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Abstract
This paper introduces a family of new customised methodologies for ensembles, called Boosted Residual Networks, which

builds a boosted ensemble of residual networks by growing the member network at each round of boosting. The proposed

approach combines recent developments in residual networks—a method for creating very deep networks by including a

shortcut layer between different groups of layers—with Deep Incremental Boosting, a methodology to train fast ensembles

of networks of increasing depth through the use of boosting. Additionally, we explore a simpler variant of Boosted

Residual Networks based on bagging, called Bagged Residual Networks. We then analyse how the recent developments in

ensemble distillation can improve our results. We demonstrate that the synergy of residual networks and Deep Incremental

Boosting has better potential than simply boosting a residual network of fixed structure or using the equivalent Deep

Incremental Boosting without the shortcut layers, by permitting the creation of models with better generalisation in

significantly less time.

1 Introduction

Residual networks are a type of deep network recently

introduced in [1], characterised by the use of shortcut

connections (sometimes also called skip connections).

These shortcuts link the input of a layer of a deep network

to the output of another layer positioned a number of levels

‘‘above’’ it. As a result, each one of these shortcuts shows

that networks can be built in blocks, which rely on both the

output of the previous layer and the previous block. The

advent of residual networks has allowed for the develop-

ment of networks with many more layers than traditional

deep networks, in some cases with over 1000 blocks, such

as the networks in [2].

Ensembles of machine learning models have been part

of the field for a long time [3, 4] and have recently shown

to be an efficient solution to adversarial learning [5] and as

a vehicle for improving the single-model accuracy [6], as

well as a method for creating better generalisation by

consensus of models. Simultaneously, ensemble methods

are often left as an afterthought in deep learning models: it

is generally considered sufficient to treat the deep learning

method as a ‘‘black-box’’ and use a well-known generic

ensemble method to obtain marginal improvements on the

original results. Whilst this is an effective way of

improving on existing results without much additional

effort, we find that it can amount to a waste of computa-

tions. Instead, it would be much better to apply an

Ensemble method that is aware of, and makes use of, the

underlying deep learning algorithm’s architecture.

Such customised approaches for designing ensembles

that are specific to a particular model allow us to improve on

the generalisation and training speed compared to tradi-

tional ensembles, by making use of particular properties of

the base classifier’s learning algorithm and architecture. We

follow this methodology to design a type of ensemble called

Boosted Residual Networks (BRN), which makes use of

developments in deep learning, previous other customised

ensemble methodologies, and combines several ideas to

achieve improved results on benchmark data sets. We then
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build on these results to construct related variations of this

method, to highlight how such customised ensemble

methods can be created with particular specific properties.

The version of BRN presented in this paper presents

some performance improvements over the previous version

presented in [7]. The new version allows for a variant

suitable for networks whose outputs are real-valued, called

BRN.R, and we present a further derivation, based on

bagging [8] instead of boosting, called BaRN.

Using a customised ensemble allows us to improve on

the generalisation and training speed of other ensemble

methods by making use of the knowledge of the base

classifier’s previous learning, structure, and architecture.

Experimental results show that Boosted Residual Networks

achieve improved results on benchmark data sets.

When compared to the existing customised ensemble

methods such as DIB [9], BRN enables the creation of

almost arbitrary length models, thanks to the ability of

residual networks to not be affected by the common issues

created by a large number of layers, such as vanishing or

exploding gradients [1].

In Sects. 2–4 we present the prerequisite background to

BRN. Section 5 presents the methodology itself. Section 6

explores an additional method based on bagging. Section 7

analyses the application of distillation to our methods and

the chosen baselines. Section 8 shows the experimental

results. Section 9 provides further analysis and explores

potential future work.

2 Relevant techniques in deep learning

This section covers the existing literature on several tech-

niques from deep learning that are necessary as a back-

ground to Boosted Residual Networks.

2.1 Shortcut connections in networks

The idea of adding shortcut connections in a network was

introduced in the past in [10–14]. Work has been done, for

example, to add a single linear layer between the input and

the output of a network to simplify the learned function [14].

Other research utilises shortcut connections to address

internal issues to network, such as vanishing gradients, layer

responses, and propagated errors [15–18]. Highway net-

works [19, 20] are also a type of network that uses shortcut

connections. In this case, the shortcut connection is guarded

by a learned gating system, so it is no longer a simple identity

function. The ‘‘information highways’’ created by this pro-

cess are argued to enable the network to route information

internally, enabling the training of deeper networks.

Dense convolutional neural networks [21] are another

type of network that makes use of shortcuts, with the

difference that each layer block is directly connected to all

its ancestor layer blocks by a shortcut link. This increases

significantly the computational complexity of the network,

adding training time and memory requirements to the

training process.

2.2 Residual networks

Residual networks [1] are a particular type of convolutional

neural network built on the notion of connected blocks of

layers. Each block in a residual network is composed of a

combination of convolutional, pooling, or batch normalisa-

tion layers. These blocks are connected to each other both in

a sequential feed-forward layout, as seen in standard con-

volutional networks, as well as via skip connections. Each

skip connection provides a link between the output of the

final layer of a block bi to the input of a descendant bj. A skip

connection is then created for each of the descendants

biþ1. . .bn, where n is the total number of blocks in the net-

work. These particular skip connections only connect for-

wards and do not form loops in the network. Residual

networks have enabled the creation of very deep networks, in

some cases in excess of 1000 layers [2]. This is because the

technique has been explicitly created to solve the problems

that are usually associated with the depth of a network.

The goal of the residual network is to explicitly let

layers approximate a residual function FðxÞ ¼ HðxÞ � x,

where H(x) is the true target function to be learned. The

output is then recast as FðxÞ þ x to predict the original H(x)

again. This is based on the assumption that HðXÞ � x is

much easier to learn than just H(X). Early work on residual

networks has shown that they are very good at addressing

the degradation problem: as a network gains additional

layers, it becomes progressively harder to learn the target

function, with accuracy degrading very rapidly. It is to be

noted that this is not due to overfitting. (The increased error

is observed on the training set as well.)

An observation made in Ref [1] is that if we construct a

larger network by copying the layers from a smaller net-

work and adding identity layers, we will obtain the same

accuracy as the smaller network, with an indefinite amount

of identity layers added. This is an important principle

which sets the notion that a larger network can always be at

least as good as a smaller one. This principle also supports

the idea of Boosted Residual Networks, Deep Incremental

Boosting, and residual networks, as it is crucial to be able

to extend networks to an arbitrary number of layers.

2.3 Learning additive improvements

In the presentation of DIB [9], the notion is introduced that

each new layer being added to the network is learning
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corrections from the previous model. It has been shown

that this principle is also applicable to residual networks

and highway networks [22], where each additional block

can be in fact equated to a further unrolling of an iterative

learning procedure. Therefore, it is also shown that each

new block in such networks is not necessarily learning

increasingly higher-level representations, but additional

refinements of the estimates of the previous layers. This

principle partially justifies the empirical observation that at

each round of BRN (and variants), the accuracy of the

single classifier improves.

2.4 Transfer of learning in convolutional
networks

Transfer of learning has also had an impact on deep

learning. For example, for convolutional networks, certain

sub-features in the lower layers of a trained network have

been shown to be entirely transferrable to a new CNN. This

leads to improved training results, and much faster training

compared to having trained the entire network from

scratch, as shown in [23]. Additionally, specific experi-

mental work on computer vision data set shows that mid-

level representations are transferrable between networks

trained on different data sets [24].

An illustration of how the early and middle layers are

copied between different architectures is shown in Fig. 1.

2.5 Comparison to approximate ensembles

Whilst both residual networks and Densely Connected

Convolutional Networks may be unfolded into an

equivalent ensemble, we note that there is a differentiation

between an actual ensemble method and an ensemble

‘‘approximation’’. During the creation of an ensemble, one

of the principal factors is the creation of diversity: each

base learner is trained independently, on variations (re-

samples in the case of boosting algorithms) of the training

set, so that each classifier is guaranteed to learn a different

function that represents a view of the original training data

set. This is the enabling factor for the ensemble to perform

better in aggregate.

2.5.1 Residual networks as an approximation
of an ensemble

A recent study in [25] compares residual networks to an

ensemble of smaller networks. This is done by unfolding

the shortcut connections into the equivalent tree structure,

which closely resembles an ensemble. An example of this

is shown in Fig. 2.

2.5.2 Densely Connected Convolutional Networks
as an approximation of an ensemble

In the case of Densely Connected Convolutional Networks

(DCCN) specifically, one may argue that a partial unfold-

ing of the network could be, from a schematic point of

view, very similar to an ensemble of additively constructed

residual networks. We make the observation that, although

this would be correct, on top of the benefit of diversity, our

method also provides a much faster training methodology:

the only network that is trained for a full schedule is the

network created at the first round, which is also the

Fig. 1 Illustration of the transfer

learning process in

convolutional networks: a

network trained on a data set in

problem space A donates the

weights from its lower and

middle layers to initialise a new

network. This is subsequently

trained on a data set from a

seemingly unrelated problem

space B
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smallest one. All subsequent networks are trained for a

much shorter schedule, saving a considerable amount of

time. Additionally, whilst the schematic may seem identi-

cal, there is a subtle difference: each member network

outputs a classification of its own, which is then aggregated

by a weighted averaging determined by the errors on the

test set. Instead, in a DCCN the input of the final aggre-

gation layer is the output of each underlying set of layers.

We conjecture that this aggressive dimensionality reduc-

tion before the aggregation has a regularising effect on the

ensemble.

3 Traditional boosting methods

Boosting is a technique first introduced in [3, 26], by which

classifiers are trained sequentially, using a subset of the

original data set, with the prediction error from the previ-

ous classifiers affecting the sampling weight for the next

round. After each round of boosting, the decision can be

made to terminate and use a set of calculated weights to

apply as a linear combination of the newly created set of

learners.

3.1 AdaBoost

In [3], Freund and Schapire present two variants of

boosting, called AdaBoost.M1 and AdaBoost.M2. The

main difference between the two algorithms is in the way

the final hypothesis is calculated and how multiple class

problems are handled, with both variants shown in detail in

Algorithms 1 and 2. Each boosting variant builds a distri-

bution of training set resampling weights Dt. Dt is updated

at each iteration to increase the importance of the examples

that are harder to classify correctly. Each resampled data

set is used to train a new classifier ht, which is then

incorporated in the group with a weight at, based on its

classification error �t. The new Dt is then generated for the

next iteration. The main differences between each Ada-

Boost variant lie in how the error �t, the classifier weight at,
the data set distribution Dt, and the aggregation functions

are designed and implemented.

Fig. 2 A residual network of N blocks can be unfolded into an ensemble of 2N � 1 smaller networks

Algorithm 1 AdaBoost.M1
Inputs: training set X0, an algorithm to create classifier hypotheses h(X)
Outputs: a trained ensemble classifier H(X)
D0,i = 1/M∀i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

Xt ← sample from X0 with distribution Dt

ht ← new classifier on current subset
εt =

∑
i:ht(xi) �=yi

Dt(i)
if εt > 1

2 then
abort loop

end if
βt = εt/(1 − εt)

Dt+1,i =
Dt,i

Zt
·
{

βt ifht(xi) = yi

1 otherwise
|∀i = 1 · |x|

where Zt is a normalisation factor such that Dt+1 is a distribution
αt = 1

βt

t = t + 1
end while
H(x) = argmaxy∈Y

T
t=1 logαtht(x, y)
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3.2 SAMME

The original AdaBoost algorithm works very well in the

binary classification setting. However, when the number of

output classes k[ 2 it suffers from problems with weak

classifiers with error above 1
2
, which led the authors to

create AdaBoost.M2. Another solution is presented as

Stagewise Additive Modeling using a Multiclass Expo-

nential loss function (SAMME) [27]. SAMME compen-

sates for the fact that a would be negative for errors above
1
2
. SAMME is shown in Algorithm 3. An in-depth study of

multiclass boosting is provided in [28].

Algorithm 2 AdaBoost.M2
Inputs: training set X0, an algorithm to create classifier hypotheses h(X)
Outputs: a trained ensemble classifier H(X)
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

Xt ← sample from X0 with distribution Dt

ht ← new classifier on current subset
εt = 1

2

∑
(i,y)∈B Dt,i(1 − ht(xi, yi) + ht(xi, y))

βt = εt/(1 − εt)
Dt+1,i =

Dt,i

Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))|∀i = 1 · |x|

where Zt is a normalisation factor such that Dt+1 is a distribution
αt = 1

βt

t = t + 1
end while
H(x) = argmaxy∈Y

T
t=1 logαtht(x, y)

Algorithm 3 SAMME
Inputs: training set X0, an algorithm to create classifier hypotheses h(X)
Outputs: a trained ensemble classifier H(X)
set k to the number of output classes in the problem
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

Xt ← sample from X0 with distribution Dt

ht ← new classifier on current subset
εt =

∑n
i=1 Dt(i)I(yi �=ht(Xt)))∑n

i=1 Dt(i)

αt = log 1−εt
εt

+ log(k − 1)

Dt+1,i =
Dt,i

Zt
eαtI(yi �=ht(Xt)))|∀i = 1 · |x|

where Zt is a normalisation factor such that Dt+1 is a distribution
t = t + 1

end while
H(x) = argmaxy∈Y

T
t=1 αtht(x, y)
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When the base classifier outputs a real-valued proba-

bility PðkjxÞ rather than a one-hot encoded class decision,

it may prove advantageous to utilise this additional infor-

mation to calculate more precise sampling weights and

improve the classifier’s output. AdaBoost.M2 is an exam-

ple of an algorithm the exploits this property. A variant of

SAMME for classifiers that exploits this knowledge also

exists, called SAMME.R [27], shown in Algorithm 4.

4 An existing customised method: deep
incremental boosting

Deep Incremental Boosting, introduced in [9], is an

example of such customised ensemble methods developed

for building ensembles of convolutional networks. The

method makes use of principles from transfer of learning,

for example those used in [23], applying them to conven-

tional AdaBoost [26].

Deep Incremental Boosting increases the size of the

network at each round by adding new layers at the end of

the network. This, as discussed, is extremely unlikely to

harm the learning process. In the original paper on Deep

Incremental Boosting [9], this has been shown to be an

effective way to learn the corrections introduced by the

emphasisation of learning mistakes of the boosting process.

The argument as to why this works effectively is based on

the fact that the data sets at rounds t and t þ 1 will be

mostly similar, and therefore, a classifier ht that performs

better than randomly on the resampled data set Xt will also

perform better than randomly on the resampled data set

Xtþ1. This is under the assumption that both data sets are

sampled from a common ancestor set Xa. It is subsequently

shown that such a classifier can be retrained on the dif-

ferences between Xt and Xtþ1.

This practically enables the ensemble algorithm to train

the subsequent rounds for a considerably smaller number of

epochs, consequently reducing the overall training time by

a large factor. The original paper also provides a conjec-

ture-based justification for why it makes sense to extend

the previously trained network to learn the ‘‘corrections’’

taught by the boosting algorithm. A high-level description

of the method is shown in Algorithm 5, and the structure of

the network at each round is illustrated in Fig. 3.

Algorithm 4 SAMME.R
Inputs: training set X0, an algorithm to create classifier hypotheses h(X)
Outputs: a trained ensemble classifier H(X)
set k to the number of output classes in the problem
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

Xt ← sample from X0 with distribution Dt

ht ← new classifier on current subset
Obtain weighted class probability estimates pi(X) = Pt(y = ci|Xt, ht), i = 1 . . . k

replace ht(Xt) ← (k − 1)
(
logpi(X) − 1

k

∑k
j=1 logpj(X)

)
, i = 1 . . . k

Dt+1,i =
Dt,i

Zt
e− k−1

k
yT logp(Xta)|∀i = 1 · |x|

t = t + 1
end while
H(x) = argmaxy∈Y

T
t=1 ht(x, y)
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5 Creating the Boosted Residual Network

In this section we propose a method for generating Boosted

Residual Networks. This works by increasing the size of an

original residual network by one residual block at each

round of boosting. The method achieves this by selecting

an injection point index pi at which the new block is to be

added. It is to be noted that pi is not necessarily the last

block in the network.

The boosting method performs an iterative re-weighting

of the training set, which skews the resample at each round

to emphasise the training examples that are harder to learn.

Therefore, it becomes necessary to utilise the entire

ensemble at test time, rather than just use the network

trained in the last round. It is also possible to delete indi-

vidual blocks from a residual network at training and/or

testing time, as presented in [1]; however, this issue is

considered out of the scope of this paper.

The iterative algorithm used in the paper is shown in

Algorithm 6. At the first round, the entire training set is

used to train a network of the original base architecture, for

Fig. 3 Example illustration of how new members of the ensemble are

created in each subsequent round of Deep Incremental Boosting. At

each round a new layer is added to the previous network, starting at

p0 ¼ 4. The weights of all layers below the newly inserted one are

copied between rounds

Algorithm 5 Deep Incremental Boosting
Inputs: training set X0, a modifiable algorithm to create classifier hypotheses h(X)
Outputs: a trained ensemble classifier H(X)
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

Xt ← sample from X0 with distribution Dt

ut ← create untrained classifier with additional layer of shape Lnew

copy weights from Wt into the bottom layers of ut

ht ← train ut classifier on current subset
Wt+1 ← all weights from ht

εt = 1
2

∑
(i,y)∈B Dt,i(1 − ht(xi, yi) + ht(xi, y))

βt = εt/(1 − εt)
Dt+1,i =

Dt,i

Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))|∀i = 1 · |x|

where Zt is a normalisation factor such that Dt+1 is a distribution
αt = 1

βt

t = t + 1
end while
H(x) = argmaxy∈Y

T
t=1 logαtht(x, y)
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a number of epochs n0. After the first round, the following

steps are taken at each subsequent round t:

• The ensemble constructed so far is evaluated on the

training set to obtain the set errors �, so that a new

training set can be sampled from the original training

set. This is a step common to all boosting algorithms.

• A new network is created with the same structure as

that of the previous round. To this network, a new block

of layers Bnew is added immediately after position pt,

which is determined as an initial predetermined position

p0 plus an offset
P

i¼1!p di for all the blocks added at

previous layers, where di is chosen to be the size of the

newly added layers at round i. This puts the new block

of layers immediately after the block of layers added at

the previous round, so that all new blocks are

effectively added sequentially. Bnew is not a residual

block, but usually consists of a group of different layers

(e.g. batch normalisation, convolution, and activation).

• The weights from the layers below pt are copied from

the network trained at round t � 1 to the new network.

This step allows to considerably shorten the training

thanks to the transfer of learning shown in [23].

• The newly created network is subsequently trained for a

reduced number of epochs nt.

• The new network is added to the ensemble following

the conventional rules and weight at ¼ 1
bt

used in

AdaBoost. We did not see a need to modify the way bt
is calculated, as it has been performing well in both DIB

and many AdaBoost variants [3, 9, 26, 29].

Figure 4 shows a diagram of how the ensemble is con-

structed by deriving the next network at each round of

boosting from the network used in the previous round.

Fig. 4 Illustration of subsequent rounds of Boosted Residual Networks
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We identified a number of optional variations to the

algorithm that may be implemented in practice, which we

have empirically established as not having a significant

impact on the overall performance of the network. We

report them here for completeness.

• Freezing the layers that have been copied from the

previous round and perform a round of ‘‘local learning’’

by only training the new layers, before performing an

(optional) round of ‘‘global learning’’. This is common

practice for many supervised and unsupervised transfer

learning approaches and could provide a valuable

improvement in performance for some data sets.

• Only utilising the weights distribution for the examples

in the training set instead of resampling, as an input to

the training algorithm.

• Inserting the new block always at the same position,

rather than after the previously inserted block. (We

found this to affect performance negatively.)

In the extreme cases where the base classifier learns the

training set very well (or indeed perfectly), the value of at
goes towards its asymptote of þ inf. This causes problems

with both resampling weights and ensemble weights, so it

is necessary to cap the value of at. Empirically, bounds of

ð10�3; 103Þ have proven to contain the runaway effects

whilst not affecting the learning in the non-degenerate

case.

In a similar way to how SAMME.R extends SAMME,

we present BRN.R as an extension of BRN, which derives

its boosting procedure from SAMME.R to take advantage

of the same real-valued classifiers. BRN.R is shown in

Algorithm 7.

Algorithm 6 Boosted Residual Networks
Inputs: training setX0, a modifiable algorithm to train Residual Network hypotheses
h(X)
Outputs: a trained ensemble classifier H(X)
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
p0 ← initial injection position
while t < T do

Xt ← sample from X0 with distribution Dt

ut ← create untrained classifier with an additional block Bnew of pre-determined
shape Nnew

determine block injection position pt = pt−1 + |Bnew|
connect the input of Bnew to the output of layer pt − 1
connect the output of Bnew and of layer pt − 1 to a merge layer mi

connect the merge layer to the remainder of the network
copy weights from Wt into the bottom layers l < pt of ut

ht ← train ut classifier on current subset
Wt+1 ← all weights from ht

εt =
∑

i:ht(xi) �=yi
Dt(i)

if εt > 1
2 then

abort loop
end if
βt = εt/(1 − εt)

Dt+1,i =
Dt,i

Zt
·
{

βt ifht(xi) = yi

1 otherwise
|∀i = 1 · |x|

where Zt is a normalisation factor such that Dt+1 is a distribution
αt = 1

βt

t = t + 1
end while
H(x) = argmaxy∈Y

T
t=1 logαtht(x, y)
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5.1 The sensitivity of additional
hyperparameters

BRN introduces a new set of hyperparameters that can be

analysed. These hyperparameters can also be selected by

search methods or evolutionary strategy, but given the

computational requirements for training a large number of

ensembles of deep networks we have not been able to

conduct sufficient experiments to devise an optimal

strategy.

First, we consider the position pt at which a new residual

block Bnew is injected into the network. This governs the

structure of the network at each boosting round, but more

importantly, the number of layers that will have their

weights initialised from a copy of the previous round. In

our experiments we found that using the maximum possi-

ble value of pt at each round produced the best results, in

both generalisation ability and training speed up—we were

able to reduce the number of training epochs for the sub-

sequent rounds (t[ 1) by a greater amount when the value

of pt was higher. Intuitively, this indicates that transferring

a higher number of layers produces higher benefits.

Second, we consider the fact that a cut-off point tmax

could be introduced for no longer adding new residual

blocks. Our experiments indicated that, for ten rounds of

boosting, adding such a cut-off point did not produce any

further improvements. However, when generating much

larger ensembles (for example 1000 members) it will likely

be beneficial to provide an upper limit to the size of the

networks being produced. Even though there have been

residual networks with over 1000 layers [1, 30], it has not

been guaranteed that adding an indefinite number of

residual blocks will always produce better results. Adding

this constraint will also help contain the amount of com-

putation required and therefore the speed of training each

member.

Third, the structure of the new residual block Bnew has to

be chosen appropriately. In residual networks, each block

tends to belong to one of a few families of blocks defined in

the structure of each network. Our experiments confirm

that the best strategy is to create the new block Bnew such

that its structure is the same as its predecessor block Bpt .

This results in each boosting round creating a ‘‘longer’’

version of the original network, without the addition of new

families of blocks.

6 A related approach based on bagging

Bagging (short for ‘‘bootstrap aggregating’’) is a technique

that is based on the statistical bootstrapping method,

originally introduced in [8], where the original author also

shows a number of applied use cases. A quantity N of

bootstraps is created by randomly picking M elements from

a training data set of size Z with resampling and then using

each of these bootstraps to train a separate identical base

classifier. Reference [8] introduces bagging with M ¼ Z,

and this practice seems to be observed in most of the

Algorithm 7 BRN.R
Inputs: training set X0, a modifiable algorithm to create classifier hypotheses h(X)
Outputs: a trained ensemble classifier H(X)
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

ut ← create untrained classifier with an additional block Bnew of pre-determined
shape Nnew

determine block injection position pt = pt−1 + |Bnew|
connect the input of Bnew to the output of layer pt − 1
connect the output of Bnew and of layer pt − 1 to a merge layer mi

connect the merge layer to the remainder of the network
copy weights from Wt into the bottom layers l < pt of ut

ht ← train ut classifier on current subset
Obtain weighted class probability estimates pi(X) = Pt(y = ci|Xt, ht), i = 1 . . . k

replace ht(Xt) ← (K − 1)
(
logpi(X) − 1

k

∑k
j=1 logpj(X)

)
, i = 1 . . . k

Dt+1,i =
Dt,i

Zt
e− k−1

k
yT logp(Xta)|∀i = 1 · |x|

t = t + 1
end while
H(x) = argmaxy∈Y

T
t=1 ht(x, y)
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literature. This will create diverse members because of the

randomised resampling, but because there will be signifi-

cant overlap in the training sets, all the members will still

have positive correlation.

The fact that boosting focuses the data set resampling on

harder-to-classify examples has the effect that the Boosted

Residual Networks cannot be used as a way to train a single

residual network additively. However, it is possible to

alleviate this situation by deriving an approach that uses

bagging instead of boosting; therefore, removing the

necessity to use the entire ensemble at test time.

The principle of additively creating an ensemble of

progressively larger residual networks, when extended to

bagging, generates a less complex process. We call this the

Bagged Residual Network (BaRN). This method offers the

same advantages and disadvantages that bagging offers

over boosting. Based on the original bagging recipe [8], the

algorithm is illustrated in Algorithm 8.

7 Distilled ensembles

It has been shown [31] that it is possible to approximate a

deep neural network by using a more shallow one that is

subsequently trained on its output, with the goal to emulate

its output function. No restriction is mentioned with regard

to generalising this approach to ensembles, and it should be

theoretically possible to train a smaller model to perform

like the larger one, as has been done, for example, in [32],

where the authors have developed a new set of algorithms

to approximate larger ensembles.

The process of distillation, introduced in Ref [33], pro-

duces small networks that emulate the behaviour of larger,

more complex ones. It does so by utilising the output

function f 0ðXÞ of the cumbersome model as the target of the

learning algorithm that generates the smaller one. It has

been shown to be an effective process for regularising large

ensembles of convolutional networks [6, 34]. By applying

this principle to Boosted Residual Networks, we can create

a new network, of the size of the network at the first round

of boosting, that learns from the output of the ensemble.

This improves the portability of the ensemble whilst not

impacting the performance in any significant way, and in

certain cases even improving it.

This distillation process has been applied to BRN, DIB,

and BaRN, as it is possible to apply the same principle to

all the ensemble learning algorithms. Figure 5 illustrates

graphically the distillation process.

8 Experiments and discussion

In the experiments we used the MNIST, CIFAR-10,

CIFAR-100, and TinyImagenet data sets. These are very

common benchmark data sets in computer vision and have

been used extensively to evaluate the performance of deep

learning methods in the literature. A comprehensive list of

experiments in the literature that have used these bench-

marks can be found in Ref [35]. We compared Boosted

Residual Networks (BRN) with an equivalent Deep

Incremental Boosting without the skip connections (DIB),

AdaBoost, and bagging with both the initial network as the

base classifier (AdaBoost) and the single residual network

equivalent to the last round of Boosted Residual Networks

(ResNet), and Bagged Residual Networks (BaRN). All the

parameters for training have been kept fixed for all

experiments, and no further hyperparameter optimisation

has been done on the base classifiers beyond that for

improving the performance of the individual network

Algorithm 8 Bagged Residual Networks
t = 0
p0 ← initial injection position
while t < T do

Xt ← sample from X0 with uniform distribution
ut ← create untrained classifier with an additional block Bnew of pre-determined
shape Nnew

determine block injection position pt = pt−1 + |Bnew|
connect the input of Bnew to the output of layer pt − 1
connect the output of Bnew and of layer pt − 1 to a merge layer mi

connect the merge layer to the remainder of the network
copy weights from Wt into the bottom layers l < pt of ut

ht ← train ut classifier on current subset
t = t + 1

end while
H(x) = argmaxy∈Y

T
t=1 logαtht(x, y)
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(ResNet). We performed a manual hyperparameter search

for the individual residual network, before running the first

experiment, on a small subset of each data set, using

10,000 images for training and 10,000 for testing. We then

fixed the hyperparameters we found and used them for

every experiment we ran for the data set in question.

In order to reduce noise in the results, we aligned the

random initialisation of all network weights across exper-

iments, by fixing the seeds for the random number gener-

ators. All experiments were repeated 10 times, and we

report the mean accuracy values. This approach has guar-

anteed control over the variables that could have affected

the learning, leaving only the ensemble method and its

specific hyperparameters as the free variables being

evaluated.

As already mentioned, MNIST [36] is a common com-

puter vision data set that associates 70,000 pre-processed

images of hand-written numerical digits with a class label

representing that digit. The input features are the raw pixel

values for the 28 � 28 images, in greyscale, and the outputs

are the numerical value between 0 and 9. 50,000 samples

are used for training, 10,000 for validation, and 10,000 for

testing.

CIFAR-10 is a data set that contains 60,000 small

images of 10 categories of objects. It was first introduced in

[37]. The images are 32 � 32 pixels, in RGB format. The

output categories are airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, truck. The classes are completely

mutually exclusive so that it is translatable to a 1-vs-all

multiclass classification. 50,000 samples are used for

training, and 10,000 for testing. This data set was originally

constructed without a validation set.

CIFAR-100 is a data set that contains 60,000 small

images of 100 categories of objects, grouped in 20 super-

classes. It was first introduced in [37]. The image format is

the same as CIFAR-10. Class labels are provided for the

100 classes as well as the 20 super-classes. A super-class is

a category that includes 5 of the fine-grained class labels

(e.g. ‘‘insects’’ contains bee, beetle, butterfly, caterpillar,

cockroach). 50,000 samples are used for training, and

10,000 for testing. This data set was originally constructed

without a validation set.

TinyImagenet is a simplified version of the Imagenet

challenge data set [38]. It has 1,20,000 images, split into

1,00,000 for training, 10,000 for validation and 10,000 for

testing, each 64 � 64 pixels in size. The data set comprises

of 200 different classes, equally balanced through each

split of the data set. It is derived completely from a small

sample of the original Imagenet data set. Because the labels

for the test set have not been released to the public, for this

data set we had to use the validation set as the test set.

For the CIFAR-10 and CIFAR-100 data sets, we also

report results with light data augmentation: we randomly

rotated, flipped horizontally, and scaled images, but did not

use any heavy augmentation, including random crops. For

TinyImagenet no data set augmentation was used. Results

are reported in Table 1. It is important to note that, except

for TinyImagenet, these accuracy values are very close to

the state of the art at the time of writing (99:79% for

MNIST [39], 96:53% for CIFAR-10 [40], and 75:72% for

CIFAR-100 [41]), but instead of using specially crafted

methods and architectures, we have instead taken a general

approach by using significantly smaller and less complex

networks, with little effort dedicated to the search of

optimal hyperparameters. It is also to be noted that the

state-of-the-art methods make use of heavy data set aug-

mentation, whilst our tests do not. There are multiple rea-

sons why the performance on TinyImagenet is not close to

state of the art. We used the same network architecture and

hyperparameters as CIFAR-100, without any data set

Fig. 5 Illustration of the

distillation process: the

cumbersome model creates an

approximate function f 0ðxÞ by

learning from the training data

and the ground truth function

f(x), whilst the distilled model

learns a new second-order

approximate function f 00ðxÞ
from the cumbersome

approximate function
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augmentation. The fact that we did not dedicate any time to

hyperparameter search also contributed to the low accu-

racy. This resulted in a network that was not tailored to the

data, constituting a ‘‘difficult’’ learning problem. This

allows us to examine how the method behaves when there

is plenty of margin for further generalisation on a problem.

It is also important to note that as the accuracies for some

of these data sets are high in absolute terms, the signifi-

cance of small fluctuations on repeated experiments is also

important to consider if they are consistent. We derive

significance from the fact that these are average improve-

ments over a number of experiments and that the majority

of these experiments have improved results, as can be seen

in Table 2. For example, although the mean improvement

in MNIST from 99.47 to 99.55% accuracy appears small, it

occurs in 9 out of 10 experiments. When focusing on the

errors this represents an error reduction from 0.53 to

0.45%, which reflects a mean relative error reduction of

15%. Figure 6 shows a side-by-side comparison of accu-

racy levels at each round of boosting for both DIB and

BRN on the MNIST and CIFAR-100 test sets. This fig-

ure illustrates how BRN are able to consistently outperform

DIB at each intermediate value of ensemble size, and

although such differences would still fall within a Bernoulli

confidence interval of 95%, we make the note that this does

not take account of the fact that all the random initialisa-

tions were aligned, so both methods started with the exact

same network. In fact, an additional Friedman Aligned

Table 1 Mean test accuracy in the benchmark data sets for the methods compared

ResNet (%) Bagging (%) AdaBoost (%) DIB (%) BRN (%) BRN.R (%) BaRN

MNIST 99.41 99.46 99.42 99.47 99.53 99.55 99.55

CIFAR-10 89.12 90.43 89.74 90.83 90.85 91.04 90.82

CIFAR-10 (aug) 92.14 92.61 92.47 92.51 92.94 92.96 92.80

CIFAR-100 67.25 68.15 69.11 69.16 70.79 71.94 69.42

CIFAR-100 (aug) 69.72 71.90 69.82 71.60 72.41 73.52 72.01

TinyImagenet 30.73 40.53 39.70 44.91 44.34 45.68 42.31

The best result is highlighted in bold

Table 2 The frequency of

experimental runs where BRN

has the best performance of all

methods examined, both in

generalisation and training time

Number of improvements Number of speed-ups

MNIST 9 10

CIFAR-10 8 10

CIFAR-10 (aug) 9 10

CIFAR-100 10 3

CIFAR-100 (aug) 10 10

TinyImagenet 10 4
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Fig. 6 Round-by-round comparison of DIB vs BRN on the test set
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Ranks test on the entire group of algorithms tested shows

that there is a statistically significant difference in gener-

alisation performance, whilst a direct Wilcoxon test with a

null hypothesis that BRN and DIB are sampled from the

same distribution shows that BRN is significantly better. In

both cases, the ‘‘sample’’ is the average of all experiments

with the same characteristics (data set and method), rather

than the single experiment run. This is also corroborated by

the ‘‘number of wins’’ on each data set (Table 2), and the

‘‘number of data sets won’’ by BRN vs the other methods

(Table 1).

Figure 7 shows how BRN.R generally achieves better

performance at almost every boosting round. This may be

partly because BRN.R is tailored more towards the type of

data sets used as benchmarks—the use of the continuous

probability output from the CNNs is a big factor.

Table 3 shows that this is achieved without significant

changes in the training time.1 The main speed increase is

due to the fact that the only network being trained with a

full schedule is the first network, which is also the smallest,

whilst all other derived networks are trained for a much

shorter schedule (in this case only 10% of the original

training schedule). If we exclude the single network, which

is clear from a different distribution and only mentioned for

reference, a Friedman Aligned Ranks test [42] shows that

there is a statistically significant difference in speed

between the members of the group, but, as can be expected,

a Wilcoxon test [43] between Deep Incremental Boosting

and Boosted Residual Networks does not show a significant

difference. This confirms what could be conjured from the

algorithm itself for BRN, which is of the same complexity

w.r.t. the number of ensemble members as DIB. The con-

firmation that the consistency of improvements is signifi-

cant, combined with the fact that the method is

significantly faster than training the equivalent network

from the final round for the full number of epochs, presents

an effective strategy for improving performance without

requiring additional resources and in less time. The specific

time improvement is highly dependent on the number of

epochs chosen for the subsequent training rounds

et; 8t[ 0, and the number of boosting rounds t; however,

we find empirically that choosing a set of such parameters

that keep the total training time low is feasible.
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Fig. 7 Round-by-round comparison of BRN vs BRN.R on the test set

Table 3 Training times

comparison, in minutes
ResNet Base Net Bagging AdaBoost DIB BRN BRN.R BaRN

MNIST 217 62 437 442 202 199 207 209

CIFAR-10 1941 184 1193 1212 461 449 453 458

CIFAR-10 (aug) 2228 213 2138 2150 1031 911 943 955

CIFAR-100 2172 303 2762 2873 607 648 659 676

CIFAR-100 (aug) 2421 328 3044 3072 751 735 742 764

TinyImagenet 4804 619 6031 6288 1591 1613 1716 1645

Bold values indicate the lowest training times for each dataset

BRN and DIB are the fastest ensemble methods compared

The time to train the individual base network and a ResNet of comparable performance is reported for

comparison

1 In a few cases BRN is actually faster than DIB, but we believe this

to be just noise due to external factors such as system load and affinity

of some resulting computational graphs instead of others.
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The hardware used to train each network was identical

for every case, and because in all cases the ensemble

members were trained sequentially, ours was the only work

running on the system, providing a sufficiently controlled

environment to justify using wall-clock time as a mea-

surement of speed. Table 2 shows that BRN is the fastest

method most of the time, whilst Table 3 shows the mag-

nitude of the time improvements, which indicate that the

speed improvement on regular ensemble methods is note-

worthy and consistent.

Due to the limitations of the current hardware, the

residual networks built in our experiments were compara-

tively smaller than those that achieve state-of-the-art per-

formance, as our biggest residual network in the final round

of BRN and BaRN is still orders of magnitude away from

the 1001 layers in Ref [1]. The initial network architectures

for the first round of boosting are shown in Table 4a for

MNIST, and Table 4b for CIFAR-10 and CIFAR-100. It is

to be noted that, because of the shortened training schedule

and the differing architecture, the results on the augmented

data sets are not the same as those reported in the original

papers for residual networks. The single networks currently

used to reach state of the art on these data sets are very

cumbersome in terms of resources and training time [1].

Instead, we used relatively simpler network architectures

that were faster to train whilst still performing well on the

data sets at hand, with accuracy close to and almost com-

parable to the state of the art. This enabled us to test larger

ensembles within an acceptable training time. Our inten-

tion is to demonstrate a methodology that makes it feasible

to create ensembles of residual networks following a cus-

tomised approach to significantly improve the training

times and accuracy levels achievable with the current

ensemble methods.

Training used the WAME method [44], which has been

shown to be faster than Adam and RMSprop, whilst still

achieving comparable generalisation. This is thanks to a

specific weight-wise learning rate acceleration factor that is

determined based only on the sign of the current and pre-

vious partial derivative
oEðxÞ
owij

. For the single residual net-

work, and for the networks in AdaBoost, we trained each

member for 100 epochs. For Deep Incremental Boosting

and all variants of Boosted Residual Networks, we trained

the first round for 50 epochs, and every subsequent round

for 10 epochs, and ran all the algorithms for 10 rounds of

boosting (except for the single network). We chose to use

less epochs for the first round because we found empiri-

cally that the additional epochs that fine-tuned the base

network were not improving the performance at subsequent

rounds in any significant way. Because our intention was to

find an ensemble method that would train in significantly

less time without loss of generalisation, we found that this

was an effective strategy. Similarly, we found that above

10 rounds the time to train the ensemble was increasing

without large improvements to generalisation.

The structure of the base network at the first round is

shown in Table 4. This was created by taking the shape

(strides and number of convolutions) of the existing blocks

of ResNet-50 and making the network smaller to create a

reasonable starting point that still performed well.

The structure of each additional block added to Deep

Incremental Boosting and Boosted Residual Networks at

each round is shown in Table 5a for MNIST, and in

Table 5b for CIFAR-10, CIFAR-100, and TinyImagenet.

The architecture of the ensemble at the Nth round of

boosting is shown in Fig. 8.

The choice of additional block was based on the typical

structure of a block in residual networks: convolution,

followed by batch normalisation, followed by rectified

linear units activation. For convenience, we chose to use

Table 4 Initial network structures used in experiments

(a) MNIST

64 conv, 5 � 5

2 � 2 max-pooling

128 conv, 5 � 5

2 � 2 max-pooling*

64 conv, 3 � 3

Dense, 1024 nodes

50% dropout

(b) CIFAR-10, CIFAR-10, and TinyImagenet

2 � 96 conv, 3 � 3

96 conv, 3 � 3, 2 � 2 strides

96 conv, 3 � 3, 2 � 2 strides

96 conv, 3 � 3, 2 � 2 strides

2 � 2 max-pooling

2 � 192 conv, 3 � 3

192 conv, 3 � 3, 2 � 2 strides

192 conv, 3 � 3, 2 � 2 strides

192 conv, 3 � 3, 2 � 2 strides

2 � 2 max-pooling

192 conv, 4 � 3

192 conv, 3 � 3*

192 conv, 3 � 3

192 conv, 1 � 1

10 conv, 1 � 1

Global average pooling

10-way softmaxa

The layers marked with ‘‘*’’ indicate the location after which we

added the new residual blocks at each round of DIB and BRN

Batch normalisation and activation layers are omitted from this dia-

gram for simplicity
aFor CIFAR-100 this softmax was 100-way, and for TinyImagenet,

this softmax was 200-way
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the same number of filters, shape, and stride as the con-

volutional layers that each block succeeds. All layers were

initialised following the recommendations in [45]. Any

additional network hyperparameters are reported in

Table 6.

An additional experiment on TinyImagenet with BRN.R

and 20 epochs at each round (instead of 10) has an even

higher test accuracy of 46.78%, showing that it is possible

to fine-tune the number of subsequent epochs as a hyper-

parameter to obtain better results. We only report this result

for completeness, and it was not included in any statistical

test.

8.1 Observing unrolled iterative estimation
in BRN

Especially for the more complex data sets such as CIFAR-

100 and TinyImagenet, the accuracy of the individual

classifier improves considerably at each round. We attri-

bute most of this to the fact that, by focusing the training on

the newly added block, we are explicitly encouraging the

layer-by-layer refinements discussed in the treaty of

unrolled iterative estimation [22]. Figure 9 shows the

observed accuracy on TinyImagenet at each round.

8.2 Special considerations about BaRN

In Sect. 6 we substituted the boosting algorithm with a

simpler bagging algorithm [8] to evaluate whether it would

be possible to only use the network from the final round of

bagging as an approximation of the ensemble. We called

this the Bagged Residual Networks (BaRN) method. When

we compare our results to a bagged version of the same

base ResNet used as a control for BRN, and the original

bagging algorithm, we find that separate Wilcoxon tests

refute the hypothesis that the results for BaRN and bagging

are sampled from the same distribution, and that BRN and

BaRN are sampled from the same distribution, meaning

that the differences observed are statistically significant.

Despite the fact that BRN has better performance, the

benefits of using BaRN are as follows:

• The reduction in sensitivity to highly imbalance data

sets, a known issue for boosting algorithms.

• The potential to derive parallel and distributed imple-

mentations which approximate the final ensemble.

• The use of dynamic distortions and transformations of

the original data.

Table 5 Structure of blocks added at each round of DIB and BRN

(a) MNIST

64 conv, 3 � 3

Batch normalisation

ReLu activation

(b) CIFAR-10, CIFAR-100, and TinyImagenet

192 conv, 4 � 3

Batch normalisation

ReLu activation

192 conv, 3 � 3

Batch normalisation

ReLu activation

Round 1

Base model

Round 2

Base model

Block 1

. . .

Round N

Base model

Block 1

Block N-1

. . .

Aggregator

Fig. 8 Visualisation of the structure of the ensemble after N rounds of

BRN. The structure of the ‘‘Base’’ blocks is illustrated in Table 4,

whilst the size of each additional block is illustrated in Table 5

Table 6 Hyperparameters used

for each network
Learning rate Epochs Batch size

MNIST 10�2 100 64

CIFAR-10 10�3, 10�4 after 40 epochs 100 128

CIFAR-10 (aug) 10�3, 10�4 after 40 epochs 100 128

CIFAR-100 10�3, 10�4 after 40 epochs 100 128

CIFAR-100 (aug) 10�3, 10�4 after 40 epochs 100 128

TinyImagenet 10�3, 5 � 10�4 after 40 epochs 100 128
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8.3 Additional experiments with distillation

In another set of experiments we tested the performance of

a Distilled Boosted Residual Network (DBRN) and a

Distilled Bagged Residual Network (DBaRN). For the

structure of the final distilled network we used the same

architecture as that of the residual network from the final

round of boosting. Average accuracy results in testing over

10 runs are presented in Table 7, and for completeness of

comparison we also report the results for the distillation of

DIB, following the same procedure, as DDIB. DBRN does

appear to improve results only for CIFAR-10, but it con-

sistently beats DDIB on all data sets. These differences are

too small to be deemed statistically significant with a

Friedman Aligned Ranks test, confirming the hypothesis

that the functions are sampled from the same distribution.

It can therefore be said that the function learned by both

BRN and DIB can be efficiently transferred to a single

network, for the data sets taken under consideration.

Using only the network produced in the last round of

BaRN instead of the distilled DBaRN is significantly

worse. This is reported as BaRN-l. We therefore cannot

simply replace the distillation process by utilising the

network created in the last round of BaRN. This also

refutes our hypothesis that BaRN could be used as a

method for incrementally creating a large residual network.

9 Conclusions and future work

In this paper we introduced a customised methodology for

creating ensembles of deep learning models and designed

three algorithms that follow this approach, specifically

tailored to convolutional networks to generate Boosted

Residual Networks and Bagged Residual Networks, and

looked at potential variants of those algorithms for real-

valued classifiers. We have shown that this surpasses the

performance of a single residual network equivalent to the

one trained at the last round of boosting, of an ensemble of

such networks trained with AdaBoost, and of the equiva-

lent Deep Incremental Boosting on the MNIST, CIFAR-10,

CIFAR-100, and TinyImagenet data sets, with and without

using common data augmentation techniques.

We then derived and looked at distilled versions of the

methods, and how this technique can serve as an effective

way to reduce the test-time cost of running the ensemble.

We analysed how this compares to the distilled version of

the same baselines used in the preceding experiment.

The combination of such techniques has shown that it is

possible to train a model that has slightly better generali-

sation with lower complexity in a significantly shorter

amount of time.

Because of the limitations to the network size imposed

in our experiments, it might be appealing in the future to

evaluate the performance improvements obtained when

creating ensembles of large, state-of-the-art, base networks,

for example by using the 1001-layer networks found in [1]

as a starting network architecture.

The BRN process builds a residual network block by

block in additive steps. An investigation on whether this

additive process enables the creation of deeper networks by

virtue of the unrolled iterative estimation principle has

been produced, concluding that, although the final classifier

has a higher learning capacity than the one produced in the

first round, and shows improved learning especially on

large data sets, it is not sufficient on its own to replace the

entire ensemble. This is likely due to the imbalanced

resampling of the training set, and the fact that the con-

tribution from the simpler networks at earlier rounds may

serve as a control for overfitting. With BaRN and BRN.R,

it is shown that the last classifier is indeed better than the
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Fig. 9 Single-model test accuracy for each round of BRN on

TinyImagenet

Table 7 Testing accuracy for

distilled variants of the

ensembles

DBRN (%) DBRN.R (%) DDIB (%) DBaRN (%) BaRN-l (%)

MNIST 99.49 99.50 99.44 99.55 99.35

CIFAR-10 91.11 91.05 90.66 90.77 90.62

CIFAR-10 (aug) 93.28 92.76 92.43 92.68 92.73

CIFAR-100 68.99 68.86 65.91 67.42 66.16

CIFAR-100 (aug) 70.24 70.71 69.18 71.51 70.44

TinyImagenet 42.63 43.70 42.14 39.64 32.92
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first. This is encouraging first evidence that the additive

construction of large residual networks may be a valid

approach, although the performance gained by using the

whole ensemble instead is significant. We believe it is,

however, still necessary to further investigate this approach

and the behaviour of additive training in isolation.

Additional further investigation could also be conducted

on the creation of Boosted Densely Connected Convolu-

tional Networks, by applying the same principle to DCCN

instead of residual networks.

Another very important property that has not been fully

explored in this paper is the recent development of attack

and defence methods for adversarial training using

ensembles [5]. Whilst we do not investigate the effect of

customised ensemble methods on adversarial learning, it is

possible to speculate that, either with or without adapta-

tions to the learning set-up, these methods could be used to

improve on such a class of problems.

We also believe that there is additional work in

exploring how such iterative methods like BRN may be

extended to incorporate notions of differential computation

in deep learning, such as LM-ResNet and LM-

ResNeXt [46], and NAIS-Net [47].
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