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Abstract
This paper presents an efficient and robust Large-margin Distribution Machine formulation for regression. The proposed

model is termed as ‘Large-margin Distribution Machine-based Regression’ (LDMR) model, and it is in the spirit of Large-

margin Distribution Machine (LDM) (Zhang and Zhou, in: Proceedings of the 20th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, ACM, 2014) classification model. The LDM model optimizes the

margin distribution instead of minimizing a single-point margin as is done in the traditional SVM. The optimization

problem of the LDMR model has been mathematically derived from the optimization problem of the LDM model using an

interesting result of Bi and Bennett (Neurocomputing 55(1):79–108, 2003). The resulting LDMR formulation attempts to

minimize the �-insensitive loss function and the quadratic loss function simultaneously. Further, the successive over-

relaxation technique (Mangasarian and Musicant, IEEE Trans Neural Netw 10(5):1032-1037, 1999) has also been applied

to speed up the training procedure of the proposed LDMR model. The experimental results on artificial datasets, UCI

datasets and time-series financial datasets show that the proposed LDMR model owns better generalization ability than

other existing models and is less sensitive to the presence of outliers.

Keywords Support vector machine � Regression � Large-margin Distribution Machine � �-insensitive loss �
Quadratic loss � Successive over-relaxation

1 Introduction

Support vector machine (SVM) is one of the most popular

machine learning algorithms (Cortes and Vapnik [1];

Burges [2]; Cherkassky and Mulier [3]; Vapnik [4]). SVM

has emerged from the research in statistical learning theory

on how to regulate the trade-off between the structural

complexity and empirical risk. It has outperformed the

other existing tools in a wide variety of applications. Some

of these applications can be found in Osuna et al. [5],

Joachims [6], Schlkopf et al. [7] and Lal et al. [8]. SVM has

been initially developed for the problem of pattern classi-

fication, but it has been extended to solve the problems of

regression and clustering as well.

SVM classifier attempts to reduce the generalization

error by maximizing the minimum margin, i.e. the mini-

mum distance of the training points from the classification

boundary (Cortes and Vapnik [1]; Burges [2]; Cherkassky

and Mulier [3]; Vapnik [4]; Bradely and Mangasarian [9]).

The maximization of margin in SVM classification prob-

lem amounts to the minimization of an upper bound on the

VC dimension (Burges [2]; Vapnik [4]) of the classifying

hyperplane. The maximum margin theory is not only rel-

evant in the case of the SVM, but it has also been extended

to interpret the good generalization ability of many other

learning approaches such as AdaBoost (Freund and Scha-

pire [10]) which is a major representative of ensemble

methods (Zhou [11]). The theoretical studies which advo-

cate the relevance of the maximum margin principle in

these learning approaches can be found in Breiman [12]

and Schapire et al. [13]. Moreover, some of the recent

theoretical results (Reyzin and Schapire [14]; Wang et al.
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[15]; Gao and Zhou [16]) suggest that rather than simply

considering a single-point margin, the margin distribution

is important in these algorithms. Taking motivation from

these studies, Teng and Zhou [17] have proposed Large-

margin Distribution Machine (LDM) which tries to achieve

better generalization performance by considering the

margin mean as well as margin variance in the objective

function of its optimization problem.

The support vector methodology has also been extended

for handling the problem of regression (Vapnik et al. [18];

Drucker et al. [19]) The standard �-SVR is an �-insensitive

model which sets an epsilon tube around the data points.

The data points outside the epsilon tube contribute to the

errors which are penalized in the objective function via a

user-specified parameter. Bi and Bennett [20] have devel-

oped a geometric framework for SVR, showing that it can

be related to an appropriate SVM problem. This result of

Bi and Bennett [20] is very significant as it provides a

classification eye to see the problem of regression.

This paper proposes an efficient Large-margin Distri-

bution Machine-based Regression (LDMR) model which is

similar in principle to LDM model for classification (Zhang

and Zhou [17]). The proposed LDMR model is a more

general regression model as the standard �-SVR and LS-

SVR models are special cases of LDMR model with par-

ticular choice of parameters. The optimization problem of

LDMR model has been derived from the LDM model for

classification using a well-known result of Bi and Bennett

[20]. The resulting optimization problem simultaneously

minimizes the quadratic loss function used in LS-SVR

(Suykens et al. [21, 22]) and �-insensitive loss function

used in �-SVR. It is noteworthy that the LS-SVR model

fails to predict well on noisy datasets, whereas �- SVR

model totally ignores all data points which lie inside of �-

tube for the determination of the regressor. This strategy

makes �-SVR model sparse but does not minimize the

scatter inside of the �- tube. Our proposed LDMR model

aims to take advantage of both of these models. Further, an

effective successive over-relaxation (SOR) (Mangasarian

and Musicant [25]) technique has also been applied for the

efficient solution of the LDMR problem to reduce its

training time complexity. Experimental results on the

artificial datasets, UCI benchmark datasets (Blake and

Merz [28]) and time-series datasets show that the LDMR

model owns better generalization ability than the existing

SVR models.

Taking forward the arguments of Huang et al. [29] to the

regression analogue, it makes sense that apart form the

sparsity, we should also minimize the scatter of data points

which lie inside the �-tube. Therefore, it is meaningful to

have both of these loss functions in the proposed formu-

lation so as to do a trade-off between sparsity and scatter

minimization. It also enables the proposed model to utilize

the full information of the training set and avoid over-

fitting simultaneously.

We now briefly describe notations used in the rest of this

paper. All vectors will be taken as column vectors, unless it

has been specified otherwise. For any vector x 2 Rn, ||x||

will denote the l2 norm. A vector of ones of arbitrary

dimension will be denoted by e. Let (A, Y) denote the

training set where A ¼ ½A1;A2; . . .; Al� contains the l points
in Rn represented by l rows of the matrix A and Y ¼
½y1; y2; . . .; yl� 2 Rl�1 contains the corresponding response

value of the row of matrix A.

The rest of this paper is organized as follows. Section 2

discusses LDM formulation proposed by Zhang and Zhou

[17]. Section 3 briefly describes SVR models. Section 4

proposes the Linear Distribution Machine-based Regres-

sion (LDMR) and its extension for the nonlinear case.

Section 5 contains the mathematical derivation of the

optimization problem of the LDMR from the LDM for-

mulation (Zhang and Zhou [17]) using a result of Bi and

Bennett [20]. Section 6 describes the experimental results,

while Sect. 7 is devoted to the conclusions.

2 Large-margin distribution machine

Inspired by the theoretical result of Gao and Zhou [16], the

LDM model (Zhang and Zhou [17]) attempts to maximize

the margin mean and minimize the margin variance

simultaneously for optimizing the margin distribution. The

margin mean �c and margin variance ĉ are given by

�c ¼ 1

l

Xl

i¼1

di w
Txi

� �
¼ 1

l
dTXw; ð1Þ

ĉ ¼ 1

l

Xl

i¼1

diðwTxiÞ � �c
� �2

: ð2Þ

Here the matrix X ¼ ½x1; x2. . .; xl� contains the given l data

points in Rn; and vector d 2 Rl�1 of �1 represents the

corresponding class.

The linear LDM model finds the separating hyperplane

wTx ¼ 0 by solving the following optimization problem

min
w;n

1

2
wTwþ k1ĉ� k2�cþ C

Xl

i¼1

ni

subject to,

yiðwTxiÞ� 1� ni; ni � 0; i ¼ 1; 2; . . .; l;

ð3Þ

k1 and k2 are positive parameters for trading off the margin

mean and margin variance. It is also notable that the LDM

formulation reduces to the SVM when k1 and k2 = 0 in (3).
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3 Support vector regression

3.1 �-Support Vector Regression

Linear �-SVR model finds a linear function

f ðxÞ ¼ wTxþ b, where w 2 Rn and b 2 R. To measure the

empirical risk, it uses the �-insensitive loss function

R�
emp ¼

1

l

Xl

i¼1

jyi � f ðxiÞj�; ð4Þ

where jyi � f ðxiÞj� ¼ maxð0; jyi � f ðxiÞj � �Þ. The �-SVR

model minimizes the �-insensitive loss function with a

regularization term 1
2
jjwjj2 in its optimization problem

which is given as follows

min
w;b;n;n�

1

2
jjwjj2 þ C

Xl

i¼1

ðni þ n�i Þ

subject to,

yi � ðAiwþ bÞ	 �þ ni; ði ¼ 1; 2; . . .; lÞ;
ðAiwþ bÞ � yi 	 �þ n�i ; ði ¼ 1; 2; . . .; lÞ;
ni � 0; n�i � 0; ði ¼ 1; 2; . . .; lÞ:

ð5Þ

Here C[ 0 is the user-specified parameter that balances

the trade-off between the fitting error and the flatness of the

function f ðxÞ ¼ wTxþ b.

3.2 Least-squares support vector regression
model

Similar to �-SVR model, least-squares support vector

regression (LS-SVR) model (Suykens et al. [21, 22]) also

finds a linear function f ðxÞ ¼ wTxþ b, where w 2 Rn and

b 2 R. The LS-SVR model minimizes the quadratic loss

function

Remp ¼
1

l

Xl

i¼1

ðyi � f ðxiÞÞ2; ð6Þ

in its optimization problem along with the regularization

term 1
2
jjwjj2. The optimization problem of the LS-SVR

model can be expressed as

min
w;b;n

c

2
jjwjj2 þ C1

Xl

i¼1

ðn2i Þ

subject to,

yi � ðAiwþ bÞ ¼ ni; ði ¼ 1; 2; . . .; lÞ;

ð7Þ

where C1 [ 0 is a user-defined parameter.

4 Large-margin distribution machine-based
regression

In this section, we propose an efficient Large-margin

Distribution Machine-Based Regression (LDMR) model.

4.1 Linear LDMR model

Given the training set (A, Y), the LDMR model finds a

linear function f ðxÞ ¼ wTxþ b; where w 2 Rn and b 2 R.

The proposed LDMR model minimizes the following

generalized loss function

Rf
emp ¼

k

2

Xl

i¼1

ðyi � f ðxiÞÞ2 þ C �
Xl

i¼1

jyi � f ðxiÞj�: ð8Þ

Along with the regularization term, here k[ 0 and C[ 0.

By introducing the regularization term 1
2
jjwjj2 and slack

variables n1 and n2, the primal form of the LDMR can be

expressed as

min
w;b;n1;n2

c

2
jjwjj2 þ k

2
jjY � ðAwþ ebÞjj2 þ CeTðn1 þ n2Þ

subject to,

Y � ðAwþ ebÞ	 e�þ n1;

ðAwþ ebÞ � Y 	 e�þ n2;

n1; n2 � 0;

ð9Þ

where C, k, � and c are user-defined positive parameters.

The proposed LDMR model minimizes three terms in its

optimization problem. The first term 1
2
wTw attempts to

make the regressor as flat as possible. The second term
Pl

i¼1ðyi � f ðxiÞÞ2 attempts to minimize the scatter of the

data points, while the third term
Pl

i¼1 jyi � f ðxiÞj� tries to
have better sparsity. These three terms in the objective

functions are traded off appropriately to make full use of

the training set and avoid over-fitting of the data points

simultaneously.

The �-SVR model only minimizes the �-insensitive loss

function which ignores the error up to �. The points lying

on the bounding regressor f ðxÞ þ � and f ðxÞ � � and outside

the �-insensitive zone are support vectors and participate in

the construction of the final regressor. The data points

which lie inside the �-insensitive zone have been ignored to

achieve the sparsity, but it also causes �-SVR to lose the

information contained in the training set. The outliers

which are supposed to reside outside the �-insensitive zone

also affect the orientation and position of the regressor. On

the other hand, the LS-SVR model minimizes the quadratic

loss function where all of the data points are participating

in the construction of the final regressor but cannot avoid
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over-fitting of the regressor. That is why, the LS-SVR

model fails to perform well on datasets which contain

much noise. The proposed LDMR model obtains better

generalization ability by finding a good trade-off between

the �-insensitive loss function and the quadratic loss

function via the user-defined parameters c, k and C. Since

the proposed LDMR model also assigns some weights to

the points which are inside of the �-insensitive zone in the

construction of the final regressor, it is less sensitive to the

presence of outliers and therefore can avoid the over-fitting

as well. In this sense, the proposed LDMR model combines

the benefits of both the SVR and LS-SVR models.

The proposed LDMR model is in the true spirit of the

LDM classification model. The optimization problem of

the LDMR model has been mathematically derived by the

optimization problem of the LDM model using a result of

the Bi and Bennett [20]. Unlike SVM, which minimizes the

single-point margin only, the LDM model also minimizes

the margin mean and margin variance together. It makes

LDM formulation insensitive towards noises. These

advantages of the LDM model have also been inherited in

the LDMR model.

It is also noteworthy that the proposed LDMR model is a

very general model. When k ¼ 0; the primal problem (9) of

proposed LDMR model reduces to primal problem (5) of �-

SVR. Also, when C becomes zero in the primal problem

(9) of the proposed LDMR formulation, the variables

n1; n2 � 0 are no more minimized in (9) and hence can take

any values. Therefore, the constraints of the optimization

problem (9) do not make any sense as these are always

satisfied for any value of (w,b). Thus, these constraints

become redundant. So with C ¼ 0, the proposed LDMR

model only minimizes c
2
jjwjj2 þ k

2
jjY � ðAwþ ebÞjj2 in its

optimization problem (9) which is equivalent to solving the

optimization problem (7) of the LS-SVR model with

C1 ¼ k
2
.

In order to find the solution of the primal problem (9),

we need to derive its corresponding dual problem. Let us

assume H ¼ ½A; e� is a augmented matrix and v ¼ w

b

� �
;

then jjwjj2 can be written as jjwjj2 ¼ vTI0v, where I0 ¼
I 0

:
:

0 . . .0

2
664

3
775 and I is n� n identity matrix. Now the

Lagrangian function for the primal problem (9) can be

given by

Lðv; a1; a2; b1; b2Þ ¼
c

2
vI0vþ

k

2
ðY � HvÞTðY � HvÞ

þ CeTðn1 þ n2Þ þ aT1 ðY � Hv� e�� n1Þ
þ aT2 ðHv� Y � e�� n2Þ � bT1n1 � bT2n2;

where a1 ¼ ða11; a21; . . .; al1Þ; a2 ¼ ða12; a22; . . .; al2Þ; b1 and b2
are the vector of Lagrangian multipliers. The KKT opti-

mality conditions are given by

oL

ov
¼ ðcI0 þ kHTHÞv� HTY � HTa1 þ HTa2 ¼ 0; ð10Þ

oL

on1
¼ Ce� a1 � b1 ¼ 0; ð11Þ

oL

on2
¼ Ce� a2 � b2 ¼ 0; ð12Þ

Y � Hv	 e�þ n1; n1 � 0; ð13Þ

Hv� Y 	 e�þ n2; n2 � 0; ð14Þ

aT1 ðY � Hv� e�1 � n1Þ ¼ 0; ð15Þ

aT2 ðHv� Y � e�1 � n2Þ ¼ 0; ð16Þ

bT1n1 ¼ 0; bT2n2 ¼ 0; ð17Þ

a1 � 0; a2 � 0; b1 � 0; b2 � 0: ð18Þ

Using the above KKT conditions, the dual problem of the

primal problem (9) can be obtained as

min
a1;a2

1

2
ða1 � a2ÞTHðcI0 þ kHTHÞ�1

HTða1 � a2Þ

þ YTHðcI0 þ kHTHÞ�1
HTða1 � a2Þ

� YTða1 � a2Þ þ �eTða1 þ a2Þ
subject to,

0	 a1 	Ce;

0	 a2 	Ce:

ð19Þ

After obtaining the optimal value of the a1 and a2 from

(19), we can obtain v using (10) as follows

v ¼ w

b

� �
¼ ðcI0 þ kHTHÞ�1

HTða1 � a2 þ YÞ:

For the given x 2 Rn, the estimated regressor is obtained

as follows

f ðxÞ ¼ wTxþ b

4.2 Nonlinear LDMR model

The nonlinear LDMR model will seek to estimate the

function f ðxÞ ¼ KðxT;ATÞuþ b, where K is an appropri-

ately chosen positive definite kernel.

The nonlinear LDMR model solves the following opti-

mization problem
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min
u;b

c

2
jjujj2 þ k

2
jjY � ðKðA;ATÞuþ ebÞjj2 þ CeTðn1 þ n2Þ

subject to,

Y � ðKðA;ATÞuþ ebÞ	 e�þ n1;

ðKðA;ATÞuþ ebÞ � Y 	 e�þ n2;

n1; n2 � 0;

ð20Þ

where C, k, � and c3 are user-supplied positive parameters.

Let us assume G ¼ ½KðA;ATÞ; e� be a augmented matrix

and v ¼ u

b

� �
; then jjujj2 can be written as jjujj2 ¼ vTI0v,

where I0 ¼

I 0

:
:

0 . . .0

2

664

3

775 and I is m� m identity matrix.

Similar to the line of the linear case, the dual problem of

the primal problem (20) can be obtained as follows

min
a1;a2

1

2
ða1 � a2ÞTGðcI0 þ kGTGÞ�1

GTða1 � a2Þ

þ YTGðcI0 þ kGTGÞ�1
GTða1 � a2Þ

� YTða1 � a2Þ þ �eTða1 þ a2Þ
subject to,

0	 a1 	Ce;

0	 a2 	Ce:

ð21Þ

After obtaining the optimal value of the a1 and a2 from

(21), we can obtain v as v ¼ u

b

� �
¼ ðcI0 þ kGTGÞ�1

GT

ða1 � a2 þ YÞ: For the given x 2 Rn, the estimated

regressor is obtained as follows

f ðxÞ ¼ KðxT;ATÞuþ b:

4.3 A fast LDMR model using successive over-
relaxation technique

The dual problem of the proposed LDMR model (19) or

(21) can be written in the following unified form

Table 1 Results on artificial

datasets
Dataset Regressor SSE/SST SSR/SST RMSE

TYPE 1 LDMR 0:0106� 0:0058 0:9942� 0:0440 0:0323� 0:0092

SVR 0:0115� 0:0046 0:9588� 0:0544 0:0344� 0:0071

L1-Norm SVR 0:0163� 0:0062 0:9876� 0:0608 0:0408� 0:0082

LS-SVR 0:0158� 0:0080 0:9573� 0:0478 0:0395� 0:0106

TYPE 2 LDMR 0:0209� 0:0110 0:9956� 0:0653 0:0454� 0:0126

SVR 0:0253� 0:0116 0:9978� 0:0750 0:0504� 0:0118

L1- Norm SVR 0:0284� 0:0131 0:9968� 0:0955 0:0534� 0:0128

LS-SVR 0:0335� 0:0170 0:9239� 0:0665 0:0576� 0:0151

TYPE 3 LDMR 0:0328� 0:0158 1:0106� 0:0899 0:0574� 0:0134

SVR 0:0366� 0:0185 1:0050� 0:0930 0:0605� 0:0146

L1-Norm SVR 0:0411� 0:0307 1:0132� 0:0990 0:0623� 0:0219

LS-SVR 0:0560� 0:0290 0:9463� 0:0914 0:0744� 0:0200

TYPE 4 LDMR 0:0450� 0:0244 0:9498� 0:1044 0:0664� 0:0168

SVR 0:0493� 0:0255 0:9107� 0:1094 0:0697� 0:0165

L1- Norm SVR 0:0563� 0:0250 0:9306� 0:1110 0:0753� 0:153

LS-SVR 0:0471� 0:0287 0:9086� 0:0909 0:0676� 0:0188

TYPE 5 LDMR 0:0923� 0:0581 0:9380� 0:1363 0:0945� 0:0265

SVR 0:0991� 0:0510 0:8299� 0:1290 0:0992� 0:0299

L1-Norm SVR 0:1059� 0:0571 0:9331� 0:1488 0:1023� 0:0259

LS-SVR 0:0955� 0:0557 0:8519� 0:1262 0:0966� 0:0253

TYPE 6 LDMR 0:0130� 0:0057 1:0049� 0:0577 0:0915� 0:0181

SVR 0:0188� 0:0188 0:9762� 0:0631 0:1046� 0:0428

L1- Norm SVR 0:0178� 0:0109 0:9911� 0:0685 0:1064� 0:0314

LS-SVR 0:0156� 0:0072 0:9741� 0:0467 0:0996� 0:0209
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max
b

pb� bTQb

subject to,

b 2 S ¼ f0	 b	Ceg:

ð22Þ

For example, the problem (22) becomes

the problem (19) when b ¼ a1
a2

� �
Q ¼

HðcI0 þ kHTHÞ�1
HT �HðcI0 þ kHTHÞ�1

HT

�HðcI0 þ kHTHÞ�1
HT HðcI0 þ kHTHÞ�1

HT

� �
and

p ¼ � YTHðcI0 þ kHTHÞHT � YT þ eT�; �YTHðcI0þ
�

kHTHÞHT þ YT þ eT��
Now problem (22) can be efficiently solved by follow-

ing the successive over-relaxation (SOR) technique

(Mangasarian OL and Musicant DR [25]) as follows.

Algorithm 1

We choose t 2 ð0; 2Þ and start with any initial value of b

say b0 2 Rn. After computing bi; we compute

biþ1 ¼ ðbi � tE�1ðQbi � pþ Lðbiþ1 � biÞÞÞ; ð23Þ

until jjbiþ1 � bijj is not less than some prescribed toler-

ance. Here nonzero elements of L 2 Rl�l constitute the

strictly lower triangular part of the symmetric matrix Q,

and the nonzero elements of E 2 Rl�l constitute the diag-

onal of Q (Shao et al. [23]).

It should be noted that it is well justified in [25] and [26]

that the iterates fbig converges R-linearly to the optimal

solution �b of the problem (22).

5 LDMR: regression via LDM

In this section, we derive the optimization problem of the

proposed LDMR model from the optimization problem of

the LDM model by making use of a result of the Bi and

Bennett [20]. It has been shown in [20] that for a given

��[ 0 and regression training set (A, Y), a regressor

y ¼ w
�g

T xþ b
�g, ðg[ 0Þ is an �-insensitive regressor if and

only if the sets Dþ and D� locate on different sides of

nþ 1-dimensional hyperplane wTxþ gyþ b ¼ 0; respec-

tively, where

Dþ ¼ fðAi; yi þ ��Þ; i ¼ 1; 2; . . .; lg
and D� ¼ fðAi; yi � ��Þ; i ¼ 1; 2; . . .; lg:

In view of this result of Bi and Bennett [20], the regression

problem is equivalent to the classification problem of sets

Dþ and D� in Rnþ1. If we use the LDM methodology

(Zhang and Zhou [17]) for the classification of these two

sets Dþ and D�; then we can find the LDMR formulation.

For this we calculate the margin mean �c and margin vari-

ance ĉ as follows

�c ¼ 1

2l
�
Xl

i¼1

Aiwþ gðyi � ��Þ þ b
� �

(

þ
Xl

i¼1

Aiwþ gðyi þ ���Þ þ bð Þ
)

¼ g��;

ð24Þ

ĉ ¼ 1

2l

Xl

i¼1

ð�ðAiwþ gðyi � ���Þ þ bÞ � g���Þ2
(

þ
Xl

i¼1

ððAiwþ gðyi þ ��Þ þ bÞ � g��Þ2
)

¼ 1

2l

Xl

i¼1

ð�Aiw� gyi � bÞ2 þ
Xl

i¼1

ðAiwþ gyi þ bÞ2
( )

¼ 1

l

Xl

i¼1

ðAiwþ gyi þ bÞ2
( )

;

ð25Þ

where w 2 Rn, g 2 R and b 2 R. Now the classification of

sets Dþ and D� using LDM model will result in the fol-

lowing QPP

min
w;g;b;n;n�

1

2
ðwTwþ g2Þ � k1g��

þ k2
1

l

Xl

i¼1

ðAiwþ gyi þ bÞ2
( )

þ C
Xl

i¼1

ni þ
Xl

i¼1

n�i

 !

subject to,

Aiwþ gðyi þ ��Þ þ b� 1� ni for i ¼ 1; 2; . . .l;

� ðAiwþ gðyi � ��Þ þ bÞ� 1� n�i for i ¼ 1; 2; . . .l;

ni; n
�
i � 0 for i ¼ 1; 2; . . .; l:

ð26Þ

Here we note that g 6¼ 0 and therefore, without loss of

generality, we can assume that g[ 0. The constraint of

(26) can then be rewritten as

Table 2 Results on artificial datasets with outliers

Dataset Regressor SSE/SST SSR/SST RMSE

TYPE 3 LDMR 0.0136 1.10582 0.0392

With outliers SVR 0.0184 1.1034 0.0455

L1-Norm SVR 0.0202 1.1242 0.0476

LS-SVR 0.0273 1.0299 0.0554

TYPE 6 LDMR 0.0165 1.0239 0.1029

With outliers SVR 0.0194 0.9969 0.1098

L1- Norm SVR 0.0188 1.0048 0.0534

LS-SVR 0.0427 0.9825 0.1647
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Table 3 Results on commonly used benchmark datasets

Dataset Regressor SSE/SST SSR/SST RMSE MAE CPU time (in seconds)

Yatch hydro dynamics

308� 7 SVR 0:0230� 0:0080 0:8983� 0:0716 2:2212� 0:4703 1:5544� 0:2620 3.70

LS-SVR 0:0168� 0:0059 0:9581� 0:0620 1:8875� 0:03784 1:4574� 0:2574 0.36

L1-Norm SVR 0:0166� 0:0062 0:9435� 0:0558 1:8664� 0:3253 1:4131� 0:2165 40.48

LDMR 0:0133� 0:0114 0:9836� 0:0424 1:5889� 0:4195 1:2173� 0:2009 3.74

Concrete Slump

103� 8 SVR 0:0069� 0:0033 0:9979� 0:0739 0:5792� 0:1348 0:4526� 0:1162 0.84

LS-SVR 0:0075� 0:0076 0:9816� 0:0615 0:5529� 0:2312 0:4518� 0:1699 0.30

L1-Norm SVR 0:0079� 0:0067 0:9937� 0:0488 0:5949� 0:2038 0:4764� 0:1789 5.00

LDMR 0:0066� 0:0059 0:9957� 0:0520 0:5393� 0:1889 0:4373� 0:1685 0.85

Pyrims

74� 28 SVR 0:4053� 0:1501 0:6215� 0:0344 0:0705� 0:0346 0:0519� 0:0192 0.60

LS-SVR 0:3601� 0:2193 0:7192� 0:2495 0:0670� 0:0484 0:0471� 0:0196 0.29

L1-Norm SVR 0:3576� 0:1732 0:8418� 0:4101 0:0649� 0:0307 0:0464� 0:0149 1.80

LDMR 0:3305� 0:1437 0:7796� 0:3291 0:0648� 0:0391 0:0471� 0:0165 0.60

Motorcycle

133� 2 SVR 0.2247 0.8284 22.8209 16.6075 11.35

LS-SVR 0.2316 0.7356 23.1667 17.4959 0.18

L1-Norm SVR 0.2182 0.8954 22.4860 16.2270 45.67

LDMR 0.2192 0.8956 22.5393 16.1859 11.46

NO2

500� 8 SVR 0:4778� 0:1108 0:6837� 0:1674 0:5089� 0:0638 0:4041� 0:0496 4.67

LS-SVR 0:4437� 0:1134 0:6020� 0:1694 0:4899� 0:0678 0:3901� 0:0493 0.26

L1-Norm SVR 0:4845� 0:0981 0:5708� 0:1632 0:5139� 0:0620 0:4023� 0:0432 172.97

LDMR 0:4566� 0:1225 0:6256� 0:1936 0:4964� 0:0679 0:3930� 0:0530 6.28

Chwirut

214� 3 SVR 0:0215� 0:0106 0:9677� 0:0792 3:2882� 1:0788 2:3358� 0:6187 1.69

LS-SVR 0:0214� 0:0115 0:9793� 0:0880 3:2774� 1:1400 2:3523� 0:6832 0.09

L1-Norm SVR 0:0213� 0:0106 0:9800� 0:0818 3:2701� 1:0973 2:3315� 0:6282 15.21

LDMR 0:0213� 0:0104 0:9766� 0:0857 3:2759� 1:0175 2:3242� 0:6202 1.57

Auto MPG

398� 8 SVR 0:1142� 0:0637 0:8892� 0:0975 2:5231� 0:7177 1:8570� 0:3800 5.14

LS-SVR 0:1154� 0:0586 0:9021� 0:0763 2:5380� 0:6683 1:8812� 0:3555 0.18

L1 -Norm SVR 0:1170� 0:0604 0:8868� 0:1009 2:5485� 0:6482 1:8780� 0:3746 109.57

LDMR 0:1140� 0:0586 0:8902� 0:0989 2:5214� 0:6533 1:8733� 0:3554 4.91

Boston Housing

506� 14 SVR 0:2294� 0:0622 0:7574� 0:1012 3:3628� 0:6404 2:4022� 0:3012 23.74

LS-SVR 0:2360� 0:0622 0:8031� 0:1138 3:3960� 0:5710 2:3865� 0:2505 0.24

L1 -Norm SVR 0:2430� 0:0634 0:7676� 0:1072 3:4519� 0:5645 2:4581� 0:2888 176.33

LDMR 0:2348� 0:0577 0:8086� 0:1188 3:3982� 0:5747 2:4052� 0:2500 6.77
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Further, the objective function of (26) can also be written

as

min
w;g;b;n;n�

g2
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�g

� �T
w
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þ 1

 !
� k1
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��
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On replacing � :¼ ��� 1
g, w :¼ ð w

�gÞ, b :¼ ð b
�gÞ, ni :¼

ni
g , n

�
i :

¼ n�i
g ;C :¼ C

g and k :¼ k
g and noting that g� 0; the objective

function of the optimization problem (26) can be rewritten

as

min
w;b;n;n�

g2
1

2
wTw� k1�þ k2

1

l

Xl

i¼1

ðyi � ðAiwþ bÞÞ2
( )"

þC
Xl

i¼1

ni þ
Xl

i¼1

n�i

 !
þ 1

2

#
:

Also the constraints of the optimization problem (26) can

be expressed as

ðAiwþ bÞ � yi 	 �þ ni; for i ¼ 1; 2; . . .l;

yi � ðAiwþ bÞ	 �þ n�i ; for i ¼ 1; 2; . . .l;

ni; n
�
i � 0 for i ¼ 1; 2; . . .; l; where �� 0:

ð27Þ

We further need to show that � ¼ ��� 1
g is always non-

negative. We prove this assertion as follows.

Let ( �w, �g, �n �n�) be the solution of QPP (26) which finds

the classifier for the sets Dþ and D�. There would always

exists an index j such that

ðAjwþ gðyj þ ��Þ þ bÞ� 1; ð28Þ

� ðAjwþ gðyj � ��Þ þ bÞ� 1: ð29Þ

Adding (28) and (29), we get ��� 1
g, which proves that

� ¼ ��� 1
g � 0:

Now for g[ 0, the classifier wTxþ gyþ b ¼ 0 for the

classes Dþ and D� gives the regressor y ¼ ðwTxþ bÞ with
w :¼ w

�g


 �
, b :¼ b

�g


 �
. Since constraints in (27) do not

involve g, g does not play any role now in the determi-

nation of the regressor. Therefore, problem (26) becomes

min
w;b;n;n�

1

2
wTw� k1�þ k2

1

l

Xl

i¼1

ðyi � ðAiwþ bÞÞ2
( )

þ C
Xl

i¼1

ni þ
Xl

i¼1

n�i

 !

subject to,

ðAiwþ bÞ � yi 	 �þ ni for i ¼ 1; 2; . . .l;

yi � ðAiwþ bÞ	 �þ n�i for i ¼ 1; 2; . . .l;

ni; n
�
i � 0 for i ¼ 1; 2; . . .; l:

ð30Þ

Also, since � has been taken as constant, it can be removed

from the objective function of (30). Further, after replacing

k :¼ 2k2 1
l
, the problem (30) can be written in the vector

form as follows

Table 4 Average ranks of SVR, LS-SVR, L1-Norm SVR and LDMR

models on SSE/SST values

Dataset SVR LS-SVR L1-Norm SVR LDMR

Yacht hydrodynamics 4 3 2 1

Concrete Slump 2 3 4 1

Pyrims 4 3 2 1

Motorcycle 3 4 1 2

NO2 3 1 4 2

Chwirut 4 3 1.5 1.5

Auto MPG 2 3 4 1

Boston Housing 1 3 4 2

Average 2.8750 2.8750 2.8125 1.4375
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min
w;b;n;n�

c

2
jjwjj2 þ k

2
jjY � ðAwþ ebÞjj2 þ CeTðnþ n�Þ

subject to,

Y � ðAwþ ebÞ	 e�þ n;

ðAwþ ebÞ � Y 	 e�þ n�;

n; n� � 0:

ð31Þ

6 Experimental results

We have performed a number of experiments to verify the

efficacy of the our proposed LDMR model. For this, we

have compared the LDMR model with existing SVR

models, namely standard SVR, SMO-based SVR, LS-SVR

and L1-Norm SVR (Tanveer [24]) on certain artificial

datasets, UCI benchmark datasets (Blake and Merz [28])

and time-series financial datasets.

All the simulations have been performed in MATLAB

12.0 environment (http://in.mathworks.com/) on Intel

XEON processor with 16.0 GB RAM. The L1-Norm SVR

model has been solved by using the ‘linprog’ function of

the MATLAB. For small- and medium-scale datasets, the

proposed LDMR and standard SVR models have been

solved by using the ‘quadprog’ function of MATLAB. For

the large-scale datasets, we have used the SOR technique

(Mangasarian and Musicant [25]) to solve the proposed

LDMR model efficiently, whereas the SMO (Chang and

Lin [27]) method has been used for obtaining the solution

of standard SVR for large-scale datasets. For this, we have

downloaded its code form (https://www.csie.ntu.edu.tw/

*cjlin/libsvm/). Throughout these experiments, we have

used RBF kernel expð�jjx�yjj2
q

Þ where q is the kernel

parameter.

The optimal values of parameters in SVR models have

been obtained using the exhaustive search method (Hsu

and Lin [30]) with cross-validation. For all SVR models,

the value of the kernel parameter q has been searched in the

set f2i; i ¼ �10;�2; . . .; 10g. The value of the parameter �

in �-SVR, L1-Norm SVR and proposed LDMR model has

been searched in the set of f0:05; 0:1; 0:2; 0:3. . .; 1; 1:5; 2g.
The value of the parameter k of the proposed LDMR has

been fixed to 1 throughout the experiments. The value of

parameters C in �-SVR, LS-SVR, L1-Norm SVR and pro-

posed LDMR model has been searched in the set

f2i; i ¼ �10;�2; . . .; 12g. The value of parameter c in L1-

Norm SVR and proposed LDMR model has also been

searched in the set f2i; i ¼ �10;�2; . . .; 12g.

Table 5 Tuned parameter values of SVR models on UCI datasets

Dataset q C c k �

Yatch

SVR 1 1024 1

LS-SVR 1 1024

L-1 Norm SVR 1 256 0.0313 1

LDMR 1 1024 0.0009 1 1

Concrete Slump

SVR 1 1024 0.1

LS-SVR 1 1024

L-1 Norm SVR 1 128 0.0009 0.1

LDMR 1 1024 0.0009 1 0.1

Pyrims

SVR 4 4 0.05

LS-SVR 2 16

L-1 -Norm

SVR

4 0.5 0.0313 0.05

LDMR 4 8 0.0313 1 0.3

Motorcycle

SVR 0.0078 32 0.1

LS-SVR 0.0078 4

L-1 Norm SVR 0.0078 2 1 0.1

LDMR 0.0078 128 4 1 0.1

NO2

SVR 0.25 8 0.3

LS-SVR 0.25 8

L-1 -Norm

SVR

2 128 1 0.1

LDMR 2 8 0.5 1 0.6

Chwirut

SVR 0.0078 32 0.1

LS-SVR 0.0078 16

L-1 -Norm

SVR

0.0078 32 2 0.1

LDMR 0.0078 32 2 1 0.1

Auto MPG

SVR 0.5 128 1

LS-SVR 0.5 32

L1-Norm SVR 1 8 0.0313 0.8

LDMR 0.5 64 0.0313 1 1

Boston Housing

SVR 2 128 2

LS-SVR 2 16

L-1 -Norm

SVR

2 16 1 2

LDMR 2 16 0.0078 1 1.5
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6.1 Performance criteria

In order to evaluate the performance of the regression

methods, we first summarize some commonly used evalu-

ation criteria. Without the loss of generality, let l and k be

the number of the training samples and testing samples,

respectively. Furthermore, for i ¼ 1; 2; . . .k, let y0i be the

predicted value for the response value yi and �y = 1
k

Pk
i yi is

the average of y1; y2; . . .; yk. The definition and significance

of the some evaluation criteria have been listed as follows.

(i) SSE Sum of squared error of testing, which is

defined as SSE =
Pk

i¼1ðyi � y0iÞ
2
. SSE represents

the fitting precision.

(ii) SST Sum of squared deviation of testing samples,

which is defined as SST =
Pk

i¼1ðyi � yÞ2. SST

shows the underlying variance of the testing

samples.

(iii) SSR Sum of square deviation of the testing

samples which can be explained by the estimated

regressor. It is defined as SSR =
Pk

i¼1ðy0i � yÞ2.
(iv) RMSE Root mean square of the testing error,

which is defined as RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Pk
i¼1ðyi � y0iÞ

2
q

.

(v) SSE/SST SSE/SST is the ratio between the sum of

the square of the testing error and sum of the

square of the deviation of testing samples. In most

cases, small SSE/SST means good agreement

between estimations and real values.

(vi) SSR/SST It is the ratio between the variance

obtained by the estimated regressor on testing

samples and actual underlying variance of the

testing samples.

6.2 Experiment 1 (artificial datasets)

To compare the performance of the proposed methods with

the existing methods, we have synthesized some artificial

datasets. For the training samples ðxi; yiÞ for i ¼ 1; 2; . . .; l,
datasets have been generated as follows.

TYPE 1

yi ¼
sinðxiÞ
xi

þ ki; ki 
U½�0:2; 0:2�

and xi is from U½�4p; 4p�:

Table 6 Results on large-scale datasets

Dataset Regressor SSE/SST SSR/SST RMSE MAE CPU time(s)

Parkinsons Telemonitoring

(2000þ 3847� 22)

SMO SVR 0:2289� 0:0070 0:7593� 0:0191 0:0446� 0:0011 0:0353� 0:0010 0.78

SOR LDMR 0:1978� 0:0014 0:7862� 0:0032 0:0408� 0:0009 0:0285� 0:0002 22.03

Wine Quality Red

(1000þ 599� 22)

SMO SVR 0:6371� 0:0071 0:4245� 0:0149 0:6433� 0:0162 0:4928� 0:0104 0.75

SOR LDMR 0:6139� 0:0027 0:4371� 0:0080 0:6339� 0:0149 0:4903� 0:0099 5.94

Wine Quality White

(1000þ 3898� 22)

SMO SVR 0:6792� 0:0026 0:3737� 0:0078 0:7321� 0:0064 0:5690� 0:0048 1.97

SOR LDMR 0:6736� 0:0036 0:3605� 0:0106 0:7267� 0:0043 0:5648� 0:0046 7.01

Table 7 Results on financial

dataset
Dataset Regressor SSE/SST SSR/SST RMSE MAE CPU time

(in seconds)

IBM

(244� 4) SVR 0.1009 0.9825 0.1760 0.1226 0.58

LS-SVR 0.0995 0.9873 0.1748 0.1220 0.37

L1-Norm SVR 0.1025 1.0141 0.1774 0.1242 1.12

LDMR 0.0989 0.9959 0.1743 0.1210 0.59

SOR LDMR 0.0989 0.9958 0.1742 0.1210 0.40

SBI

(513� 4) SVR 0.0202 0.9520 0.0742 0.0564 0.69

LS-SVR 0.0197 0.9605 0.0733 0.0552 0.36

L1-Norm SVR 0.0204 0.9436 0.0746 0.0572 3.71

LDMR 0.0193 0.9622 0.0725 0.0545 0.68

SOR LDMR 0.0193 0.9620 0.0725 0.0546 0.38
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TYPE 2

yi ¼
sinðxiÞ
xi

þ ki; ki 
U½�0:3; 0:3�

and xi is from U½�4p; 4p�:

TYPE 3

yi ¼
sinðxiÞ
xi

þ ki; ki 
U½�0:4; 0:4�

and xi is fromU½�4p; 4p�:

TYPE 4

yi ¼
sinðxiÞ
xi

þ ki; ki 
N½0; 0:2�

and xi is from U½�4p; 4p�:

TYPE 5

yi ¼
sinðxiÞ
xi

þ ki; ki 
N½0; 0:3�

and xi is from U½�4p; 4p�:

TYPE 6

yi ¼
xi � 1

4



þ sinðpð1þ xi � 1

4
ÞÞ



þ 1þ ki;

ki 
U½�0:5; 0:5� and xi is from U½�10; 10�:

TYPE 6 dataset contains 200 training samples and 400

non-noise testing samples, while other datasets contain 100

training samples and 500 non-noise testing samples. To

avoid the biased comparison, ten independent groups of

Fig. 1 Performance of a LDMR b SVR c L1-Norm SVR and d LS-SVR on TYPE 3 dataset
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noisy samples were generated randomly using MATLAB

toolbox for all types of training sets.

Figures 1 and 2 illustrate the estimated function obtained

by the LDMR, standard SVR, L1-Norm SVR and LS-SVR

models for TYPE 3 and TYPE 6 datasets, respectively.

Table 1 shows the comparison of the proposed LDMR with

SVR, L1-Norm SVR and LS-SVR models on artificial

datasets. It can be observed that the proposed LDMR,

irrespective of the nature of noises present in the training

set, owns always better generalization ability than other

regression methods.

6.3 Experiment 2 (artificial datasets
with outliers)

As compared to other regression methods, the proposed

LDMR is a robust method and is less sensitive to the

presence of outliers. To realize this, we have generated

datasets by adding five and ten outliers points in the TYPE

3 and TYPE 6 datasets, respectively. Figure 3 shows the

estimated function obtained by LDMR, standard SVR, L1-

Norm SVR and LS-SVR models on TYPE 3 dataset with

outliers. For L1-Norm SVR and standard SVR models, the

optimal RMSE has been found at � ¼ 0:3 but, still at this

value of the �, outliers lie outside of the �-insensitive zone

and affect the orientation and position of the estimated

function. The LDMR model reduces the effect of these

outliers by also assigning some weight to the points lying

inside of the �-insensitive zone in the optimization prob-

lem. Table 2 shows the comparison of the proposed

LDMR, standard SVR, L1-Norm SVR and LS-SVR models

on artificial datasets with outliers. In these datasets, 200

points were used for training and 400 non-noise points

were used for testing.

Fig. 2 Performance of a LDMR bSVR c L1-Norm SVR and d LS-SVR on TYPE 6 dataset
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6.4 Experiment 3 (benchmark datasets)

We have checked the performance of the proposed meth-

ods on eight UCI benchmark datasets, namely Yacht

Hydrodynamics, Concrete Slump, Pyrims, Motorcycle,

NO2, Chwirut, Auto MPG and Boston Housing which are

commonly used in evaluating a regression method. For the

Motorcycle dataset, the criterion leave-one out (Kohavi

[32]) was used to report the numerical results. For other

datasets, we have used tenfold cross-validation (Duda and

Hart [31]) to report the numerical results. For all the

datasets, only feature vectors were normalized in the range

of [0,1].

Table 3 lists the performance of LDMR, standard SVR,

LS-SVR and L1-Norm SVR using different evaluation

criteria described in Sect. 6.1 for eight different UCI

datasets. It can be observed that the proposed LDMR

model outperforms the other existing regression methods in

most of the datasets. For the statistical analysis of perfor-

mance of the regression methods, their average rank has

been computed using the values of SSE/SST. The obtained

average ranks are summarized in Table 4. It can be

observed that on an average, the proposed LDMR models

obtain better ranks than existing regression methods.

For all SVR models, we have tuned their parameters to

obtain their best choice in each datasets. We list the tuned

parameter values of SVR models for UCI datasets in

Table 5. Figure 6 shows the effect of the parameters C and

c on SSE/SST values in LDMR model for Pyrims and Auto

MPG datasets. It shows that the performance of the LDMR

model is sensitive to the choice of parameters c and C.

Fig. 3 Performance of a LDMR b SVR c L1-Norm SVR and d LS-SVR on TYPE 3 dataset with outliers
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6.5 Experiment 4 (large-scale datasets)

We have also compared the proposed model with SVR

model on large–scale datasets. Since the ‘quadprog’

implementation of the proposed LDMR model and SVR

model is not efficient for the large-scale datasets, we have

used the SOR method in the proposed LDMR model for

these datasets. For the SVR model, we have used its SMO

implementation. We have downloaded Parkinsons Tele-

monitoring (5847 � 22), Wine Quality Red (1599 � 12)

and Wine Quality White (4898 � 12) datasets from the

UCI Repository [28]. For all these datasets, we have nor-

malized their input feature vectors in the range of [0,1]. For

each dataset, we have fixed the number of training points

and testing points and randomly permuted the data points

in training set and testing set in ten different trials. The

regression methods have been evaluated for each trial.

Table 6 shows the comparison of the SMO SVR and

proposed SOR LDMR on large-scale datasets using dif-

ferent evaluation criteria. It can be observed that the pro-

posed LDMR model with its SOR implementation

outperforms the existing SVR model with SMO

implementation.

6.6 Experiment 5 (time-series financial dataset)

For further evaluation of the proposed methods, we have

simulated the existing as well as proposed regression

methods on real-world time-series financial datasets. We

have downloaded the daily stock prices of the IBM and

SBI.INS for the period of 27 March 2016 to 27 March 2017

and 27 March 2015 to 27 March 2017, respectively, from

the Yahoo financial website. The datasets were generated

by taking the last three days closing stock prices as input

feature and next day closing stock price as response value.

In experiments, the first 50% data points of the datasets

were used for training and rest of them have been used for

the testing. The input features were normalized in the range

of [�1; 1].

Table 7 lists the comparison of the proposed methods

with other existing regression methods using different

evaluation criteria on IBM and SBI.INS finance datasets

along with their training time. Figures 4 and 5 show the

performance of the proposed regression methods along

with existing regression methods on IBM and SBI.INS

finance dataset, respectively. It can be easily observed in

Table 5 and Figures 5 and 6 that the proposed LDMR

formulations outperform the existing regression methods.

7 Conclusion

An efficient LDM-based regression model has been pro-

posed in this paper which can be mathematically derived

from the optimization problem of the LDM (Zhang and

Zhou [17]) by making use of a result of Bi and Bennett

[20]. The proposed LDMR model simultaneously mini-

mizes the �-insensitive loss function as well as the quad-

ratic loss function. In this sense, the proposed LDMR

formulation combines the benefits of the LS-SVR model

(Suykens et al. [21, 22]) as well as the �-SVR model. The

proposed LDMR model obtains better generalization abil-

ity by finding a trade-off between the �-insensitive loss and

the quadratic loss via the user-defined parameters k and

Fig. 4 SSE/SST values obtained by LDMR model on different values

of C and c parameter on a Pyrims and b Auto MPG dataset

Fig. 5 Performance of L1-Norm SVR, LDMR and SOR LDMR on

IBM dataset
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C. The proposed LDMR model has also been observed to

be less sensitive to the presence of outliers. Further, the

application of the SOR technique (Mangaserian and

Musicant [25]) significantly reduces the training time of the

proposed LDMR model.

One of the major difficulties with the proposed LDMR

model is that it requires more parameters to be tuned. This

requires future study so as to develop a model which can

autolearn parameters �, c and C from the data. Further, we

have observed that the SOR technique works well in the

proposed LDMR formulation but, as compared to SMO

method in SVR model, it takes more time to train the

model. So we would like to test the SMO method for

solving the optimization problem in the proposed LDMR

model in future.
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