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Abstract
Hyperspectral remote sensing, visible light remote sensing and canopy color analysis have been widely concerned for rapid

diagnosis of crop growth and nutrition. They are expected to develop into potential nondestructive diagnostic techniques

for crop nitrogen nutrition in the new era on account of the advantages of stable, rapid, convenient and nondestructive

results, together with the good correlation between canopy color parameter NRI and plant nitrogen nutrition index and

yield satisfying the demand for nondestructive diagnosis of nitrogen nutrition, and their feasibility to monitor plant growth

status and nitrogen nutrition level in real time and quickly. At present, with the rapid development of remote sensing

satellite, unmanned aerial vehicles remote sensing and Internet of things, remote sensing will be more and more widely

used in plant nutrition diagnosis.
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1 Introduction

Traditional plant nutrition diagnosis and fertilization rec-

ommendation are mainly based on field sampling and

laboratory chemical analysis. This method needs a lot of

manpower, material and financial resources in sample

collection, testing and data processing. It is not suitable for

popularization and application. A series of changes in leaf

color, thickness, moisture content and morphological

structure are caused by vegetation deficiency, which results

in changes in spectral reflectance characteristics. There-

fore, remote sensing based on spectral reflectance features

of objects to identify objects has become a possible means

for real-time monitoring and rapid diagnosis of plant

nutrient status. Thomas et al. [1] studied the spectral

characteristics of leaves of seven plants under different

nitrogen nutrient levels and found that the reflectance of

light wave region was increased in all plants under nitrogen

deficiency; however, the increase in degree of reflectivity

was different among different plants. The spectral charac-

teristics of rice leaves under nitrogen deficiency and nor-

mal nutrition were significantly different, and chlorophyll

was considered as the main internal factor leading to the

difference of spectral characteristics [2]. In recent years,

with the rapid development of remote sensing satellite,

UAV remote sensing and Internet of things, remote sensing

has been widely used in plant nutrition diagnosis [3, 4].

Compared with other diagnostic methods, hyperspectral

remote sensing, visible light remote sensing and canopy

color analysis have the advantages of simplicity, rapidity

and nondestructiveness by judging canopy color to under-

stand the nitrogen nutrient status of crops and then carrying

out fertilization recommendation or yield prediction.

Commonly used remote sensing platforms, such as aircraft,

UAVs and artificial satellites, have the advantages of high

efficiency, high spatial–temporal resolution and high

mobility. In recent years, they have developed rapidly and

are widely used in plant nutrition diagnosis [5, 6].

The lack of plant elements causes changes in the color

and morphological structure of the leaves of plants, and the

nutritional status of plants can be quickly diagnosed by

changes in the spectral reflectance of plants. Borhan et al.
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[7] designed a multispectral image system with red, green

and blue features and three multispectral bands of 550 nm

and 670 nm, and found that the multispectral image fea-

tures were linearly correlated with the chlorophyll content

of potato leaves in greenhouse. The correlation coefficient

is 0.95. Oklahoma State University has developed an

instrument based on canopy multispectral analysis

(GreenSeeker) and established a diagnostic recommenda-

tion model for the recommendation of topdressing in wheat

and corn. However, visible light remote sensing and mul-

tispectral and hyperspectral remote sensing all utilize the

absorption, reflection and refraction of light from soil and

plant canopy. Soil type, solar incidence angle, atmospheric

conditions and other factors will affect the absorption and

reflection of light, thus affecting the canopy image and

spectral characteristics of plants.

2 Research status of plant nutrition
diagnosis based on remote sensing
and computer

With the gradual application of remote sensing technology

in agriculture, many scholars have a better understanding

of the change in crop spectral characteristics under water

and fertilizer stress. Plant growth and nutrition can be

monitored in real time by remote sensing. In recent

10 years, hyperspectral remote sensing technology has

promoted the development of quantitative agricultural

remote sensing because of its characteristics of high reso-

lution, strong continuity and massive information collec-

tion. Hyperspectral remote sensing has shown great

potential in quantitative determination of plant nutrition

[8]. Many scholars have realized the hyperspectral detec-

tion of a large number of physiological and biochemical

parameters of crops and vegetation, and proposed several

methods for the quantitative inversion and detection of

crop parameters based on spectral features [9] and [10, 11].

Leaf nitrogen content (LNC) is the main index to reflect the

nitrogen status of plant leaves. Through monitoring of

LNC, reasonable fertilization measures can be formulated.

Crop parameters such as leaf area index, biomass, chloro-

phyll content and protein content may vary with nitrogen

content [12]. Using remote sensing to estimate N in wheat

canopies is effective, and calculation of the canopy

chlorophyll content index (CCCI) from canopy spectral

reflectance of wheat showed good correlation with N up-

take (kg N/ha) [13, 14].

With the development of hyperspectral remote sensing

technology, using crop canopy spectral information can

better monitor and accurately determine LNC. At present,

some scholars have studied the estimation and monitoring

model of crop nitrogen concentration using hyperspectral

data [15, 16]. At present, hyperspectral data can be non-

imaging or imaging. Non-imaging hyperspectral tech-

niques for obtaining hyperspectral data from surface

spectrometers have been developed and widely used in

geology, agriculture and other fields [17]. Hyperspectral

imaging technology, usually satellite-borne or airborne, has

more applications [18–20].

Remote sensing technology based on UAV (UAV) has

the advantages of low weight control, ease of use and high

resolution, low operation cost and high spatial resolution. It

has become a hot spot in the research and application of

new remote sensing [21–23]. Liu et al. [24] obtained

hyperspectral data and LNC data on the basis of hyper-

spectral data and corresponding LNC data of winter wheat

based on UAV (UAV) and established a quantitative

model. The modeling result of BP neural network is better

than that of multivariate linear regression. At present, plant

nutrition diagnosis based on remote sensing is mostly

applied to the diagnosis of a large number of elements

nitrogen and phosphorus, among which nitrogen diagnosis

is the main one, and the diagnosis of other medium ele-

ments is rarely reported.

3 Visible light remote sensing and computer
application for plant nutrition diagnosis

Changes in the nutritional status of crops have a direct

impact on the canopy color of crops. For example, the color

of leaves of nitrogen-deficient plants is lighter and the color

of canopy is yellowish green. The nitrogen nutrition status

of crops is diagnosed by observing the color change of

plant canopy leaves (Fig. 1). Visible light remote sensing is

Fig. 1 Color analysis of plant canopy [25]
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simple, easy to operate, intuitive and convenient, causing

people’s attention and a lot of research [25, 26].

The green condition of plant canopy is usually related to

the chlorophyll content of leaves, and the chlorophyll

content has a significant correlation with the total nitrogen

content of plants [27]. The change in chlorophyll content

affects the light absorption or reflection of leaf canopy

[28]. Because of the effective absorption of chlorophyll to

visible light, the light reflection of canopy in visible light

band (400–700 nm) increases with the increase in nitrogen

deficiency [29]. Zhang et al. [30] found that red and green

light reflectance could well predict nitrogen content in

Kandelia candel plants (Table 1).

The results showed that plants with nitrogen deficiency

reflected more light in the whole visible band than those

with sufficient nitrogen supply, and the band with the

greatest difference in canopy light reflection was usually in

the range of 550–600 nm [31]. The band with the largest

difference in light reflection of soybean leaves under dif-

ferent chlorine supply levels was at 550 nm [32]. Ling

et al. [33] used the ‘‘the difference color between the top

3rd leaf and the 4th leaf’’ to diagnose rice nitrogen nutri-

tion. When the top 4 leaf (SPAD value) = the top 3 leaf, it

indicates that nitrogen nutrition is suitable and nitrogen

fertilizer is not necessary to be applied; if the top 4

leaf\ the top 3 leaf, it indicates that nitrogen is excessive;

if the top 4 leaf was higher than the top 3 leaf, it indicates

that the nitrogen nutrition of rice is insufficient. Similarly,

the ‘‘fertilizer window’’ method is used to recommend crop

nitrogen fertilizer by comparing the color of crop leaves

under different nutrient conditions to determine crop

nutritional status. The visible green band of crop canopy

reflectance may be a diagnostic tool for crop nitrogen

status.

Sun et al. [34] analyzed the correlation between the

image detection parameters and chlorophyll content in field

maize. Flowchart of multispectral image and data pro-

cessing is shown in Fig. 2. The results showed that the

average gray value of R, G and B bands was negatively

correlated with the chlorophyll index, and the correlation

coefficients were - 0.73 and - 0.71 and - 0.71, respec-

tively. The average gray value of NIR (near-infrared) band

was weakly positively correlated, and the correlation

coefficient is 0.23. RVI (vegetation index) was negatively

correlated with chlorophyll index, and the correlation of

NDVI (normalized difference vegetation index), MSAVI2

(modified secondary soil-adjusted vegetation index), RVI

and SAVI (soil-adjusted vegetation index) was better than

other vegetation indices, and the absolute value of corre-

lation coefficient was above 0.80. The 6-leaf stage of maize

is a suitable period for the application of digital images for

nitrogen nutrition diagnosis. B/(R ? G?B) is suitable as a

sensitive color parameter for corn nitrogen nutrition diag-

nosis, when B/(R ? G?B)\ at 0.158 7 o’clock, the corn

is in a state of severe nitrogen deficiency. When B/

(R ? G?B)[ 0.181 2, the corn is in an excessive nitrogen

supply state [35].

Table 1 Effects of different nitrogen treatments on the index of N nutrient in rice plants and canopy NDVI values, respectively, at different

growth stages [25]

Growth stage Treatment (%) Leaf N content (%) Plant total N content (%) N accumulation (t/hm2) NDVI value

Tillering stage N0 1.46 Cc 1.05 Cc 1.31 Cc 0.39 Bc

N75 2.07 Bb 1.57 Bb 2.70 Bb 0.55 Ab

N150 2.72 Aa 2.07 Aa 4.58 Aa 0.63 Aa

N225 2.76 Aa 2.17 Aa 4.86 Aa 0.60 Aab

Jointing stage N0 1.21 Cc 0.90 Cc 2.06 Cc 0.38 Cc

N75 1.37 Cc 0.93 Cc 3.19 Cc 0.55 Bb

N150 1.79 Bb 1.26 Bb 6.20 Bb 0.62 ABa

N225 2.23 Aa 1.64 Aa 8.69 Aa 0.65 Aa

Booting stage N0 1.06 Cc 0.70 Aa 2.86 Bb 0.33 Ad

N75 1.27 BCb 0.90 Aab 5.40 ABab 0.45 Bc

N150 1.44 Bb 0.84 Aab 5.36 ABab 0.54 Ab

N225 1.82 Aa 1.12 Aa 8.61 Aa 0.60 Aa

Filling stage N0 1.00 Cc 0.62 Cc 2.59 Bb 0.35 Cd

N75 1.35 BCb 0.74 BCbc 4.58 ABab 0.47 Bc

N150 1.58 ABb 0.93 ABb 6.22 ABab 0.56 Ab

N225 1.90 Aa 1.15 Aa 8.60 Aa 0.60 Aa

Different lowercase letters or uppercase letters within the same column indicate significant difference at the 5% and 1% probability
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The rapid and accurate diagnosis of crops using a digital

camera requires effective segmentation of the canopy and

non-canopy parts of the crop. Tao et al. [36] took the maize

canopy image vertically and segmented the image. It was

found that the extracted coverage had a good correlation

with canopy characteristics such as LAI (leaf area index),

plant nitrogen content and aboveground biomass. Wang

et al. [37] obtained the canopy image of rice using a digital

camera and segmented the image according to the thresh-

old of the digital image green channel and the red channel

difference. There was a good correlation between the

characteristic parameters extracted from the segmented

image and SPAD value, leaf nitrogen content and other

indicators, and the correlation coefficient between the

normalized value of red light NRJ and the two was 0.87

and 0.65. These studies show that the visible light remote

sensing based on digital camera image acquisition and

digital image analysis has a good prospect in crop nitrogen

nutrition diagnosis and nitrogen fertilizer recommendation.

Based on the measured data of ground spectrometer, the

chemical components of leaves were detected by remote

sensing with imaging spectrum. It was found that at 99%

confidence level, a good regression equation for phospho-

rus and potassium content was obtained [38]. This greatly

increases the possibility of monitoring crop fertility by

remote sensing with imaging spectrum.

4 Hyperspectral remote sensing
and computer application in plant
nutrition diagnosis

Hyperspectral technology refers to the quantitative acqui-

sition of biochemical properties and structural character-

istics of ground objects by means of electromagnetic wave

information reflected by ground objects and chemometrics

[39]. Hyperspectral remote sensing technology is charac-

terized by high spectral resolution, up to 3 nm, and strong

band continuity (there are hundreds of bands in the range of

350–2500 nm). Hyperspectral data can reveal the charac-

teristics of objects in a narrower spectral range, so as to

provide more sufficient information for the study of

objects. High-resolution remote sensing data can provide

information about plant structure and chemical composi-

tion [40]. Remote sensing monitoring of large amounts of

elements in some plants, especially high levels of nitrogen

and phosphorus, is becoming more and more common [41].

With the increase in hyperspectral remote sensing data

acquisition means and development of data processing

technology, hyperspectral remote sensing data are more

and more widely used in various fields (Fig. 3).

All objects in nature have different spectral character-

istics of reflection due to their different composition and

attribute structure. Among them, the spectral reflection

characteristics of plant leaves are determined by their

chemical and morphological characteristics, which are

closely related to the development, health and growth

conditions of vegetation [42]. When plants are deficient in

nutrients, a series of changes in leaf color, thickness and

morphological structure will occur, which will lead to

changes in spectral absorption, reflection and transmission

characteristics [43]. It is possible to monitor and rapidly

diagnose the nutrient status of plants through changes in

spectral reflectance characteristics [44]. Since the 1970s,

scientists at home and abroad have conducted a lot of

research on the diagnostics of plant nitrogen spectroscopy,

firstly looking for the performance of nitrogen sensitive

bands and their reflectivity under different nitrogen levels.

The results show that many plants have increased visible

light reflectance in both leaf and plant canopy levels during

nitrogen deficiency [45, 46], and the most sensitive band

Read RGB and NIR images

Draw gray histogram

Median filtering

HIS color model conversion

Segmented canopy image

Average gray value

Calculation of vegetation index

Correlation analysis

Establishment and verification of the model

Start

Finish

Fig. 2 Flowchart of multispectral image and data processing [34]
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for changes in nitrogen content of rice is in the 400–1350-

nm region [47]. Rice nitrogen deficiency can cause changes

in leaf color and morphology, and thus can be inversed by

spectral information between 450 and 950 nm [48]. The

leaf and canopy spectra of rape plant had different reflec-

tance characteristics at different nitrogen levels, and the

difference is most obvious in visible and near-infrared

bands, showing different reflectance peaks (550 nm) and

absorption valleys (1000 nm) [49]. The spectral reflectance

estimation model of nitrogen content in rape was: N ¼
3633:62 � R0

401 � 6695:31 � R0
451 þ 2050:48 � R0

549þ
0:15� R0

1321 � 223:37� R0
2245 þ 1:41 (Table 2). The fit-

ting results passed a very significant test. The model can be

used to estimate the nitrogen content and nitrogen nutrition

of rape [49]. Li et al. [46] studied the canopy spectral

changes of rice under different nitrogen and phosphorus

levels. The spectral reflectance increased with the increase

in nitrogen supply in near-infrared region, but decreased

with the increase in nitrogen supply in visible region. Liu

et al. [50] studied the response characteristics of canopy

reflectance spectra to different nitrogen application levels.

It was concluded that the reflectance increased in visible

light region with the increase in nitrogen application level,

but showed the opposite trend in near-infrared region.

Different nitrogen nutrition levels can be distinguished by

spectral analysis and operation analysis of variables.

After identifying the sensitive bands of nitrogen in

plants, many researchers have established models for

estimating nitrogen content of crops through spectral

reflectance or its derivatives. The results of Bao et al. [51]

showed that the linear combination of D 736, R 900 and R

720 had a good regression relationship with leaf nitrogen

content per unit land area of wheat. Lee et al. [52] believed

that the feasibility of a simple spectral index (SI) using the

first derivative of canopy reflectance spectrum at 735 nm

(dR/dk|735) to assess N concentration of rice (Oryza sativa

L.) plants. Fernandez et al. [53] also reported that the linear

combination of red (660 nm) and green (545 nm) bands

could be used to predict the nitrogen content of wheat,

which was not affected by nitrogen fertilizer treatment.

Tarpley et al. [54] analyzed the relationship between

nitrogen content in cotton leaves and 190 spectral ratio

indices, and carried out clustering analysis according to the

prediction precision and accuracy. The results showed that

the prediction precision of the ratio of red edge position to

short-wave near-infrared band was higher.

With the rapid development of remote sensing, hyper-

spectral remote sensing can detect the fine spectral infor-

mation of vegetation (especially the absorption spectrum

information of various biochemical components of vegeta-

tion), retrieve the content of each component andmonitor the

vegetation growth status with its characteristics of ultra-

multi-band (dozens, hundreds) and high spectral resolution

(3–20 nm). Glenn et al. [55] used spectral diagnosis to pre-

dict wheat nitrogen levels. The relative coefficient of wheat

nitrogenmodel prediction reached 0.97, and themean square

error was 0.65. The results of Niu et al. [38] also showed that

the linear regression equation of the first derivative of

reflectivity at 2120 nm and 1120 nm could predict the

nitrogen content of fresh leaves, and the correlation between

measured and predicted values was above 80%.

A model based on the relationship between plant

nitrogen content and spectral reflectance or its derivative

index can be used to estimate crop nitrogen content, guide

crop fertilization management and improve nitrogen use

efficiency. A lot of research has been done in this area, and

some of the results have been successfully applied to

production. In the 1990s, a ground-based active remote

Fig. 3 Schematic diagram of

hyperspectral remote sensing in

plant nutrition diagnosis
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sensing hyperspectral instrument, GreenSeeker Spectrom-

eter, was developed by the University of Oklahoma in the

USA. It can analyze crop growth by observing NDVI data,

diagnose nitrogen in real time and provide the best fertil-

ization scheme. The instrument has been successfully

applied to study nitrogen utilization and precision agri-

culture, and has achieved good results. Chen et al. [56]

estimated plant nitrogen accumulation by using DVI index

at jointing stage of rice and constructed a model of nitrogen

topdressing regulation, which made a more accurate esti-

mation of the application rate of panicle fertilizer. Com-

pared with the traditional methods of experiential nitrogen

fertilizer application, the reflectance spectroscopy-based

nitrogen fertilizer topdressing technology could be used to

recommend the amount of nitrogen fertilizer topdressing

by predicting plant nitrogen accumulation and soil nitrogen

supply.

Nitrogen and potassium deficiency in olive trees can be

distinguished by using 26 specific wavelengths plus several

vegetation indices [57]. Osborne et al. [58] confirmed in

corn that the increase in the number of cells per unit of leaf

area in phosphorus-stressed plants was translated into a

significant spectral response in the NIR part of the spec-

trum. Phosphorus stress was related to the increase in

anthocyanin content, which resulted in purple discoloration

of leaf edge, which was consistent with the observed

increase in wavelength reflectivity. Although it has been

reported that the use of spectral remote sensing to predict

phosphorus and potassium nutrition in plants, more specific

indices or algorithms are needed for predicting the nutrient

condition of potassium and phosphorus.

5 UAV remote sensing and computer
application in plant nutrition diagnosis

Nowadays, all countries in the world attach great impor-

tance to the development of remote sensing satellites and

UAV (Fig. 4), and continue to expand the relevant
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application fields. Satellite remote sensing is coming to a

new stage of development. At present, the main foreign

resource satellites are Landsat, SPOT, IKONOS, Quick

Bird, Geoeye and so on. Quick Bird is the only commercial

satellite in the world that can provide sub-meter-level

services, whose single-view image is 2-10 times higher

than other commercial high-resolution satellites. There are

Beijing-1, China–Brazil Earth Resources Satellite

(CBERS, also known as Resource One), China Resources

Satellite (ZY-2, ZY-3), Gaofen (GF-1, GF-2), Formosat-2

and other resources satellites in China. Compared with the

near-surface and low-altitude remote sensing, the applica-

tion of satellite remote sensing has the advantages of wide

coverage, no site constraints and all-weather observation.

In addition, the resolution of sensors carried by satellites is

getting higher and higher. High-precision satellite remote

sensing is more and more widely used in plant nutrition

diagnosis.

Zhang et al. [59] captured maize canopy images with a

digital camera equipped with an UAV. Combined with the

analysis of variation coefficient of color parameters, it was

found that the normalized value of green light [G/(R ?

G ? B)] and the ratio of green light to brightness (G/L)

were significantly correlated with the routine nitrogen

nutrition diagnostic indexes of summer maize at different

growth stages (P\ 0.01), and the coefficient of variation

was small and stable. Wright et al. [60] applied Quick Bird

satellite images to the management of wheat grain protein

content. It was found that the vegetation index GNDVI

extracted from Quick Bird satellite images and the reflec-

tance NIR in near-infrared band had a good correlation

with the total nitrogen content of plants. Knyazikhin et al.

[61] studied the correlation between the near-infrared

directional reflectance function and nitrogen accumulation

in plant leaves in depth, providing a simple and effective

method for monitoring nitrogen content in plant leaves by

remote sensing satellite. Liu et al. [24] established a

quantitative model for simulating the growth stages of

typical LNC combinations of winter wheat by means of

multiple linear regression and BP neural network. At the

same time, the results of the model are compared and

analyzed using the hyperspectral data measured on the

ground (Table 3). Through the analysis of the modeling

results, it can be seen that both the modeling and verifi-

cation results of the two different modeling methods are

ideal, and the modeling results of BP neural network are

generally superior to the results of multiple linear regres-

sion modeling. The response of the hyperspectral data

based on UAV to the typical bands of winter wheat LNC is

relatively accurate, and the established model is reliable

and effective.

In recent years, the application of satellite remote

sensing spectral information in canopy nutrition diagnosis

of field crops has developed rapidly, which has greatly

improved the efficiency of nutrition diagnosis, but it also

has its shortcomings: Satellite remote sensing information

is susceptible to weather and long access period [62], and

satellites equipped with SAR can reduce the impact of

adverse factors such as the weather. Synthetic aperture

radar (SAR) has the following advantages as compared

with traditional optical remote sensors [63]: (1) all-

weather, all-time working ability; (2) strong penetration;

(3) large area and low cost of one-time imaging by side

view; (4) SAR texture features to obtain faults that are

difficult to see in other remote sensing systems, which is

conducive to the study of surface structure and prediction

of new sources; and (5) high resolution and not affected by

platform height or distance.

6 Conclusions

Both light remote sensing and multispectral remote sensing

make use of the absorption, reflection and refraction of

light by soil and plant canopy. However, the factors

affecting light absorption and reflection will affect crop

canopy image information and spectral characteristics,

such as field weed states, diseases, pests and water stress,

soil types, atmospheric conditions and solar incidence

angle. Therefore, it is not accurate to rely solely on plant

Table 3 Results of representative band modeling [24]

The growth period and the corresponding

typical bands (nm) of winter wheat

Modeling results Verification results

Multiple linear

regression

BP neural network Multiple linear

regression

BP neural network

R2 RMSE (N%) R2 RMSE (N%) R2 RMSE (N%) R2 RMSE (N%)

Jointing stage (466, 690,710, 718, 918) 0.658 0.312 0.829 0.248 0.878 0.279 0.968 0.152

Flag leaf stage (462, 698, 722, 754) 0.863 0.179 0.948 0.127 0.898 0.219 0.969 0.133

Flowering stage (474, 710, 730, 738, 746) 0.861 0.161 0.948 0.117 0.872 0.214 0.948 0.155

Flowering stage (458, 570, 722, 734, 758) 0.661 0.393 0.844 0.281 0.567 0.198 0.850 0.139
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canopy image information and spectral features obtained

from remote sensing technology for plant nutrition diag-

nosis and fertilization recommendation, which must be

combined with traditional soil and plant testing. At present,

there are still many problems in the application of remote

sensing and hyperspectral technology in plant nutrition

diagnosis and recommended fertilization. The application

of multispectral remote sensing technology in agriculture is

still in the research stage, and its extensive application is

still some time away, mainly because of its high equipment

price and complex technology, and the rapid standardiza-

tion. The establishment of simple spectral analysis method

and monitoring index also needs further study.

With the increasing maturity of technologies such as

thermal infrared imaging and airborne multi-polarized

synthetic aperture radar, the spectral domain will continue

to expand; with the application of new sensors with high

spatial resolution, the spatial resolution of remote sensing

images will continue to increase; large, medium and small

satellites cooperate with each other, combining high,

medium and low orbits; and their time resolution varies

from a few hours to 18 days, forming a series of comple-

mentary time resolution. Technological advances such as

digital image processing, geographic information systems

(GIS) and global positioning systems (GPS) have jointly

promoted the development of remote sensing. It is fore-

seeable that the links between different disciplines will

become more closely in the future, and more fields of

science and technology will be applied to remote sensing

for plant nutrition diagnosis.
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