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Abstract
This paper proposes a novel machine learning-based scheme for the automatic analysis of authentication and key

agreement protocols. Considering the traditional formal protocol analysis schemes, their analysis accuracies depend

heavily on the prior knowledge possessed by the analyst and the subjective understanding of the protocol. The rapid

development of artificial intelligence in security field shows that the ideal way to get rid of the dependency is to use

machine learning. Hence, we elaborately compare more than 2000 protocol analysis results and select 500 most repre-

sentative ones of them to build a protocol dataset. Combining the protocol representation method of traditional schemes,

these selected protocols are expressed as weight matrixes based on security components. Furthermore, a machine learning-

based security analysis model is proposed to automatically find the attacks of the protocol. For now, three types of attacks

against authentication and key agreement protocols can be identified based on our model. And experiment results show that

it can reach almost 72% upper-bound performance. From the derivative of the accuracy curves, it can be inferred that the

performance of our scheme will definitely get better as the dataset expands.

Keywords Authentication protocols � Machine learning � Formal analysis of protocol security � Protocol dataset

1 Introduction

Over the past decades, the formal security analysis of

protocols has always relied on the traditional model

checking or theorem proving approaches [1–3]. Although

these methods can find some vulnerabilities in known

protocols or prove their security [4, 5], the accuracies of the

analysis results depend heavily on the prior knowledge of

the analyst and the subjective understanding of the proto-

col. This causes that two different analysts using the same

method to analyze the identical protocol may have distinct

results. For instance, Tingyuan et al. [6] proposed an ideal

model of the Otway–Rees protocol. Based on BAN logic

[7], he proved the security of the protocol. Liu et al. [8]

also used BAN logic to analyze the same protocol, but

pointed out that this protocol was vulnerable to man-in-the-

middle attack and typing flaw attack. What is more, almost

all of the relevant automatic analysis tools are based on

these approaches [9–11]. This leads to that, for an

apprentice or layman, the application of the automated

analysis tools is difficult to get in the door.

To overcome the flaws mentioned above, we try to

explore some novel ideas from other security areas. Having

read many newly published papers, we find that the pow-

erful data analysis capabilities of machine learning can

help us to lower the difficulty of cyberspace security

analysis. For instance, Shengyi et al. [12] developed a

machine learning-based intrusion detection system (IDS)

that allows a person, even without professional knowledge,
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to be able to accurately classify disturbance, normal control

operations and cyber-attacks. Matija et al. [13] used

supervised machine learning to make it easier for security

analyst to detect botnet with traffic flow. Inspired by these

excellent research results, we try to propose our own

machine learning-based model to make the machine to

become a protocol analysis master which can help us

analyze the security of the protocols automatically. In the

model, we abstract the security analysis process of the

protocol into a multi-classification model. The multi-clas-

sification is based on the attack types of the protocols under

specific security goals. And by treating ‘‘no vulnerability’’

as a particular type of attack, we ensure that all protocols

are able to be covered in the model. For machine learning-

based models, there are always two key points that we

should pay attention to. One is the features of the research

target, and the other is machine learning models. In sum-

mary of the traditional formal protocol analysis methods, it

can be discovered that BAN logic [7], strand space [14, 15]

and almost every other method use symbolic security

components to describe and analyze protocols. And

countless research results have proved that such a way of

protocol description is able to accurately reflect the pro-

tocol security characteristics. Hence, in our model, we also

divide the messages of the protocol into security compo-

nents as protocol features. But the difference is that, to

facilitate machine learning, we further convert these com-

ponents into weighted message vectors. As for the machine

learning models, the first one that comes into our consid-

eration is long short-term memory network (LSTM)

because the protocol is essentially composed of messages

with time sequence that can be well expressed by LSTM.

Then, due to the complexity of the protocol and the diffi-

culty of manually collecting protocols as dataset, we have

to choose models to overcome the problems brought by the

small size of samples with high dimension. Therefore,

eXtreme Gradient Boosting (Xgboost) and support vector

machine (SVM) are also appropriate for our model.

After determining the basic architecture of the above

model, we do the following groundbreaking experiments.

Firstly, more than 500 classic protocols are collected from

more than 2000 papers. Secondly, with reference to [16], we

define specific security goals and adversary model for our

scheme. Then, we intuitively provide three dataset models

to describe the security features of the protocol. In these

models, all of the weighted message vectors are further

processed in different forms. But they all make the vectors

belonging to a specific protocol into a weight matrix or

directly concatenate together. Thus, the 500 protocols can

be just viewed as 500 computable numerical two-dimen-

sional matrixes or 500 long vectors. And by a self-designed

tool, the format conversion process of these protocols is

completely automatic. Finally, we utilize LSTM, Xgboost

and SVM to try to fit the mapping relationship between the

protocol security features and the attacks.

It is worth noting that every security protocol contains

local computational operations which are always related to

very complex mathematical features. Directly adding these

features into our model will more than doubled the diffi-

culty of the feature extraction process. However, the fact is

that the attacks of many protocols can be discovered

without concern about the mathematical features, such as

the analysis of dozens of protocols in [17]. Therefore, in

this paper, we choose Dolev–Yao model [18] as our stan-

dard adversary model, who thinks that the cryptographic

algorithms used in the protocols are ideal and unbreakable.

And in future work, we will try to cover this defect.

The rest of the paper is organized as follows. Section II

briefly introduces the formal description of security,

including security goals and the adversary model in our

analysis. In Section III, we provide three dataset models to

describe protocols and determine four specific attack types.

Section IV gives the experiment results to evaluate the

performance of the proposed scheme. Section V concludes

this paper.

2 Formal description of security

As far as we know, there is no one who has ever tried to do

the similar research. For this reason, it is not realistic to

directly analyze all types of protocols in the new presented

scheme. In this section, four security goals and one

adversary model are defined for only two-party or three-

party entity authentication protocols and key agreement

protocols. And the key agreement contains key agreement

and key distribution. In addition, the security goals do not

cover every possible goal, but they are enough for deter-

mining the attacks of the protocols that we focus on. Based

on the definitions, the protocols in the dataset can be

classified into four distinctive types.

2.1 Security goals

Given that people have done a lot of work on the formal

definition of security goals in the previous research

[19–22], we only briefly describe the security goals needed

in this paper. Readers may refer to [16] for details. As

shown in Fig. 1, there are four goals to reach for mutual

authentication and key agreement protocol. And every goal

contains several security properties. Remarkably, the four

security goals are not all expected by the both two types of

the protocols. For the mutual entity authentication protocol,

the first goal below is enough. But a secure key agreement

protocol typically needs to satisfy them all. And according

to the definition, the unilateral authentication protocols are
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considered insecure in our model. The four goals can be

briefly described as follows.

2.1.1 Mutual entity authentication [16]

• First party A is assured of the identity of a second party

B involved in a protocol and that the second has actu-

ally participated, and vice versa. This process can also

be done with a trusted third party S.

• The corroborative evidence is fresh to assure that B has

knowledge of A as his peer entity and vice versa.

• When a principal A accepts the other party’s identity,

the other party’s record of the partial or full run matches

A’s.

2.1.2 Good key [16]

• For the shared session key, a good key is fresh and

known only to A and B and mutually trusted parties.

• For the public session key, a good key is fresh and its

corresponding private key is known only to the owner.

2.1.3 Integrated key [16]

• For a key transport protocol, if the key is accepted by

any principal, it must be the same key as chosen by the

key originator.

• For a key agreement protocol, if the key is accepted by

any principal, it must be a known function of only the

inputs of the protocol principals.

2.1.4 Key confirmation [16]

• First party is assured that a second party actually has

possession of a particular session key in the form of a

nonce or a timestamp and vice versa.

2.2 Adversary model

We choose Dolev–Yao model [18] as our standard adver-

sary model. However, because the research about machine

learning-based protocol analysis is still at a blank stage, the

adversary model is weakened compared to the native

model. Firstly, to make the machine learning-based model

focus on only one protocol at one time, we limit the ability

of an adversary to launch an attack by using information

from multiple protocols. Plenty of lightweight protocols

use password as their encryption key, but it is a consensus

that the pure password-based encryption is weak. And it

can be discovered that attacks against password are often

hard to analyze by message components alone, like dic-

tionary attack. Thus, we limit the password guessing ability

of the adversary. What is more, in the next section, the

dataset construction shows that too much care about the

order of message components makes it difficult to learn the

protocol features. For this reason, we do not allow the

adversary to launch an attack against message type.

Through the limitation above, the number of attacks that

the adversary can launch is limited into a small scale. But

based on our previous experience of failure, it is still too

hard to make the machine learning models to get ideal

convergence result under current small size of dataset.

Hence, we further pick only four out of the attacks as

research objects. The specific definitions of our adversary

model are as follows.

• The adversary controls only one type of the protocol

communications at the same time between all princi-

pals, but can observe all messages sent, alter message,

insert new messages, delay messages or delete

messages.

• The adversary is able to obtain any old session key

distributed in old key transport protocol runs, but

unable to guessing password or other long-term keys

used in protocol runs.

Secure Protocol

Good Key Integrated 
Key

Mutual 
Authen�ca�on

FreshnessExclusivity Authen�cated Consistency

Confirma�on

Security Goal

Goal Property

Fig. 1 Hierarchy of mutual

authentication and key

agreement goals
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• If necessary, the adversary can be a legitimate protocol

principal and initiate a session with an honest insider.

• The adversary has no ability to distinguish the order of

protocol components.

• The cryptographic algorithms used in the protocol are

unbreakable for the adversary.

From first three definitions above, we guarantee that the

adversary is capable of modifying messages, initiating

legitimate sessions and terminating a session. But he can-

not have enough ability to break a key or a password, even

by brute force. The penultimate definition allows us to not

have to care about the order of the message components,

which counts a lot when we design the dataset model.

Through the last definition, we limit the cryptographic

analysis ability of the adversary. Otherwise, our research

would be completely untenable. In conclusion, the attacks

that we concentrate on are only including replay attack,

modification attack, reflection attack and man-in-the-mid-

dle attack. Other attacks like DDOS attack, typing attack

password guessing attack or protocol interaction attack are

ignored.

3 Dataset construction

There is no one who has ever built such a kind of dataset

for the security analysis of the protocol. Consequently, in

this paper, we try to provide three dataset models to

describe protocols. All of the protocols selected for the

models are analyzed based on symbolic protocol model

[23]:

• Symbolic protocol model is also known as Dolev–Yao

model. In the model, data are represented symbolically

as terms of a free-term algebra, and cryptographic

functions are represented as operations in the same

algebra. The ideal properties of real cryptographic

functions are captured by the algebraic properties of the

symbolic operations.

Our planned work in this section consists of two steps:

The first step is to construct models to identify the threats

that are not related to local computational operations, and

the second step is to expand the analysis area to any kinds

of threat. Up to now, we have made good progress in the

first step. But for the second step, the features of local

computation are too complex to extract, because dozens of

possible mathematic operations in protocols usually have

no fixed pattern of composition. And directly adding every

possible features of local computation will definitely dou-

ble the difficulty of machine learning under such small size

of dataset. Hence, in the future work, besides expanding

our dataset, we intend to use principle component analysis

(PCA) or linear discriminant analysis (LDA) to extract

pivotal features. Thus, by reducing the data dimension

without losing precision as much as possible, we may be

able to overcome the problems mentioned above. Without

the consideration of local computation security, the point

that we pay great attention to in this paper is limited to only

message transmission process. As a result, deliberately, the

formal description of security in Section II and the security

of the 500 protocols we select have nothing to do with

protocol calculation process. Moreover, the representation

of protocols in symbolic like BAN logic is unaccommo-

dated to the neural network. Therefore, we try to convert all

of the protocols into weight matrixes or vector.

3.1 Features of protocols

To accurately analyze the security of protocols, appropriate

protocol features should be firstly extracted. After analyz-

ing the machine learning-based network intrusion detection

[24] and the traditional formal analysis of the protocol

[1–3], it can be discovered that every protocol is able to be

divided into message components. And previous research

results consolidate the fact that these components can

reflect the security features of the protocol very well.

Hence, in our models, each protocol feature corresponds to

a kind of message component. The commonly used fea-

tures can be divided into two types, including dynamic type

and static type. The former one mainly describes the run-

ning characteristics of the protocol, like port number,

message frequency and message length. Intrusion detection

system often utilizes them to judge whether there is mali-

cious traffic. The other types, such as random number,

timestamp and cryptographic operation, are always used to

prove the security of the protocol or find its vulnerability

through theoretical analysis. Almost all of the formal

analysis is based on these static features. In comparison,

the static one is more appropriate for our analysis. It is

unadvisable to utilize every possible static feature, because

it will introduce a lot of redundancy into the dataset

models. Consequently, we pick 8 message parameters, 4

cryptographic operations and 4 types of keys out of them.

They are given as follows.

• Message parameters (MP): participant identity, times-

tamp, random number, public key, cert, shared key, DH

parameter and password.

• Cryptographic operations (CO): encryption, signature,

hash and keyed hash.

• Keys (K): public key, private key, shared key and

password.

Note that the usage of the keys in MP is completely

different from K. MP is used to describe the data carried in

the message. K only participate in the cryptographic
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operations. But once the key distribution or key agreement

messages are accepted by both entities, the keys will be

converted from MP to K. In addition, calculation features

of the protocol are ignored in our scheme. The detail usage

of these features is given in the following parts.

3.2 Categories of protocols

The category of a protocol in the dataset corresponds to the

attack that the protocol is vulnerable to. In fact, even

though the attacks are limited to only four types in Sec-

tion II, it is still difficult to identify them at the same time.

Consequently, we further classify the four attacks into three

categories to label the dataset. Before classification, the

man-in-the-middle attack is divided into two types,

including weak man-in-the-middle attack and other man-

in-the-middle attacks. The former type of attack is caused

by the lack of key confirmation, which may lead to the

violation of Security Goal 4 in Section II. The reason why

we deliberately pick it out is that this attack is very com-

mon and its features are easier to distinguish than other

attacks. Then, the three categories are given as follows.

The first category only includes replay attack, which is

mainly caused by the lack of freshness parameter, like

random number and timestamp, or the wrong usage of

freshness verification. This type of attack is very distinc-

tive, because it only affects several features about fresh-

ness. Weak man-in-the-middle attack constitutes the

second category alone. And all of the other types of attack

make up the third category. It can be observed that the third

category is the most complex one among the three cate-

gories to analyze. Therefore, to better learn its features, the

number of protocols that belongs to it is the largest in our

dataset. Moreover, we regard the secure protocols as the

fourth category. In this way, we are capable of, respec-

tively, identifying four protocol labels corresponding to the

four categories that have no intersection with each other.

Table 1 gives the number of protocols of the four

categories.

3.3 Models of dataset construction

Before the description of dataset models, some definitions

are given as follows.

Firstly, a protocol message parameter set SP and a

parameter property set PP are defined as follows.

SP ¼ fsp1; sp2; . . .; spng ð1Þ
PP ¼ fpp1; pp2; . . .; ppng ð2Þ

where spi can be participant identity, timestamp, random,

public key, cert, shared key, password, DH parameter or

other message parameters. And ppi is one of the parameter

attributes, including parameter index, encryption key, sig-

nature key and some attributes about hash. In addition,

every spi 2 SP, respectively, corresponds to a specific set

PPi. Because each protocol can always be represented by

finite message parameters and their corresponding crypto-

graphic operations, the lengths of SP and PP are fixed. In

the following dataset models, jSPj is set to a fixed integer N
and jPPj is M.

To reduce the dataset dimensions, a normalized function

fn is defined as follows:

fnðspiÞ ¼ fnðPPiÞ ¼ fnðpp1; pp2; . . .; ppmÞ ¼ ki ð3Þ

According to Eq. (3), the dimension of the message

vector can be reduced from N �M in making the results of

machine learning to converge better. Based on the defini-

tions above, a protocol P ¼ fm1;m2; . . .;mkg, where mi is

one of the messages that constitutes the protocol, is able to

be expressed as a matrix in the three models below.

3.3.1 Literal conversion model (LCM)

In LCM, the process of converting the designated protocol

to a weight matrix is similar to the process algebra CSP

[25]. The difference is that message components are liter-

ally interpreted into a fixed-length one-dimensional vector

in our model, not logic statements. As shown in Fig. 2, a

protocol message mi is directly mapped into a vector

mi ¼ ðspi;1; spi;2; . . .; spi;lÞ. jmij is a fixed value L�M,

where L is the maximum number of message parameters in

a protocol message and M ¼ jPPj is the length of spi;j.

Specially, each type of parameter has its own unique index

which is predefined and always given to pi;j;1. The values of

other parameter properties are obtained according to the

actual protocol. And their possible values x are also pre-

defined. If the number of message parameters is less than L,

the extra spi;j will be set to zero vector. Furthermore, mi is

normalized by function fn as follows.

m
0

i ¼ fnðmiÞ ¼ ðfnðspi;1Þ; fnðspi;2Þ; . . .; fnðspi;lÞÞ
¼ ðk1; k2; . . .; klÞ ð4Þ

By Eq. (4), L becomes the reduced length of message

vector. Figure 3 shows an example of the conversion

Table 1 Numbers of protocols

of the four categories
Category Freshness Weak man in middle Others Secure

Number of protocols 52 120 113 213
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process of the ISO symmetric key two-pass unilateral

authentication protocol.

3.3.2 Two-layer model (TLM)

Unlike LCM, an empty message vector

mi ¼ ðspi;1; spi;2; . . .; spi;nÞ, where spi;j ¼ m
0
i is set to zero

vector, is predefined before the conversion in TLM. All of

the spi;j ¼ m
0

i are placed in order and have their own

specific meanings. It means that each dimension of the

vector m
0
i corresponds to a fixed parameter property, like

IDA.Encryption_Key, NonceB.Signature_Key or Times-

tampS.Index. Then, when a message of the protocol comes,

its parameters and corresponding cryptographic operations

just have to be put into the right dimensions. Also, every

possible value of the attributes is predefined. Because all of

the possible message parameters in set SP are put into the

message vector, jm0
ij in TLM is a fixed value N �M.

Figure 4 shows the details of the conversion process. Due

to the fact that most of the protocol messages are made up

of only several parameters, the density of the valid data in

the final weight matrix is usually very low in TLM. But

among the three models, TLM is the most intuitive one to

describe protocol.

3.3.3 Single-layer model (SLM)

Until the message parameters and corresponding crypto-

graphic operations are put into the vector mi, the SLM

conversion process is identical to the TLM. However, in

this model, all the spi;j are further processed by the nor-

malized function fn. We are able to obtain a normalized

vector m
0
i as follows.

m
0

i ¼ fnðmiÞ ¼ ðfnðspi;1Þ; fnðspi;2Þ; . . .; fnðspi;nÞÞ
¼ ðk1; k2; . . .; knÞ ð5Þ

jm0
ij ¼ N is the length of message parameter set SP.

Thus, the two-layer construction of message vector in TLM

is reduced to single one in SLM. And the number of data

dimensions is also changed from N �M to N. It is worth

mentioning that, since the current dataset that we use is still

small, the normalized function may help us low the diffi-

culty of classification for machine learning. Figure 4 shows

the details of conversion process.

4 Comparison of dataset construction
and experiments results

In this section, we compare the performance of the three

kinds of dataset constructions in different machine learning

models. From the experiment results, it can be seen that the

classification accuracies of them rise with the increase in

SLM

...

Fig. 2 Conversion process of SLM

LCM

Fig. 3 Conversion process of LCM
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the dataset size. Hence, we believe that the fusion of formal

security analysis and the machine learning technique has

considerable prospect. Since there is no one who has ever

solved such a novel problem with machine learning, we try

to experiment with three different models. Since there is no

one who has ever analyzed protocol security with machine

learning, we try to experiment with three different models.

Taking into account the nature of the network protocols,

timing sensitive comes into our sight firstly. In common,

every protocol is made of several message sequences that

are processed by the participants in order, just like the

system log. Therefore, inspired by DeepLog [26], a system

log analysis scheme, we choose LSTM as the most ideal

machine learning model. Then, from the experiment results

of LSTM, it can be discovered that the training results

under the model has reached more than 68%, but there is

still overfitting. And this is due to the fact that the

dimensions of our three models are high and the amount of

protocols samples we collect is not very large. To avoid

this problem, we consider Xgboost and SVM. By fitting

additive tree model and introducing regulation term into

traditional boosting method, Xgboost enables automatic

feature selection and captures high-level interactions

without interruption. And this lets Xgboost better interpret

our model to avoid overfitting. As for SVM, it has excellent

nonlinear generalization ability to high dimension and

small sample evaluation problem. What is more, limited by

objective factors, we can only use 500 protocols found in

more than 2000 papers at current stage. This number will

be increased in future work. In order to avoid overfitting,

the learning ability of LSTM is minimized as much as

possible. For example, the number of neurons in hidden

layer is set to 16, which is small, but completely sufficient

to learning the features of the protocol. However, in

Xgboost, the max depth of the tree is set to 10, which is a

little larger than the default. Because this model itself has a

strong mechanism to avoid overfitting. In addition, all of

the models belong to typical classification models [27, 28].

Figures 8, 9 and 10 show the accuracies of the proposed

dataset constructions with different machine learning

models.

4.1 Comparison of dataset constructions

Table 1 concludes the main differences among the three

models. Because every dimension corresponds to a security

feature and L is usually less than N, LCM has the least

number of features. This makes LCM to have the most

concise representation and the fastest convergence speed.

However, it also means that the attributes of the protocol

messages are hidden the deepest, which may lead to a

disturbing training result in the machine learning models.

TLM overcomes the deficiencies of LCM by introducing

more features. It can be observed that, since normalized

function is not applied, TLM is the only model that can

directly obtain the original protocol information from the

weight matrix. Thus, it becomes the most intuitive model.

Unfortunately, more features bring not only intuition, but

also more chances to cause overfitting under the current

small-scale dataset. Compared to the other two models,

SLM performed most evenly on all the indicators. This

makes it balance the advantages and disadvantages

between the two models and most likely to achieve the best

performance in the current research stage. What is more,

the experimental performances in the next section will

prove the comparison results above (Table 2).

Figures 5, 6 and 7 reflect the data density of the three

models in a visual way. In order to visualize the data

TLM

...

Fig. 4 Conversion process of TLM

Table 2 Comparison of three models

LCM TLM SLM

Number of features L N 9 M N

Construction layer 1 2 1

Data density Low High Low
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distribution, we use linear discriminant analysis (LDA) to

process the dataset. LDA is one of the supervised learning

models, through which the dimension of data can be

reduced to two.

Figure 5 shows that most samples of Weak Man-in-the-

Middle Attack, Other Attack, Security are well distributed,

but some samples of Freshness Attack in LCM are mixed

with the samples of the other three categories. In addition

to indicate the fact that the features of Freshness Attack are

weakened under LCM, this phenomenon may also improve

the chances to misclassification. There are two reasons we

find that can lead to the mixture. The first one is that,

compared to the protocol numbers in the other three cate-

gories, the number of protocols belonging to Freshness

Attack is the least at current stage. The other reason is that

almost every freshness attack is only related to the misuse

of several freshness parameters. The way of literal con-

version is unable to give distinctive features of such small

difference.

In Fig. 6, the number of protocols is same as Fig. 5 and

the samples are also well distributed. The difference is that

the data are concentrated in only several points around.

This is because the dimension of TLM is too high, and the

difference in the eigenvalues extracted by the LDA is too

Fig. 5 Visualization of LCM

data distribution

Fig. 6 Visualization of TLM

data distribution
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small. Figure 7 reflects the distribution status of the four

attacks in SLM. It can be seen that the protocols vulnerable

to Freshness Attack and Weak Man-in-the-Middle Attack

are distinguishable. Part of Other Attack samples and

Secure samples are mixed together and hard to classify.

This is due to that some protocols belonging to Other

Attack have more similar features to the secure ones. For

instance, consider the authentication protocol example

which can be attacked by reflection:

A ) B : NA

B ) A : NB;HMACKAB
fIDB; IDA;NAg

A ) B : HMACKAB
fIDA; IDB;NBg

Compared to a secure protocol, ISO Three-Pass Mutual

Authentication with CCFs in [17], this protocol has almost

same protocol components. And they do try to authenticate

the participants. However, on the whole, there are flaws in

its authentication process. It is the existence of protocols

like the above ones that leads to the confusion between the

Fig. 7 Visualization of SLM

data distribution

Fig. 8 Accuracies of Xgboost,

LSTM and SVM in LCM with

different numbers of protocols
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two categories and the less than ideal classification accu-

racy shown in Figs. 8, 9 and 10.

4.2 Experiment results

Figures 8 and 10 show that the accuracy of SVM is sig-

nificantly lower than the other two models. As the number

of samples varies from 100 to 500, its accuracy always

fluctuates between 45 and 50%. This means that SVM is

completely incapable of learning the security features of

the protocols in the two models. But as shown in Fig. 9, its

performance is better than LSTM. Considering the details

of the dataset constructions in Section III, it can be dis-

covered that this phenomenon is mainly due to the use of

fn. The normalized function we use in LCM and SLM turns

multiple dimensions of parameter properties into single

dimension. It leads to that some feature information is

hidden. And the common core functions of SVM are not

powerful enough to mine it. However, SVM has excellent

Fig. 9 Accuracies of Xgboost,

LSTM and SVM in TLM with

different numbers of protocols

Fig. 10 Accuracies of Xgboost,

LSTM and SVM in SLM with

different numbers of protocols
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nonlinear generalization ability for small samples with high

dimensions in TLM.

In Figs. 8, 9 and 10, the performance of LSTM and

Xgboost both increases as the sample size increases. This

fits well with the fact that the higher performance of a

machine learning model always requires more training

samples, if the model is appropriate to the problem. It is

worth mentioning that, in TLM, the accuracy of LSTM is

the lowest because LSTM is prone to overfitting for small

samples with high dimensions. And thanks to the powerful

mechanism and the high flexibility of Xgboost to avoid

overfitting, it has the best performance in all of the three

dataset constructions. In addition, from the trends of all the

accuracy curves, it can be seen that, for all of the models,

there is still a great deal of research prospect.

Can the proposed scheme accurately identify secure

protocols? We, respectively, calculate the recall rates of

Xgboost, LSTM and SVM in the three proposed dataset

models to answer the question. The experiment results are

given in Figs. 11, 12 and 13. And the recall rate is

Fig. 11 Recall rates of Xgboost,

LSTM and SVM in LCM with

different numbers of protocols

Fig. 12 Recall rates of Xgboost,

LSTM and SVM in TLM with

different numbers of protocols
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expressed as TP/(TP + FN), where TP is the number of

correctly classified secure protocols and FN is the number

of misclassified ones. As shown in the three figures, all the

machine learning models have quite analogous pattern of

recall rate in the three dataset models. When the protocol

number is more than 300, the values and trends of the nine

recall rate curves are similar to the multi-classification

result in Figs. 8, 9 and 10. However, as the samples are no

more than 200, the values of recall rate that looks good

actually have no sense. Because under this condition, the

number of samples is to small and the features of secure

protocols are always overlearned. As for the best perfor-

mance, almost 70% secure protocols can be correctly

verified in Xgboost as the size of dataset reaches

maximum.

5 Conclusion

This paper proposes a machine learning-based automated

analysis scheme to assist in reducing the difficulty in the

future protocol analysis. Through experiments, it is proved

that the features we extract and the dataset we build can

indeed help us identify the attacks in the protocol. This

means that the fusion of machine learning and formal

analysis of the protocol is exactly a significant and feasible

attempt. However, although many attack types are ignored,

there are no enough samples to allow classify each attack

as a category at the early stage of our research. Thus, in the

future work, more protocols will be gathered to expand our

dataset. And we are planning to apply the hybrid model

scheme into our research.
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