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Abstract
Engineering systems experiencing events of amplitudes higher than 100 gn for a duration under 100 ms, here termed high-

rate dynamics, can undergo rapid damaging effects. If the structural health of such systems could be accurately estimated in

a timely manner, preventative measures could be employed to minimize adverse effects. For complex high-rate problems,

adaptive observers have shown promise due to their capability to deal with nonstationary, noisy, and uncertain systems.

However, adaptive observers have slow convergence rates, which impede their applicability to the high-rate problems. To

improve on the convergence rate, we propose a variable input space concept for optimizing the use of data history of high-

rate dynamics, with the objective to produce an optimal representation of the system of interest. Using the embedding

theory, the algorithm sequentially selects and adapts a vector of inputs that preserves the essential dynamics of the high-

rate system. In this paper, the variable input space is integrated in a wavelet neural network, which constitutes a variable

input observer. The observer is simulated using experimental data from a high-rate system. Different input space adaptation

methods are studied, and the performance is also compared against an optimized fixed input strategy. It is found that a

smooth transition of the input space eliminates error spikes and yields faster convergence. The variable input observer is

further studied in a hybrid model-/data-driven formulation, and results demonstrate significant improvement in perfor-

mance gained from the added physical knowledge.

Keywords High-rate dynamics � Input space � Embedding � Adaptive observer � Neural network � Structural health
monitoring

1 Introduction

High-rate dynamics, here defined as events of amplitudes

higher than 100 gn for a duration under 100 ms, can be

highly detrimental to modern engineering systems. Exam-

ples of such systems include civil structures exposed to

blast, passenger vehicles experiencing collisions, and aerial

or spacecraft vehicles impacting foreign objects [1]. High-

rate dynamics can cause rapid plastic deformation propa-

gating through the structure and to electronics and sensors,

which in turn can cause catastrophic failures and endanger

human lives [2]. Precise and on-time state estimation is a

necessary first step to prevent further damage and complete

failure [3]. However, state estimation of high-rate dynam-

ics is a challenging problem. A well-designed estimator

must converge very fast (high-rate) and be capable of

coping with the following unique complexities that char-

acterize the high-rate problem:

• Large uncertainties in the external loads;
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• High levels of nonstationarities and heavy disturbances;

and

• Generation of unmodeled dynamics from changes in

system configuration.

In particular, an estimator must be capable of operating

through noise, uncertainty, time-varying parameters/states,

and disturbances. Noise is a common issue that can arise

from flexing of electronics. There is uncertainty in how a

system may respond to very large excitations. In the case of

a spontaneous blast or impact, little is known about the

inputs. Plastic deformation or damage leads to time-vary-

ing parameters or states. Lastly, large excitations can res-

onate the system or components resulting in disturbances.

Sophistication in the algorithm is required to overcome the

negative effects of the combined complexities leading to

slower convergence rates [4–8].

Classic observers are constructed to estimate one or

more states from sensor inputs. Typically, inputs are pre-

selected and rarely optimized, contributing to a sub-opti-

mal observer design. Hong et al. [1] discussed promising

properties of adaptive observers (AOs), in general, to

perform well in the presence of various system complexi-

ties (e.g., noise, uncertainty, time-varying parameters, and

disturbance mentioned above). However, it was also dis-

cussed that these observers are characterized by slower

convergence rates due to their adaptive architecture. Var-

ious methods have been developed to increase the con-

vergence rate of AOs, see [9–11] for instance. While such

research has yielded important contributions in ameliorat-

ing the convergence of AOs, all of the methods focused on

altering the estimation and adaptation algorithm, while the

input space selection and construction are vastly over-

looked [12].

Typical observers employ representations that are tuned

to fixed types of inputs to attain an appropriate level of

performance [13, 14]. The choice of inputs influences

computation time, adaptation speed, effects of the curse of

dimensionality, understanding of the representation, and

model complexity [15, 16]. Although in practice only

limited states in a system can be observed, the essential

dynamics may be preserved through a proper selection of

the input space vector based on limited measurements

[17, 18]. Bowden et al. [13] argued that proper input space

selection can lead to superior estimators by bypassing

modeling inaccuracies due to nonlinearities. The benefits of

essential dynamics present in an input space have been

studied in fields of structural health monitoring [19–21]

and control [22–26].

It follows that a strategy is to employ a dynamic input

space to provide stability of the adaptive algorithm. The

change in the input types and numbers can help target

inputs that would contain the essential dynamics of the

system. A critical advantage of such methodology is that

the essential dynamics can be extracted from nonstationary

systems [12] using limited sensors [27]. The authors have

studied varying input space strategies for structural control

applications [12, 18, 28], and recently for high-rate state

estimation [29].

The decision to take an adaptive algorithm approach was

determined from an overview study of observers and their

general applications [1]. Due to the difficulties in creating a

representation of high-rate systems, adaptive data-driven

observers were found to have a unique advantage of

adapting to large levels of uncertainties and complexities

through pattern recognition capabilities [30]. The downfall

of adaptive methods, however, is their slow convergence

rates. In order to accelerate the convergence times, the

input space of observers was studied [29]. It was deter-

mined that the input space of observers was critical to the

quality of estimates observers can produce for high-rate

systems.

The method of varying the input space produces a

variable input observer (VIO) when used as an estimator.

Here, the estimator is comprised of the variable input space

coupled with a self-organizing single-layer wavelet neural

network. The single-layer wavelet architecture is selected

for its known universal approximation capabilities [31],

ideal for mapping complex nonlinear dynamics [32], and

real-time computations due to fewer number of calcula-

tions [33]. The input space of the estimator is varied

sequentially in real-time, to adapt to complexities of high-

rate dynamics, including nonlinearities and nonstationari-

ties. Such variation allows the state estimation function to

adapt to changing dynamics resulting in a minimum

number of inputs that preserve the system’s essential

dynamics leading to faster convergence rates.

Systems that initially behave in a linear manner can

respond nonlinearly when damaged [19]. Such nonsta-

tionarities are inherent attributes of high-rate systems. Liu

et al. [21] verified that damage assessment using an

embedding strategy provided superior results compared

with the same strategy without embedding. Previous

embedding techniques were only applicable to stationary

systems where offline processing was used to determine the

embedding parameters [34, 35]. Through the VIO, we

extend the embedding strategy to nonstationary systems

through the online computation of the embedding over

stationary segments of data.

In prior work presented in conference proceedings, a

preliminary version of the VIO showed promise when

compared with a typical fixed input space observer [36].

However, the rapid input space adaptation produced

undesirable error spikes in the estimations, and the authors

demonstrated that a slower transition of the input space

reduced these error spikes [37].
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In this paper, we introduce a smooth transition technique

between input spaces by applying a c! type function to the

time delay values with the objective to eliminate error

spikes, and also further previous studies by examining the

effects of added physical knowledge into the system by

creating a hybrid data-/model-driven VIO. Lastly, we

explore the possibility of using this hybrid observer for

system identification applications through pre-training.

The rest of the paper is organized as follows. Section 2

will present the methodology used in constructing the VIO,

model, and hybrid VIO. Section 3 will describe the

experimental setup used for acquiring data used in the

numerical simulations and discuss simulation results.

Section 4 will conclude the paper with a summary of major

findings.

2 Background

2.1 Variable input observer

The variable input space strategy is combined with a

wavelet neural network (WNN) to perform state estima-

tion, therefore constituting the VIO. Its architecture is

illustrated in Fig. 1. A single layer of Mexican hat wavelet

network is used to produce the estimate ŷ2ðkÞ

ŷ2ðkÞ ¼
Xh

j¼1

cjujðmðkÞÞ ð1Þ

where m is the input vector also termed delay vector, s the

time delay, d the embedding dimension, h is the number of

nodes or activation functions, c the nodal weights, and u is

the Mexican hat wavelet activation function

uðmðkÞÞ ¼ 1�
kmðkÞ � lj2k

r2j

 !
e
�kmðkÞ�ljk2

r2
j ð2Þ

where lj and rj are the center and bandwidth of the jth

node, respectively, and jj � jj2 is the 2-norm. The VIO is

specifically designed to self-organize based on Kohonen’s

self-organizing map (SOM) theory [38], and to perform

self-adaptation. The SOM functionality consists of adding

nodes when a new sample falls outside the region covered

by the WNN. When a new node j is added, it is given a

weight cj initially equal to zero, a center lj at the location

of the new observation, and a bandwidth rj set at the user-

defined value r(0). Self-adaptation consists of sequentially

adapting the WNN parameters c and r following a

stable back-propagation rule [39]:

_cj kð Þ ¼ �Ccj

oE kð Þ
ocj

_rj kð Þ ¼ �Crj

oE kð Þ
orj

ð3Þ

where Ccj and Crj are positive learning rates for cj and rj

and E is the error function

E kð Þ ¼ 1

2
~y2 kð Þð Þ2¼ 1

2

Xh

j¼1

cjuj m kð Þð Þ � y2 kð Þ
 !2

ð4Þ

and ~y2ðkÞ ¼ ~y2ðkÞ � y2ðkÞ is the estimation error.

Substituting Eqs. (4) into (3) gives

Fig. 1 Variable input observer’s

architecture
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_cjðkÞ ¼ �Ccj

o 1
2

Ph
j¼1 cjuj mðkÞð Þ � y2ðkÞ

� �2� �

ocj

¼ �Ccj

Xh

j¼1

uj mðkÞð Þ
 !

Xh

j¼1

cjuj mðkÞð Þ � y2ðkÞ
 !

¼ �Ccj

Xh

j¼1

uj mðkÞð Þ
 !

~y2ðkÞ

ð5Þ

and

_rjðkÞ ¼ �Crj

o 1
2

Ph
j¼1 cjuj mðkÞð Þ � y2ðkÞ

� �2� �

orj

¼ �Crj

o 1
2

Ph
j¼1 cj 1� kmðkÞ�ljk2

r2
j

� �
e
�kmðkÞ�ljk2

r2
j � y2ðkÞ

 !2
0
@

1
A

orj

¼ �Crj

Xh

j¼1

cj
1

r5j
e

�kmðkÞ�ljk2
r2
j 4r2j kmðkÞ � ljk2 � 2kmðkÞ � ljk

2
2

� � ! !
~y2ðkÞ

ð6Þ

Using _x kð Þ ¼ x k þ 1ð Þ � x kð Þð Þ=Dk with Dk ¼ 1 yields

a discrete formulation for the adaptation rules

cjðk þ 1Þ ¼ cjðkÞ � Ccj

Xh

j¼1

uj mðkÞð Þ
 !

~y2ðkÞ

rjðk þ 1Þ ¼ rjðkÞ

� Crj

Xh

j¼1

cj
1

r5j
e

�km kð Þ�ljk2
r2
j 4r2j kmðkÞ � ljk2 � 2kmðkÞ � ljk

2
2

� � ! !
~y2ðkÞ

ð7Þ

The delay vector m is variable, and its selection and adap-

tation is described in what follows.

2.1.1 Embedding of high-rate data

The embedding theorem [40, 41] is the fundamental prin-

ciple underlying the variable input space formulation. The

theorem, developed by Takens [40], states the phase space

of an unknown autonomous system can be geometrically

reconstructed using an observation y delayed by s in an

embedding dimension d forming a delay vector, m

mðkÞ ¼ y1ðkÞ; y1ðk � sÞ; y1ðk � 2sÞ; . . .;½
y1ðk � ðd � 1ÞsÞ�

ð8Þ

where m 2 Rdx1 and k is the discrete time step. From this

formulation, there exists a one-to-one map between the

phase space produced by m and the phase space of the

unknown system, provided m is constructed appropriately

with the optimal parameters s* and d*, yielding v*.

Because such a map exists, the essential dynamics of the

unknown system are preserved in v*. It is hypothesized

that, because v* preserves the essential dynamics of the

system, it can be used as a minimal input space to an

estimator, producing more computationally efficient sys-

tem representations. Originally developed for autonomous

systems, the theorem has been extended to stationary sys-

tems with forcings [42], and applied to nonstationary high-

rate systems through the calculation of the input spaces

over stationary segments of data [12]. Here, the system of

interest is nonstationary due to rapid changes in system

configuration or from possible damage. Our solution is to

vary v* in real time using s*(t) and d*(t). It follows that a

challenge is in the selection of s* and d*. It was demon-

strated in the literature that a combination of the mutual

information (MI) test for s* and the false nearest neighbors

(FNN) test for d* yielded the most accurate results [43].

The MI test [44] is based on Shannon’s information

theory. The algorithm selects s* such that maximum level

of information can be extracted between y1(k) and

y1 k � s�ð Þ. Mathematically,

MI y1 kð Þ; y1 k� sð Þð Þ

¼
X

y1 kð Þ;y1 k�sð Þ
p y1 kð Þ; y1 k� sð Þð Þlog p y1 kð Þ; y1 k� sð Þð Þ

p y1 kð Þð Þp y1 k� sð Þð Þ

ð9Þ

where y1(k) and y1 k � sð Þ are discrete observations of the

time series, p(�) denotes a probability, and p(�,�) denotes a
joint probability. The value s* is taken as the first local

minimum of the mutual information function.

The false nearest neighbor (FNN) test [45] is used to

calculate the optimal embedding dimension d*. The FNN

test calculates the Euclidean distances between the rth

neighboring points of a vector for increasing dimensions. If

the distance between neighboring points is greater than

some threshold, the point is considered a false neighbor.

Mathematically,

R2
dþ1 k; rð Þ � R2

d k; rð Þ
R2
d k; rð Þ [Rtol ð10Þ

where Rtot is a user-defined threshold and R2
d k; rð Þ and

R2
dþ1 k; rð Þ are the Euclidean distances between measure-

ment y1(k) and its rth nearest neighbor y
rð Þ
1 kð Þ for dimen-

sions d and d ? 1. To increase accuracy, a second

condition was added

Rdþ1ðkÞ
RA

[Atol ð11Þ

with

R2
A ¼ 1

n

Xn

k¼1

y1 kð Þ � �y1ð Þ2 ð12Þ
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where �y1 is the mean of observations y1 and Atot is a user-

defined value. If both conditions are satisfied, the points are

considered false neighbors. The value d* is taken at the

point when the percentage of FNN drops below an

acceptable value.

2.1.2 Smooth transition of the input space

The values for s and d in constructing m are updated based

on computed s* and d*. In a previous study by the authors,

it was demonstrated that rapid variation of the input space

led to error spikes in the estimation [37]. To overcome this

challenge, a slow transition of the input space was imple-

mented. The slow transition allowed s to vary by ± 10 and

d to vary by ± 1 with the restrictions that s remains positive

and d does not drop below an embedding dimension of 2.

For the smooth input space transition, we apply a sigmoid

function S(x) when adapting s and allow d to vary by d ± 1.

New s and d values are calculated every 10 iterations for a

data history of 200 points. The 200 point data history is a

sliding window of data used to calculate the input space for

stationary segments of data. In real time, s would have units
of seconds. In this study, we use discrete time, which makes

s the corresponding number of past data points. A transition

region of 10 points is selected to smooth the transition from

the previous s, sold to the new s, snew, with

S xð Þ ¼ 1

1þ e�x
ð13Þ

where x ¼ �4:1:5, and s updated as follows:

s k:k þ 10ð Þ ¼ S xð Þ snew � soldð Þ þ sold ð14Þ

where values for s are rounded to the closest integer, and

s(k:k ? 10) are the next ten s values providing the smooth

transition. Figure 2 illustrates the smooth transitioning of s.

Since d has to be an integer, it varies by ± 1 with no

further manipulation.

2.2 Hybrid VIO

The VIO described above is a pure data-driven technique.

While the system of interest is complex, it is possible that a

certain level of physical knowledge be available. This

gives rise to an opportunity to integrate such knowledge in

the VIO, therefore creating a hybrid data-/model-driven

observer. Here, this is done by using the data-driven VIO in

parallel with a model-based observer constructed using the

partial physical knowledge. It results that, in this configu-

ration illustrated in Fig. 3, the VIO is used to estimate only

the unmodeled dynamics, the difference between the model

and the system output measured by the sensor. The dif-

ference is further used to train the VIO. The estimates from

the VIO and model are summed to produce the hybrid

VIO’s estimate.

To study the effect of adding physical knowledge, the

experimental data from the high-rate system of interest are

modeled using a state-space representation

_xðtÞ ¼ AxðtÞ þ BuðtÞ þKwðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ þ wðtÞ

ð15Þ

where A, B, C, D, and K are the state-space matrices and

u(t), y(t), w(t), and x(t) are the input, output, disturbance,

and state vectors. A six degrees-of-freedom (DOF) repre-

sentation will be used to synthetically create partial phys-

ical knowledge from the system. The representation is

constructed using the function ssest from the MATLAB

system identification toolbox by feeding the time series of

the input and output measurements and specifying the

DOFs.

3 Numerical simulations

Simulations were conducted on high-rate experimental data

gathered from a mechanical shock test on an electronics

unit. The various input space transition techniques of the

Fig. 2 Smooth transition of s Fig. 3 Block diagram of the hybrid data-/model-driven observer
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VIO (fast, slow, and smooth transitions) are compared

along with a traditional pre-optimized fixed input strategy

as a baseline. Simulations are also conducted on the hybrid

data-/model-based observer.

3.1 Experimental data

The experimental setup is shown in Fig. 4. An electronics

unit (Fig. 4c) houses four circuit boards each equipped

with a high-g Meggitt 72 accelerometers. These high-g

accelerometers are capable of accurately measuring

upward accelerations up to 120,000 gn or 120 kgn [46],

where 1 gn = 9.81 m/s2 = 32.2 ft/s2. The electronics in the

unit are potted in high-density polystyrene for shock sur-

vivability. The unit is securely held in a fixture (Fig. 4b)

with a threaded lock ring. The fixture is bolted to an

accelerated drop tower (Fig. 4a), which creates an impact

condition. In this study, only the top (accel 2) and bottom

(accel 1) accelerometer data sets are used.

Data were acquired using a Precision Filters signal

conditioner coupled with a National Instruments data

acquisition system. Precision Filter 28,000 chassis with

28144A Quad-Channel Wideband Transducer Conditioner

is operated in constant voltage excitation mode with an

anti-aliasing filter of 204.6 kHz. A National Instruments

chassis with a PXI-6133 acquisition card sampling at

1 MSa/s is used for the acquisition of data.

This high-rate experiment contains many complexities.

Noise is added to the data from the cable whip from the

operation of the drop tower. The uncertainties are in the

unknown high-rate material response of the unit and

boundary conditions. It is unsure whether or not the potting

material stays bonded to the inner wall of the electronics

unit. The precise input to the system from the drop tower

impact is unknown. Only the response to the impact is

measured. There are time-varying properties in the system

response observed through back-to-back test results.

Lastly, disturbances are created from sensor and system

resonance from vibrations of threaded interfaces.

The experimental data are plotted in Figs. 5 and 6. The

data are collected from five back-to-back tests of the same

test condition. The entire high-rate dynamic event happens

within 1 ms and produces deceleration responses ranging

between- 60 kgn to above 50 kgn. The overall response of

the system is distinct from the similarities between the

tests. However, from the zoomed in plots of both accel 1

(inputs) and accel 2 (outputs), there is evidence of time-

varying properties. Figures 5c and 6d show the amplitudes

increasing and the response delay varies as the test num-

bers increase.

3.2 Simulation results

3.2.1 Comparison of the VIO input space transition
strategies

First, the performance of the different input space transi-

tioning techniques is studied. Their performance is inves-

tigated relative to a traditional fixed input strategy. The

fixed input space observer used the same WNN architec-

ture as that of the VIO, but v is pre-optimized over the

range s = [1, 500] and d = [2, 5] to obtained the smallest

root-mean-square error (RMSE). The optimal fixed input

observer used s = 46 and d = 3. Data from accel 1 (Fig. 4)

are used as the input and accel 2 as the output to construct a

representation.

The same parameters were used to simulate all observers

for a direct comparison to determine which input space

adaptation performs best. The parameter values are tabu-

lated in Table 1. Values Cc and Cr are, respectively, the

learning rates for c and r, r(0) is the initial r assigned to

newly added nodes, Rtot and Atot are threshold values

suggested by Kennel [45] to determine if a neighbor is a

false nearest neighbor, the FNN percentage is the upper

percentage threshold in which to determine the proper

embedding dimension, and the sliding window size is the

history data size used to calculate the input space.

Figure 7 is a plot of typical estimation time histories.

The experimental data of accel 2 are represented by the

gray solid line, the fixed input observer by the solid orange

line, the fast transitioning VIO by the red solid line, the

slow transitioning VIO by the green dashed line, and the

smooth transitioning VIO by the blue dashed line. The

overall estimations for the observers are plotted in Fig. 7a,

with zoomed portions in Fig. 7b–d. Visual inspections of

results show error spikes detected in the fixed observer, and

in the fast and slow transitioning observers. The nonsta-

tionary nature of the high-rate experiment requires theFig. 4 Experimental setup: a MTS-66 drop tower; b unit mounting

fixture; and c electronics unit
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input space to adapt to the dynamics. The proposed tech-

nique of using the sigmoid function to provide a smooth

transition between input spaces shows superior to the

previous versions based on the elimination of the error

spikes. Another observable feature is that the data-driven

methods did poorly in capturing the rise time of the initial

pulse, but later was able to converge and produce good

results.

Three more simulations were conducted to evaluate the

robustness in the smooth transitioning VIO’s choice of

Fig. 5 Time history of accel 1:

a over 1 ms; b zoom on

0.11–0.21 ms; c zoom on 0.3

0.4 ms; and d zoom on

0.41–0.47 ms

Fig. 6 Time history of accel 2:

a over 1 ms; b zoom on

0.14–0.22 ms; c zoom on

0.32–0.37 ms; and d zoom on

0.44–0.53 ms
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parameters. The second simulation used the same param-

eters as listed in Table 1, but with changing r(0) to 105%

(5% increase) of the value listed in Table 1. Likewise, the

third and forth simulations changed Cc and Cr to 105% of

the value listed in Table 1, respectively. The performance

of the observers is assessed through performance metrics

listed in Table 2. A smaller number of nodes (J1) represent

a more compact representation of the essential dynamics of

the high-rate system, and thus a faster computation time.

Note that the computation time itself is not part of this

study. The RMSE of the entire trace (J2) gives an indica-

tion of overall fitting error. The RMSE of the first 0.13 ms

(J3) is selected to compare the initial pulses of the esti-

mations. The convergence time (J4) is determined from the

start of the event (time = 0 ms) to when the absolute error

falls and remains under 10% of the initial pulse value

(3.7 kgn). The error (J5–J6) is defined as the difference

between the experimental data and the estimations pro-

duced by the different observers.

Figure 8 compares the performance metrics (J1–J6) of

the observers for the different simulations on radar plots.

All the performance metrics are defined such that a smaller

number exhibits a better performance. Results show that

the smooth transitioning input space VIO outperforms all

other observers over all performance metrics for every

simulations, except for metric J4 under 105% of Cc. A

cross-comparison between simulations shows that the

wavelet neural network-based representation is relative

robust to the studied changes in parameters.

Figure 9 plots the evolution of s and d for the smooth

transitioning input space technique. The input space is

Table 1 Parameter values for

all observer variations
Parameter Value

Cc 0.02

Cr 2.4

r 0ð Þ 8

Rtot 15

Atot 2

FNN percentage 10

Sliding window size 200

Fig. 7 Estimation time

histories: a over 0.9 ms; b zoom

on 0–0.13 ms; c zoom on

0.4–0.52 ms; d zoom on

0.52–0.58 ms

Table 2 Performance metrics

Metric Description

J1 Number of nodes

J2 RMSE of entire trace (kgn)

J3 RMSE of first 0.13 ms (kgn)

J4 Convergence time (ms)

J5 Maximum absolute error (kgn)

J6 Average absolute error (kgn)
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constantly fluctuating throughout the simulation due to the

nonstationary dynamics of the high-rate system. Remark

that prior studies have shown the stabilization of these

parameters over stationary excitations (see [18], for

instance). Early in the simulation at approximately 0.1 ms,

there is a spike in s attributable to a noisy low-amplitude

excitation, after which s drops and fluctuates at values

under 50 points, later converging around 10 when the

excitation becomes more stationary between 0.75 and

0.9 ms. The value for d increases from 2 when the exci-

tation becomes more chaotic, oscillating between 2 and 3

for the majority of the excitation. It oscillates between 2

and 4 at the end of the simulation due to the higher level of

chaos in the signal.

The performance of the smooth transitioning VIO is

further validated on a high impact velocity test using the

same electronics unit (see Fig. 4). The unit was shot out of

a smooth bore Howitzer impacting a concrete specimen.

The estimation is compared with the same fixed input

observer with s = 46 and d = 3. The same observer

parameters listed in Table 1 were used. Figure 10 plots the

time histories.

The smooth transitioning VIO outperformed the fixed

input observer in the initial convergence (Fig. 10b), elim-

inated the error spikes (Fig. 10c), and yielded a smaller

overall RMSE of 1.38 kgn compared with the fixed

observer’s RMSE of 1.93 kgn (a 29% improvement). The

smooth transitioning VIO was capable of achieving better

results while using a more compact representation of 33

nodes compared with 38 nodes for the fixed observer.

3.2.2 Model estimate of high-rate dynamics

The result for modeling high-rate dynamics with a six

degrees-of-freedom representation is shown in Fig. 11.

Figure 11 shows that the modeling approach produces an

acceptable fit with a better estimate than the pure data-

driven observer early on, but that the high-rate complexi-

ties are not captured by the model.

3.2.3 Hybrid VIO study

Now, we study the exploitation of physical knowledge to

create a hybrid VIO. Figure 12 shows the comparison

between the hybrid VIO estimate versus the smooth tran-

sitioning VIO (pure data-driven). It can be observed in

Fig. 12b that better initial convergence is achieved through

the addition of the physical knowledge. The hybrid VIO

outperformed the smooth transitioning VIO using a fewer

number of nodes and smaller overall RMSE, RMSE of the

initial pulse, maximum absolute error, and average abso-

lute error, and a similar convergence time as illustrated in

the radar plot on Fig. 13.

The combination of the model and VIO is capable of

producing a representation between accel 1 (the input) and

accel 2 (the output) for test 3. Test 3 was chosen as the

training data set to be consistent with previous VIO studies.

Using the different tests shown in Figs. 5 and 6, we verify

the robustness of the representation. The inputs of tests 1,

2, 4, and 5 were used to estimate the outputs of the cor-

responding tests through a pre-trained hybrid VIO, using

the data from test 3. The absolute errors are plotted in

Fig. 14. The majority of the errors fall below 20% of the

initial pulse value with some peak errors occurring just

under 15 kgn. These maximum absolute errors are much

smaller than those displayed in Fig. 8’s J5 metric.

Fig. 8 Radar plots of performance metrics J1–J6: a simulation using

parameters in Table 1; b 105% of r(0); c 105% of Cc; d 105% of Cr

Fig. 9 Evolution of s and d
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4 Conclusion

State estimation of high-rate dynamic systems is chal-

lenging due to multiple system complexities such as noise,

uncertainties, time-varying parameters/states, and distur-

bances. Examples of these systems include civil structures

exposed to blast and aerial vehicles exposed to in-flight

anomalies such as contact with foreign objects. Adaptive

observers showed to be an important tool for estimating

complex systems. However due to the high-rate nature,

adaptive observers would require faster convergence rates

to be applicable.

As a potential solution, we presented a variable input

observer (VIO) which optimized the use of past data. By

doing so, we optimize the inputs to an estimator with the

objective to enable faster convergence through an opti-

mized representation. The variable input concept was based

on the embedding theorem, whereas the input space is

designed through a delay vector that preserves the essential

dynamics of the system of interest. By allowing the delay

vector to vary as sensor measurements become available,

the embedding theorem is applied to complex nonstation-

ary high-rate problems.

Three different input space transitioning strategies were

studied. Those included fast, slow, and smooth transition-

ing input spaces. The fast transition applied no restriction

on the input space adaptation allowing the time delay s and
embedding dimension d to vary as the calculations were

made. The slow transitioning input space limited s to vary

by ± 10 and d by ± 1. The smooth transitioning input

space applied a sigmoid function to s to allow a smooth

transition between input spaces.

Demonstrated in the simulations of high-rate experi-

mental data, the smooth transitioning VIO outperformed all

other methods, including a typical pre-optimized fixed

input space observer in terms of number of nodes, RMSE

Fig. 10 Estimation time

histories: a over 80 ms; b zoom

on 0–10 ms; c zoom on

25–35 ms; d zoom on 55–65 ms

Fig. 11 Modeled estimate of the high-rate experimental data
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of the entire trace, RMSE of the first 0.13 ms, convergence

time, maximum absolute error, and average absolute error.

The error spikes are eliminated through the smooth tran-

sition and through a more accurate representation of the

nonstationary high-rate system.

The training speed of the a neural network depends on

many parameters such as the number of nodes used to build

the representation, CPU speed, quality of the coding, etc.

Through the smooth transitioning VIO, the number of

nodes was minimized and provided more efficient training

as observed through the faster convergence times. The real-

time application of the VIO is currently under

investigation.

A six degrees-of-freedom model of the high-rate data,

representing a level of physical knowledge about the sys-

tem, was added to the VIO to create a hybrid VIO. Results

showed that the hybrid observer was capable of producing

superior representations of the system compared with

either a pure data- or model-driven observer. To validate

the representation, inputs from consecutive tests were used

to estimate the corresponding outputs. The study showed

the majority of absolute errors were below the 20% of the

initial pulse value. Furthermore, the peak absolute errors

were much smaller than those seen using other observers.

Based on this study, the VIO has shown great promise

for the use in nonstationary high-rate applications. The

VIO, through the adaptive input space, is capable of

sequentially learning chaotic representations improving the

performance of an adaptive observer including its conver-

gence time.
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