
DEEP LEARNING FOR MUSIC AND AUDIO

Singing voice separation using a deep convolutional neural network
trained by ideal binary mask and cross entropy

Kin Wah Edward Lin1 • B. T. Balamurali1 • Enyan Koh1 • Simon Lui1 • Dorien Herremans1,2

Received: 16 December 2017 / Accepted: 3 December 2018 / Published online: 13 December 2018
� Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Separating a singing voice from its music accompaniment remains an important challenge in the field of music information

retrieval. We present a unique neural network approach inspired by a technique that has revolutionized the field of vision:

pixel-wise image classification, which we combine with cross entropy loss and pretraining of the CNN as an autoencoder

on singing voice spectrograms. The pixel-wise classification technique directly estimates the sound source label for each

time–frequency (T–F) bin in our spectrogram image, thus eliminating common pre- and postprocessing tasks. The pro-

posed network is trained by using the Ideal Binary Mask (IBM) as the target output label. The IBM identifies the dominant

sound source in each T–F bin of the magnitude spectrogram of a mixture signal, by considering each T–F bin as a pixel

with a multi-label (for each sound source). Cross entropy is used as the training objective, so as to minimize the average

probability error between the target and predicted label for each pixel. By treating the singing voice separation problem as a

pixel-wise classification task, we additionally eliminate one of the commonly used, yet not easy to comprehend, post-

processing steps: the Wiener filter postprocessing. The proposed CNN outperforms the first runner up in the Music

Information Retrieval Evaluation eXchange (MIREX) 2016 and the winner of MIREX 2014 with a gain of

2.2702–5.9563 dB global normalized source to distortion ratio when applied to the iKala dataset. An experiment with the

DSD100 dataset on the full-tracks song evaluation task also shows that our model is able to compete with cutting-edge

singing voice separation systems which use multi-channel modeling, data augmentation, and model blending.

Keywords Singing voice separation � Convolutional neural network � Ideal binary mask � Cross entropy �
Pixel-wise image classification

1 Introduction

Humans have an exceptional ability to separate different

sounds from a musical signal [3]. For instance, some

musicians can distinguish the guitar part from a song and

transcribe it, and most non-musician listeners are able to

hear and sing along to lyrics of a song. Machines, however,

have not yet mastered the ability to separate voices in

music, despite the steep increase in the amount of research

on artificial intelligence and music over the past few years

[8, 19, 28, 48, 50, 66]. In this paper, we focus on the task of

singing voice separation from a polyphonic musical piece,

i.e., the automatic separation of a musical piece into two

music signals: the singing voice and its music accompa-

niment. Some singing voice separation (SVS) systems

[48, 52, 65, 66] take this one step further by separating the

music accompaniment into different types of musical

instruments. In this research, we focus on the first task of

This work is supported by the MOE Academic fund AFD

05/15 SL and SUTD SRG ISTD 2017 129.

& Kin Wah Edward Lin

edward_lin@mymail.sutd.edu.sg

B. T. Balamurali

balamurali_bt@sutd.edu.sg

Enyan Koh

enyan_koh@mymail.sutd.edu.sg

Simon Lui

simon_lui@sutd.edu.sg

Dorien Herremans

dorien_herremans@sutd.edu.sg

1 Singapore University of Technology and Design, Singapore,

Singapore

2 Institute of High Performance Computing, A*STAR,

Singapore, Singapore

123

Neural Computing and Applications (2020) 32:1037–1050
https://doi.org/10.1007/s00521-018-3933-z(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6749-6889
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3933-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3933-z&amp;domain=pdf
https://doi.org/10.1007/s00521-018-3933-z


separating the singing voice from its music accompani-

ment. The potential applications of automatic singing voice

separation are plentiful and include melody extraction/an-

notation [12, 56], singing skill evaluation [35], automatic

lyrics recognition [46], automatic lyrics alignment [71],

singer identification [37] and singing style visualization

[34]. These applications are not only useful for researchers

in the field of music information retrieval (MIR), but

extend to commercial applications such as music for kar-

aoke systems [71].

We propose a novel convolutional neural network

(CNN) approach for extracting a singing voice from its

musical accompaniment. The key innovations in this

design are the inclusion of Ideal Binary Mask (IBM) [70]

as the target label and the use of cross entropy [47] as the

training objective. This particular combination of IBM with

cross entropy loss has proven to be extremely effective for

image classification [49]. In the case of singing voice

separation, the IBM represents a binary time � frequency

matrix, whereby a ‘1’ indicates that the target energy is

larger than the interference energy within the correspond-

ing time–frequency (T–F) bin and ‘0’ indicates otherwise.

The training is guided by cross entropy, i.e., the average of

the probability error between the predicted and the target

label for each T–F bin. Additionally, we pretrain the

weights of the CNN by training it as an autoencoder using

singing voice spectrograms. The proposed network design

enables us to leverage the power of CNNs for pixel-wise

image classification, i.e., classifying each individual pixel

of an image [32, 42]. This is done performing multiclass

classification (one class per sound source) for each T–F bin

in our spectrogram, thus directly estimating the soft mask.

This allows us to eliminate one of the very commonly used

postprocessing step, the Wiener filter [12, 13, 22, 48, 52,

65, 66] (see Sect. 2).

We set up an experiment to test the proposed system

with state-of-the-art models for SVS. When training our

model on the iKala dataset [5], we achieve 2.2702–

5.9563 dB Global normalized source-to-distortion ratio

(GNSDR) gain when compared to two state-of-the-art SVS

systems [6, 26]. A second experiment, on the full-track

songs from the DSD100 dataset [41], shows no statistically

significant difference between the proposed system and the

current state-of-the-art systems. These experimental results

suggest the need for a dataset agnostic model, meaning that

instead of blindly feeding more data to models (which

greatly improves training time), there is a need for efficient

and effective models that perform well across different

dataset, even with limited data. In the current research, we

work toward this goal by using a network architecture that

has shown to be effective in the field of image classifica-

tion, and use a validation procedure during training and

postprocessing to ensure that our CNN generalizes better.

Furthermore, when designing our novel architecture, we

trained and tested the model on two different datasets, such

that the final optimized architecture would perform well

across these datasets.

In the next section, an overview of the current state-of-

the-art in voice separation models is given, followed by a

description of our proposed CNN model with a formal

definition of IBM and cross entropy. We then describe the

details of the experimental setup and the training

methodology and present the results. Finally, conclusions

regarding our proposed model and future research are

offered.

2 Related work

This section presents existing research in the field of

singing voice separation. Experienced readers, who are

familiar with the basics of the field, may skip to the sixth

paragraph of this section for a detailed description of some

of the latest state-of-the-art models. For a more compre-

hensive overview of the research undertaken in the last 50

years in this field, we refer the reader to the overview

article [55].

The most popular preprocessing method in the field of

singing voice separation involves transforming the time-

domain signal into a spectrogram [4, 15, 16, 24, 26,

29, 67, 69]. Given that the value of each time–frequency

(T–F) bin in the magnitude spectrogram X is nonnegative,

existing research on blind source separation (BSS) typi-

cally applies techniques such as Independent Subspace

Analysis (ISA) [4] and Nonnegative Matrix Factorization

(NMF) [33]. The former, ISA, is a variant of Independent

Component Analysis (ICA), which has previously been

used to solve the cocktail party problem [7]. Independent

Component Analysis is built upon the assumption that the

number of mixture observation signals is equal to or

greater than the target sources. The ISA variant, however,

relaxes this constraint by using the nonnegative spectro-

gram X. The second technique often used for blind source

separation, NMF, decomposes X into two nonnegative

matrices L and R. The product of these two matrices

approximates X, such that LR � X, with D being the

difference, such that D ¼ X � LR. The matrix D is later

assumed to have the timbral characteristics of the singing

voice.

NMF was the most widely adopted BSS technique in the

2000s [9, 11, 14, 15, 67, 69]. The main difference between

the various NMF-based methods is how the objective

function is formulated. A typical formulation could be,

min jjX � LRjj2 or minDivðXjjLRÞ, where Div is the

Kullback–Leibler divergence function. The popularity of
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NMF is partly due to the fact that the two matrices (L and

R) can easily be interpreted as a set of different types of

musical instruments (or different tracks in the music),

which we refer to as I. To understand this interpretation, let

us first assume the columns of L to be the frequency/tone

basis functions li and the rows of R to be the time basis

functions ri, where i is one of the musical instrument (or

tracks) in the music. The factorized matrices (L and R) can

be decomposed as the sum of the outer product of the basis

functions, such that LR ¼
P

i2I li � ri. Thus, a frequency

basis function li can be interpreted as the timbre of

instrument i. The corresponding set of time basis functions

ri indicate how the sound of instrument i evolves during the

music. Additionally, I is sometimes divided into two

groups by posing constraints for the set of harmonic or

pitched instruments (e.g. piano), h 2 I, and the set of the

percussion instruments (e.g. drum), p 2 I [15, 29, 69].

A related technique, Robust Principal Component

Analysis (rPCA), has also been applied to source sound

separation [38]. It uses an augmented Lagrange multiplier

to exactly1 separate X into a low rank matrix and sparse

matrix, X ¼
P

i2I li � ri � D, was widely adopted since

2012 [24]. The resulting factorized matrix LR is a low rank

approximation of X. The use of rPCA in source separation

is motivated by the fact that (i) that the basis function of LR

approximates the spectrogram of the musical accompani-

ment component in the mixture signal; and (ii) D is a sparse

matrix that closely approximates the spectrogram of the

separated singing voice. To better understand this, note that

X � LR and X �
P

i2I li � ri. If the number of musical

instruments |I| is the reduced rank of X, then LR is a low

rank approximation of X. Since the singing voice falls in

between the harmonic instruments and percussion instru-

ments, it is assumed to be represented by D.

Ikemiya et al. [26] use rPCA to obtain a sparse matrix,

which is treated as a vocal time–frequency mask, and a

vocal spectrogram. They then estimate the vocal F0 con-

tour in this spectrogram in order to form a harmonic

structure mask. By combining these two masks, they are

able to better perform singing voice separation. This

method, referred to as IIY, is the winner of MIREX 2014.2

Chan et al. [5] use the annotation of the vocal F0 contour to

form a sparsity mask, which they then use as the input for

rPCA to obtain a better vocal spectrogram. There exist

several other approaches for source separation, such as the

use of a similarity matrix [40, 53]. Based on the MIREX

2014 results2, however, none of them outperform the

rPCA-based methods. Hence, rPCA has become the de

facto baseline in recent years.

Inspired by the influential work of Krizhevsky et al. [32]

on large-scale image classification from natural images, the

use of deep learning has recently gained a lot of attention.

Most deep-learning-based SVS systems [6, 12, 22, 44, 66]

are trained to match the network input (i.e., the magnitude

spectrogram of the mixture signal), with the target label

(i.e., the ground truth magnitude spectrogram of the target

sound source). Given enough training data, neural networks

are typically able to estimate good approximations any

continuous function [20], in this case, the magnitude

spectrogram for each of the sound sources is estimated.

These magnitude spectrograms, however, are not yet a

good representation of the different sources. Contrary to

intuition, these systems require a Wiener filter postpro-

cessing step, in which a soft mask is calculated for the

estimated magnitude spectrograms for every target sound

source. These masks are then multiplied with the original

magnitude spectrogram of the mixture signal to recreate

each estimated signal. Using these soft masks typically

gives a better separation quality than directly using the

network output to synthesize the final signal [66]. This

suggests that we should skip the Wiener filter postpro-

cessing and design a network to learn a soft mask directly.

Recent advances in the field of computer vision [42]

have greatly advanced image classification techniques by

moving away from the image level toward the pixel-level.

Pixel-wise classification aims at classifying each individual

pixel in an image. The task of classifying each T–F bin of a

spectrogram into a vocal or non-vocal component can be

considered as a pixel-wise classification problem.

Creating the pixel-wise ground truth for image seg-

mentation typically involves extensive human effort.

Luckily, this is not the case in SVS research as we can

simply calculate the ground truth mask from a training set

which contains the separated signals (see Sect. 3.2).

Simpson et al. [59] and Grais et al. [18] perform singing

voice separation using IBM as the target label for training a

deep feed-forward neural network. In this research, how-

ever, we opt to use a convolutional neural network archi-

tecture, which has proven to greatly improve the

performance of image classification tasks [32, 42]. A

similar CNN architecture for SVS, abbreviated in what

follows as MC, has been proposed by [6]. This method was

the first runner up in the MIREX 2016 competition.3 The

architecture proposed in this research improves the

dimensions of the convolutional layer and introduces a

cross entropy loss function, which greatly improves

performance.
1 NMF-based methods do not have this strong constraint. After their

optimization process, it likely happens that the rank of LR cannot be

reduced to |I|, or that D is not a sparse matrix.
2 http://www.music-ir.org/mirex/wiki/2014:Singing_Voice_Separa

tion_Results.

3 http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separa

tion_Results.
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Other state-of-the-art alternatives to using a CNN

include the use of recurrent neural networks (RNN) [22]

and bi-directional long short-term memory (BLSTM)

Networks [66]. These networks are designed to capture

temporal changes and may therefore not be necessary in a

voice separation context.

Jansson et al. [28] were the first to tackle SVS tasks by

using a deep convolutional U-net in which the network

predicts the soft mask. Their system shows remarkable

performance on two datasets, iKala and MedleyDB [2]. It

should be noted, however, that while their network was

tested on iKala and MedleyDB, it was trained on a gigantic

dataset (the equivalent of two months worth of continuous

audio) supplied by industry [25]. This is much larger than

the iKala and DSD100 training sets used in this research,

which contain a total of, respectively, 76 minutes and 216

minutes of audio. The performance of similar U-net

architectures [61, 62] trained on these smaller training set

(e.g. DSD100) perform much worse than the original

model. We can thus conclude that the remarkable perfor-

mance reported by Jansson et al. [28] is mainly depended

on the tremendous large training set, instead of the U-net

architecture [25].

In this paper, we explore a CNN-based method with soft

mask prediction further improve the state-of-the-art in SVS

systems. The next section will describe our proposed sys-

tem in more detail.

3 CNN network design

In this section, we first describe how the original mixture

signal is transformed into a set of spectrogram excerpts,

which are used as the input of the proposed CNN model.

We then outline the network architecture, along with a

formal definition of IBM and cross entropy. Next, we

discuss issues related to the implementation and design of

the CNN. Finally, an outline is given of how the network

output is transformed into two separated signals, the sing-

ing voice and music accompaniment.

3.1 Preprocessing

In the preprocessing stage, the actual input for the CNN is

created. First, we apply a short-time Fourier transform

(STFT) on the mixture signal x to obtain the magnitude

spectrogram X and the phase spectrogram pX. For each Fast

Fourier transform (FFT) step, we use the Hann windowing

function [51] with a window sizeW of 46.44 ms, a hop size

H of 11.61 ms and a 4� zero padding factor. By setting the

sampling rate fS at 22.05 kHz, each FFT step is with size

N ¼ 4096, W ¼ 1024 and H ¼ 256. This STFT

configuration was chosen based on the authors’ previous

study on sinusoidal partials tracking [36].

Sinusoidal partials tracking (PT) is a peak-continuation

algorithm that links up the spectral peaks into a set of

tracks. Each track models a time-varying sinusoid. The

tracks are called partials when they represent the deter-

ministic part of the audio signal. In the previous PT study,

the average length of a singing voice partial was found to

be around 9 continuous frames and the 4� zero padding

factor improved the separation quality of the ideal case.

Hence we can assume that these settings should allow for

enough temporal and spectral cues in order to properly

train the CNN. The input of the proposed CNN consists of

an image snapshot of X with a shape of ð9� 2049Þ, which
is a spectrogram excerpt of ð9� 1000Þ=22;050 ¼
104:49 ms and 11.025 kHz.

3.2 Network architecture with ideal binary mask
and cross entropy

Table 1 shows the network architecture of the proposed

CNN along with the configuration and the corresponding

number of trainable parameters and features. We adopt the

CNN architecture developed by Schlüter [57] for voice

detection. For that task, the network was trained on weakly

labeled music.4 The resulting saliency map, created

through guided backpropagation of the CNN, shows the

singing voice in the T–F bin level.

In the current research, we use the IBM as the target

label instead of weak labels. IBM can be formally defined

as follows. Let the F � T matrix X denote the magnitude

spectrogram, whereby F is the number of frequency bins,

F ¼ ðbN
2
c þ 1Þ with N as the FFT size, and T is the number

of frames. Given the magnitude spectrogram of the voice

XV and of the music accompaniment XS, the IBM of the

singing voice, which is a F � T matrix B, is calculated as,

B½n; t� ¼
1; if XV½n; t�[XS½n; t�
0; otherwise

�

ð1Þ

where t 2 ½1; T � is the time index and n 2 ½1;F� is the

frequency bin index. The IBM of the music accompani-

ment is denoted as B ¼ j1� Bj.
The resulting matrix B forms the target label of the

neural network. Together with the network predictions,

Y[n, t], formed by the sigmoid output of the final layer, we

can calculate the cross entropy over all T–F bins, as:

C½n; t� ¼ B½n; t� � �logðY½n; t�Þ

þ ð1� B½n; t�Þ � �logð1� Y½n; t�Þ
ð2Þ

4 Each piece of music only has one annotation that indicates whether

the music contains vocals or not.

1040 Neural Computing and Applications (2020) 32:1037–1050

123



The training objective of our proposed network minimizes

the cross entropy. This type of objective function performs

better then that often used softmax function, as it is tailored

to the fact that each T–F bin can have multiple labels.

Unlike a pixel in an image whose value is paired with the

desired label, the value of a T–F bin in the magnitude

spectrogram of a mixture signal is roughly the sum of the

T–F bin of the singing voice and its accompaniment.

Alternative training objectives were explored, such as

minimum mean square error (MMSE) with both IBM and

Ideal Ratio Mask (IRM) [72] as the target label. We found,

however, that the MMSE does not decrease much with

IRM and IBM and that cross entropy also does not decrease

much with IRM. We therefore opted to integrate IBM with

a cross entropy training objective.

To improve the network performance, the weights were

first initialized with Xavier’s initializer [17]. To further

improve these initial weights, the CNN trained as an

autoencoder using spectrogram excerpts of the ideal sing-

ing voice for 300 epochs. These initial weights allow us to

train the resulting separation network much more

efficiently.

An often used technique to speed up a model’s con-

vergence is Batch Normalization (BN) [27]. This technique

requires a number of extra parameters and increases the

training time for each epoch. When implementing BN in

our network, we did not notice an improvement in training

time, and most importantly, there was no improvement of

the separation quality. We therefore opted not to include

BN in the proposed system. Similarly, we also did not find

an improvement of separation quality and training time

when we used the skip connection method [21] and the

method of converting the fully connected layer to a con-

volutional layer [42]. Hence, both methods were not

included in the proposed CNN.

Existing network architectures commonly apply a

(3� 3) filter in the convolutional layers. Because we

applied 4� zero padding factor in the frequency domain

during the STFT calculation, we set the convolutional filter

size to be (3� 12), whereby 3 represents the time and 12

the frequency bin. The time dimension in the pooling layer

was not reduced as this can introduce jitter and other

artifacts. The frequency dimension in the max pooling

layer, however, was reduced. This process is roughly

analogous to Mel-frequency calculation, which has been

empirically proven to provide useful features for audio

classification tasks [43, 45, 64]. The number of features

maps in each convolutional layer is halved compared to the

Table 1 Network architecture of the proposed CNN along with the configuration and the corresponding number of trainable parameters and

features

Layer Configuration Number of trainable

parameters

Input Input size is (9 9 2049) Num. of features is (9 9 2049) = 18,441 N/A

Convolution 32@ (3 9 12), Stride 1 Zero Pad, ReLU ð3� 12Þ � 32þ 32 ¼ 1184

Convolution 16@ (3 9 12), Stride 1 Zero Pad, ReLU ð3� 12Þ � 32� 16þ 16

¼ 18;448

Max pooling Non-overlap ð1� 12Þ reshapes input size to ð9� 12Þ ¼ 1539 Num. of features is

ð9� 171Þ � 16 ¼ 24;624
N/A

Convolution 64@ð3� 12Þ, Stride 1 Zero Pad, ReLU ð3� 12Þ � 16� 64þ 64

¼ 36;928

Convolution 32@ð3� 12Þ, Stride 1 Zero Pad, ReLU ð3� 12Þ � 64� 32þ 32

¼ 73; 760

Max-pooling Non-overlap ð1� 12Þ reshapes input size to ð9� 15Þ ¼ 135 Num. of features is

ð9� 15Þ � 32 ¼ 4;320
N/A

Dropout with probability 0.5 N/A

Fully

connected

2048 Neurons, ReLU 4;320� 2;048þ 2;048
¼ 8;849;408

Dropout With probability 0.5 N/A

Fully

connected

512 Neurons, ReLU 2;048� 512þ 512

¼ 1;049;088

Output 18,441 Neurons, Sigmoid Reshape ð9� 2049Þ Singing Voice IBM Label to match these

Neurons

512� 18;441þ 18;441
¼ 9;460;233

Objective

function

Cross entropy Total: 19,489,049
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original voice-detection CNN architecture [57], so as to

shorten the training time, and most importantly, to avoid

degradation of the separation quality. Finally, the dropout

[60] settings and ReLU activations [32] are preserved as in

the original architecture.

3.3 Postprocessing

The goal of the singing voice separation task is to get two

isolated music signals: voice and accompaniment. We

therefore need to convert the estimated soft mask by net-

work into two audio signals. In order to do this, the CNN

output is first reshaped from ð1� 18;441Þ to ð9� 2049Þ in
order to reconstruct the 9 frames. The estimated network

output, before postprocessing, is considered to be the soft

mask of the estimated singing voice spectrogram, meaning

that the value for each T–F can range from 0 to 1. This

assumption is justified by the fact that IBM was selected as

the target label during training and thus used to calculate

the cross entropy with sigmoid function. The value of each

T–F bin in the soft mask can be interpreted as the proba-

bility e that the T–F bin belongs to the singing voice.

To further improve the separation quality, we carry out the

following optional refinement using the validation set. For a

threshold h, we set e to zero when e\h. Based on an

experiment using the validation set (see Sect. 4), we set h to
be 0.35 for the iKala dataset and 0.15 for theDSD100dataset.

The neural network architecture described above takes 9

audio frames as input. In order to estimate a single soft mask

MV for separating the singing voice from an entire song, we

follow a two step approach inspired by Schlüter [57]. First,

overlapping spectrogram excerpts (each 9 frames long) are

fed into the network with a hop size of 1 frame. The middle

frames of each estimated soft mask is then concatenated to

createMV . These two steps are illustrated in Fig. 1. The soft

maskMS for obtaining themusic accompaniment from a test

song can be calculated by 1�MV .

Finally, the isolated signing voice signal is obtained by

calculating the inverse TFT (iSTFT) of the element-wise

multiplication between the estimated MV and X, and the

original phase spectrogram pX. Similarly, we can obtain

the isolated musical accompaniment signal by calculating

the iSTFT of the element-wise multiplication between MS

and X using pX. In the case of a stereo recording, all of the

procedures mentioned above should be carried out for each

channel separately.

4 Experiment setup

The separation quality of the proposed CNN model is

evaluated and compared to other state-of-the-art SVS sys-

tems. This is achieved by using two datasets that are

specifically designed for the SVS task. Before discussing

the results of our experiment in the next section, a brief

description of the music clips in each dataset is given,

together with how these are divided into development and

test sets. We then describe the evaluation procedure and

discuss how the proposed CNN should be properly trained,

so that a state-of-the-art results can be obtained.

4.1 iKala dataset

The iKala dataset [5] is a public dataset specifically created

for the SVS task. Each clip in the dataset is recorded in a

CD quality wave file and sampled at 44.1 kHz, with two

channels. One channel consists of the ground truth singing

voice V, and the other one forms the ground truth music

accompaniment S. The mixture signal M is simply the sum

of V and S. There are 6 singers, of which three were female

and three male. The singing voice tracks were almost

entirely performed by one or more of these singers. The

musical accompaniment tracks were all performed by

professional musicians. Each clip is 30 s long and contains

non-vocal regions with varied duration. The language of

the lyrics is either English, Mandarin, Korean, or Tai-

wanese. The dataset contains 352 music clips, 100 of them

are reserved for the evaluation of the MIREX5 singing

voice separation task and are not publicly available.

Among the remaining 252 clips, 137 of these clips are

labeled Verse and 115 clips as Chorus.

In order to properly evaluate our proposed model, the

252 music clips in the iKala dataset were randomly divided

into 3 sets, namely training, validation, and test set. The

training set consisted of 152 (* 60%) clips, 50 (* 20%)

music clips form the validation set and 50 (* 20%) the test

set. The details of each set are described in Table 2.

4.2 Evaluation under iKala dataset

In line with the MIREX2016 evaluation procedures, we use

a standard quality assessment tool for evaluating SVS

systems called BSS Eval Version 3.0 [68]. For each esti-

mated/original clip, four quality metrics are calculated in

order to assess the separation quality, namely source-to-

distortion Ratio (SDR), source Image-to-spatial distortion

Ratio (ISR), source-to-interferences ratio (SIR), and sour-

ces-to-artifacts ratio (SAR). The global separation quality

for each clip in terms of singing voice is measured by the

normalized SDR (NSDR). This ratio is calculated as

NSDRðV;V;MÞ ¼ SDRðV;VÞ � SDRðM;VÞ ð3Þ

Here, V represents the audio signal of the estimated singing

voice. The overall singing voice separation quality on a test

5 http://www.music-ir.org/mirex/wiki/MIREX_HOME.
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set is determined by the global NSDR (GNSDR). This ratio

is calculated as

GNSDR ¼ 1

jKj
X

i2K
NSDRðVi;Vi;MiÞ ð4Þ

whereby K is a set of test clips; and the total number of the

test clips is represented by jKj. A better separation quality

is reflected by a larger GNSDR. Similarly to the quality of

the singing voice, the above formula can be modified to

calculate the separation quality of the music accompani-

ment by replacing V by S and V by S respectively. The

GNSDR calculation is computationally expensive; hence,

we used parallel processing through a GPU6 to accelerate

this process.

4.3 DSD100 dataset

The DSD100 dataset [41] is a public dataset, specifically

created for evaluating source separation algorithms capable

of separating professionally produced music recordings

into either two stereo signals (i.e., music accompaniment

and singing voice), or five stereo signals (i.e., singing

voice, music accompaniment, drums, bass and other).

There are four wave files for each recording, in addition to

the mixed recording wave file: the ground truth singing

voice V, drums U, bass A and other O. The ground truth

music accompaniment S is simply the sum of U, A and

O. The mixture signal M is the sum of V and S. The

recordings are all in English, and feature different artists

and genres. For example, the genres includes Rap, Rock,

Heavy Metal, Pop and Country. The time duration ranges

from 2 min and 22 s to 7 min and 20 s, with an average

duration of 4 min and 10 s. There are 100 recordings, that

are evenly distributed over the development (dev) set and

the test set. We used the dev set to create the training and

validation set by following the procedures described in

Sect. 4.5.

4.4 Evaluation under DSD100 dataset

To enable easy comparison with other algorithms, we

follow the evaluation procedure of the SiSEC 2016 MUS

track, and use BSS Eval version 3.0 [68] to assess the

separation quality of our SVS algorithm. In order to assess

the separation quality of whole songs; however, we carry

out the procedures below instead.

The stereo mixture signal of each recording is first

divided into a set of 30-s-long music clips with 15-s

overlap. We then exclude music clips which are smaller

than 30 s or yield NaN (Not a Number) SDR values for the

Fig. 1 Architecture for estimating a soft mask based on an entire track
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singing voice. The NaN SDR values mostly occur at the

beginning and end of the recording, where there is no

singing voice.

We refer to the set of 30-s-long clips for a recording r as

Kr. In order to assess the singing voice separation quality

of a SVS algorithm, we first calculate the representative

ðSDRrÞ value of a recording r by averaging the singing

voice SDR for each clip i in r, such that

SDRr ¼ 1
jKr j

P
i2Kr

SDRðiÞ. The singing voice separation

quality of a SVS algorithm is represented by the median of

these SDRr over the test set. The separation quality of other

sound sources can be calculated similarly.

4.5 Training

The training instances were created by dividing each

training song into a set of ð9� 2049Þ spectrogram excerpts

(one spectragram for each 9 frames) using a hop size of 8

frames (92.88 ms). Since there is an overlap of only 1

frame, the training instances are concise. In the case of

stereo recordings, each channel was processed in the same

manner, but we chose to alternatingly use the spectrogram

excerpts from one or the other channel, in order to have the

same number of training instances as for the single chan-

nel. This procedure reduces the number of training instance

significantly, yet preserve most of the information of each

channel. Both datasets are evaluated on the basis of 30-s

music clips. Using our network setup, a 30-s music clips

equates to 30� 1000=92:88 ¼ 323 input slices. For the

iKala dataset, there are 152 clips of 30 s, resulting in 323�

Table 2 The training, validation

and test set split based on the

iKala dataset

Music clips Total clips

Verse Chorus

Training 10174, 21025, 21031, 21032, 21033, 10171, 10174, 21033, 21035, 21038, 152

21035, 21038, 21039, 21040, 21054, 21040, 21054, 21056, 21057, 21059,

21055, 21059, 21060, 21063, 21064, 21061, 21063, 21068, 21074, 21075,

21069, 21076, 21086, 31081, 31099, 21083, 21086, 31047, 31075, 31083,

31101, 31104, 31107, 31109, 31113, 31101, 31103, 31112, 31113, 31115,

31114, 31119, 31134, 31136, 31143, 31118, 31135, 45305, 45358, 45361,

45305, 45358, 45359, 45362, 45367, 45363, 45367, 45368, 45369, 45378,

45368, 45378, 45381, 45382, 45386, 45382, 45384, 45386, 45387, 45392,

45387, 45388, 45389, 45390, 45393, 45398, 45406, 45413, 45422, 45424,

45398, 45404, 45414, 45415, 45421, 45425, 45428, 45429, 54189, 54190,

45423, 45428, 45429, 45434, 54173, 54192, 54202, 54211, 54220, 54221,

54186, 54191, 54192, 54194, 54205, 54223, 54226, 54233, 54236, 54239,

54223, 54226, 54245, 54246, 61670, 54243, 54245, 54246, 54249, 61647,

61671, 61673, 61674, 66558, 66564, 61671, 61676, 61677, 66556, 66557,

66565, 71706, 71710, 71711, 71719, 71710, 71716, 71719, 71720, 71726,

80612 90586

Validation 10161, 10171, 21068, 31092, 31129, 10170, 21025, 21045, 21073, 21084, 50

31139, 31142, 45369, 45384, 45400, 31092, 31100, 31129, 31137, 31143,

45409, 45417, 45422, 45435, 54016, 45381, 45385, 45389, 45416, 45419,

54189, 54219, 54242, 66559, 66560, 45435, 54173, 54183, 54210, 54212,

66563, 66566, 71712, 71720, 90586 54228, 66559, 66561, 66563, 71711

Test 21045, 21058, 21061, 21062, 21071, 10161, 10164, 21058, 31093, 31109, 50

21073, 21075, 21084, 31083, 31117, 31116, 31126, 31134, 31139, 45412,

31132, 31135, 31137, 31144, 45391, 45415, 54194, 54213, 54227

45392, 45410, 45412, 45416, 45418,

45431, 54190, 54213, 54216, 54227,

54233, 54243, 54247, 54249, 54251,

61647, 66556, 71723, 80614, 80616,

90587

The numbers represent the file name of the corresponding wave file
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152 ¼ 49;096 training instances. For the DSD100 dataset,

there are 347 clips of each 30 s, resulting in 323� 347 ¼
112;081 training instances. For each clip, we randomly

shuffle the training instances for the purpose of regular-

ization. In a similar fashion, validation instances are cre-

ated using the set of validation songs. They are used for

parameter initialization and model selection.

We use the Tensorflow [1] version of the ADAM [31]

optimizer with its default values, to train a CNN for each

dataset. The network is updated per batch of 171 instances.

A BizonBox6 with NVIDIA GTX TITAN X was used to

train both CNNs. Each training epoch needed around 2 min

and 6 min for the iKala and DSD100 dataset respectively.

For regularization purposes, we used 50% dropout [60] and

shuffled the training instances. The target values were set

to 0.02 and 0.98 instead of 0 and 1, as suggested by

Schlüter [57]. This method prevents overfitting more so

than L2 weight regularization.

All trainable parameters in our CNN were initialized

with Xavier’s initializer [17]. In order to even further

improve the set of initial parameters for the SVS task, the

CNN is first treated as an auto-encoder by pretraining it

with spectrogram excerpts of the ideal singing voice for

300 epochs. The model with the lowest cross entropy loss

for the validation set is then selected as the initial model for

the actual training with the full network. After this

parameter initialization, the proposed CNN is trained by

feeding it the spectrogram excerpts of the mixture signal

and the corresponding singing voice IBM as the target

label. Figure 2 shows the evolution of the cross entropy

loss for each dataset. Note that we also plot the cross

entropy loss of the test set for the sake of completeness.

The final model is selected based on the lowest cross

entropy loss on the validation set, which is 0.4509 and

0.3625, for the iKala and DSD100 dataset, respectively.

The selected model for the iKala and DSD100 dataset are

trained with 242 epochs and 280 epochs, respectively, in

order to ensure that the validation set has the lowest cost.

The separation quality results of these models on the test

set are described in the next section.

5 Experimental results

Using the iKala dataset, the proposed CNN was compared

with the first runner up (MC) of MIREX 2016 [6], the

winner (IIY) of MIREX 2014 [26] and the rPCA baseline

[24]. A comparison of our model with the winner of

MIREX 2016 [44] and MIREX 2015 [12] was not possible,

as both winners do not share sufficient information to

ensure a fair comparison. For example, they do not share

their trained model, information on the training set, nor

their separation results for each music clip.7 The results8 of

our experiment are displayed in Fig. 3. The CNN proposed

in this paper achieves the highest GNSDRs for both singing

voice and music accompaniment: 9.5774 dB and

9.2484 dB, respectively. For the singing voice, our system

achieves 2.2702 dB higher than MC, 5.0908 dB higher

than IIY, and 5.9071 dB higher than rPCA. For the music

accompaniment voice, the proposed CNN achieves

2.3804 dB higher than MC, 5.9563 dB higher than IIY, and

6.5947 dB higher than rPCA. To further justify that our

CNN outperforms the others, we perform a one-way

ANOVA, the results of which are summarized in Table 3.

The p values confirm that the proposed CNN achieves a

statistically significant GNSDR difference (\ 0.01) com-

pared to the other systems.

Secondly, the DSD100 dataset was used to compare the

proposed CNN to the SVS systems that participated in the

SiSEC 2016 MUS track.9 This track included 10 blind

source separation methods: CHA [6], DUR [10], KAM

[39], OZE [52], RAF [40, 53, 54], HUA [24] and JEO [30],

and 14 supervised learning methods, which use different

types of deep neural networks, including GRA [18], KON

[23], UHL [66], NUG [48], STO [63] and their variants,

e.g. UHL1 and UHL2. Given the published details of their

separation results,10 we are able to show the SDR distri-

bution8 for each SVS algorithm in Fig. 4. Based on the

median values in the test set, the proposed CNN ranks 3rd

and 8th in term of the separation quality of the singing

voice and the music accompaniment, respectively. Its

performance is just behind UHL and NUG which use

multi-channel modeling [48], data augmentation [66], and

model blending [66]. When interpreting these results, one

should keep in mind that we only used 1� 105 training

instances to train the CNN (without data augmentation),

whereas UHL was trained on 2� 106 instances. This fur-

ther illustrates the effectiveness of our network design. The

result also shows that our proposed way of proprocessing

training instances effectively reduces the size of the

required training set. Furthermore, unlike the UHL1 model,

our model does not require us to train a model separately

for each channel.

To evaluate the significance of the difference in per-

formance, a pairwise two-tailed Wilcoxon signed-rank test

with Bonferroni correction [58] was performed. Figure 5

6 https://bizon-tech.com/.

7 The 2016 winner [44] has created a web service for others to try

their separation method, however, each separated clip is only 10 s

long.
8 Readers who are interested in other evaluation metrics of our CNN

model, may refer to https://kinwahedwardlin.wordpress.com.
9 http://sisec17.audiolabs-erlangen.de/.
10 https://github.com/faroit/sisec-mus-results.
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Fig. 2 Evolution of the cross entropy loss for each dataset during

training. The lowest cross entropy loss of the validation set is 0.4509

and 0.3625 for the iKala and DSD100 dataset, respectively. The final

selected model for the iKala and DSD100 dataset was trained with

242 epochs and 280 epochs, respectively

Fig. 3 The NSDRs distribution

of each SVS algorithm. The

marks x indicate the GNSDRs

of each SVS algorithm. The left

bar represents the ideal

GNSDR: 15.1944 dB for

singing voice, and 14.4359 dB

for musical accompaniment

Table 3 The significant

GNSDR difference between

each pair of the SVS systems

evaluated by a One-way

ANOVA test

Pair Singing voice Music accompaniment

F (1,98) p value F (1,98) p value

CNN, MC 8.4989 0.0044 9.2806 0.0002

CNN, IIY 57.9684 1:676� 10�11 76.0115 9:7516� 10�16

CNN, rPCA 59.7874 9:4109� 10�12 147.3874 3:0223� 10�21

MC, IIY 17.9755 5:0706� 10�5 35.8675 3:4918� 10�8

MC, rPCA 22.838 6:1939� 10�6 66.96450 1:0299� 10�12

IIY, rPCA 1.5871 0.2107 1.5620 0.2143
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Fig. 4 The SDR distribution for

the dev and test set, sorted by

the median values of the test set

for all SVS algorithms. For the

Test set, our CNN achieves

4.7385 dB and 9.8567 dB for

the singing voice and its

accompaniment, respectively.

For Dev set, our CNN achieves

6.1632 dB and 11.7888 dB for

the singing voice and its

accompaniment respectively

Fig. 5 p values of the pairwise difference of Wilcoxon signed-rank

test over different pairs of SVS systems. The upper triangle represents

the result of the test set and the lower triangle represents the result of

the dev set. Values p[ 0:05 indicate no significant differences

between two SVS systems. Note that the Labels of SVS systems are

different in these two sub-figures. They are based on the ranking

shown in Fig. 4
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summarizes the results. There is no statistical difference, in

terms of separation quality of the singing voice, between

our CNN, UHL(1,2), and NUG(1-4). This relativizes the

importance of Fig. 4. The only significant difference is

with UHL3, which uses model blending between UHL1

and UHL2. This results suggest that our CNN might be a

suitable candidate for blending with other state-of-the-art

systems.

Jansson et al. [28] reported a remarkable performance

by using their U-Net architecture trained on a huge industry

dataset. We refrained from directly comparing our CNN

with the U-net as we are not able to replicate their

extraordinary performance when training on the smaller

iKala and DSD100 training set. Nevertheless, by looking

the empirical results11 reported by similar U-nets [61, 62],

we are confident that our CNN is able to compete with the

U-net architecture.

6 Conclusion

A singing voice separation model inspired by recent

advances in image processing, e.g. pixel-wise image clas-

sification, is presented in this paper. Details of the full

design process of this model are given, including prepro-

cessing steps such as how the mixture signal can be

transformed to form the model’s input. The full architec-

ture of the proposed convolutional neural network is dis-

cussed, which includes an Ideal binary mask component as

the prediction target label. Our unique network approach

includes IBM target labels, cross entropy loss, and pre-

training the CNN as an autoencoder on singing voice

spectrogram segments.

Computational results based on the iKala and DSD100

dataset show that the proposed system can compete with

cutting-edge voice separation systems. On the iKala data-

set, our model reaches 2.2702–5.9563 dB Global GNSDR

gain over the two best performing algorithms [6, 26].

Second, on the DSD100 dataset, no statistically significant

difference was found between the proposed model and

current state-of-the-art (non-fused) systems [41]. Audio

examples resulting from this paper are available online,12

together with the spectrogram plots, source code and

trained models.

In future research, it would be interesting to further

improve the quality of the separated music accompani-

ment, e.g., by dedicated training on specific instruments in

the music accompaniment, and systematically studying the

effect of the model’s components on the separation quality,

such as the choices for the number of feature maps in each

layers.
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