the user will prefer the x3 as first preference. This

analysis corresponds to its bipolar complex fuzzy concept

lattice shown in Fig. 4 as well as its d-distance shown in

Sect. 4.2. However, to achieve this goal the proposed

method takes O(n:m2) or O(m:n2) time complexity. This is

one of the major advantages of the proposed method

toward reduction of time complexity.

Fig. 4 A bipolar complex fuzzy concept lattice for the context shown

in Table 12

Table 13 d-equal computation of car x1 using proposed method

shown in Table 8

y1 y2 y3 y4

supjrPB1
ðyÞ � rPB2

ðyÞj 0.4 0.6 0.3 0.4

supjrNB1
ðyÞ � rNB2

ðyÞj 0.6 0.4 0.7 0.6

1
2p sup jargPB1

ðyÞ � argPB1
ðyÞjÞ 0.65 0.75 0.75 0.9

1
2p sup jargNB1

ðyÞ � argNB1
ðyÞjÞ 0.35 0.25 0.25 0.1

AV(d) 0.65 0.75 0.75 0.9

d-equal 0.35 0.25 0.25 0.1

Average d-weight 0:95=4 ¼ 0:23
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5 Results and discussion

Recently, bipolar fuzzy graph representation of concept

lattice [40] is studied for graphical analytics of data with

bipolar fuzzy attributes. In this process, a major issue was

addressed by Prem Kumar Singh [45] that the bipolar

cognition of human changes at given phase of time. In this

case, precise measurement of bipolarity exists in given data

sets which is a major problem for multi-decision making

process [47]. To deal with this problem, the current paper

focused on measuring the changes in bipolar fuzzy attri-

butes and its pattern at given phase of time. This research

field has just got significant attention of the various

researchers in the world [45, 60]. The bipolar complex

fuzzy context and its navigation in the graph are still at

infancy stage. To achieve this goal, a subset based method

is proposed to discover all the bipolar complex fuzzy

concepts and its graphical visualization as basis of further

research. It is well known that this method takes expo-

nential time to build the concept lattice [8]. To resolve this

issue, two other methods are proposed for navigating the

bipolar complex data set using the distance [5] and granular

computing [66] metric. The motivation is to mathemati-

cally represent the bipolar complex data set [60] for its

various applications [51] in knowledge processing task

[52]. The objective is to extract some of the meaningful

information from the given bipolar complex fuzzy context

using its compact display in the concept lattice. To fulfill

this need, following methods are proposed: (1) the first one

focused on investigating all the bipolar complex fuzzy

concepts and its graphical structure visualization in the

complex fuzzy graph, (2) the second one focused on

selecting some of the similar complex fuzzy concepts,

whereas (3) the third one focused on decomposition or

navigation of bipolar complex fuzzy concept lattice based

on user required granulation. It can be observed that each

of the proposed methods has some advantages and disad-

vantages which can be decided by experts to solve the

complexity of the particular problem (as demonstrated in

Sect. 4). For better understanding, a comparative analysis

on them is shown in Table 20 based on several parameters.

It can be observed that second and third methods are useful

for analyzing the bipolar fuzzy context at user-defined

granulation in less computational time. However, the first

method provides more rigorous analysis and pattern in the

given bipolar complex data set, whereas it takes expo-

nential time.

Table 21 shows the comparison of some available

approaches based on their novel ideas to understand the

necessity of the proposed method. It can be observed that

each of the method has its own mathematics and graphical

analytics to deal with semantics of bipolar information.

Table 14 d-equal computation of car x2 using proposed method

shown in Table 8

y1 y2 y3 y4

supjrPB1
ðyÞ � rPB2

ðyÞj 0.5 0.3 0.4 0.3

supjrNB1
ðyÞ � rNB2

ðyÞj 0.5 0.3 0.6 0.7

1
2p sup jargPB1

ðyÞ � argPB1
ðyÞjÞ 0.2 0.8 0.05 0.8

1
2p sup jargNB1

ðyÞ � argNB1
ðyÞjÞ 0.8 0.2 0.95 0.2

AV(d) 0.8 0.8 0.95 0.8

d-equal 0.2 0.2 0.05 0.2

Average d-weight 0:65=4 ¼ 0:16

Table 15 d-equal computation of car x3 using proposed method

shown in Table 8

y1 y2 y3 y4

supjrPB1
ðyÞ � rPB2

ðyÞj 0.7 0.6 0.5 0.8

supjrNB1
ðyÞ � rNB2

ðyÞj 0.3 0.4 0.5 0.2

1
2p sup jargPB1

ðyÞ � argPB1
ðyÞjÞ 0.3 0.35 0.4 0.75

1
2p sup jargNB1

ðyÞ � argNB1
ðyÞjÞ 0.7 0.65 0.1 0.25

AV(d) 0.7 0.65 0.5 0.8

d-equal 0.3 0.35 0.5 0.2

Average d-weight 1:35=4 ¼ 0:33

Table 16 d-equal computation of car x4 using proposed method

shown in Table 8

y1 y2 y3 y4

supjrPB1
ðyÞ � rPB2

ðyÞj 0.6 0.4 0.5 0.6

supjrNB1
ðyÞ � rNB2

ðyÞj 0.4 0.6 0.5 0.4

1
2p sup jargPB1

ðyÞ � argPB1
ðyÞjÞ 0.65 0.75 0.4 0.9

1
2p sup jargNB1

ðyÞ � argNB1
ðyÞjÞ 0.35 0.25 0.6 0.1

AV(d) 0.65 0.75 0.6 0.9

d-equal 0.35 0.25 0.4 0.1

Average d-weight 1:1=4 ¼ 0:27

Table 17 Selection of d-equal
complex fuzzy concepts at user

requirements

d-equal Selected car

d� 0:0 ø

d� 0:16 x2

d� 0:23 x1; x2

d� 0:27 x1; x2; x4

d	 0:33 x1; x2; x3; x4
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However, the proposed methods in this paper are distinct

from any of the available approaches in complex fuzzy set

as shown in Table 22. It represents some of the significance

difference of the proposed methods when compared to any

of the approaches in bipolar space. Some of the most

interesting and noted differences are as follows:

(1) The first proposed method provides a methods to

visualize the bipolar complex fuzzy matrix in the

concept lattice using their subset of attributes, i.e.,

O(n2:2m) time complexity which can work as a basis

for further research,

(2) The second proposed method gives a way to choose

some of the closest bipolar complex fuzzy pattern

based on user required distance within O(m4) or

O(n4) time complexity,

(3) The third proposed method provides many ways to

decompose or navigate the bipolar complex fuzzy

concept lattice at user-defined granulation within

O(n:m2) or O(m:n2) time complexity to solve the

particular problem.

(4) It can be observed that the proposed methods in this

paper gives a compact display of bipolar complex

fuzzy matrix in the graph which is more helpful in

knowledge processing tasks when compared to any

other approaches.

Table 22 provides a comparative analysis between the

proposed methods and other available approaches on var-

ious parameters. Among them the complex vague concept

lattice introduced in [45] is considered as one of the most

relevant. In this case, to validate the obtained results this

method is considered in this paper. It can be observed that

the obtained results from Example 6 by each of the pro-

posed methods in this paper is concordant with the subset

based method shown in [45]. However, the proposed

method in this paper provides multiple ways to zoom in

and zoom out the bipolar complex fuzzy contexts in less

computational time when compared to subset based

method [45] as illustrated in Sects. 4.2 and 4.3, respec-

tively. It is one of the major advantages of the proposed

Table 18 Some of the complex

granules to analyze the

preference in a given phase of

time

Level of granulation User interest Interpretation of granule Bipolar complex fuzzy granule

Level-1 Highly interested Highly positive ð0:8;� 0:2Þeð0;2pÞ

Level-2 Very very interested Very positive ð0:7;� 0:3Þeð0;2pÞ

Level-3 Very interested Absolute positive ð0:6;� 0:4Þeð0;2pÞ

Level-4 Interested Partial positive ð0:5;� 0:5Þeð0;2pÞ

Level-5 Partially interested Partial negative ð0:4;� 0:5Þeð0;2pÞ

Level-6 Not interested Absolute negative ð0:3;� 0:7Þeð0;2pÞ

Level-7 Not required Negative ð0:2;� 0:8Þeð0;2pÞ

Table 19 A ð0:5;� 0:5Þeð0;2pÞ
decomposition of bipolar

complex fuzzy context shown in

Table 12

y1 y2 y3 y4

x1 1 0 1 1

x2 1 1 1 1

x3 0 0 1 0

x4 0 1 1 0

Fig. 5 A concept lattice generated from the context shown in

Table 19

Table 20 Comparison of proposed methods in this paper

Proposed method 1 shown in Table 7 Proposed method 2 shown in Table 8 Proposed method 3 shown in Table 9

Knowledge discovered x2 is suitable x2 is suitable x2 is suitable

Methodology used Subset of complex set d-Equal Complex granulation

Time complexity O(n2:2m) O(m4) or O(n4) O(n:m2) or O(m:n2)

Advantages Provides all pattern d-Equal concepts Decompose the context

Disadvantages High computing time Distance measurement Defining the complex granules
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method while handing the bipolar complex fuzzy contexts.

However, to accomplish this tasks proposed method takes

exponential time in its graphical structure visualization.

Same time the proposed method is unable to measure the

uncertainty in periodic data beyond the three-polar [46] or

multi-polar space [1, 47]. To resolve these issues the author

will focus on introducing other metrics of complex fuzzy

Table 21 Some benchmark

work on data with bipolar and

complex fuzzy attributes

Research papers Set theory Concept lattice Graph Granulation Pattern

[2] Bipolar fuzzy set No No No No

[4] Complex fuzzy set No No No No

[5] Complex fuzzy set No No No Yes

[7] Fuzzy set Yes No Yes No

[12] Bipolar fuzzy set Yes No No Yes

[13] N-valued set No No No Yes

[14] Bipolar set No Yes No Yes

[15] Bipolar set No Yes No Yes

[19] Bipolar set No Yes Yes Yes

[23] Bipolar set No No No Yes

[21] Complex fuzzy set Yes Yes No No

[32] Three-way decision space Yes Yes Yes Yes

[35] Shadow-set No No Yes Yes

[40] Bipolar fuzzy set Yes Yes Yes Yes

[43] Composed set Yes Yes No Yes

[44] Neutrosophic set Yes Yes No Yes

[45] Complex set Yes Yes No Yes

[47] m-polar set Yes Yes No Yes

[51] Complex set No No No Yes

[52] Complex set No No Yes Yes

[58] Bipolar fuzzy set No Yes No No

[51] Complex set No No No Yes

[60] Complex set No Yes No Yes

[67] Complex set No Yes No Yes

[69] Bipolar fuzzy set No Yes No Yes

Proposed methods Yes Yes Yes Yes Yes

Table 22 Comparison of the proposed methods by available approaches in bipolar space

Bipolar concept lattice [40] Complex vague lattice [45] Proposed method

Bipolar information Yes Yes Yes

Uncertainty measurement Yes Yes Yes

Periodic measurement No Yes Yes

Methodology Subset of attributes Subset of attributes d-granulation and granular computing

Graph Bipolar fuzzy graph Complex graph Bipolar complex vague graph

Lattice Yes Yes Yes

Granular decomposition Yes No Yes

d-granulation No No Yes

Similarity measurement No No Yes

Partial ordering Yes Yes Yes

Zoom in No No Yes

Zoom out

Knowledge discovered from Example 6 Not applicable Commensurate with each other Commensurate with each other

Time complexity Oðn:2mÞ Oðn2:2mÞ O(m4) or O(m:n2)
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sets [5, 60] or its composition [43] in near future using

different metric like entropy [41].

6 Conclusions

This paper establishes that bipolar complex fuzzy matrix

data set can be visualized in the compact format of concept

lattice for knowledge processing tasks. In this process a

major problem is addressed dealing with exponential size

of bipolar complex fuzzy concept lattice. To resolve this

issue two methods are used to navigate or decompose the

bipolar complex fuzzy concept lattice within O(m:n2) and

O(m:n2) time complexity, respectively. It is one of the

significant output of the proposed method toward reducing

the time complexity while dealing with bipolar periodic

data set. However the proposed method is unable to mea-

sure the fluctuation in uncertainty beyond the three-polar or

multi-polar space. To deal with this problem, the author

will focus on introducing other metrics of bipolar complex

fuzzy sets in the concept lattice theory.
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